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Measuring Disagreement in Argumentation Graphs

Leila Amgoud Jonathan Ben-Naim

IRIT – CNRS, France

Abstract. The aim of this paper is to evaluate to what extent anargumentation
graph (a set ofargumentsandattacksbetween them) is conflicting. For that pur-
pose, we introduce the novel notion ofdisagreement measureas well as a set of
principles that such a measure should satisfy. We propose some intuitive mea-
sures and show that they fail to satisfy some of the principles. Then, we come up
with a more discriminating measure which satisfies them all.Finally, we relate
some measures to those quantifying inconsistency in knowledge bases.

1 Introduction

An argumentation frameworkis a graph whose nodes areargumentsand edges areat-
tacksbetween pairs of arguments. The graph may be extracted from aknowledge base
(e.g., in [1]), or from a dialogue between agents (e.g., [2]), etc. Whatever the source of
the graph, the presence of attacks means existence ofdisagreementsand three questions
raise quite naturally: 1) how tomodeldisagreements? 2) what is theiramount? and how
to solvethem? Works in computational argumentation focused mainlyon questions 1)
and 3). They assume that disagreements in an argumentation graph are nothing more
than the attacks of the graph, and represent them either as abstract relations between
pairs of arguments (e.g., in [3]), or as logical relations between arguments (e.g., un-
dercut [4], rebuttal [5]). An impressive amount of work has also been done onsolving
disagreements using the so-calledacceptability semantics, of which extension seman-
tics [3] are some examples.

The question of measuring theamountof disagreements in an argumentation graph
has never been studied. Consider the six argumentation graphs below. There is no
method in the literature that evaluates the amount of disagreement in each of them.

a0 a3 a2 a3 a2 a1

(A0) (A1) (A2)

a1 a1 a1

a3 a2 a3 a2 a3 a2

(A3) (A4) (A5)

Existing semantics solve disagreements without botheringabout their amount. Nev-
ertheless, quantifying disagreements is relevant for various purposes. Namely, in the
context of inconsistency handling, an argumentation graphis extracted from a (inconsis-
tent) knowledge base (KB). Quantifying disagreements in the graph allows evaluating
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at what extent the knowledge base is inconsistent. Motivated by important applications
like software specifications, quantifying inconsistency in a KB has become a hot topic
the last six years (e.g. [6–11]). Since the number of applications of argumentation grows
steadily, it is important that the approach has its own toolsfor answering various needs
of the applications including measuring inconsistency. Hence, argumentation not only
handles inconsistency in KBs, but it will also be used for measuring inconsistency in
those KBs.

The contribution of this paper is fourfold: First, we introduce the novel notion of
disagreement measure, that is a real-valued function that assigns to each argumenta-
tion framework a value representing its amount of disagreements. Second, we propose
principles that a disagreement measure should satisfy. These principles serve as theo-
retical criteria for judging and comparing disagreement measures. Third, we define five
intuitive disagreement measures, one of which satisfies allthe principles. Finally, we
make a first bridge with works on inconsistency measures by showing that some of our
measures return the same result as an existing inconsistency measure.

The paper is structured as follows: Section 2 recalls basic concepts. Section 3 de-
fines disagreement measures and proposes principles they should satisfy. Section 4 in-
troduces six measures and discusses their properties. Section 5 shows how some mea-
sures evaluate inconsistency in KBs.

2 Basic Concepts

An argumentation framework (or argumentation graph)A is a graph consisting of a
non-emptysetA of nodes representingarguments, and a setR of links (or edges). A
link r ∈ R is anorderedpair (a1, a2) representing adirect attackfrom argumenta1
to argumenta2 (a1, a2 ∈ A). Throughout the paper, we writeA = 〈A,R〉. A graph is
finite iff its set of arguments is finite.

– A pathfrom argumenta to argumentb inA is a sequence〈a0, . . . , an〉 of arguments
of A such thata0 = a, an = b, for any0 ≤ i < n, (ai, ai+1) ∈ R, and for all
i 6= j, ai 6= aj . We say thatb is reachablefrom a when there is a path froma to b.
If n = 2m+ 1 andm > 0, then the pair(a0, an) is anindirect attackonan.

