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Abstract Unusually high compressional (P) to shear (S) wave velocity ratios (Vp/Vs) were measured at
different subduction zones and interpreted as fluid-pressurized regions. Because no laboratory data
reported such high values in isotropic rocks, mineralogical or anisotropic constrains were assumed. However,
fluid-saturated rocks’ Vp/Vs is a frequency-dependent property so that standard laboratory measurements
cannot be directly upscaled to the field. Using a new methodology, we measured the property in the elastic
regime relevant to field measurements for diverse lithologies. We obtained extreme Vp/Vs values, consistent
with those reported at seismic frequency in the field. Consistently with a model, it shows that if high fluid
pressure is a key factor, anomalous Vp/Vs values could evidence intense degrees of microfracturation in
isotropic rocks, whichever its mineralogical content. The permeability of these regions could be larger
than 10�16 m2.

Plain Language Summary Anomalous seismic properties measured at subduction zones across the
globe have been linked to the occurrence of earthquakes or tremors. However, different physical causes were
postulated to interpret such seismic properties, and none of the laboratory measurements quantitatively
fitted with those anomalous values. From laboratory measurements dedicated to link with field ones, we
report the first data set that fits with field measurements observed at subduction zones. We show that such
values might evidence a large degree of microfracturing, opened by high pore fluid pressure, in isotropic
rocks of any mineralogy.

1. Introduction

Anomalously high compressional (P) to shear (S) wave velocity ratios, Vp/Vs, were reported (Figure 1a) at
several subduction zones (Audet & Bürgmann, 2014; Audet & Kim, 2016) such as Cascadia (Audet et al.,
2009), Central Mexico (Kim et al., 2010), Costa Rica (Audet & Schwartz, 2013), Alaska (Audet & Schwartz,
2013), and the Nankai trough (Kodaira, 2004; Shelly et al., 2006). Because Vp/Vs directly relates to the
Poisson’s ratio of solids via (Vp/Vs)

2 = 2(1� ν)/(1� 2ν), the Poisson’s ratio of fluids being 0.5, high Vp/Vs ratios
were generally attributed to the existence of high pore fluid pressures (Audet et al., 2009; Audet & Bürgmann,
2014; Audet & Schwartz, 2013; Peacock et al., 2011). Indeed, laboratory measurements qualitatively showed
an increase in the rock Poisson’s ratio as fluid pressure increased near lithostatic pore fluid pressure (Audet &
Bürgmann, 2014; Christensen, 1984; Peacock et al., 2011). However, no laboratory results to date reported
values large enough to fit with seismic observations in subduction zones (Christensen, 2004; Peacock et al.,
2011). To further account for the discrepancy between laboratory measurements and field scale observations,
additional hypotheses were formulated as (i) rocks of specific mineralogy (Audet & Bürgmann, 2014;
Christensen, 2004; Peacock et al., 2011) with high Poisson’s ratio (Abers & Hacker, 2016; Christensen, 1996),
(ii) partial melting (Ji et al., 2009), or (iii) anisotropy (Christensen, 2004; Song & Kim, 2012; Wang et al.,
2012). For instance, these high Vp/Vs regions were assumed to be depleted in quartz (Audet & Bürgmann,
2014) because quartz Poisson’s ratio is small (Abers & Hacker, 2016; Arns et al., 2002; Christensen, 1996;
Hacker & Abers, 2004).

An additional complexity is seldom accounted for when comparing field and laboratory measurements
(Müller et al., 2010): While field measurements are performed at the subsonic frequency (i.e., about 1 Hz),
standard laboratory measurements are performed at ultrasonic frequencies (i.e., 1 MHz). Recent experimental
studies (Pimienta, Fortin, & Guéguen, 2016b) showed that Poisson’s ratio (or Vp/Vs) of fluid-saturated rocks is a
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frequency-dependent property, exhibiting important variations over the measured frequency range
(Figure 1b and Figure A1 in the supporting information). Frequency-dependent variations of the Poisson’s
ratio in fluid saturated rocks generally originate from two different viscous fluid-flow dissipation
mechanisms, separating three distinct elastic regimes (Adelinet et al., 2010): the drained, undrained, and
unrelaxed/isolated regimes.

