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Measuring Disagreement in Argumentation Graphs

Leila Amgoud Jonathan Ben-Naim

IRIT — CNRS, France

Abstract. The aim of this paper is to evaluate to what extenaagumentation
graph (a set ofargumentsandattacksbetween them) is conflicting. For that pur-
pose, we introduce the novel notiondifagreement measues well as a set of
principles that such a measure should satisfy. We propase satuitive mea-
sures and show that they fail to satisfy some of the prinsipl&en, we come up
with a more discriminating measure which satisfies themFatially, we relate
some measures to those quantifying inconsistency in krigel®dases.

1 Introduction

An argumentation frameworls a graph whose nodes asyumentsand edges arat-
tacksbetween pairs of arguments. The graph may be extracted flomwledge base
(e.g., in [1]), or from a dialogue between agents (e.g., . Whatever the source of
the graph, the presence of attacks means existerdisagfreementand three questions
raise quite naturally: 1) how tmodeldisagreements? 2) what is theamoun® and how
to solvethem? Works in computational argumentation focused mainlguestions 1)
and 3). They assume that disagreements in an argumenta#iph gre nothing more
than the attacks of the graph, and represent them eithersametbrelations between
pairs of arguments (e.g., in [3]), or as logical relationsaeen arguments (e.g., un-
dercut [4], rebuttal [5]). An impressive amount of work hésoabeen done osolving
disagreements using the so-callxteptability semantic®f which extension seman-
tics [3] are some examples.

The question of measuring tlaenountof disagreements in an argumentation graph
has never been studied. Consider the six argumentatiohgraglow. There is no
method in the literature that evaluates the amount of desagent in each of them.

. G. G&.

Existing semantics solve disagreements without bothexoyt their amount. Nev-
ertheless, quantifying disagreements is relevant forouarpurposes. Namely, in the
context of inconsistency handling, an argumentation gisphtracted from a (inconsis-
tent) knowledge base (KB). Quantifying disagreements éngtaph allows evaluating



2 L. Amgoud and J. Ben-Naim

at what extent the knowledge base is inconsistent. Motivageimportant applications

like software specifications, quantifying inconsistentyaiKB has become a hot topic
the last six years (e.g. [6-11]). Since the number of apitina of argumentation grows
steadily, it is important that the approach has its own témisinswering various needs
of the applications including measuring inconsistencyn¢¢e argumentation not only
handles inconsistency in KBs, but it will also be used for sugng inconsistency in

those KBs.

The contribution of this paper is fourfold: First, we inttagk the novel notion of
disagreement measyrthat is a real-valued function that assigns to each argtamen
tion framework a value representing its amount of disageres Second, we propose
principles that a disagreement measure should satisfiseTpenciples serve as theo-
retical criteria for judging and comparing disagreemenasogees. Third, we define five
intuitive disagreement measures, one of which satisfiethalprinciples. Finally, we
make a first bridge with works on inconsistency measures bwyisty that some of our
measures return the same result as an existing inconsgistezasure.

The paper is structured as follows: Section 2 recalls bamicepts. Section 3 de-
fines disagreement measures and proposes principles thelgd statisfy. Section 4 in-
troduces six measures and discusses their propertiegs8chows how some mea-
sures evaluate inconsistency in KBs.

2 Basic Concepts

An argumentation framework (or argumentation graph)s a graph consisting of a
non-emptyset.A of nodes representirgrgumentsand a sefR of links (or edges). A
link » € R is anorderedpair (a1, as) representing airect attackfrom argument
to argumenti; (a1, a2 € A). Throughout the paper, we writk = (A4, R). A graph is
finite iff its set of arguments is finite.

— A pathfrom argument to argument in A is a sequencéu, . . ., a,,) of arguments
of A such thatuy = a, a, = b, forany0 < i < n, (a;,a;+1) € R, and for all
i # j, a; # a;. We say thab is reachableérom a when there is a path fromto b.
If n =2m + 1 andm > 0, then the pai(ay, a,,) is anindirect attackon a,,.

— Acycleis apathao, . . ., a,) suchthata,, ag) € R. Itis elementaryff there does
not exist a cycldby, . .., by,) such that{bg, ..., b} C {ao,...,an}. A graphis
acyclicif it does not contain any cycle.

— An argumentation grapA = ({ao,...,an}, R) is a cycle iff
R ={(ai,ai+1) | 0 <i < n}U{(an,ao)}. The graphA = ({ao,...,an}, R) IS
asimple pathff R = {(a;,a;+1) |0 < i < n}.