– A cycleis a path〈a0, . . . , an〉 such that(an, a0) ∈ R. It is elementaryiff there does
not exist a cycle〈b0, . . . , bm〉 such that{b0, . . . , bm} ⊂ {a0, . . . , an}. A graph is
acyclic if it does not contain any cycle.

– An argumentation graphA = 〈{a0, . . . , an},R〉 is a cycle iff
R = {(ai, ai+1) | 0 ≤ i < n} ∪ {(an, a0)}. The graphA = 〈{a0, . . . , an},R〉 is
a simple pathiff R = {(ai, ai+1) | 0 ≤ i < n}.

– The lengthof a path (resp. cycle)〈a0, . . . , an〉 is n (resp.n+ 1).
– An isomorphismfromA = 〈A,R〉 toA

′ = 〈A′,R′〉 is a bijective functionf from
A toA

′ such that∀ a, b ∈ A, (a, b) ∈ R iff (f(a), f(b)) ∈ R′.

Notations: We denote byArgs an infinite set of all possible arguments, and byU the
universe of finite argumentation graphs built fromArgs. For any argumentation graph
A = 〈A,R〉, Arg(A) = A, Att(A) = R, andSelfAtt(A) = {a ∈ A | (a, a) ∈ R}.
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3 Principles for Disagreement Measures

Our aim is to evaluate the amount of disagreements containedin an argumentation
graph. This is done by adisagreement measure, that is a real-valued function that as-
signs adisagreement valueto every argumentation graph.

Definition 1 (Disagreement Measure)A disagreement measureis a functionK : U →
[0,+∞). For an argumentation graphA = 〈A,R〉 ∈ U , K(A) is called thedisagree-
ment valueof A.

For two argumentation graphsA andA′, we say thatA is more conflictingthanA′

if K(A) > K(A′). The value 0 stands for absence of disagreements.

We propose next a set ofprinciplesthat any disagreement measure should satisfy.
The first principle states that the disagreement value of an argumentation graph does not
depend on the identity of its arguments. Note that this axiomis used in most axiomatic
approaches including game theory (e.g., Shapley value [12]).

Principle 1 (Anonymity) For all argumentation graphsA = 〈A,R〉 andA′ = 〈A′,R′〉
in U , if A andA′ are isomorphic, thenK(A) = K(A′).

The second principle states that attacks are the only sourceof disagreements. Thus,
any argumentation graph that has an empty attack relation receives the value 0. This
axiom is somehow similar to the consistency axiom proposed in [6] for measuring in-
consistency in knowledge bases.

Principle 2 (Agreement) For any argumentation graphA = 〈A,R〉 ∈ U , if R = ∅,
thenK(A) = 0.

The third principle concerns “harmless” arguments (i.e., arguments which neither
attack nor are attacked by other arguments). The principle states that adding such argu-
ments to an argumentation graph will not modify its disagreement value. This axiom is
also in the same spirit as the ”free formula independence” axiom proposed in [6].

Principle 3 (Dummy) For any argumentation graphA = 〈A,R〉 ∈ U , for anya ∈
Args \ A, K(A) = K(A′), whereA′ = 〈A ∪ {a},R〉.

The next principle states that if new attacks are added to an argumentation graph,
its disagreement value increases. This axiom is in the spirit of monotony axiom in [6]
which states that if a knowledge base is extended by formulas, its inconsistency degree
cannot decrease.

Principle 4 (Monotony) For any argumentation graphA = 〈A,R〉 ∈ U , for any
r ∈ (A×A) \ R, K(A) < K(A′), whereA′ = 〈A,R∪ {r}〉.

So far, we have seen that disagreements contained in an argumentation graph are
due to direct attacks (i.e., elements ofR). It is also well-known that the role of such
attacks is toweakentheir targets (see the weakening property in [13]). Indeed,whatever
the semantics that is used for evaluating arguments, it should satisfy the weakening
property since it defines the essence of attacks. However, the effect of weakening may
propagate in the graph, giving birth toindirect attacks. Consider the following graph.
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a0 a1 a2 a3

Under stable semantics [3], the graph has one extension{a0, a2}, and the argument
a3 is rejected. If we remove the attack froma0 to a1, the new graph has{a0, a1, a3}
as stable extension, anda3 becomes accepted. Thus, the attack(a0, a1) has a negative
effect ona3. The same phenomenon occurs under theh-categorizer semantics proposed
by Besnard and Hunter [1]. The argumenta3 has an acceptability degree 0.60 in the
initial graph and 0.66 in the modified one. Thus,a3 looses weight in presence of the
attack(a0, a1). The argumenta0 is then considered as an indirect attacker ofa3. This
shows that indirect attacks are also source of disagreementin argumentation graphs
since they are not only harmful for their direct targets (a1 in the example), but also to
the indirect ones (a3).

