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Abstract

In an argumentation setting, a semantics evalu-
ates the overall acceptability of arguments. Conse-
quently, it reveals the globalloss incurred by each
argument due to attacks. However, it does not say
anything on thecontributionof each attack to that
loss. This paper introduces the novel concept of
contribution measurefor evaluating those contribu-
tions. It starts by defining a set of axioms that a rea-
sonable measure would satisfy, then shows that the
Shapley value is the unique measure that satisfies
them. Finally, it investigates the properties of the
latter under some existing semantics.

1 Introduction
An argumentation framework is a reasoning model based on
the justification of claims by arguments. It is made of agraph
and asemantics. The nodes of the graph are arguments, each
of which is assigned a basic strength, and the arcs are attacks
between pairs of arguments. The semantics is a function as-
signing to each argument of the graph a value representing
its overall strengthor acceptability degree. See[Simari and
Rahwan, 2009] for an overview on argumentation in AI.

Recently, Amgoud et al.[2016; 2017] have argued that the
acceptability degree of an argument should be equal to the ba-
sic strength of the argument, if the latter is not attacked. Oth-
erwise, the argument is weakened by its attackers and thus
looses weight, leading to an acceptability degree lower than
the basic strength. Hence, from the outcome of a semantics, it
is possible to compute theglobal lossundergone by each ar-
gument because of its attackers. It is the difference between
the basic strength of the argument and its acceptability de-
gree. However, it is not possible to say anything on thecon-
tribution of each attack to that loss. That contribution repre-
sents, in some sense, theintensityof the attack. The greater
the contribution of an attack, the more harmful the attack.

Information on attacks’ contributions is very useful sinceit
allows a better understanding of the impact of each attack.
Namely, it allows detectingworthlessattacks (i.e., attacks
that do not have any impact on the target), andredundant
ones (i.e., attacks that lead to the same loss for their target).

Attacks’ contributions allow also to rank order the attack-
ers of each argument of a graph from the most to the least

harmful ones. This ranking is very useful, especially in
persuasion dialogues where agents have to choose the best
counter-attack in order to win a dialogue. Assume a dia-
logue between two agents who exchange arguments in order
to persuade each other. At each step of the dialogue, an agent
presents a new argument attacking one of those uttered by
the other party. For that purpose, the agent should choose i)
which argument of the opponent to attack, and ii) with which
argument. A reasonable strategy consists of targeting an ar-
gument that is very harmful for the agent’s arguments.

This paper studies for the first time the question of
measuring the contribution of each attack to the global loss
of its target. It introduces the novel concept ofcontribution
measure, which takes as input an argumentation framework,
and returns as output a weight for each attack, representing
the contribution of the attack. It considers a broad range
of semantics including extension-based ones[Dung, 1995].
The paper starts by defining a set of axioms that a reasonable
measure should satisfy. Then, it provides a characterization
theorem, which states that Shapley value[Shapley, 1953]
is the unique measure that satisfies the axioms. Finally,
it investigates properties of that measure under extension
semantics, andh-categorizer semantics defined by Besnard
and Hunter[2001].

The paper is structured as follows: Section 2 defines argu-
mentation frameworks. Section 3 shows examples of seman-
tics covered by the study. Section 4 introduces contribution
measures as well as the set of axioms that they would satisfy.
Section 5 provides our characterization result. Section 6 in-
stantiates the Shapely measure with some existing semantics.

2 Argumentation Frameworks
An argumentation framework is made of anargumentation
graph and an acceptabilitysemantics. Throughout the pa-
per, we focus on argumentation graphs whose nodes are argu-
ments and arcs are attacks between arguments. An argument
is an abstract entity whose internal structure is not specified,
however, it has an initial value representing itsbasic strength.
The latter may represent different issues, like certainty degree
of argument’s premises[Benferhatet al., 1993], trustworthi-
ness in argument’s source[da Costa Pereiraet al., 2011], etc.
Before defining formally argumentation frameworks, we start



by introducing the useful notion ofweighting.

Definition 1 (Weighting) A weightingon a setX is a func-
tion fromX to [0, 1].

Let Arg be an infinite set of all possible arguments. An
argumentation graph is defined as follows:

Definition 2 (Argumentation Graph) An argumentation
graphis an ordered tupleA = 〈A, w,R〉, whereA is a finite
subset ofArg, w is a weighting onA, andR ⊆ A × A. Let
AG be the universe of all argumentation graphs built onArg.