— Thelengthof a path (resp. cyclghy, . . ., a,) isn (resp.n + 1).

— Anisomorphisnfrom A = (A4, R)to A’ = (A’,R') is a bijective functiory from
A to A’ suchthat a,b € A, (a,b) € Riff (f(a), f(b)) € R'.

Notations: We denote byirgs an infinite set of all possible arguments, andibyhe
universe of finite argumentation graphs built framrgs. For any argumentation graph
A= (AR) Arg(A) = A Att(A) = R, andSelfAtt(A) = {a € A| (a,a) € R}.
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3 Principles for Disagreement Measures

Our aim is to evaluate the amount of disagreements contamed argumentation
graph. This is done by disagreement measyrthat is a real-valued function that as-
signs adisagreement valu® every argumentation graph.

Definition 1 (Disagreement Measure)A disagreement measusaa function : 4 —
[0, +00). For an argumentation grapA = (A, R) € U, K(A) is called thedisagree-
ment valueof A.

For two argumentation grapl#s andA’, we say thatA is more conflictinghanA’
if L(A) > KC(A’). The value 0 stands for absence of disagreements.

We propose next a set pfinciplesthat any disagreement measure should satisfy.
The first principle states that the disagreement value ofgumaentation graph does not
depend on the identity of its arguments. Note that this ax@used in most axiomatic
approaches including game theory (e.g., Shapley valué.[12]

Principle 1 (Anonymity) For allargumentation graphd = (A, R) andA’ = (A’ R’)
inU, if A .andA’ are isomorphic, theiC(A) = KC(A).

The second principle states that attacks are the only sofidisagreements. Thus,
any argumentation graph that has an empty attack relatoeives the value 0. This
axiom is somehow similar to the consistency axiom proposdé]ifor measuring in-
consistency in knowledge bases.

Principle 2 (Agreement) For any argumentation grapA = (4, R) € U, if R = {,
then/C(A) = 0.

The third principle concerns “harmless” arguments (i.eguenents which neither
attack nor are attacked by other arguments). The principtesthat adding such argu-
ments to an argumentation graph will not modify its disagrest value. This axiom is
also in the same spirit as the "free formula independencighayroposed in [6].

Principle 3 (Dummy) For any argumentation grapA = (A, R) € U , for anya €
Args\ A, K(A) = K(A'), whereA’ = (AU {a}, R).

The next principle states that if new attacks are added tagumaentation graph,
its disagreement value increases. This axiom is in thetgdimonotony axiom in [6]
which states that if a knowledge base is extended by formitéasconsistency degree
cannot decrease.

Principle 4 (Monotony) For any argumentation graptA = (A, R) € U, for any
re(Ax A\ R, K(A) < K(A'), whereA’ = (A, R U{r}).

So far, we have seen that disagreements contained in an engation graph are
due to direct attacks (i.e., elements®j. It is also well-known that the role of such
attacks is taveakertheir targets (see the weakening property in [13]). Indedthtever
the semantics that is used for evaluating arguments, itldreatisfy the weakening
property since it defines the essence of attacks. Howewegftact of weakening may
propagate in the graph, giving birth itadirect attacks Consider the following graph.
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Under stable semantics [3], the graph has one exteRsigm }, and the argument
ag is rejected. If we remove the attack framp to a1, the new graph haéag, a1, as}
as stable extension, amd becomes accepted. Thus, the attégk 1) has a negative
effect onas. The same phenomenon occurs undertfoategorizer semantics proposed
by Besnard and Hunter [1]. The argumenthas an acceptability degree 0.60 in the
initial graph and 0.66 in the modified one. Thus,looses weight in presence of the
attack(ag, a1). The argument, is then considered as an indirect attackea©fThis
shows that indirect attacks are also source of disagreemeargumentation graphs
since they are not only harmful for their direct targets inh the example), but also to
the indirect onesds).

The next principle states that an acyclic graph containialiréct attacks is more
conflicting than an acyclic graph containing only direct®riEhis holds for graphs that
have the same number of arguments and the same number &Battac

Principle 5 (Reinforcement) For argumentation graphA = (A, R) andA’ = (A’ R’)
in U such that:

_A:A/:{ao,...,an,bo,...,bn}Withn23,
- R ={(a;,b;)|i€{0,...,n—1}},
- R ={(ai,ai+1) |1 €{0,...,n—1}},

it holds that'C(A’) > K(A).

