
HAL Id: hal-02326060
https://hal.science/hal-02326060

Submitted on 22 Oct 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Molecular-beam epitaxy of GaSb on 6°-offcut (001) Si
using a GaAs nucleation layer

M. Rio Calvo, J-B Rodriguez, L. Cerutti, M. Ramonda, G. Patriarche, E.
Tournié

To cite this version:
M. Rio Calvo, J-B Rodriguez, L. Cerutti, M. Ramonda, G. Patriarche, et al.. Molecular-beam epitaxy
of GaSb on 6°-offcut (001) Si using a GaAs nucleation layer. Journal of Crystal Growth, 2019,
pp.125299. �10.1016/j.jcrysgro.2019.125299�. �hal-02326060�

https://hal.science/hal-02326060
https://hal.archives-ouvertes.fr


 

 1  
  

Molecular-beam epitaxy of GaSb on 6°-offcut (001) Si using a GaAs nucleation layer 

M. Rio Calvo,1 J-B. Rodriguez,1 L. Cerutti,1 M. Ramonda,2 G. Patriarche,3 and E. Tournié1 

1. IES, Univ. Montpellier, CNRS, F-34000 Montpellier, France 

2. CTM, Univ. Montpellier, F-34000 Montpellier, France 

3. C2N, CNRS- Univ. Paris-Sud, Univ. Paris-Saclay, 10 Avenue Thomas Gobert, F-91120 

Palaiseau, France 

 

Published in Journal of Crystal Growth (2019) 

https://doi.org/10.1016/j.jcrysgro.2019.125299	
 

 

  



 

 2  
 

Molecular-beam epitaxy of GaSb on 6°-offcut (001) Si using a GaAs nucleation layer 

M. Rio Calvo,1 J-B. Rodriguez,1 L. Cerutti,1 M. Ramonda,2 G. Patriarche,3 and E. Tournié1 

1. IES, Univ. Montpellier, CNRS, F-34000 Montpellier, France 

2. CTM, Univ. Montpellier, F-34000 Montpellier, France 

3. C2N, CNRS- Univ. Paris-Sud, Univ. Paris-Saclay, 10 Avenue Thomas Gobert, F-91120 

Palaiseau, France 

 

Abstract 

We studied and optimized the molecular beam epitaxy of GaSb layers on vicinal (001) Si substrates 

using a GaAs nucleation layer. An in-depth analysis of the different growth stages under optimized 

conditions revealed the formation of a high density of small GaAs islands forming a quasi-two-

dimensional layer. GaSb then nucleated atop this layer as three-dimensional islands before turning to 

two-dimensional growth within a few nanometers. Moreover, reflexion high-energy electron 

diffraction revealed a fast relaxation of GaAs on Si and of GaSb on GaAs. The GaSb layer quality was 

better than that of similar layers grown on Si through AlSb nucleation layers. 

1. Introduction  

The combination of the silicon technology with the optical and electrical properties of the III-V 

semiconductors is under active consideration for developing novel optoelectronic devices, like 

photonic integrated circuits (PICs) or highspeed transistors. In this context, the integration of 

antimonides (GaSb, AlSb, InAs and their alloys and heterostructures) on silicon has recently attracted 

great attention since they offer short-, mid- and long-wavelength infrared (IR) emission and high 

electron/hole mobility [1]. Still, in spite of numerous studies, the direct epitaxial growth of III-V 

materials on silicon remains a challenge. The polar on non-polar growth, the large lattice mismatch 

and the thermal expansion coefficient difference are responsible for the formation of several types of 

crystallographic defects such as antiphase boundaries (APB), stacking faults, twins, threading 

dislocations (TD) or cracks, which drastically degrades the device performance. In addition, the III-V/Si 

interface energy always results in a Volmer-Weber growth mode, irrespective of the lattice mismatch 