For two argumentsa, b of an argumentation graphA =
〈A, w,R〉, w(a) represents thebasic strengthof the argument
a, and(a, b) ∈ R means that argumenta attacks argumentb.

Notations: Let A = 〈A, w,R〉 be an argumentation graph.
Elements ofR will be denoted byr1, r2, . . . , rn. Note that
R is finite sinceA is finite. ScA(.) andTrA(.) are two func-
tions, which return respectively thesourcea and thetarget
b of an attack(a, b) ∈ R. AttA(.) is a function, which
returns all theattackson an argument (i.e. fora ∈ A,
AttA(a) = {r ∈ R | TrA(r) = a}). Let X ⊆ R,
A⊖X = 〈A, w,R \X〉.

A semantics is a function assigning to every argument in
an argumentation graph anacceptability degree. The greater
this degree, the more acceptable the argument. The degree
is between 0 and the basic strength of the argument. The
idea is: If an argument is not attacked, then it keeps its full
basic strength, otherwise it may lose weight if its attackers are
sufficiently strong. In[Amgoudet al., 2017], we provided an
axiomatic justification for this definition of semantics.

Definition 3 (Semantics) A semanticsis a functionS trans-
forming any argumentation graphA = 〈A, w,R〉 ∈ AG into
a weighting onA s.t. for anya ∈ A, if AttA(a) = ∅, then
DegA

S
(a) = w(a), elseDegA

S
(a) ∈ [0, w(a)]. DegA

S
(a) is the

image ofa byS(A), and is calledacceptability degreeof a.

Throughout the paper, the semantics is leftunspecified.
However, without loss of generality, it satisfies the very ba-
sic syntax-independence, proposed in[Amgoudet al., 2017],
andmonotonicityproperties. The former ensures that the ac-
ceptability degree of an argument is independent of the argu-
ment’s identity. Before defining formally the property, letus
first recall the notion of isomorphism of graphs.

Definition 4 (Isomorphism) Let A = 〈A, w,R〉,A′ =
〈A′, w′,R′〉 ∈ AG. An isomorphismfrom A to A

′ is a bi-
jective functionf fromA toA′ such that the following hold:

• ∀ a ∈ A, w(a) = w′(f(a)),

• ∀ a, b ∈ A, (a, b) ∈ R iff (f(a), f(b)) ∈ R′,

Definition 5 (Syntax-Indep.) A semanticsS is syntax-
independentiff for all A = 〈A, w,R〉,A′ = 〈A′, w′,R′〉 ∈
AG, for any isomorphismf fromA toA

′, the following holds:
for anya ∈ A, DegA

S
(a) = DegA

′

S
(f(a)).

The monotonicity property ensures that attacks cannot be
beneficialfor arguments. It is worth pointing out that this
property is different from the monotony axiom from[Am-
goud and Ben-Naim, 2016; Amgoudet al., 2017], which

states the following: if the attackers of an argumenta are
also attackers ofb, thena is at least as acceptable asb. This
axiom assumes thata andb are in thesame graph, thus the
attackers of both arguments have fixed acceptability degrees.
Our monotonicity axiom goes one step further by assuming
that a andb are indifferent graphs. Hence, the acceptabil-
ity degrees of their attackers may vary from one graph to the
other. To sum up, it is possible for a semantics to satisfy one
of the two forms of monotony and violates the other.

Definition 6 (Monotonicity) A semanticsS is monotoneiff
for any argumentation graphA = 〈A, w,R〉 ∈ AG, ∀a ∈ A,
∀X ⊆ AttA(a), it holds thatDegA

S
(a) ≤ Deg

A⊖X
S

(a).

Notation: Let Sem be the universe of all syntax-independent
and monotone semantics defined onAG.

When the acceptability degree of an argument is lower than
its basic strength, the argument has lost strength due to its
attackers. The total amount of that loss is defined as follows.

Definition 7 (Loss) LetS ∈ Sem, A = 〈A, w,R〉 ∈ AG, and
a ∈ A. Thelossof a is LossA

S
(a) = w(a) − DegA

S
(a).

From the definitions, we get the following obvious results.

Property 1 LetS ∈ Sem, A = 〈A, w,R〉 ∈ AG, a ∈ A.

• LossA
S
(a) ∈ [0, 1].

• If AttA(a) = ∅, thenLossA
S
(a) = 0.