The two graphsA and A’ haven — 1 direct attacks. In additionA’ contains at
least one indirect attack (e.guo, a,,) whenn = 3). So, A is less conflicting tham\’.
Note that due to the Anonymity principle, Reinforcementdsadlso for argumentation
graphs that contain different sets of arguments.

The two argumentation graphs of Reinforcement are acykdisume now an acyclic
graph with 100 direct attacks and a 10-length elementangcybe latter contains thus
10 attacks and several indirect attacks. Which of the twglggas more conflicting?
There are two possible (but incompatible) answers to thestjon: i) to give more
weight to disagreements generated by direct attacks,giytan overwhelming weight
to cycle since it representsdieadlocksituation while conflicts arepenin an acyclic
graph. This second choice is captured by the follovaptionalprinciple.

Principle 6 (Cycle Precedence)ror all graphsA = (A, R) andA’ = (A", R’) inU,
if A is acyclicandA’is an elementary cycle, thééi(A) < K(A).

The last and optional principle says that a disagreemensunme&ould take the size
of cycles into account. The idea is that the larger the size @fcle is, the less severe
the disagreement; said differently, the less argumentsegded to produce a cycle, the
more “obvious” and strong the disagreement. For instancgclke of length 2 is more
conflicting than a cycle of length 1000. The latter is les#gsthan the former.
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Principle 7 (Size Sensitivity) For all elementary cycled = (A, R), A’ = (A, R')
inU, if |A'] < |A|, thenkC(A) < KC(A).

The seven principles are independent (none of them folloars the others). They
are also compatible (they can be satisfied all together bgagdeement measure).

Theorem 1 The principles are independent and compatible.

4 Five Disagreement Measures

This section introduces disagreement measures and a@édllygvaluates them against
the proposed principles, especially the five mandatory .0nesintroduce them from
the most naive to the most elaborated one.

4.1 Connectance Measure

The first measure that comes in mind for evaluating disageeésnn an argumentation
graph is the one that counts the number of attacks in a grapi & measure is very
natural since disagreements come from attacks.

Definition 2 (Connectance measurel et A = (A, R) be an argumentation graph.
Ke(A) = [R].

Let us illustrate the measure with a running example.
Example 1 Consider the six argumentation graphs from the introductih can be
checked thalCC(Ao) =0, K:C(Al) =1, ICC(Az) = 2, ICC(A3) = 3, K:C(A4) = 5,
and/C.(As) = 9.

The measuréC, satisfies four out of seven principles.

Theorem 2 Connectance measure satisfies Anonymity, Agreement, Damdiylonotony.
It violates Reinforcement, Size sensitivity and Cycle &teoce.

The fact thatlC.. violates Reinforcement means that it does not take intowatco
indirect attacks, which is a real weakness of a disagreemeasure. This shows also
that the amount of disagreement is not the simple numbetaxdie.

4.2 In-degree Measure

The second candidate measure counts the number of argutinanése attacked in an
argumentation graph.

Definition 3 (In-degree measure)Let A = (A, R) be an argumentation graplC; (A) =
{a € A|3(z,a) € R}
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Let us illustrate the measure with the six graphs given inritreduction.

Example 1 (Cont): According to the In-degree measuig,(Ao) = 0, K;(A1) = 1,
Ki(A2) = 2,andk;(As) = K;(A4) = K;(As) = 3. Thus,A3 is more conflicting
than A which is more conflicting thar ;.

This measure satisfies only three out of seven principles.

Theorem 3 In-degree measure satisfies Anonymity, Agreement, and Rumnolates
Monotony, Reinforcement, Cycle Precedence, and SizetiSignsi

This measure has two weaknesses: it does not distinguidermetary cycle from
a complete graph (see grapAg and A5 in Example 1). Moreover, like Connectance
measure, it does not take into account indirect attacks.

Remark: In-degree measure focuses on attacked arguments. One ffiagy ale-
other measure which rather evaluates the number of “aggeéssguments, that is,
arguments which attack other arguments. Such a measuséesa{respectively vio-
lates) exactly the same principles as In-degree measuus, itlis not a good candidate
for assessing disagreement in an argumentation graph.