In the laboratory, standard ultrasonic methods either measure the drained (Figure 1b, left) or unrelaxed
elastic response (Figure 1b, right) when samples are respectively dry or fluid-saturated. At the field scale,
because the characteristic frequencies are expected to be far apart (Figure A1), the relevant elastic regime
is often the undrained one (Figure 1b, center). For instance, low Poisson’s ratio is measured both in the
drained (Figure 1b, left) and in the unrelaxed (Figure 1b, right) regimes in a sandstone sample (Pimienta,
Fortin, & Guéguen, 2016b). In the undrained regime (Figure 1b, center), for the same rock, anomalously
high Poisson’s ratios are measured, as consistently observed in three additional sandstones (Pimienta
et al., 2017). Interestingly, Poisson’s ratios of 0.35–0.38 corresponded to Vp/Vs ranging between 2 and
2.4, that is, close to the largest values reported (Audet et al., 2009; Audet & Bürgmann, 2014) at the
field scale.

Figure 1. (a) Vp/Vs reported for the low velocity zones of different subduction zones across the globe (Audet & Bürgmann,
2014; Audet & Schwartz, 2013) as compared to minerals Poisson’s ratio (Christensen, 1996); (b) schematic frequency
dependence of Poisson’s ratio (or Vp/Vs) based on recent results (Pimienta, Fortin, Borgomano, et al., 2016a), highlighting
the comparison expected between laboratory and field measurements. The figure highlights measurements obtained for
an isotropic Fontainebleau sandstone, in the three elastic regimes (squares), and reports for comparison values found
(Pimienta et al., 2017) for three other isotropic sandstones in the undrained regime.
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From these observations, this work aims at investigating the undrained
Vp/Vs of most crustal rocks and explaining it physically with a simple
model. Then, using the Vp/Vs values reported from the field scale,
ranges in permeability will be provided.

2. Method
2.1. Rock Samples

For the purpose of the study, the rock samples chosen (Table 1) are of
(i) Carrara Mable (i.e., CarMbl), a crystalline rock of pure content (i.e.,
100%) in randomly oriented calcite minerals (Delle Piane et al., 2015;
Schubnel et al., 2006); (ii) Westerly granite (i.e., WGs), a well-known iso-
tropic and homogeneous rock (Faulkner et al., 2006; Wang et al., 2012);
(iii) an Andesite sample from Azores Islands, Portugal (i.e., PAn); (iv) an

Icelandic Basalt (i.e., IBas), homogeneous and isotropic at the sample scale (Adelinet, 2010; Adelinet et al.,
2010); and (v) two samples of clean (i.e., 100% quartz) Fontainebleau sandstone, of 3% (i.e., Fo3) and 7%
(i.e., Fo7) porosity. The sandstone is composed of randomly oriented quartz grains cemented by quartz,
usually homogeneous and isotropic at the sample scale (Pimienta et al., 2014), and very similar to a quartzite
once the content of spherical pores tends to zero (i.e., low porosity samples). Hence, the two samples can
consistently be assumed to exhibit physical properties very similar to what one may expect for quartzite.

For the two samples of WGs and Fo3, after measurement of Poisson’s ratio on the intact sample, the two
samples were then put in the oven for thermal treatment at 500 °C—with small temperature ramps (i.e.,
about 5 °C/min variation)—and then measured gain with the same procedure. The thermal treatment
method was shown to induce a large and isotropic degree of microfracturing due to the mismatch in thermal
expansion of the grains in initially isotropic rocks (Fredrich & Wong, 1986; Nasseri et al., 2007, 2009).