[2,3]. Still, a considerable difference on islands shape and size has been observed with different III-V 

materials and growth conditions, which has been attributed to different interface energies [3] and 

kinetic-related processes such as the adatom diffusion, respectively [4].  
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Regarding the integration of antimonides, earlier studies have shown that GaSb nucleates on silicon as 

inhomogeneous large 3D islands [5] which results in low quality, high defect density GaSb layers after 

island coalescence. Machida et al. have recently demonstrated that the GaSb quality can be improved 

when it is directly grown on silicon if the conditions to nucleate a high density of small GaSb islands 

are fulfilled [5, 6]. On the other hand, inserting an AlSb nucleation layer at the interface improves the 

GaSb structural properties by the formation of a high density of small AlSb islands [7 - 11]. This 

approach has allowed us to demonstrate efficient quantum well [12] and quantum cascade [13] lasers 

grown on 6° offcut silicon substrates. The conclusion drawn from these works is that one should avoid 

the formation of large islands at the early stage of growth which can be achieved by kinetically 

restricting the system and the migration length of adatoms.  

Following this idea, in this work we have investigated GaAs as a seed layer to grow GaSb layers on 

offcut Si substrates. The monolithic integration of GaAs compounds and Si technology has been 

extensively studied during the last years [14], and in particular many studies have focused on the 

growth initiation strategies [15,16]. Interestingly, there are three main differences between GaAs and 

AlSb NLs. On the one hand switching from the nucleation layer (NL) growth to the GaSb growth occurs 

by changing the group-V element (GaAs to GaSb) instead of the group-III element (AlSb to GaSb). The 

creation of Si-As bonds is expected to result in a different starting surface energy as compared to the 

AlSb NL [2]. On the other hand, while the lattice mismatch between AlSb and Si is around 13%, similar 

to the GaSb-to-Si mismatch, the mismatch between GaAs and Si is only around 4%. Therefore, in this 

approach the mismatch will be relieved in two steps, which might affect the growth as well.  

2. Experimental details  

The III-V materials have been directly grown on vicinal (001) Si substrates by Molecular Beam Epitaxy 

(MBE). As2 and Sb2 were provided by conventional cracker-cells. The Si substrates with a 6° offcut 

towards the [110] direction were used. They were first prepared ex-situ with cycles of HF dip and 

oxygen plasma, as described earlier [17]. Subsequently, the samples were flash annealed at 800°C 

inside the MBE without any intentional impinging flux, in order to remove residual impurities from the 

surface. Substrate temperatures higher than 400°C were measured with an infrared pyrometer, while 

lower ones were inferred from the thermocouple. The growth were monitored through in-situ 

reflection high energy electron diffraction (RHEED). The epitaxial samples were characterized by 

atomic force microscopy (AFM) and high-resolution X-Ray diffraction (HRXRD). The surface 

morphology was measured in tapping mode using a Nanoman AFM microscope, controlled by a 

Nanoscope V electronics from Bruker Instruments, using a cantilever with a nominal tip radius between 

2 and 5 nm (Nanosensors NCL tip). The roughness - namely the root mean square (rms) of the 

distribution of height - and power spectral density function (PSDF) were extracted from the AFM 
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topographic images using the Gwyddion software [18]. HRXRD measurements were carried out using 

a PANalytical X’Pert MRD equipped with a four bounce (002) Ge monochromator and an X-Ray tube 

providing the Cu k𝜶𝟏radiation. The omega-scans were recorded using a PIXcel linear detector in the 

open detector configuration, which correspond to a 2.5° aperture angle.  Scanning transmission 

electron microscopy (STEM) observations were made on a Titan Themis 200 microscope (FEI/ Thermo 

Fischer Scientific) equipped with a geometric aberration corrector on the probe. This microscope is 

also equipped with the "Super-X" systems for EDX analysis with a detection angle of 0.9 steradian. The 

observations are made at 200 kV with a probe current of about 70 pA and a half-angle of convergence 

of 24 mrad. HAADF-STEM images are acquired with a camera length of 110 mm (inner/outer collection 

angles are respectively 69 and 200 mrad). The thin cross-sections were prepared by FIB, the cuts are 

made along the [110] zone axis, which is the axis of disorientation. 