4.3 Extension-based Measures

We now define two measures that are based on acceptabilitgngies) hamely on

extension-based semantics proposed in [3]. Those sermavei® introduced for solv-

ing disagreements in an argumentation graph. Before intiod the measures, let us
first recall the semantics we will consider. L&t= (A4, R) be an argumentation graph
and¢ C A.

— & is conflict-freeiff fa,b € £ such tha(a,b) € R.
— & defendsan argument € A iff Vb € A, if (b,a) € R, then3c € &£ such that
(c,b) € R.

Definition 4 (Acceptability semantics) Let A = (A, R) be an argumentation graph,
and& C A be conflict-free.

— £ is anaiveextension iff it is a maximal (w.r.t. s&t) conflict-free set.
— & is apreferredextension iff it is a maximal (w.r.t. s€f) set that defends all its
elements.

Notations: Ext,(A) denotes the set of all extensionsAfunder semantics where
x € {n, p} andn (respectivelyp) stands for naive (respectively preferred).

The basic idea behind extension-based measures is thatiftenee of multiple
extensions means presence of disagreements in the gragterfruore, the greater the
number of extensions of an argumentation graph, the gréaexmount of disagree-
ments in the graph. However, a disagreement measure whictisconly the number of
extensions (under a given semantics) may miss disagresen@mtsider the following
argumentation graph:
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This graph has two naive extensioda(} and{a, }), which are mainly due to the
conflict betweerug anda; neglecting thus the self-attack. Similarly, the graph has a
single preferred extensiofu,} and the self-attack is again neglected. In what follows,
we propose two measures (one for each of the two semantaitagtabove) which take
into account both the number of extensions and the numbetfeigacking arguments
in an argumentation graph.

Definition 5 (Extension-based measurel etA = (A, R) be an argumentation graph
andzx € {n,p}.
KZ(A) = |[Ext,(A)| + [SelfAtt(A)| — 1.

The subtraction of 1 in the above equation is required ini@lensure agreement
in case of empty attack relations.

Example 1 (Cont): Under naive semantick;?(Ao) = 0, K2 (A1) = K2 (A2) =1,
K?(Ag) = IC?(A4) =2, andK?(A5) =3.

Under preferred semantick2(Ao) = KE(A1) = KE(A2) = KP(A3) = 0,
KP(Aa) = 1, KE(As) = 3,

These two measures are clearly not powerful since they drdiseriminating as
shown in Example 1. For instance, under preferred semattiesorresponding mea-
sure does not make any difference between graphs with ertiptkaelations A o) and
those that have one preferred (resp. stable) extendigrm(idA ). The measure is also
unable to make a difference between a graph which has onem@ity extension and a
graph which has a single empty extensidn(andA 3). The following result confirms
these observations. Indeed, the two measures satisfytmely principles out of seven.

Theorem 4 Extension-based measures satisfy Anonymity, Agreemeitammy. They
violate Monotony, Reinforcement, Cycle Precedence, axelSinsitivity.

Despite the fact that these measures satisfy (respectiathte) the same principles
askC;, they may return different results. Indedd, assigns the same value fo; and
A, while K2 assigns to them different values. Similaiy, assigns different values to
A; andA- while naive measure assigns to both graphs the same value 1.

Remark: It is worth mentioning that it is possible to define other meas using
other extension semantics like complete, stable, serblestatc. However, they will all
satisfy the same set of principles as the two discussed above

4.4 Distance-based Measure

The previous disagreement measures are unable to takecicwora indirect attacks.
Our last measure escapes this limitation. It satisfies thiudarcement as well as all
the other principles. The basic idea for capturing indiggtacks (and of course direct
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| e[ [K [ Ka]
Anonymity
Agreement
Dummy
Monotony
Reinforcement
Cycle Preceden
Size Sensitivity | o | o .
Table 1. Satisfaction of principles by the measures (the symtstdnds for satisfaction andfor
violation.)
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attacks) is to check the existence of a path between any paimgaments of an argu-
mentation graph. Since two arguments may be related byaeatths, we consider the
shortest one. Then, we compute a global distance for théngrajch is the sum of the
lengths of those paths. Before defining formally the new mesgdet us first recall the
notion of distance in graphs.

Definition 6 (Distance) Let A = (A, R) be an argumentation graph andb € A.

If a # b, then thedistancebetweer: andb in A, d(a,b), is the length of the shortest
path froma to b if b is reachable from:, andd(a, b) = k if b is not reachable frona.