The next principle states that an acyclic graph containing indirect attacks is more
conflicting than an acyclic graph containing only direct ones. This holds for graphs that
have the same number of arguments and the same number of attacks.

Principle 5 (Reinforcement) For argumentation graphsA = 〈A,R〉 andA′ = 〈A′,R′〉
in U such that:

– A = A′ = {a0, . . . , an, b0, . . . , bn} with n ≥ 3,
– R = {(ai, bi) | i ∈ {0, . . . , n− 1}},
– R′ = {(ai, ai+1) | i ∈ {0, . . . , n− 1}},

it holds thatK(A′) > K(A).

The two graphsA andA′ haven − 1 direct attacks. In addition,A′ contains at
least one indirect attack (e.g.(a0, an) whenn = 3). So,A is less conflicting thanA′.
Note that due to the Anonymity principle, Reinforcement holds also for argumentation
graphs that contain different sets of arguments.

The two argumentation graphs of Reinforcement are acyclic.Assume now an acyclic
graph with 100 direct attacks and a 10-length elementary cycle. The latter contains thus
10 attacks and several indirect attacks. Which of the two graphs is more conflicting?
There are two possible (but incompatible) answers to this question: i) to give more
weight to disagreements generated by direct attacks, ii) togive an overwhelming weight
to cycle since it represents adeadlocksituation while conflicts areopenin an acyclic
graph. This second choice is captured by the followingoptionalprinciple.

Principle 6 (Cycle Precedence)For all graphsA = 〈A,R〉 andA′ = 〈A′,R′〉 in U ,
if A is acyclic andA′ is an elementary cycle, thenK(A) < K(A′).

The last and optional principle says that a disagreement measure could take the size
of cycles into account. The idea is that the larger the size ofa cycle is, the less severe
the disagreement; said differently, the less arguments areneeded to produce a cycle, the
more “obvious” and strong the disagreement. For instance, acycle of length 2 is more
conflicting than a cycle of length 1000. The latter is less visible than the former.
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Principle 7 (Size Sensitivity) For all elementary cyclesA = 〈A,R〉, A′ = 〈A′,R′〉
in U , if |A′| < |A|, thenK(A) < K(A′).

The seven principles are independent (none of them follows from the others). They
are also compatible (they can be satisfied all together by a disagreement measure).

Theorem 1 The principles are independent and compatible.

4 Five Disagreement Measures

This section introduces disagreement measures and analytically evaluates them against
the proposed principles, especially the five mandatory ones. We introduce them from
the most naive to the most elaborated one.

4.1 Connectance Measure

The first measure that comes in mind for evaluating disagreements in an argumentation
graph is the one that counts the number of attacks in a graph. Such a measure is very
natural since disagreements come from attacks.

Definition 2 (Connectance measure)Let A = 〈A, R〉 be an argumentation graph.
Kc(A) = |R|.

Let us illustrate the measure with a running example.

Example 1 Consider the six argumentation graphs from the introduction. It can be
checked thatKc(A0) = 0, Kc(A1) = 1, Kc(A2) = 2, Kc(A3) = 3, Kc(A4) = 5,
andKc(A5) = 9.

The measureKc satisfies four out of seven principles.

Theorem 2 Connectance measure satisfies Anonymity, Agreement, Dummy, and Monotony.
It violates Reinforcement, Size sensitivity and Cycle Precedence.

The fact thatKc violates Reinforcement means that it does not take into account
indirect attacks, which is a real weakness of a disagreementmeasure. This shows also
that the amount of disagreement is not the simple number of attacks.

4.2 In-degree Measure

The second candidate measure counts the number of argumentsthat are attacked in an
argumentation graph.