The following property follows also straightforwardly
from the monotonicity of semantics of the setSem.

Property 2 LetS ∈ Sem, A = 〈A, w,R〉 ∈ AG, anda ∈ A.
For anyX ⊆ AttA(a), LossA

S
(a) ≥ Loss

A⊖X
S

(a).

3 Examples of Covered Semantics
The previous section introduced the setSem of semantics we
consider in this paper, namely syntax-independent and mono-
tone semantics. Before defining contribution measures that
share the loss of an argument under such semantics among
the argument’s attacks, we need first to show that the setSem

is not empty. In other words, we should prove that there exist
semantics that satisfy the two above properties. Hopefully,
this is the case of at least Dung’s extension semantics[1995]
and Besnard and Hunter’sh-Categorizer semantics[2001].

In his seminal paper, Dung assumed all arguments have
the same basic strength. Thus, we consider argumentation
graphs whose arguments have each the basic strength 1. An
extension semantics starts by computing subsets of arguments
(calledextensions), which areconflict free(i.e., they do not
contain two arguments that attack each others). Furthermore,
theydefendtheir elements (i.e., they attack any argument at-
tacking one of their elements). LetA = 〈A, w,R〉 be an
argumentation graph such that for anya ∈ A, w(a) = 1, and
let E ⊆ A be a conflict-free set.

• E is a completeextension iff it defends all its elements
and contains any argument it defends.

• E is a preferredextension iff it is a maximal (w.r.t. set
⊆) complete extension.

• E is astableextension iff it attacks anya ∈ A \ E .



• E is agrounded extensioniff it is a minimal (w.r.t. set⊆)
complete extension.

Let Extx(A) denote the set of all extensions ofA un-
der semanticsx, wherex ∈ {st, pr, gr, co} andst (resp.
pr, gr, co) stands for stable (resp. preferred, grounded, com-
plete) semantics. Once extensions are computed, acceptabil-
ity degrees are assigned to arguments. In what follows, we
slightly modify the definition given by Amgoud and Ben-
Naim [2016], in particular the case where a graph has no sta-
ble extensions. Instead of assigning the degree 0.3 to each
argument of the graph, we assume that arguments keep their
basic strengths. The idea is that there is no reason for losing
strength. Formally, for anya ∈ A, if Extx(A) = ∅, then
DegAx (a) = w(a) = 1, otherwise:

• DegAx (a) = 1 iff a ∈
⋂

E∈Extx(A)

E .

• DegAx (a) = 0.5 iff ∃E , E ′ ∈ Extx(A) s.ta ∈ E , a /∈ E ′.

• DegAx (a) = 0.3 iff a /∈
⋃

E∈Extx(A)

E and∄E ∈ Extx(A)

s.t∃b ∈ E and(b, a) ∈ R.

• DegAx (a) = 0 iff a /∈
⋃

E∈Extx(A)

E and∃E ∈ Extx(A) s.t

∃b ∈ E and(b, a) ∈ R.

We show next that the four semantics are part of the set
Sem. Indeed, they are in accordance with Definition 3 of se-
mantics, and are all syntax-independent and monotone.

Proposition 1 It holds that{st, gr, co, pr} ⊆ Sem.

Besnard and Hunter[2001] proposedh-categorizerseman-
tics for evaluating arguments in acyclic graphs. This seman-
tics was extended by Pu et al.[2014] to any graph structure. It
considers as input an argumentation graph whose arguments
have all the same basic strength 1, and returns an acceptabil-
ity degree in the interval(0, 1] to each argumenta as follows:

DegA
h
(a) =

1

1 +
∑

b:(b,a)∈R

DegA
h
(b)

with
∑

b:bRa

DegA
h
(b) = 0 if AttA(a) = ∅.

It was shown in[Amgoud and Ben-Naim, 2016] that h-
categorizeris in accordance with Definition 3, and is syntax-
independent. We implemented this semantics, and run several
experiments, which all show that the semantics is monotone.

Conjecture 1 h-categorizer semantics is monotone. It is
thus a member of the setSem.

The two previous results show that the set of semantics in-
vestigated in the paper is not empty (Sem 6= ∅) and covers the
main existing semantics.

4 Contribution Measures
A contribution measure takes as input an argumentation
framework (an argumentation graph and a semantics, which
evaluates the arguments of the graph), and assigns to each
attack in the graph a value between 0 and 1. This value rep-
resents thecontributionof the attack to the loss undergone

by its target. In other words, for each attacked argument in
the graph, the measure divides the total loss of the argument
among the attacks received by the argument.