If a = b, d(a,b) is the length of the shortest elementary cycle in whidh involved,
andd(a,b) = k if a is not involved in cycles. Throughout the paper, we assumie th
k=|Al+1.

Note thatk is set to|.A| + 1 because the longest path in an argumentation graph is
|A] — 1 and the length of the longest cycle|id|.
Example 1 (Cont): In argumentation grap® s, d(a1,a1) = 3, d(a1,a2) = 2 and
d(a1,a3) = 1.IngraphAaz, d(a1,a1) = 4 andd(ay, as) = 4 (herek = 4).

The domain of the distance function is delimited as follows.

Proposition 1 LetA = (A, R) be an argumentation graph. Forall b € A, d(a,b) €
(1, K].

The global distance of an argumentation graph is the sumngithes of the shortest
paths between any pair of arguments.

Definition 7 (Global distance) For any argumentation grapA = (A, R),

D(A) =Y > dlai,a)

aiG.AajE.A
Example 1 (Cont): D(Ag) =2,D(A1) =10,D(A2) =28,D(A3)=18,D(A4) =13
andD(As) = 9.

Let us now delimit the upper and lower bounds of the globahdise of an argu-
mentation graph.
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Proposition 2 For any argumentation grapA = (A, R),
min < D(A) < max
wheremaz = n? x (n + 1), min = n? andn = | A|.

We show next that the upper bound is reached by an argunmeamtatiph in case its
attack relation is empty, while the lower bound is reachedmime graph is complete.

Proposition 3 For any argumentation grapA = (A, R),

— D(A) =maziff R =10
—DA)=miniff R=Ax A

Distance-based measure evaluates to what extent the glstahce of an argu-
mentation graph is close to the upper bound. The more it isecto max, the less
disagreements are in the graph. The closer the global diestarto min, the more the
graph contains a lot of conflicts.

Definition 8 (Distance-based measureJor any argumentation grap. = (A, R),

maz — D(A)

max — min

Ka(A) =

wheremaz = n? x (n + 1), min = n? andn = | A|.
Let us illustrate this measure with the running example.

Example 1 (Cont): Kq(Ag) = 0, Ka(A1) = 0.25,K4(Az) = 0.29,K4(A3) = 0.66,
Ka(A4)=0.88, andCy(As) = 1.

This measure computes somehow tlegree of connectivitgf an argumentation
graph. Indeed, a high disagreement value means that thi igrejghly connected, and
small disagreement value means that the graph is not venyected. It makes thus
fine grained comparisons of argumentation graphs, nameharidus forms of cyclic
graphs. In Example 1A 5 is more conflicting thamA 4 which is itself more conflicting
thanAs.

In what follows, we introduce the notion obnnectivity degreef an argumentation
graph. Itis the proportion of pairs of arguments which atetegl by at least one path.

Definition 9 (Connectivity degree) Theconnectivity degreef an argumentation graph
A=(AR)is
[{(a,b) € A% | d(a,b) < k}|

| A2 '

Co(A) =

The next result shows that the upper bound of the disagreeratre of an argu-
mentation graph is exactly the connectivity degree of tlaglr

Theorem 5 For any argumentation grapA = (A4, R), K4(A) € [0,Co(A)].

9
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Proof. Let A = (A, R) be an argumentation graph such thdt = n. Let B =
{(ai,a;) € A x A|d(a;,a;) < k}. From Propositior??, K(A) = Co(A) + %A _
2(a;,a5)e8 N05:05) _ co(A)(n 2 (aq,ap)en daia;)

(as.0;)€B = Co(A)(n+1) _ 2 )Zf It h0|d5thatz(%aj)63 d(ai,a;) >

n3 n
d(ai,a;)

n?Co(A) (since|B| = n?Co(A andd(a,b) € [1,k]). Thus,% >

nCo(A) ConsequentlylA) Z(a“a")flf tend <, S0,Co(A)+2A) Z(a“a")if o) o
Co(A). Thus,K4(A) < Co(A).

Let us now characterize the disagreement values of elemyaryteles. The shorter
an elementary cycle, the more conflicting it is. The maxinadlie (1) is given to cycles
of length 1, that is graphs that contain only one argumentemer it is self-attacking.
This value decreases when the length of cycles increasegewo, we show that it
cannot be less than 0.5. This means that the distance-ba&setine considers cycles as
very conflicting even when they are very long, which is verjunal.

Proposition 4 For any elementary cycla = (A4, R), K4(A) € (3,1].