Definition 3 (In-degree measure)LetA = 〈A,R〉 be an argumentation graph.Ki(A) =
|{a ∈ A | ∃(x, a) ∈ R}|.
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Let us illustrate the measure with the six graphs given in theintroduction.

Example 1 (Cont): According to the In-degree measure,Ki(A0) = 0, Ki(A1) = 1,
Ki(A2) = 2, andKi(A3) = Ki(A4) = Ki(A5) = 3. Thus,A3 is more conflicting
thanA2 which is more conflicting thanA1.

This measure satisfies only three out of seven principles.

Theorem 3 In-degree measure satisfies Anonymity, Agreement, and Dummy. It violates
Monotony, Reinforcement, Cycle Precedence, and Size Sensitivity.

This measure has two weaknesses: it does not distinguish an elementary cycle from
a complete graph (see graphsA3 andA5 in Example 1). Moreover, like Connectance
measure, it does not take into account indirect attacks.

Remark: In-degree measure focuses on attacked arguments. One may define an-
other measure which rather evaluates the number of “aggressive” arguments, that is,
arguments which attack other arguments. Such a measure satisfies (respectively vio-
lates) exactly the same principles as In-degree measure. Thus, it is not a good candidate
for assessing disagreement in an argumentation graph.

4.3 Extension-based Measures

We now define two measures that are based on acceptability semantics, namely on
extension-based semantics proposed in [3]. Those semantics were introduced for solv-
ing disagreements in an argumentation graph. Before introducing the measures, let us
first recall the semantics we will consider. LetA = 〈A,R〉 be an argumentation graph
andE ⊆ A.

– E is conflict-freeiff ∄a, b ∈ E such that(a, b) ∈ R.
– E defendsan argumenta ∈ A iff ∀b ∈ A, if (b, a) ∈ R, then∃c ∈ E such that
(c, b) ∈ R.

Definition 4 (Acceptability semantics) LetA = 〈A,R〉 be an argumentation graph,
andE ⊆ A be conflict-free.

– E is a naiveextension iff it is a maximal (w.r.t. set⊆) conflict-free set.
– E is a preferredextension iff it is a maximal (w.r.t. set⊆) set that defends all its

elements.

Notations: Extx(A) denotes the set of all extensions ofA under semanticsx where
x ∈ {n, p} andn (respectivelyp) stands for naive (respectively preferred).

The basic idea behind extension-based measures is that the existence of multiple
extensions means presence of disagreements in the graph. Furthermore, the greater the
number of extensions of an argumentation graph, the greaterthe amount of disagree-
ments in the graph. However, a disagreement measure which counts only the number of
extensions (under a given semantics) may miss disagreements. Consider the following
argumentation graph:
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a0 a1 a2

This graph has two naive extensions ({a0} and{a1}), which are mainly due to the
conflict betweena0 anda1 neglecting thus the self-attack. Similarly, the graph has a
single preferred extension{a0} and the self-attack is again neglected. In what follows,
we propose two measures (one for each of the two semantics recalled above) which take
into account both the number of extensions and the number of self-attacking arguments
in an argumentation graph.

Definition 5 (Extension-based measure)LetA = 〈A,R〉 be an argumentation graph
andx ∈ {n, p}.

Kx
e (A) = |Extx(A)|+ |SelfAtt(A)| − 1.

The subtraction of 1 in the above equation is required in order to ensure agreement
in case of empty attack relations.

Example 1 (Cont): Under naive semantics,Kn
e (A0) = 0, Kn

e (A1) = Kn
e (A2) = 1,

Kn
e (A3) = Kn

e (A4) = 2, andKn
e (A5) = 3.

Under preferred semantics,Kp
e(A0) = Kp

e(A1) = Kp
e(A2) = Kp

e(A3) = 0,
Kp

e(A4) = 1, Kp
e(A5) = 3.

These two measures are clearly not powerful since they are not discriminating as
shown in Example 1. For instance, under preferred semantics, the corresponding mea-
sure does not make any difference between graphs with empty attack relations (A0) and
those that have one preferred (resp. stable) extension (A1 andA2). The measure is also
unable to make a difference between a graph which has one non-empty extension and a
graph which has a single empty extension (A2 andA3). The following result confirms
these observations. Indeed, the two measures satisfy only three principles out of seven.