Definition 8 (Contribution Measure) A contribution mea-
sureis a functionC onSem× AG such that,∀S ∈ Sem, ∀A =
〈A, w,R〉 ∈ AG, C(S,A) is a weightingf on R satisfying
the following condition:∀a ∈ A such thatAttA(a) 6= ∅,

∑

r∈AttA(a)

f(r) = LossAS (a). (1)

f(r) is called thecontributionof r to the loss ofTr(r). Let
Ctr

S,A
C

(r) denotef(r), i.e. the image ofr byC(S,A).

Equation 1 provides anefficiencycondition, which ensures
that the entire loss of an argument is divided among the argu-
ment’s attacks. This leads to the following obvious property.

Property 3 For anyS ∈ Sem, anyA = 〈A, w,R〉 ∈ AG,
any contribution measureC on (S,A), anya ∈ A such that
AttA(a) 6= ∅, the following two properties hold:

• If AttA(a) = {r}, thenCtrS,A
C

(r) = LossA
S
(a).

• If LossA
S
(a) = 0, then∀r ∈ AttA(a), CtrS,A

C
(r) = 0.

In addition to the efficiency condition, the division of a loss
should be both reasonable and fair. In what follows, we define
properties (called axioms in the paper) that describe what a
reasonable and fair measure is.

The first axiom guarantees syntax-independence. It states
that theidentitiesof arguments cannot change the outcome of
a contribution measure.

Axiom 1 (Anonymity) A contribution measureC satisfies
anonymity iff, ∀S ∈ Sem, ∀A = 〈A, w,R〉 ∈ AG and
∀A′ = 〈A′, w′,R′〉 ∈ AG, for any isomorphismf from A

toA
′, it holds that∀ r ∈ R,

Ctr
S,A
C

(r) = Ctr
S,A′

C
((f(Sc(r)), f(Tr(r)))).

A fair division of an argument’s loss among the argument’s
attacks should take into account the effective impact of each
attack. The second axiom concerns worthless attacks. It
states that if an attack is not harmful to its target, then itscon-
tribution should be 0. An important question then is: what
is a worthless, called heredummy, attack? A possible defini-
tion is: an attack whose source has an acceptability degree 0.
Consider the following example.

Example 1 Consider the semanticsS1 defined as follows:
for any argumentation graphA = 〈A, w,R〉, for anya ∈ A,

DegA
S1(a) =

{

w(a) if AttA(a) = ∅
0 else .

This semantics is clearly syntax-independent and mono-
tone, thus it belongs to the setSem. Consider now the argu-
mentation graphA1 = 〈A1, w1,R1〉, whereA1 = {a, b},
R1 = {(b, a)}, w1(a) = 1 and w1(b) = 0. Clearly,
Deg

A1

S1 (a) = 0. Thus,LossA1

S1 (a) = 1 meaning thata loses
all its basic strength. This loss is due to the attack fromb
even ifDegA1

S1 (b) = 0 (sinceAttA1
(b) = ∅ andw1(b) = 0).

Hence,(b, a) is certainly not a dummy attack.



It is worth noticing that a contribution measure should be
rational whatever its input. Namely, it should be able to per-
form fair division whatever the semantics that is considered,
even very basic ones likeS1. From the example, it follows
that the above definition of dummy attack is not suitable for
semanticsS1, and more generally for semantics that do not
take into account the acceptability degrees of attackers. We
will see in Section 6 that it is not suitable for some extension
semantics as well. To sum up, a good definition of dummy
attack should be independent of acceptability degrees of ar-
guments. A natural candidate is a definition that is based on
themarginal contributionsof attacks. The marginal contribu-
tion of an attack is the difference between the loss undergone
by the target and the loss of the target when the attack is re-
moved from the argumentation graph. A dummy attack is an
attack whose marginal contribution is 0. Let us illustrate this
idea with an example.

Example 1 (Cont)Recall thatLossA1

S1
(a) = 1. Consider the

argumentation graphA′
1 = A1 ⊖ {(b, a)}. In A

′
1, a is not

attacked, thenDegA
′

1

S1 (a) = 1 andLossA
′

1

S1 (a) = 0. The attack

(b, a) is not dummy sinceLossA1

S1 (a)− Loss
A

′

1

S1 (a) 6= 0.