All rock samples have an overall porosity below 7%. In case of the initial samples, all except for Fo7 and PAn
show high P and S wave velocity. Comparing those data with existing theories (Guéguen & Kachanov, 2011;
Walsh, 1966), a low content in initial microcrack density is inferred for most samples except those two.
Applying thermal treatment onWGs and Fo3, the rock samples’ porosity increases and P and Swave velocities
decrease, which is consistent with the creation of microcracks (Nasseri et al., 2009; Wang et al., 2013).

2.2. Measuring Procedure

Rock samples, equipped with pairs of axial and radial strain gages, are jacketed and enclosed between
end-platens so that oil confining pressure and pore fluid pressure can be applied independently to the rock
sample. The sample is consecutively measured under dry and fully saturated conditions at different values of
confining and pore pressures. The piston is equipped with a piezo-electric actuator that allows applying axial
stress oscillations of low amplitude over a wide frequency band (Borgomano et al., 2017; Pimienta et al.,
2015b). At a given static pressure, axial stress oscillations of strain amplitudes below 10�5 are applied to
the rock sample at different frequencies (Figure 2). This calibrated method allows reaching precisely
Poisson’s ratio of rock samples under purely isotropic stress conditions (Pimienta et al., 2015b; Pimienta,
Fortin, & Guéguen, 2016b).

An example of measurements for different frequencies of oscillating stresses is reported for the microcracked
Fo3 sample (Figure 2). As observed from the raw data (Figure 2a), when normalizing the data with respect to
the axial strain oscillations, radial strain oscillations largely depend on both the fluid and the frequency, with
maximum amplitudes in the frequency range of 1–10 Hz. Inferring Poisson’s ratio (Figure 2b) indeed shows a
frequency-dependent increase up to 1–10 Hz and then decrease beyond this frequency. The variation is very
similar to that observed (Pimienta, Fortin, & Guéguen, 2016b) and schematically highlighted for Fo7
(Figure A1a).

In this work, only the measured values of Poisson’s ratio under dry and fluid-saturated conditions in the
undrained regime—relevant to the field’s scale—are of interest. Following an assessed procedure
(Pimienta et al., 2015a, 2015b), the undrained regime corresponds to the frequency beyond which fluid
cannot flow anymore out of the sample and that remains low enough not to be in the unrelaxed regime
(Figure A1). As shown from earlier experimental work (Pimienta, Fortin, & Guéguen, 2016b), this distinction

Table 1
Porosity, Ultrasonic P and S Wave Velocities of the Dry Rock Samples at
Room Conditions

Porosity Pwave velocity Swave velocity

Carrara marble 0.3% 6.2 km/s 3.3 km/s
Westerly granite (WGs) 0.7% 5.5 km/s 3.1 km/s
Azores andesite (Pan) 5.8% 2.0 km/s 1.2 km/s
Icelandic basalt (IBas) 2.6% 4.7 km/s 2.6 km/s
Fontainebleau sandstone
(Fo3)

3.2% 5.3 km/s 3.4 km/s

Fontainebleau sandstone
(Fo7)

7.3% 3.1 km/s 2.0 km/s

WGs @ 500 °C 1.8% 2.4 km/s 1.6 km/s
Fo3 @ 500 °C 4.1% 3.5 km/s 2.3 km/s
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also corresponds to a maximum value in the rock Poisson’s ratio (Figure 2b). To account for the dependence
of Poisson’s ratio to confining and pore pressure, the samples are measured as a function of frequency at
varying Terzaghi effective pressures (Peff = Pc � pf) in the range of [1–30] MPa (Figure 2). The peaked
Poisson’s ratio under dry/drained and undrained regime, measured as a function of Peff (Figure A2), is then
inferred as a function of pf. Where Peff = Pc � pf equally links the decrease Pc or increase in pf to the
decrease in Peff (i.e., Arrow in Figure A2e).