Proof. Let A = (A, R) be an elementary cycle, and let= |A|. For anya € A,

Spead(@,b)=1+2+3+. .. +n="205 Thys D(A) = 2X0HD o,(A) =

2 - n2x(n " .
%, thusKCq(A) = % =2t — 14 L K4(A) = lincase

n = 1, i.e., A is made of a self attacking argument. Sinkas finite, thenA is finite.
ConsequentlyiCq(A) > 3.

The next result delimits the disagreement values of acaciomentation graphs.
Proposition 5 For any acyclic argumentation graph = (A, R), K4(A) € [0, %).

Proof. Let A = (A, R) be an acyclic argumentation graph such it = n. Since

A is acyclic, therWa € A, d(a,a) = k. Moreover,Ya,b € A, if d(a,b) < k then

d(b,a) = k (since there is no cycle in the graph). Thyga, b) € A% | d(a,b) < k}| <
2

n“—n_ConsequentlylletEA | d@h<k| < n°—n e getCo(A) < 1 — L. Since

Alis finite, thenCo(A) < 1. From Theorem 5C4(A) < Co(A). S0,K4(A) < 1

The two previous results show that the measigeconsiders any acyclic graph as
strictly less conflicting than any elementary cycle. Momethe ratio of disagreement
in an acyclic graph is always not very high and can never réaemaximal value 1.
On the contrary, the ratio of disagreement in an elementaeds always high.

Proposition 6 Let A = (A, R) and A’ = (A, R’) be simple paths. IfA] < |A'],
thenK (A) < Kq(A).

Proof. Let A = (4, R) andA’ = (A, R’) be two simple paths. Let = |.4| and
n' = |A’'|. Assume that < n’. Thus,n? < n’? and-; > —1;. Consequently, — > <
1 — -7 and thenCy(A) < Kq(A).

The distance-based measure satisfies all our principles.
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Theorem 6 K, satisfies all the seven principles.

Proof. Let A = (A, R) be an argumentation graph. Anonymity is obviously satisfied

From Prop. 3, ifR = (), D(A) = maxz, thusK4(A) = 0 which ensures Agreement.
Let A = (A, R) andA’ = (A',R’) be two elementary cycles such tHat| =

n, |[A'| = mandm > n. D(A) = @ thusK4(A) = 2l andD(A’) =

2n !

M andq(A’) = 2l = 1+ L Sincem > n then2m > 2n and;- < 5.
ConsequentlyiCs(A’) < KC4(A). This shows that Size Sensitivity is satisfied.

Let us now show that’; satisfies Dummy principle. Assume tHat| = n Leta €
Args\ AandA’ = (AU{a}, R). We denote by: the maximal distance in graph and
by &’ the maximal distance in graph’. From definitionk’ = n+ 2 since|Arg(A’)| =
n + 1. Since the new arguments does not attack and is not attagkattiér arguments,
then the original distances in grapb will not change except those that got valkie
which will be incremented by 1 each. ThB(A’ = D(A) + (2n + 1)k’ + = where
x > 0 is the number of pairsi, a;) of arguments for which the length of the shortest
path froma; to a; is equal tok in graphA.. We getD(A’ = D(A) + 2n” +5n+ 2 + z.
MoreoverCqy(A) =1+ L — % andky(A') =1+ =5 — (SJ(F‘?))S - ”2(21“;‘;’;”2.
ThUS,ICd(A/) < ICd(A)

Let us now show that monotony is also satisfied. Rt C (A4 x A4) \ R and
A’ = (A, RUTR). Both A and A’ have the same min and max distances since they

have the same number of arguments. ConsequeGtliyA) = 1 + L — % and
Ka(A) =1+ 1 — DAY with n = |A|. Assume thaD(A’) > D(A). This means

n3
that there exista, b € A suchd(a,b) = x in graphA, d(a,b) = y in graphA’ and
y > x. This is impossible since the shortest patiithetweeru andb still exists inA’.
Thus, inA’, the shortest path betweerandb is either the same as i or a path with
y < x because of the additional attacks/f.

Cycle Precedence follows from Propositions 4 and 5.

Reinforcement is also satisfied. Since the two graphs in timeiple are assumed
to have the same number of arguments, then both graphs hagaitie max and min
values. It is thus sufficient to compare the global distaddise graphs. We can easily
compute the following values?(A) = 8n® + 26n? + 32n + 14, andD(A’) Zn3 +
25n% + 2n +12. D(A) > D(A'), thusk(A) < K(A).