Unfortunately, this new definition is still not fully satisfac-
tory as shown in the following example.

Example 2 Consider the argumentation graphA2 depicted
below, where each argument has the basic strength 1.

a1 a2

a

Let r1 = (a1, a) and r2 = (a2, a). Consider stable se-
mantics (st) proposed by Dung[1995]. The graphA2 has
one stable extension{a1, a2}. Thus,DegA2

st (a) = 0, and
Loss

A2

st (a) = 1. In order to check whetherr1 is a dummy
attack ofa, we consider the graphA′

2 = A2⊖{r1}. Clearly,

Deg
A

′

2

st (a) = 0 (sinceA′
2 has one stable extension{a1, a2})

andLossA
′

2

st (a) = 1. Note thatLossA2

st (a) = Loss
A

′

2

st (a).
Thus,r1 is a dummy attack, and for any contribution mea-
sureC, Ctrst,A2

C
(r1) = 0. However, it is easy to check that

r2 is also dummy, and its contribution is 0. This violates the
efficiency condition of Equation 1. Indeed,Ctr

st,A2

C
(r1) +

Ctr
st,A2

C
(r2) = 0 while Lossst

A2
(a) = 1. Furthermore, this

is not intuitive since the argumenta has lost its entire basic
strength because of its two attackers.

In order to avoid the previous problems, we propose to
check the marginal contribution of an attack in the initial
graph as well as in all sub-graphs of the initial graph where
some target’s attacks are removed.

Axiom 2 (Dummy) A contribution measure satisfiesdummy
iff, ∀S ∈ Sem, ∀A = 〈A, w,R〉 ∈ AG, ∀a ∈ A s.t.
AttA(a) 6= ∅, ∀r ∈ AttA(a), if ∀X ⊆ AttA(a) \ {r},

Loss
A⊖X
S

(a) = Loss
A⊖(X∪{r})
S

(a), thenCtrS,A
C

(r) = 0.
We say thatr is adummyattack.

Example 2 (Cont)Even if one of the two attacks is sufficient
to kill the argumenta, none of them is dummy. Let us analyze
r1 (the same reasoning holds forr2). We should check any
X ⊆ AttA(a) \ {r1} = {r2}. There are two cases:

• X = ∅: LossA2⊖X
st (a) = 1, LossA2⊖(X∪{r1})

st (a) = 1.

• X = {r2}: Loss
A2⊖X
st (a) = 1,

Loss
A2⊖(X∪{r1})
st (a) = 0.

Note that whenX = {r2}, the argumenta is not attacked in
the graphA2 ⊖ (X ∪ {r1}), and it is attacked only bya1 in
the graphA2 ⊖X . Thus,r1 taken alone is harmful fora.

We show that a dummy attack cannot weaken its target
even when it is the only attack received by its target.

Proposition 2 LetC be a contribution measure, which satis-
fies Dummy. For any semanticsS ∈ Sem, any argumentation
graphA = 〈A, w,R〉 ∈ AG, anya ∈ A s.t. AttA(a) 6= ∅,
anyr ∈ AttA(a), if r is dummy, thenDegA

′

S
(a) = w(a) and

LossA
′

S
(a) = 0, withA

′ = A⊖ (AttA(a) \ {r}).

The next axiom defines when two attacks targeting the
same argument should receive thesame contribution. Such
attacks are said to besymmetric. One might think that two
attacks are symmetric if their sources have the same accept-
ability degree. However, the following example shows that
this definition may lead to an unfair division of the loss.

Example 3 Consider the argumentation graphA3 depicted
below, where each argument has a basic strength equal to 1.

a1 a a2

b

Under preferred semantics,pr, the empty set is the sole ex-
tension ofA3. Thus, the four arguments get the same ac-
ceptability degree 0.3(DegA3

pr (.) = 0.3). Consequently,
LossA3

pr (a) = 0.7. Since the two attackers (a1 and a2) of
a have the same degree, the previous definition declares their
attacks as symmetric and assigns to them the same contri-
bution (0.35 each). However, this division is unfair. Con-
sider the two argumentation graphsA′

3 = A3 ⊖ {(a1, a)}
and A

′′
3 = A3 ⊖ {(a2, a)}. It is easy to check thatA′

3

has one preferred extension,{a, a1}. Thus,DegA
′

3

pr (a) = 1,

Loss
A

′

3

pr (a) = 0, and the marginal contribution of the attack
(a1, a) is 0.7. However, the sole preferred extension ofA

′′
3 is

the empty set. Hence,DegA
′′

3

pr (a) = 0.3, LossA
′

3

pr (a) = 0.7,
and the marginal contribution of the attack(a2, a) is 0. This
shows that the two attacks do not have the same impact ona.