2.3. Model for Cracked Rocks

A simple modeling approach is used (Adelinet et al., 2011) by combining effective medium theories
(Guéguen & Kachanov, 2011; Kachanov et al., 1994) and poroelasticity (Biot, 1956; Gassmann, 1951). The

Figure 3. Comparison betweenmeasurements andmodel predictions of Poisson’s ratio in the undrained regime (i.e., field’s
Vp/Vs) over the whole range of existing mineral intrinsic Poisson’s ratio. For the predictions, the undrained νud of a mineral-
pure microcracked, isotropic, water-saturated rock is predicted as a function of the mineral νmin for different values of
microcrack density ρ (lines with different dashing spaces). The modeling methods (e.g., differential effective medium
theory) are detailed in Figure A3. For the measurements, the x axis is obtained from measured νd of the dry rock, and the y
axis is the νud measured on the water-saturated rock. The increasing symbol size highlights the increase in pore fluid
pressure, hence decrease in Terzaghi effective pressure (Figure A2) in the range of [1;15] MPa. Samples measured are of
(i) marble (CarMbl), (ii) granite (WGs), (iii) andesite (PAn), (iv) basalt (IBas), and (v) quartz-pure sandstone, of 3% (Fo3)
and 7% (Fo7) porosity. All rock samples are measured in their natural state (hence “intact”), and two measurements are
made in Fo3 and WGs samples after thermal treatment to 500 °C (hence “microfractured”).

Figure 2. Principle, for the microcracked Fo3, of the acquired (a) strain oscillations for different frequencies at a Terzaghi
effective pressure of 1 MPa, normalized as a function of the axial strain (gray curves) and time period T, and (b) inferred
Poisson’s ratio, obtained from the linear regressions between the radial and the axial strain, as a function of the frequency
of the oscillations. The colors in (a) are from red in the dry/drained regime to black-blue in the undrained regime, with
varying degrees of green in the transition from drained to undrained. The black squares in (b) are the values that corre-
spond to the plotted oscillations in (a).
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model assumes a pure homogeneous and isotropic mineral phase in which porous inclusions are introduced.
In porous rocks such as sandstones or basalts, two types of inclusions are often considered (Adelinet et al.,
2011; Fortin et al., 2014): (i) spherical inclusions, for the pressure-independent porosity, and (ii) thin elongated
spheroidal inclusions (i.e., degree of microcracking), which is the intrinsic cause for the pressure dependence
of rocks properties (Walsh, 1965a, 1965b, 1965c). From changing the compressibility of the fluid, this inclusion
model allows predicting the effective properties of the medium in dry/drained (υd) and water-saturated unre-
laxed (υur) regimes. The undrained regime (υud) is then deduced by combining the Biot-Gassmann equations
(Gassmann, 1951) with that of the drained (i.e., dry) medium (Adelinet et al., 2011).

With the aim to test the measurements, predictions are made for different mineral-constituting matrices to
span the whole range of accessible Poisson’s ratio values, that is, from quartz (νmin = 0.07) to plagioclase
(νmin = 0.35). As reported in the literature (Arns et al., 2002; Christensen, 1996), the whole range of dry rocks
found in nature fall within these bounds (Figure 1a). Under undrained conditions, the bulk modulus of water
(i.e., Kwat = 2.2 GPa) is used for comparison with direct measurements.