The growth were performed in two steps: First a GaAs NL and a 50 nm-thick GaSb layer were grown at 

the same temperature. Next, the substrate temperature was changed, with the sample surface left 

under Sb flux, and the structure was completed by a 450 nm-thick GaSb layer grown at 500 °C, the 

usual growth temperature of GaSb. The gallium flux was kept constant for both the GaAs and GaSb 

layers, and set to get an equivalent GaSb growth rate of 0.3 ML/sec. When not otherwise specified the 

V/III flux ratio was around 2 for all layers. 

3. Results and discussion 

3.1 Influence of the nucleation layer growth parameters on the GaSb quality 

In this section, we report on the influence of the growth parameters used for the GaAs nucleation layer 

on the structural properties of the GaSb layer grown atop. The V/III flux ratio, the substrate growth 

temperature, the shutter sequence and the GaAs layer thickness were varied. 

 

We have first studied the influence on the GaSb quality of the As/Ga ratio during the growth of GaAs. 

A set of samples was grown with As/Ga ratio in the 1.3 to 4 range and characterized using HRXRD. The 

sample structure as well as the evolution of the FWHM of the rocking curves are presented in Fig. 1.  
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Fig 1. Variation of the FWHM of the 004 GaSb peaks and the AFM roughness with the V/III ratio of 

the GaAs nucleation layer. Inset, scheme of the growth with the temperatures. 

 

The results clearly show that an As/Ga flux ratio in the 1 to 2 range gives the best GaSb quality, with a 

FHWM around 560 arcsec. For larger As fluxes, the FWHM rapidly increases. A low V/III ratio during 

the GaAs growth therefore seems necessary, which we ascribe to two possible explanations: On the 

one hand, the substrate temperature at this stage of the growth sequence is low as compared to the 

common temperatures used for the growth of GaAs (~600°C), and a too large excess of As may result 

in a severe degradation of the material quality. On the other hand, when the growth of GaSb is 

initiated, the residual As sitting at the GaAs surface and the As background in the MBE reactor is likely 

to be incorporated into the GaSb layer. In fact, it was found that in the case of GaSb grown on GaAs 

substrate, the best quality is achieved when the As-to-Sb swap is performed at high temperature in 

order to replace residual As by Sb and therefore avoid any incorporation of As into GaSb [19,20]. In an 

attempt to further reduce the amount of residual excess As at the GaAs/GaSb interface, a 20" Sb soak 

of the GaAs surface was introduced before starting the GaSb growth, which only resulted in a minor 

improvement of the FWHM (540 arcsec compared to 560 arcsec without Sb soak). 

 

Next, the effect of the substrate temperature during the growth of the GaAs NL and the first 50 nm-

thick GaSb layer was investigated by growing a set of samples at various NL temperatures in the 370 
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to 450°C range with an As/Ga flux ratio of 1.3. Fig. 2 shows that the best GaSb quality is achieved when 

GaAs and the low temperature GaSb are grown near 400 °C. A rather small variation is observed at 

lower temperature whereas it degrades significantly at high temperatures (nearly 50 arcsec more). The 

AFM images measured on NLs grown at 450°C (Fig. 3) reveal an island morphology with an average 

island diameter around 20 nm and a rms of 2.9 nm due to the presence of tall islands with an average 

size between 5 and 6 nm, and a density of around 5 ×	108	cm−2 . 

  
Fig 2.  Variation of the FWHM of the 004 GaSb peaks with the GaAs substrate temperature during 

the nucleation layer.  