Theorem 4 Extension-based measures satisfy Anonymity, Agreement and Dummy. They
violate Monotony, Reinforcement, Cycle Precedence, and Size Sensitivity.

Despite the fact that these measures satisfy (respectivelyviolate) the same principles
asKi, they may return different results. Indeed,Ki assigns the same value toA3 and
A4 while Kp

e assigns to them different values. Similarly,Ki assigns different values to
A1 andA2 while naive measure assigns to both graphs the same value 1.

Remark: It is worth mentioning that it is possible to define other measures using
other extension semantics like complete, stable, semi-stable, etc. However, they will all
satisfy the same set of principles as the two discussed above.

4.4 Distance-based Measure

The previous disagreement measures are unable to take into account indirect attacks.
Our last measure escapes this limitation. It satisfies thus reinforcement as well as all
the other principles. The basic idea for capturing indirectattacks (and of course direct
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K
x

e Kc Ki Kd

Anonymity • • • •

Agreement • • • •

Dummy • • • •

Monotony ◦ • ◦ •

Reinforcement ◦ ◦ ◦ •

Cycle Precedence◦ ◦ ◦ •

Size Sensitivity ◦ ◦ ◦ •

Table 1.Satisfaction of principles by the measures (the symbol• stands for satisfaction and◦ for
violation.)

attacks) is to check the existence of a path between any pair of arguments of an argu-
mentation graph. Since two arguments may be related by several paths, we consider the
shortest one. Then, we compute a global distance for the graph which is the sum of the
lengths of those paths. Before defining formally the new measure, let us first recall the
notion of distance in graphs.

Definition 6 (Distance) Let A = 〈A,R〉 be an argumentation graph anda, b ∈ A.
If a 6= b, then thedistancebetweena andb in A, d(a, b), is the length of the shortest
path froma to b if b is reachable froma, andd(a, b) = k if b is not reachable froma.
If a = b, d(a, b) is the length of the shortest elementary cycle in whicha is involved,
andd(a, b) = k if a is not involved in cycles. Throughout the paper, we assume that
k = |A|+ 1.

Note thatk is set to|A| + 1 because the longest path in an argumentation graph is
|A| − 1 and the length of the longest cycle is|A|.

Example 1 (Cont): In argumentation graphA3, d(a1, a1) = 3, d(a1, a2) = 2 and
d(a1, a3) = 1. In graphA2, d(a1, a1) = 4 andd(a1, a3) = 4 (herek = 4).

The domain of the distance function is delimited as follows.

Proposition 1 LetA = 〈A,R〉 be an argumentation graph. For alla, b ∈ A, d(a, b) ∈
[1, k].

The global distance of an argumentation graph is the sum of lengths of the shortest
paths between any pair of arguments.

Definition 7 (Global distance) For any argumentation graphA = 〈A,R〉,

D(A) =
∑

ai∈A

∑

aj∈A

d(ai, aj)

Example 1 (Cont): D(A0) = 2,D(A1) = 10,D(A2) = 28,D(A3) = 18,D(A4) = 13
andD(A5) = 9.

Let us now delimit the upper and lower bounds of the global distance of an argu-
mentation graph.
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Proposition 2 For any argumentation graphA = 〈A,R〉,

min ≤ D(A) ≤ max

wheremax = n2 × (n+ 1), min = n2 andn = |A|.

We show next that the upper bound is reached by an argumentation graph in case its
attack relation is empty, while the lower bound is reached when the graph is complete.

Proposition 3 For any argumentation graphA = 〈A,R〉,

– D(A) = max iff R = ∅
– D(A) = min iff R = A×A

Distance-based measure evaluates to what extent the globaldistance of an argu-
mentation graph is close to the upper bound. The more it is close to max, the less
disagreements are in the graph. The closer the global distance is to min, the more the
graph contains a lot of conflicts.

Definition 8 (Distance-based measure)For any argumentation graphA = 〈A,R〉,

Kd(A) =
max−D(A)

max−min

wheremax = n2 × (n+ 1), min = n2 andn = |A|.

Let us illustrate this measure with the running example.