3. Results

Values of νud—measured for different Peff (Figure A2)—are reported as a function of the measured
Poisson’s ratio νd of the dry samples (Figure 3) spanning a wide range, from quartz (νmin = 0.06) up to cal-
cite (νmin = 0.32). Basalt (IBas), andesite (PAn), and granite (WGs) samples have intermediate νd ranging
between 0.2 and 0.25. In the undrained regime, small variations are observed for νud of CarMbl, WGs,
IBas, and Fo3, the larger values corresponding to the highest pore fluid pressure (i.e., Peff = 1 MPa) tested.
In comparison, Fontainebleau sandstone sample Fo7 and the andesite Pan both exhibited large variations,
from low νd to νud values reaching 0.38–0.42 at highest pf (i.e., Peff = 1 MPa). Although with quite different
initial νd values, the similar νud values for these two samples (i.e., Fo7 and PAn) arises from an initially large
degree of microfracturation or open grain contacts (Pimienta, Fortin, & Guéguen, 2016b). This is further con-
firmed by measures performed on thermally damaged samples Fo3 and WGs, for which νud increased in
dramatic ways after microcracking to 500 °C, while little variations were observed on the “intact” rock sam-
ple. For these two samples, the undrained Poisson’s ratio νud reached values as high as 0.42 (i.e., Vp/Vs of
2.69) when pore fluid pressure was maximum (i.e., Peff = 1 MPa), which fits with the dramatic values of
Vp/Vs = 2.69 measured at the field scale. Once pore fluid pressure was decreased (i.e., Peff = 15 MPa), νud
decreased down to 0.15 for Fo3 because of microcrack closure (Walsh, 1965c).

Measurements are compared to the model, coupling poroelasticity and effective medium theories (Adelinet
et al., 2011), which predicts the effective undrained Poisson’s ratio of homogeneous, isotropic, and
microcracked water-saturated rocks (Figure 3). Predictions are made for increasing degrees of microfractur-
ing. As the crack density increases, the model predicts an increase in νud. Its sensitivity to the presence of
microcracks is larger when the intact mineral Poisson’s ratio (hence νd) is low. In other words, microcracks
have larger effects on νud of quartz-rich rocks than for calcite-rich or mafic ones. The model also predicts
quasi-mineral-independent values near 0.5 at the onset of fragmentation, when materials are too heavily
damaged to maintain their solid structure.

The model assumes opened microcracks, which intrinsically implies that the effective pressure is low.
Hence, both the model predictions and the laboratory measurements demonstrate that, independently
of mineralogical constrains, low effective pressure (via quasi-lithostatic pore fluid pressure) in a highly
microfractured medium can lead to anomalously high Poisson’s ratio values of 0.4 and above (i.e., Vp/
Vs = 2.69). The model also demonstrates that Poisson’s ratio dispersion is mainly observed in the presence
of compliant porosity, that is, crack-like rather than equant pores. Additional laboratory measurements
(Pimienta, Fortin, & Guéguen, 2016b) on a 8% porosity, almost crack-free, Fontainebleau sandstone con-
firm that Poisson’s ratio remains low (i.e., 0.15) when the pore fluid pressure was very high (i.e.,
Peff = 1 MPa).

4. Discussion

Three main candidates had been postulated to explain anomalous Vp/Vs: (1) anisotropy, (2) mafic composi-
tion, or possibly (3) plasticity. From laboratory measurements and modeling, accounting for the elastic
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regime relevant to the field measurements, we show that anomalous Vp/Vs
do not necessarily imply anisotropy or mafic composition. Such high
values can be observed even in isotropic quartz-pure rocks, at ambient
temperature. The sole condition for those rocks is its large degree of micro-
fracturation opened by a quasi-lithostatic fluid pressure.

The rocks were measured at ambient temperature and low confining pres-
sure conditions, and themodel intrinsically assumes for the rock to be elas-
tic. At the depth of those zones, however, pressure and temperature are
high. If Terzaghi effective pressure applies, the relevant quantity is
Peff = Pc � pf so that the earlier results hold (Figure 3). Depending on rock
types (e.g., mineralogy), at high temperatures, viscoplasticity could, how-
ever, occur (Ji et al., 2009). Pore fluid (i.e., water) properties, such as viscos-
ity, density, and compressibility, also depend on the P-T conditions. While
fluid viscosity controls the characteristic cutoff frequencies separating the
elastic regimes (Figure A1), fluid compressibility is in turn expected to
affect the magnitude of υud values, for example, from gas to water.
Within the ranges of 0–2 GPa and 0–1,000 °C, (i) model predictions of
υud only depend loosely on the water compressibility (Figure A4) so that
the results will remain within an accuracy of 5% of that reported in
Figure 3), and (ii) viscosity variations are well below that needed to affect
the frequency dependences (Figure A1). In other words, the results hold
whichever the P-T conditions of the fluid, including the ones relevant of
subduction zones.