 

 

500 nm 
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Fig 3. Planar (left) and 3D (right) views of AFM (2 µm x 2 µm) images taken from 14 MLs GaAs grown 

on Si at 450°C.   

 
 

Finally, two sets of samples were grown to investigate the impact of the GaAs NL thickness at two 

growth temperatures (400 and 450°C respectively) and two As/Ga flux ratio (1.3 and 4 respectively). 

The rocking curve FWHMs and AFM rms roughnesses obtained on 20 x 20 µm² images are displayed in 

Fig. 4 (a) and (b), respectively. 

  

Fig 4.  Variation of the FWHM of the 004 GaSb peaks and the AFM roughness with the GaAs nominal 

thickness for different substrates heater temperatures and GaAs V/III ratios.  

 

 

As expected from the experiments described above, the set of samples where the NL has been grown 

at low temperature using a low As/Ga flux ratio demonstrate better FWHM and rms roughness than 

the set grown at high temperature and large As/Ga ratio. However, the difference between the two 

sets is much more pronounced on the FWHM (nearly 100 arcsec), which could be ascribed to a better 

arrangement of the misfit dislocation array at the GaAs/Si or GaSb/GaAs interfaces, or to a faster 

dislocation recombination rate within the layers.  

 

From these graphs, an optimal NL thickness can be derived for each set of samples: about 14 MLs at 

low temperature and low As/Ga ratio, and about 50 MLs in the other case. It is interesting to note here 

a similarity with a work we previously published with AlSb NLs [9]. Indeed, in this work, we found that 

the optimal NL thickness is critically dependent on the substrate temperature, which we attributed to 

the onset of the coalescence of the AlSb islands. This optimal thickness increases with the temperature, 

as it seems to be the case here, too. However, the most interesting feature in the present case is the 

fact that for GaAs NL thicker than 5 MLs, the variation of the roughness and the FWHM are very weak 
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compared to the AlSb case. In fact, in the thickness range investigated here (5 to 25 MLs (5 to 180 MLs) 

in the low (high) temperature / low (high) V/III ratio (respectively)), the FWHM values only varies by 

20 to 40 arcsec and the rms roughness by less than 0.2 nm. This relative insensitivity to the GaAs NL 

thickness clearly contrasts with AlSb for which far much larger variations were observed. In both cases 

however, the substrate temperature and the V/III ratio must be carefully adjusted in order to improve 

the material quality. It is also noteworthy that, as far as HR-XRD and AFM are concerned, the material 

quality obtained using a GaAs NL is better than when an AlSb NL is used. Indeed, optimal growth 

conditions using the later resulted in a FWHM of 580 arcsec and a rms roughness of 4 nm [10], to be 

compared with 490 arcsec and about 2 nm respectively with the GaAs NL. Finally, in plane polar figures 

(IPPF) measured on the samples presented here revealed that the twined volume in the GaSb layers is 

below the detection sensitivity limit of our setup (not shown here for the sake of conciseness). This 

again contrasts with AlSb NL which were shown to generate twins when grown at low temperature 

[21].  

 

3.2 Post growth annealing 

Finally, the impact of post growth annealing on the structural properties of the layers has been 

investigated. Complete structures with GaAs NL thicknesses of 14 MLs grown at two different substrate 

temperatures, namely 400 and 450°C, were annealed and characterized. Right after the growth, 

HRXRD measurements were carried out and the samples were reloaded in the MBE system to perform 

annealing during 1 h at 550°C under an Sb flux. This procedure was repeated twice. Figure 5 shows the 

evolution of the 004 GaSb peak FWHM with the annealing duration. Our best results previously 

obtained using an AlSb NL [9] were also added to the graph for the sake of comparison. After 2 h 

annealing, the samples comprising a GaAs NL grown at low temperature exhibit an FWHM as low as 

420 arcsec, which is significantly better than the value obtained with an AlSb NL (490 arcsec) [9].  This 

figure confirms that a GaAs NL allows the growth of better GaSb quality than an AlSb NL, as well as 

that low temperature should be used for the NL. 
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Fig 5.  Variation of the FWHM with the annealing duration for different GaAs substrate 

temperatures and comparison with AlSb nucleation layer thickness. 