Example 1 (Cont): Kd(A0) = 0, Kd(A1) = 0.25,Kd(A2) = 0.29,Kd(A3) = 0.66,
Kd(A4) = 0.88, andKd(A5) = 1.

This measure computes somehow thedegree of connectivityof an argumentation
graph. Indeed, a high disagreement value means that the graph is highly connected, and
small disagreement value means that the graph is not very connected. It makes thus
fine grained comparisons of argumentation graphs, namely ofvarious forms of cyclic
graphs. In Example 1,A5 is more conflicting thanA4 which is itself more conflicting
thanA3.

In what follows, we introduce the notion ofconnectivity degreeof an argumentation
graph. It is the proportion of pairs of arguments which are related by at least one path.

Definition 9 (Connectivity degree) Theconnectivity degreeof an argumentation graph
A = 〈A,R〉 is

Co(A) =
|{(a, b) ∈ A2 | d(a, b) < k}|

|A|2
.

The next result shows that the upper bound of the disagreement value of an argu-
mentation graph is exactly the connectivity degree of the graph.

Theorem 5 For any argumentation graphA = 〈A,R〉, Kd(A) ∈ [0, Co(A)].
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Proof. Let A = 〈A,R〉 be an argumentation graph such that|A| = n. Let B =

{(ai, aj) ∈ A×A | d(ai, aj) < k}. From Proposition??, Kd(A) = Co(A) + Co(A)
n

−
∑

(ai,aj)∈B
d(ai,aj)

n3 = Co(A)(n+1)
n

−

∑
(ai,aj)∈B

d(ai,aj)

n3 . It holds that
∑

(ai,aj)∈B d(ai, aj) ≥

n2Co(A) (since |B| = n2Co(A and d(a, b) ∈ [1, k]). Thus,
∑

(ai,aj)∈B
d(ai,aj)

n3 ≥
n2

Co(A)
n3 . Consequently,Co(A)

n
−

∑
(ai,aj)∈B

d(ai,aj)

n3 ≤ 0. So,Co(A)+ Co(A)
n

−

∑
(ai,aj)∈B

d(ai,aj)

n3 ≤
Co(A). Thus,Kd(A) ≤ Co(A).

Let us now characterize the disagreement values of elementary cycles. The shorter
an elementary cycle, the more conflicting it is. The maximal value (1) is given to cycles
of length 1, that is graphs that contain only one argument, moreover it is self-attacking.
This value decreases when the length of cycles increases. However, we show that it
cannot be less than 0.5. This means that the distance-based measure considers cycles as
very conflicting even when they are very long, which is very natural.

Proposition 4 For any elementary cycleA = 〈A,R〉, Kd(A) ∈ (12 , 1].

Proof. Let A = 〈A,R〉 be an elementary cycle, and letn = |A|. For anya ∈ A,
∑

bi∈A d(a, bi) = 1+ 2+ 3+ . . .+ n = n×(n+1)
2 . Thus,D(A) = n2×(n+1)

2 . Kd(A) =
n2×(n+1)−D(A)
n2×(n+1)−n2 , thusKd(A) = n2×(n+1)

2n3 = n+1
2n = 1

2 + 1
2n . Kd(A) = 1 in case

n = 1, i.e.,A is made of a self attacking argument. SinceA is finite, thenA is finite.
Consequently,Kd(A) > 1

2 .

The next result delimits the disagreement values of acyclicargumentation graphs.

Proposition 5 For any acyclic argumentation graphA = 〈A,R〉, Kd(A) ∈ [0, 12 ).

Proof. Let A = 〈A,R〉 be an acyclic argumentation graph such that|A| = n. Since
A is acyclic, then∀a ∈ A, d(a, a) = k. Moreover,∀a, b ∈ A, if d(a, b) < k then
d(b, a) = k (since there is no cycle in the graph). Thus,|{(a, b) ∈ A2 | d(a, b) < k}| ≤
n2−n

2 . Consequently,|{(a,b)∈A2 | d(a,b)<k}|
n2 ≤ n2−n

2n2 . We getCo(A) ≤ 1
2 − 1

2n . Since
A is finite, thenCo(A) < 1

2 . From Theorem 5,Kd(A) ≤ Co(A). So,Kd(A) < 1
2 .

