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Abstract

Rule-based argumentation systems are developed for iagsabout defeasible
information. They take as input theory made of a set ofacts a set ofstrict
rules which encode strict information, and a setlefeasible rulesvhich describe
general behavior with exceptional cases. They baifgimentsby chaining such
rules, defineattacksbetween them, usesemanticgor evaluating the arguments,
and finally identify theplausible conclusionthat follow from the theory.

Undercuttingis one of the main attack relations of such systems. It ctnsis
of blocking the application of defeasible rules when theitaptional cases hold.
In this paper, we consider this relation for capturing adl tifferent conflicts in a
theory. We present the first argumentation system that udgsindercutting, and
show that it satisfies the rationality postulates proposeithé literature. Finally,
we fully characterize both its extensions and its plausibleclusions under various
acceptability semantics. Indeed, we show full correspooee between extensions
and sub-theories of the theory under which the argumentaiistem is built.

Keywords: Defeasible reasoning, Rule-based systems, Argumentation

1. Introduction

Argumentation is a promising approach for reasoning withflecting infor-
mation [2]. It consists of generatingrguments defining attacksbetween them,
evaluating the arguments usingemanticsthen identifyingplausible conclusions

In the computational argumentation literature, thereapefamilies of seman-
tics: extensiorsemantics, initiated in [3], an@énkingsemantics, introduced in [4].
The first family looks for sets of arguments, called extemsjdhat are acceptable

1This paper extensively develops the content of the confergaper [1]. Indeed, it investigates
the properties of the new system under two additional seosreind characterizes the outcomes of
the system under those semantics.
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together. Then, aabsoluteacceptability degree (accepted or rejected) is assigned
to each argument on the basis of its extensions memberslapkifit)y semantics
look for rank-ordering arguments from the most to the leaseptable ones. The
ranking may come from the comparison of pairs or sets of aegusy or from de-
grees assigned to arguments, etc. Gradual semantics floang® sub-class of
ranking semantics. In this paper, we focus on extension séesain particular
those proposed in [3].

Dung proposed in [3] various semantics at an abstract leeel,without tak-
ing into account the structure of arguments or the naturdtatles. His abstract
framework was instantiated by several scholars. The idaafisllows. Start with a
knowledge baswhose elements are encoded in a logical language, genegate a
ments using the consequence operator attached to the ggngdentify the attacks
and apply Dung’s semantics for the evaluation task. Therévaw major categories
of instantiations for this abstract framework. The firsegatry usesleductive log-
ics (such as propositional logic [6, 7] or any Tarskian logic @hereas the second
category userule-based languages

Rule-based argumentation systems, which use rule-basgddges, are de-
veloped for reasoning abodefeasiblanformation. As a major feature, they take
as input atheory made of three types of informatiorfacts strict rules which
encode general strict information, addfeasible rulesvhich describe general be-
havior with exceptional cases. They bualdjumentdy chaining such rules, define
attacksbetween them, use semanticdor evaluating the arguments, and finally
identify the plausible conclusionshat follow from the theory. Examples of such
systems are ASPIC [9], its extended version ASPIC+ [10], PEL1] and the sys-
tems developed in [12, 13, 14, 15]. Some of these systensfystie rationality
postulates proposed in [16]. However, their plausible tsions have never been
characterized. In other words, they have never been exquress way that clar-
ifies how they are chosen among all the possible concluskatddllow from the
theory. Thus, despite the wide use of these systems, thipinisiare still unknown.

The system DelLP usesbuttal as attack relation. Rebuttal captures the fact
that the conclusions of two arguments are conflicting. Systike ASPIC [9]
and Pollock's system [17] use, in addition to rebuttaidercutwhich blocks the
application of defeasible rules in particular contextst liillustrate this relation
by an example borrowed from [17]. Consider the followinguangntA:

The object is redor) because it looks re¢lr).

The argumentd uses the defeasible rule = or (meaning that generally, if an
object looks red, then it is red). Assume now the followinguement:



The defeasible rulér = or is not applicable because the object is
illuminated by a red light.