The previous example suggests that the notion of symmet-
ric attacks should not be defined on the basis of acceptabil-
ity degrees, but rather be based on the comparison of the
marginal contributions of the two attacks. However, like with
dummy, the marginal contributions in the initial graph may
lead to unfair divisions as shown by the following example.

Example 4 Consider the argumentation graphA4 depicted
below, where each argument has a basic strength equal to 1.



Consider stable semanticsst. The graphA4 has two stable
extensions{a1, a2, a3} and{a1, a2, a4}. Thus,DegA4

st (a) =

0 andLossA4

st (a) = 1.

a1 a2 a3 a4

a

LetA4i = A4 ⊖ {(ai, a)}, with i ∈ {1, 2, 3}. For anyi 6=
j, LossA4i

st (a) = Loss
A4j

st (a). Hence, the three attacks on
a are symmetric, and get the same contribution (1

3 ). While
(a1, a) and(a2, a) are clearly symmetric, this is not the case
for (a1, a) (respectively(a2, a)) and(a3, a). Indeed,(a1, a)
alone leads to a loss of 1 fora, while (a3, a) alone (i.e., in
graphA4 ⊖ {(a1, a), (a2, a)}) leads only to a loss of 0.5.

Symmetric attacks should then be defined by comparing
the marginal contributions of those attacks in all the possible
graphs where subsets of the target’s attacks are removed.

Axiom 3 (Symmetry) A contribution measureC satisfies
symmetryiff, ∀S ∈ Sem, ∀A = 〈A, w,R〉 ∈ AG, ∀a ∈
A with |AttA(a)| ≥ 2, ∀ri, rj ∈ AttA(a) with ri 6=

rj , if ∀X ⊆ AttA(a) \ {ri, rj}, Loss
A⊖(X∪{ri})
S

(a) =

Loss
A⊖(X∪{rj})
S

(a), thenCtrS,A
C

(ri) = Ctr
S,A
C

(rj). We
say that the two attacksri andrj aresymmetric.

Example 4 (Cont) Under stable semantics, a contribution
measure satisfying symmetry declares the two attacks(a1, a),
(a2, a) symmetric, and both are not symmetric with(a3, a).

A fair division of an argument’s loss among attacks should
take into account the power of each attack. InA4, the attack
(a3, a) is less harmful than both(a1, a) and(a2, a). Thus, the
former should receive a lower part than the latter. The next
axiom captures this idea. It states that the greater the marginal
contribution of an attack, the greater its contribution.

Axiom 4 (Dominance) A contribution measureC satisfies
dominanceiff, ∀S ∈ Sem, ∀A = 〈A, w,R〉 ∈ AG, ∀a ∈ A
with |AttA(a)| ≥ 2, ∀ri, rj ∈ AttA(a) with ri 6= rj , if

• ∃X ⊆ AttA(a) \ {ri, rj} such that

Loss
A⊖(X∪{ri})
S

(a) > Loss
A⊖(X∪{rj})
S

(a), and

• ∀X ′ ⊆ AttA(a) \ {ri, rj} such thatX ′ 6= X ,

Loss
A⊖(X′∪{ri})
S

(a) ≥ Loss
A⊖(X′∪{rj})
S

(a)

thenCtrS,A
C

(rj) > Ctr
S,A
C

(ri).

All the previous axioms assume a fixed semantics, and
discuss how weights are assigned to attacks under that se-
mantics. The last axiom shows how those weights may vary
from one semantics to another. It states that if the marginal
contribution of an attack is the same under two different se-
mantics, then it will receive the same contribution in both
cases. This axiom ensures that the contribution of an at-
tack depends solely on its marginal contribution to the loss
of its target. This prevents measures from taking into account
features of semantics like its name, whether it is extension-
based, whether it is binary (i.e., it allows two degrees), etc.

Axiom 5 (Coherence) A contribution measureC satisfies
coherenceiff, ∀S,S′ ∈ Sem, ∀A = 〈A, w,R〉 ∈ AG, ∀a ∈ A
with AttA(a) 6= ∅, ∀r ∈ AttA(a), if ∀X ⊆ AttA(a) \ {r},

LossA⊖X
S

(a) − Loss
A⊖(X∪{r})
S

(a) = LossA⊖X
S′ (a) −

Loss
A⊖(X∪{r})
S′ (a), thenCtrS,A

C
(r) = Ctr

S
′,A

C
(r).