The two previous results show that the measureKd considers any acyclic graph as
strictly less conflicting than any elementary cycle. Moreover, the ratio of disagreement
in an acyclic graph is always not very high and can never reachthe maximal value 1.
On the contrary, the ratio of disagreement in an elementary cycle is always high.

Proposition 6 Let A = 〈A,R〉 andA
′ = 〈A′,R′〉 be simple paths. If|A| < |A′|,

thenKd(A) < Kd(A
′).

Proof. Let A = 〈A,R〉 andA′ = 〈A′,R′〉 be two simple paths. Letn = |A| and
n′ = |A′|. Assume thatn < n′. Thus,n2 < n′2 and 1

n2 > 1
n′2 . Consequently,1− 1

n2 <

1− 1
n′2 and thenKd(A) < Kd(A

′).

The distance-based measure satisfies all our principles.
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Theorem 6 Kd satisfies all the seven principles.

Proof. Let A = 〈A,R〉 be an argumentation graph. Anonymity is obviously satisfied.
From Prop. 3, ifR = ∅, D(A) = max, thusKd(A) = 0 which ensures Agreement.

Let A = 〈A,R〉 andA′ = 〈A′,R′〉 be two elementary cycles such that|A| =

n, |A′| = m andm > n. D(A) = n2(n+1)
2 , thusKd(A) = n+1

2n , andD(A′) =
m2(m+1)

2 andKd(A
′) = m+1

2m = 1
2 + 1

2m . Sincem > n then2m > 2n and 1
2m < 1

2n .
Consequently,Kd(A

′) < Kd(A). This shows that Size Sensitivity is satisfied.
Let us now show thatKd satisfies Dummy principle. Assume that|A| = n Let a ∈

Args\A andA′ = 〈A∪{a},R〉. We denote byk the maximal distance in graphA and
by k′ the maximal distance in graphA′. From definition,k′ = n+2 since|Arg(A′)| =
n+1. Since the new arguments does not attack and is not attacked by other arguments,
then the original distances in graphA will not change except those that got valuek
which will be incremented by 1 each. Thus,D(A′ = D(A) + (2n + 1)k′ + x where
x ≥ 0 is the number of pairs (ai, aj) of arguments for which the length of the shortest
path fromai to aj is equal tok in graphA. We getD(A′ = D(A) + 2n2 +5n+2+ x.

Moreover,Kd(A) = 1 + 1
n
− D(A)

n3 andKd(A
′) = 1 + 1

n+1 − D(A)
(n+1)3 − x+2n2+5n+2

(n+1)3 .
Thus,Kd(A

′) < Kd(A).
Let us now show that monotony is also satisfied. LetR′ ⊆ (A × A) \ R and

A
′ = 〈A,R ∪ R′〉. BothA andA′ have the same min and max distances since they

have the same number of arguments. Consequently,Kd(A) = 1 + 1
n
− D(A)

n3 and

Kd(A
′) = 1 + 1

n
− D(A′)

n3 , with n = |A|. Assume thatD(A′) > D(A). This means
that there existsa, b ∈ A suchd(a, b) = x in graphA, d(a, b) = y in graphA′ and
y > x. This is impossible since the shortest path inA betweena andb still exists inA′.
Thus, inA′, the shortest path betweena andb is either the same as inA or a path with
y < x because of the additional attacks ofR′.

Cycle Precedence follows from Propositions 4 and 5.
Reinforcement is also satisfied. Since the two graphs in the principle are assumed

to have the same number of arguments, then both graphs have the same max and min
values. It is thus sufficient to compare the global distancesof the graphs. We can easily
compute the following values:D(A) = 8n3 + 26n2 + 32n + 14, andD(A′)203 n3 +
25n2 + 91

3 n+ 12. D(A) > D(A′), thusK(A) < K(A′).

Distance-based measure satisfies all the principles. Thus,it takes into account both
the direct attacks in an argumentation graph as well as the indirect ones. All these fea-
tures make it the best candidate for measuring disagreements in argumentation graphs.
Table 1 recalls for each measure, the principles it satisfiesand those it violates.