Distance-based measure satisfies all the principles. Tttages into account both
the direct attacks in an argumentation graph as well as ttieetrt ones. All these fea-
tures make it the best candidate for measuring disagresrimeatgumentation graphs.
Table 1 recalls for each measure, the principles it satigfiesthose it violates.

5 Links between Disagreement Measures and Inconsistency
Measures

In this section, we consider argumentation grafpdisR) that are generated from a
propositional knowledge base. The arguments afl are defined as follows:
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Definition 10 (Argument) Let X be a propositional knowledge base. Argumenis
apair (X, r) s.t. X C ¥, X is consistentX F z!, andAX’ c X such thatX’ - z.

Regarding the attack relatidR, we consideassumption-attaciefined in [5].

Definition 11 (Assumption-Attack) AnargumentX, z) attacks(Y, y) (X, z), (Y,y)) €
R) iff 3y’ € Y such thatr = —y/2.

In [14], the authors proposed a measuEg that quantifies the amount of incon-
sistency in a propositional knowledge basSeThat amount is equal to the number of
maximal (for set inclusion) consistent subsetsbind the number of inconsistent for-
mulas inX’ minus 1.

Definition 12 (Inconsistency Measure)For any propositional knowledge basg
Z(X) = Max(X)| + |Inc(X)| — 1

Max(X) is the set of maximal (for s€t) consistent subsets 8f, andInc(X) is the set
of inconsistent formulae itv. Z(X) is called the inconsistency value bf

Given a knowledge bas¥k, we show that its inconsistency value (as computed by
measurez) is equal to the disagreement values of the correspondignantation
graph using the three extension-based meadQfesith = € {n, p}.

Theorem 7 Let X be a propositional knowledge base such that () = (. LetA =
(A, R) be the argumentation graph built ovér. The following holds:

Ke(A) = KEZ(A) =Z(%)

Proof. Let X' be a propositional knowledge base such that(Y) = . Let A =
(A, R) be the argumentation graph built ov8r From Theorem 8 in [15Ext,(A) =
Exty(A). Furthermore, there is a full correspondence between tive Batensions of
A and the maximal (for set inclusion) consistent subset& oHence,|Ext,(A)| =

| max(2)]. SinceInc(X) = 0, thenZ(X) = |max(X)| — 1. Since by definition of
argumentsgelfAtt(A) = 0, thenKZ(A) = |Extx(A)| — 1. Thus,K*(A) = Z(X).

This result shows that not only the two extension-based umeaseturn the same
result in case of propositional knowledge bases, but aleg #re equivalent to the
inconsistency measure proposed in [14].

6 Related work

Despite the great amount of work on argumentation, there isark on computing the
amount of disagreements in argumentation graphs. Our papsgnted the first attempt
in this direction. In [16], the authors studied to what extée extensions (under a given

! the symbol- stands for propositional inference relation.
2 The symbol= stands for logical equivalence.
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semantics) of an argumentation graph are different. Thielpnothey addressed is thus
completely different from the purpose of our paper.

Several measures were proposed in the literature for duggtiinconsistency in
propositional knowledge bases (e.g., [7, 6, 8]). Our externbased measures are equiv-
alent to one of them, namely the one proposed in [14].

7 Conclusion

This paper studied for the first time how to quantify disagrests in an argumentation
graph. It showed that disagreements is more than directkatt#t proposed principles
which serve as theoretical criteria for validating and canmm disagreement measures.
It defined six intuitive measures and investigated theipprties. The distance-based
measure is the most powerful one. It not only satisfies alptio@osed principles, but it
is also very discriminating, that is, it provides a fine gearevaluation of argumentation
graphs. Moreover, it captures very well the two sources saglieement: direct and
indirect attacks. Furthermore, the paper made a first briddpeworks on inconsistency
measures. It showed that extension-based measures tetusarne amount of conflict
as one proposed in [14].

This work can be extended in several ways. First, we planvsiigate more deeply
the relationship between the disagreement value of an argtation graph and existing
inconsistency degree of the knowledge base over which tiyghgs built. A particular
focus will be put on distance-based measure since it captued indirect attacks in an
argumentation graph. Another line of research consistgaitiating the contribution of
each argument to the disagreement value of a graph. Suaimafion may be useful in
a dialogues for identifying the culprit that should be &ttt
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