Example 2 (Cont) Consider the argumentation graphA2.
Any contribution measure satisfying the axiom of Coherence
assigns the same value tor1 (respectivelyr2) under stable,
grounded, complete, and preferred semantics[Dung, 1995].

The five axioms are not fullyindependent. Indeed,
Anonymity, Dummy and Dominance follow from the two
other axioms (i.e., from Coherence and Symmetry).

Proposition 3 LetC be a contribution measure.

• If C satisfies Coherence, thenC satisfies Dummy.

• If C satisfies Coherence and Symmetry, thenC satisfies
Anonymity and Dominance.

Coherence and Symmetry are however independent, i.e.,
none of them is implied by the other.

Proposition 4 Symmetry and Coherence are independent.

Hopefully, the five axioms arecompatible, i.e., they can all
be satisfied by a given contribution measure.

Proposition 5 Symmetry and Coherence are compatible.

From propositions 3 and 5, it follows that the five axioms
are compatible.

5 Shapley Contribution Measure
The previous section introduced the notion of contribution
measure, and five axioms that fair and reasonable measures
should satisfy. The following questions raise then naturally:

• Existence: is there a measure which satisfies the axioms?

• Uniqueness: if yes, is it unique?

Hopefully, the answers to both questions are positive. Before
presenting the formal results, let us start by introducing the
key functionSh, calledShapley measurein the paper.
Definition 9 (Sh) Sh is the function onSem × AG such that
∀S ∈ Sem, ∀A = 〈A, w,R〉 ∈ AG, Sh(S,A) is the function
s fromR to R defined as follows:∀r = (b, a) ∈ R,

s(r) =
∑

X⊆Y

|X|!(n− |X| − 1)!

n!
(LossA1

S
(a)− Loss

A2

S
(a))

whereY = AttA(a) \ {r}, n = |AttA(a)|, A1 = A ⊖X ,
andA2 = A⊖ (X ∪ {r}).

The functionSh assigns a real value to each attack, which
is the weighted sum of its marginal contributions to the global
loss of the targeted argument. It is easy to show that the pre-
vious definition ofSh is equivalent to the following one.
Theorem 1 Let S ∈ Sem, A = 〈A, w,R〉 ∈ AG, ands =
Sh(S,A). It holds that∀(b, a) ∈ R,

s((b, a)) =
∑

X⊆Y

|X|!(n− |X| − 1)!

n!
(DegA2

S
(a)− Deg

A1

S
(a)),

whereY = AttA(a) \ {(b, a)}, n = |AttA(a)|, A1 = A⊖

X , andA2 = A⊖ (X ∪ {(b, a)}).



It is worth noticing thatSh(S,A) is the well-knownShap-
ley value, proposed as a solution for transferable utility games
(TU games) by Shapley[1953]. A TU game is a set ofagents
and a real-valuedcharacteristic functionassigning a value to
each subset of agents. Each subset is a coalition and its value
represents how much the coalition can get for itself. The key
problem is then, how the agents of the game divide the value
of the grand coalition (the one made of all agents). Shapley
value provides a unique division for each game.

In an argumentation context, each pair(S,A), with A =
〈A, w,R〉, can be seen as aset of TU games (one per ar-
gument inA). The agents of the game corresponding to an
argumenta ∈ A are the attacks ona, and the characteristic
function isLoss. The latter evaluates the loss ofa under se-
manticsS whena is attacked by any subset of its attackers.
Those subsets play the role of coalitions.

Shapley characterized his value with axioms, one of which
is additivity. The latter shows how different games can be
combined. Despite the relationship between a contribution
measure and TU games, Additivity has no counter-part in the
previous section since it does not make sense in the argumen-
tation context. Shubik[1962] has shown, however, that sym-
metry follows from Shapley’s axiom of anonymity. Note that
the latter is based on permutations in the roles of agents, and
thus is different from our Anonymity axiom.

We show next thatSh is a contribution measure. Indeed, it
assigns a value in the interval[0, 1] to each attack. Further-
more, it satisfies the efficiency condition of Definition 8.

Theorem 2 Sh is a contribution measure.

Let us illustrate this measure on the running examples.