The argumenf3 undercuts4 and the conclusiofor) of A does not hold. Un-
dercut deals with thexceptionof defeasible rules. Indeed, every exception of a
defeasible rule gives birth to an attack from any argumentlkaling the excep-
tion toward any argument using the rule. In the example,d#éinminated by a
red light is a specific case where the rlte= or cannot be applied.

In this paper, we show that undercut can do more than dealitigexceptions
of defeasible rules. It can also perfectly play the role d&iuteal and assumption
attack [18], and deals thus with inconsistency in a theorige Basic idea is the
following: any defeasible rule = y should be blocked wheny follows from
the theory. We propose the first rule-based argumentatistersythat uses un-
dercutting as its single attack relation. We show that iisfias the rationality
postulates discussed in [16] under naive, complete, gedirgtable and preferred
semantics. From a conceptual point of view, this system ishrgimpler than
existing ones that combine rebuttal and undercut. Indeedrder to satisfy the
postulates, ASPIC requires one variant of rebuttal per a&osa unrestricted re-
but is used under grounded semantics egstricted rebuts used under complete
and preferred semantics. Our system satisfies the postulatier all semantics.
Moreover, restricted rebut is based on an assumption whicbtiintuitive. Indeed,
this relation compares only the rules whose heads are irgtens and neglects the
remaining structure of the arguments. For instance, itidens that the argument
(x1,21 = y1,y1 — z) attacks the argumentry, zo — y2,y2 = —z) Sincez
follows from a strict rule while-z follows from a defeasible one. Note that the
converse is not true even if the first rule of the first argumemtefeasible while
that of the second argument is strict. Our system does no¢ suath assumptions.

The second main contribution of the paper consists of pmagithe first and
full characterizations of the extensions as well as the splanisible conclusions
of our system under all the semantics proposed in [3]. Indeedhow one-to-one
correspondences between extensions and sub-theoriasthetbry over which the
argumentation system is built. We also show that the pl#sibnclusions are the
formulas that follow from all the sub-theories charactedzhe extensions under a
given semantics. These correspondences ensure the nesgeind completeness
of the outcomes of the proposed system.

The paper is organized as follows: Section 2 defines thebaged system we
are interested in. Section 3 analyses its properties, rydtrsdows that the system
satisfies the existing rationality postulates as well asvagme. Section 4 charac-



terizes its outputs (extensions and plausible conclusi@m& Section 5 compares
it with existing rule-based systems and concludes.

2. Rule-based argumentation system

As in any paper in defeasible reasoning (e.g. [19, 20, 2ki®e kinds of in-
formation are distinguishedactsrepresenting factual information like ‘Tweety is
a bird’, strict rulesrepresenting general information which do not have exoapti
like ‘Penguins do not fly’ andlefeasible ruleslescribing general behaviors with
exceptional cases like ‘Birds fly'. In other words, any rulkigh has exceptions is
considered as defeasible.

In what follows, £ is a set ofliterals, i.e. atoms or negation of atoms, repre-
senting knowledge. The negation of an aterfrom £ is denoted by-z. £’ is a
set of atoms used for naming rules. The two sets satisfy theti@ntL N L' = (.
Every rule has a single name and two rules cannot have thersame. Through-
out the paper, rules are namea, ro, . ... The functionRule(r;) returns the rule
whose name is;.

» Facts are elements af.

» Defeasible rules are of the form, ..., z, = x andx, ..., z,, are literals
in £. Such rules are read as follows: 4f, ..., =, hold, thengenerallyz
holds as well.

» Strict rules are of the formyy, ..., , — x wherez, ..., x,, are literals of
L and

xe L or
x € L' andRule(z) is defeasible.

These rules are read as follows:aff, . . . , z,, hold, thenalwaysz holds as
well.