 

 
4 Microstructure of the GaSb on GaAs-on-Si samples. 

In this section, we study in detail the structural properties of a sample grown using the optimized 

parameters derived from the experiments described above, namely: a 14 MLs thick GaAs NL grown 

using a V/III ratio of 1.3 at a substrate temperature of 400°C, a 50 nm thick layer of GaSb grown at the 

same temperature, finally covered by a 450 nm thick GaSb layer grown at 500°C.  

Notably, no change in the (2x1) silicon reconstruction was observed prior to the growth [15] while a 

spotty RHEED pattern was observed during the growth of GaAs, as shown in the inset of Fig.6 (a), 

indicating the formation of islands, as expected for the VW growth mode of III-Vs on Si. The AFM 

picture taken on a NL sample reveals an overall homogeneous surface with a low rms roughness of 

0.65 nm (Fig. 6a). We will come back to this rather surprising observation later on. After deposition of 

1.5 ML GaSb (Fig. 6b), the spots on the RHEED pattern appeared brighter and less elongated. The AFM 

image taken on the surface of a sample corresponding to this stage of the growth shows the same 

uniform coverage of the Si surface due to the NL. However, it also reveals brighter areas with an 
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average size of 50 nm and an average separation of 260 nm which we ascribe to GaSb islands atop the 

NL. A (1x3) reconstruction characteristic for GaSb growth appeared after a few MLs only and was 

superimposed to the spotty RHEED pattern (Fig.6c). The AFM image of the surface of a sample with 50 

MLs GaSb demonstrates a rougher surface due to the emergence of big elongated GaSb islands. This 

behavior is comparable to what is observed when growing GaSb on GaAs substrates [2]. The RHEED 

pattern then progressively became stricky, attesting the transition to the growth of a two-dimensional, 

smoother layer. After the full growth sequence is completed, the AFM shows a flat surface with a rms 

roughness as low as 2 nm (Fig.6d), which can be ascribed to the presence of the emerging TDs visible 

on this picture as dark spots, with a density in the 3 to 5 x109 cm-2 range.  

  

  

Fig 6. In-situ RHEED pattern and (5 µm x 5 µm) AFM topographic images. a) 14 MLs GaAs (rms: 0.65 

nm). b) 1.5 ML GaSb – 14 MLs GaAs (rms: 1.26 nm). c) 50 MLs GaSb – 14 MLs GaAs (rms: 2.6 nm). 

d) 450 nm GaSb - 50 nm GaSb – 14 MLs GaAs (rms: 2 nm). 

We combined AFM and TEM measurements to investigate the actual morphology of the NL. Indeed, 

higher magnification AFM image of the NL (Fig.7a) shows uniform and densely packed islands forming 
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a quasi-continuous layer, which explains the observation of a continuous layer seen in Fig. 6 a. The 

power spectral density function indicates an average island diameter of 20 nm, and a density of 

~10,,	𝑐𝑚/0, in agreement with previously reported results [13]. This uniform coverage of the Si 

surface by a large density of small GaAs islands is further confirmed by HAADF- and EDX- STEM images. 

The images presented in Fig.7b, c and d show such a measurement carried out on a sample comprising 

both the NL and the 500 nm thick GaSb layer. The GaAs islands distribution can clearly be identified on 

the elementary EDX chemical mapping of arsenic (Kα line) displayed on Fig.7d. The islands form a quasi-

continuous 2D layer, with a typical width of 15 to 20 MLs and a rather flat top surface. Interestingly, 

from the comparison between these results and the morphology measured by AFM directly after the 

GaAs was grown, it can be deduced that the GaSb overgrowth does not significantly changes the GaAs 

nucleation layer morphology.  
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Fig 7 a) (2 µm x 2 µm) AFM topographic images. b) HAADF–STEM image c) EDX elemental mapping 

with the As map d) the superimposed chemical mapping of the elements As, Ga, Si and Sb . 