Example 1 (Cont)In the graphA1, CtrS1,A1

Sh ((b, a)) = 1.

Example 2 (Cont) In the graphA2, Ctr
x,A2

Sh (r1) =

Ctr
x,A2

Sh (r2) = 1
2 for x ∈ {gr, co, pr, co}. Consider

now h-categorizer semantics.DegA2

h
(a) = 1

3 , and thus

Loss
A2

h
(a) = 2

3 . So,Ctrh,A2

Sh (r1) = Ctr
h,A2

Sh (r2) =
1
3 .

Example 3 (Cont)In the graphA3, Ctrpr,A3

Sh ((a1, a)) = 0.7,
Ctr

pr,A3

Sh ((a2, a)) = 0. Note that(a2, a) is a dummy attack
under preferred semantics. However, as we will see in the
next section, it is not dummy underh-categorizer semantics.

Example 4 (Cont) In the graphA4, Ctr
x,A4

Sh ((a1, a)) =
Ctr

x,A4

Sh ((a2, a)) = 5
12 andCtrx,A4

Sh ((a3, a)) = 1
6 , wherex ∈

{pr, st}. The two first attacks are more harmful than(a3, a).

The following result is of great importance since it posi-
tively answers the two questions on theexistenceandunique-
nessof a contribution measure that satisfies the axioms. In-
deed, it provides a characterization, which states that notonly
Sh satisfies the axioms (existence), but also it is theunique
contribution measure that satisfies them.

Theorem 3 A contribution measureC satisfies the two ax-
ioms of Symmetry and Coherence if and only ifC = Sh.

From the previous result and the links between the five ax-
ioms, it follows thatSh satisfies the five axioms.

Properties P1 P2 P3 P4 P5
Stable no no no no no
Preferred no no no no no
Complete no yes no no no
Grounded no yes no no no
h-Categorizer yes yes yes no no

Table 1: Properties

6 Properties Related to Semantics
Shapley measureSh can be applied to any semantics inSem.
We show that the contributions it assigns to attacks respect
however, properties of the underlying semantics. For that
purpose, we consider the semantics defined in Section 3, a
given argumentation graphA = 〈A, w,R〉, and a ∈ A
such thatAttA(a) 6= ∅. Let AttA(a) = {r1, . . . , rn} and
Sc(ri) = ai. Hence, the attackers ofa are{a1, . . . , an}. We
focus on the following properties: For anyi, j ∈ {1, . . . , n},

(P1) CtrS,ASh (ri) > 0.

(P2) DegA
S
(ai) > 0⇒ Ctr

S,A
Sh (ri) > 0.

(P3) DegA
S
(ai) = 0⇒ Ctr

S,A
Sh (ri) = 0.

(P4) DegA
S
(ai) > DegA

S
(aj) ⇒ Ctr

S,A
Sh (ri) > Ctr

S,A
Sh (rj).

(P5) DegA
S
(ai) = DegA

S
(aj) ⇒ Ctr

S,A
Sh (ri) = Ctr

S,A
Sh (rj).

(P1) states that there is no dummy attack.(P2) follows
from (P1) and ensures that each serious attacker contributes
to the loss ofa. (P3)ensures that killed attackers do not con-
tribute to the loss of their target. The two last properties state
that the order between acceptability degrees is preserved.

Proposition 6 Table 1 resumes the properties that are satis-
fied/violated by the semantics introduced in Section 3.

The results show that underh-Categorizer semantics, there
is no dummy attack. They also confirm the necessity of defin-
ing contribution measures on the basis of marginal contribu-
tions of attackers rather than on their acceptability degrees.

7 Conclusion
The paper introduced a novel concept, contribution measure,
which evaluates the intensity of each attack in an argumen-
tation graph. It followed an axiomatic approach. Indeed, it
defined axioms that characterize reasonable measures. Then,
it showed that there is a unique measure which satisfies them,
and it is the well-known Shapley value.

Future work consists of investigating the properties of
Shapley measure under semantics like the ones proposed in
[Dung et al., 2007; Grossi and Modgil, 2015; Gabbay and
Rodrigues, 2015; da Costa Pereiraet al., 2011], those pro-
posed in probabilistic argumentation settings[Hunter, 2013;
Li et al., 2011], or in weighted argumentation graphs, i.e.,
graphs where attacks are assigned weights (see[Cayrolet al.,
2010; Dunneet al., 2011; 2010]).
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