Permeability variations near and in these zones may promote the
observed episodic tremors and slip (Audet et al., 2009; Audet &

Bürgmann, 2014; Audet & Kim, 2016; Peacock et al., 2011; Yamashita & Schubnel, 2016). Using a micromecha-
nical model, following earlier interpretations (i.e., Figure 3), we can assess the magnitudes of permeability
expected from the high Vp/Vs measured. A percolation model of permeability (Benson et al., 2006;

Gueguen & Dienes, 1989) predicts that in a microcracked medium, the permeability is κc ¼ 2
15 f cw

2ξρ, where
w is the crack aperture and ρ and ξ are the crack density and aspect ratio (i.e., ratio of aperture over diameter).
fc is the percolation factor, which describes the connectivity of the crack network (Gueguen & Dienes, 1989),

that is, approximated as f c ¼ 9
4

π2
4 ρ� 1

3

� �2
.

From the elastic model, Poisson’s ratios of 0.34, 0.38, or 0.42 (i.e., Vp/Vs of 2.03, 2.27, or 2.69) are uniquely
related to values of crack density ρ and intrinsic Poisson’s ratio (Figure 3). Permeability could thus be directly
inferred, as qualitatively attempted here (Figure 4) by assuming realistic values of w = 0.7 μm and
ξ = 5 10�3 (Benson et al., 2006). Predicted values are reported as a function of the mineral Poisson’s ratio
(Figure 4). Measurements of the various lithologies investigated as a function of Peff fall within the predicted
range. For values of Vp/Vs = 2.69, depending on the lithology, a minimum permeability that ranges between
10�19 and 10�15 m2 is predicted. Becausew and ξ vary between rocks, and as a function of Peff, Figure 4 does
not aim at being quantitative but rather at highlighting that very high permeability could be observed. Again,
rock plasticity or anisotropy could affect the permeability tensor inferred. The common origin of local high
pore fluid pressure, important microcracking, and large increase in permeability might arise from dehydrat-
ing rocks, as suggested by recent laboratory work (Brantut et al., 2012).

5. Conclusion

Accounting for the frequency dependence of seismic properties, and in particular for Vp/Vs, we show that the
unusually high values observed at subduction zones can be attained in the laboratory. In the relevant
frequency range, we measured extreme values of Vp/Vs in crustal rocks of very different mineralogical
composition, hence very different matrix Poisson’s ratio. The necessary conditions are a near-lithostatic fluid
pressure and a large degree of microfracturation of the rocks. All the conclusions are supported by a micro-
mechanical model, which further suggests that a crack porosity is required for such effects. Combining the

Figure 4. Range in permeability predicted from a range of high Vp/Vs values
reported from field’s scale measurements as a function of the rock mineral
Poisson’s ratio. The colored areas (i.e., green then blue) highlight the
evolution in permeability from an extremely high Vp/Vs (dashed line) to a
high one (plain line). Permeability was either (i) measured (black symbols) as
a function of Peff (hence increasing pf) on the microcracked Fo3 sample,
the “intact” Fo7, and the microcracked WGs at lowest Peff = 1 MPa or (ii)
attained (red symbols) from published works (Delle Piane et al., 2015; Loaiza
et al., 2012; Nasseri et al., 2009). It is again represented (i.e., symbols of
varying sizes) as a function of the dry rock Poisson’s ratio for different
Terzaghi effective pressures, that is, pore fluid pressure.
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models for elasticity and permeability, large permeability could be inferred from the Vp/Vs measured in
subduction zones.
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