Next, we have recorded the evolution of the RHEED spots spacing during the growth of the GaAs NL 

and part of the GaSb layer grown at low-temperature. This measurement allows describing the 

evolution of the lattice parameter at the growth front [20], and the result obtained is shown on Fig.8. 

A rapid evolution of the lattice parameter toward that of GaAs was observed during the NL deposition, 

full relaxation of the 4% mismatch being achieved after ~ 8 MLs. Still, a careful inspection of Fig. 8 

reveals a two-step relaxation of the GaAs layer. This is ascribed to an initial elastic relaxation stage 

through island formation, followed by the generation of dislocations to fully relieve the strain, as 

reported by others [23]. In contrast, the 8% mismatch between GaSb and GaAs was relieved very 

rapidly in a single step, and full relaxation was achieved after around 4 MLs (Fig. 8). This relaxation is 

similar to what is observed when growing GaSb on GaAs substrates and can thus be ascribed to the 

generation of a network of misfit dislocations at the interface [22]. 

 

Fig 8. 50 nm GaSb/14 MLs GaAs/6° Si (001) grown at 400°C. RHEED measure of in plan lattice 

parameter in the vertical direction to the Si surface. Lattice parameter variation with the thickness, 

for 14 MLs of GaAs and 53 MLs of GaSb on the left and right side, respectively. 

 

For a better comprehension of the relaxation process and the dislocation network, the maps of the in-

plane strain fields have been obtained by Geometric Phase Analysis from the high resolution HAADF-
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STEM images. They reveal the presence of dislocations at the two interfaces Si/GaAs as well as 

GaAs/GaSb. The two misfit dislocations networks are very irregular. The cores of the dislocations are 

often poorly defined because of the low coherence length of the dislocation along the direction [110]. 

Some dislocations are also dissociated (the stacking faults between the two partial dislocations appear 

as yellow segments on the εxx deformation map). The low growth temperatures used for the growth 

can explain the poor organization of the two misfit dislocations networks. 

  

 

  

Fig 9. 500 nm of GaSb on 14MLs GaAs on (001) Si 6°. Atomic resolution HAADF-STEM image (a) 

quantitative strain fields measurements obtained by Geometrical Phase Analysis treatment. 

Maps of the in-plan strain fields: εxy (b), εxx (c) and εyy (d). The x axis is aligned in the [001] 
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direction (the growth direction) and the y axis in the [1-10] direction. The thin foil is prepared 

in the [1-10] zone axis. 

 

5 Conclusions 

In summary, we have investigated the epitaxial growth of GaSb on 6°-off silicon substrates using GaAs 

as a nucleation layer. RHEED, X-Ray diffraction techniques, AFM and TEM measurements were 

performed in order to characterize the different growth stages and the samples quality.  This study 

demonstrated that using a low As/Ga ratio as well as a low temperature during GaAs NL growth 

significantly improved the quality of the subsequent GaSb layer, whereas the NL thickness was not as 

critical as when an AlSb NL was used. The results of an in-depth analysis of the different growth stages, 

and in particular the NL deposition, revealed the formation of a high density of small GaAs islands (~ 

10,,	𝑐𝑚/0) forming a quasi 2D layer. The in-situ lattice relaxation measurements performed by 

RHEED indicate a rapid strain relaxation at both interfaces, GaAs on the Si substrate and GaSb on the 

GaAs NL. Finally, the quality of the samples obtained using a GaAs NL (FWHM of 420 arcsec) was 

significantly better than the value obtained with an AlSb NL (490 arcsec) which is promising in view of 

the monolithic integration of GaSb-based devices on Si.  
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