5 Links between Disagreement Measures and Inconsistency
Measures

In this section, we consider argumentation graphs〈A,R〉 that are generated from a
propositional knowledge baseΣ. The arguments ofA are defined as follows:
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Definition 10 (Argument) LetΣ be a propositional knowledge base. Anargumentis
a pair (X, x) s.t.X ⊆ Σ, X is consistent,X ⊢ x1, and∄X ′ ⊂ X such thatX ′ ⊢ x.

Regarding the attack relationR, we considerassumption-attackdefined in [5].

Definition 11 (Assumption-Attack) An argument(X, x) attacks(Y, y) (((X, x), (Y, y)) ∈
R) iff ∃y′ ∈ Y such thatx ≡ ¬y′2.

In [14], the authors proposed a measure (I) that quantifies the amount of incon-
sistency in a propositional knowledge baseΣ. That amount is equal to the number of
maximal (for set inclusion) consistent subsets ofΣ and the number of inconsistent for-
mulas inΣ minus 1.

Definition 12 (Inconsistency Measure)For any propositional knowledge baseΣ,

I(Σ) = |Max(Σ)|+ |Inc(Σ)| − 1

Max(Σ) is the set of maximal (for set⊆) consistent subsets ofΣ, andInc(Σ) is the set
of inconsistent formulae inΣ. I(Σ) is called the inconsistency value ofΣ.

Given a knowledge baseΣ, we show that its inconsistency value (as computed by
measureI) is equal to the disagreement values of the corresponding argumentation
graph using the three extension-based measuresKx

e with x ∈ {n, p}.

Theorem 7 LetΣ be a propositional knowledge base such thatInc(Σ) = ∅. LetA =
〈A,R〉 be the argumentation graph built overΣ. The following holds:

Kn
e (A) = Kp

e(A) = I(Σ)

Proof. Let Σ be a propositional knowledge base such thatInc(Σ) = ∅. Let A =
〈A,R〉 be the argumentation graph built overΣ. From Theorem 8 in [15],Extn(A) =
Extp(A). Furthermore, there is a full correspondence between the naive extensions of
A and the maximal (for set inclusion) consistent subsets ofΣ. Hence,|Extn(A)| =
|max(Σ)|. SinceInc(Σ) = ∅, thenI(Σ) = |max(Σ)| − 1. Since by definition of
arguments,SelfAtt(A) = ∅, thenKx

e (A) = |Extx(A)| − 1. Thus,Kx
e (A) = I(Σ).

This result shows that not only the two extension-based measures return the same
result in case of propositional knowledge bases, but also they are equivalent to the
inconsistency measure proposed in [14].

6 Related work

Despite the great amount of work on argumentation, there is no work on computing the
amount of disagreements in argumentation graphs. Our paperpresented the first attempt
in this direction. In [16], the authors studied to what extent the extensions (under a given

1 the symbol⊢ stands for propositional inference relation.
2 The symbol≡ stands for logical equivalence.
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semantics) of an argumentation graph are different. The problem they addressed is thus
completely different from the purpose of our paper.

Several measures were proposed in the literature for quantifying inconsistency in
propositional knowledge bases (e.g., [7, 6, 8]). Our extension-based measures are equiv-
alent to one of them, namely the one proposed in [14].

7 Conclusion

This paper studied for the first time how to quantify disagreements in an argumentation
graph. It showed that disagreements is more than direct attacks. It proposed principles
which serve as theoretical criteria for validating and comparing disagreement measures.
It defined six intuitive measures and investigated their properties. The distance-based
measure is the most powerful one. It not only satisfies all theproposed principles, but it
is also very discriminating, that is, it provides a fine grained evaluation of argumentation
graphs. Moreover, it captures very well the two sources of disagreement: direct and
indirect attacks. Furthermore, the paper made a first bridgewith works on inconsistency
measures. It showed that extension-based measures return the same amount of conflict
as one proposed in [14].

This work can be extended in several ways. First, we plan to investigate more deeply
the relationship between the disagreement value of an argumentation graph and existing
inconsistency degree of the knowledge base over which the graph is built. A particular
focus will be put on distance-based measure since it captures well indirect attacks in an
argumentation graph. Another line of research consists of evaluating the contribution of
each argument to the disagreement value of a graph. Such information may be useful in
a dialogues for identifying the culprit that should be attacked.
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