Note that defeasible rules may have an empty body, i.e. therse., z,, } may
be empty. However, strict rules are not allowed to have efptijes. The reason is
that a strict rule with an empty body represents a fact ansldtfactual information
and not a general behavior with no exceptions. Furthermbesnames of rules
cannot appear in bodies of (strict or defeasible) rules.s Tintans that it is not
possible to represent information of the form “if rules applied (or is blocked),
theny holds”. We also assume that a strict rule cannot be blockee ¢ represents
certain information (i.e., if its body holds, then necesgdis head holds as well).
Things are different with defeasible rules. By default, a@eyeasible rule can be
applied, unless explicitly mentioned in the language higtstules. Indeed, a strict
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rule z1, ..., ¢, — x with z € £ is read as follows: Ifry,...,z, hold, then the
defeasible rule: is alwaysnot applicable

Definition 1 (Theory). Atheoryis a triple7 = (F,S,D) whereF C L is a set
of facts, andS C L’ (respectivelyD C L) is a set of strict (defeasible) rule names.

It is worth pointing out that the two set$ andD contain names of rules and
not the rules themselves.

Notations: For each rulery,...,z, — z (as well asz,...,z, = z) whose
name isr, the head of the rule isHead(r) = z and thebody of the rule is
Body(r) = {z1,...,xp}. LetT = (F,8,D) andT’ = (F,S',D’) be two
theories. We say thaf is asub-theoryof 77, written 7 C 77, iff ¥ C 7’ and
S C 8 andD C D'. The relationC is the strict version of— (i.e., it is the case
that at least one of the three inclusions is strict). FinddiyDefs(7) = D.

We show how new information is produced from a given theothjisTs gener-
ally the case when (strict and/or defeasible) rules are firedlerivation schema

Definition 2 (Derivation schema). Let7 = (F,S, D) be a theory and: € £ U

L'. Aderivation schemtor x from 7 is a finite sequencé = ((z1,71), ..., (Tn, 7))
such that:
", =

forie {1,...,n},
» z; € Fandr; =0, or
» r; € SUD andHead(r;) = x; andBody(r;) C {1, ..,zi—1}
Seq(d) = {mlv s >xn}'
Facts(d) = {x; |i € {1,...,n},r; = 0}.
Strict(d) ={r; | i€ {1l,...,n},r € S}.
Def(d) ={r; |i € {1,...,n},r; € D}.
CN(T) denotes the set of all literals that have a derivation schéra 7.

It is clear from the definition thaiN is monotonic

Example 1. Let7; = (F1,S1,D;) be a theory such thak; = {p, b}, S1 = {r1}
andD; = {ry} whereRule(r;) = p — —f andRule(ry) = b = f. From7;, we
have the following minimal derivations:

* dy = ((p,0))



v dy = <(b7 ®)>
= dz = ((p,0), (=f, 7))
vdy = <(b7 ®)7 (fa 702)>

A notion of consistencyand another ofoherenceare associated with this log-
ical language.

Definition 3 (Consistency—Coherence)A setX C L is consistentiff Az,y €
X such thatr = —y. It is inconsistent otherwise. A theofy = (F,S,D) is
consistent iftN(7) is consistent. It i€ohereniff CN(7) N D = 0.

The set of strict rules should be closed under transpositidowever, only
rules whose head is an element®f(i.e., not a name of a rule) are transposed.
Transposition is required for ensuring the rationalitytptzges proposed in [16].

Definition 4 (Closure under transposition). A transpositionof a strict rule x4,
o Xy = x, Withx € L, is astrict rulex, ..., x,—1, 2%, Tijx1, - .-, T — T
for some 1< ¢ < n. LetS be a set of strict rules’ names. We defitig(S) as the
minimal set such that:

« S C ClL(S), and
» If r € C1,(S) andRule(r’) is a transposition okule(r) thenr’ € Cl,(S).

We say that is closed under transpositiafi Cl;(S) = S.

Throughout the paper, we will consider undercut for captyail the possible
conflicts between arguments. Thus, undercut will be usddfooblocking general
rules in presence of exceptions of these rules, and alsafatlimg inconsistency.
For that purpose, for each defeasible rule whose namglie theory should con-
tain the name of the strict ruleHead(r) — r. The latter is read as follows: if
—Head(r) follows from a theory, then the rule should be blocked. This closure
captures simply the fact that the two literéiksad(r) and—Head(r) cannot hold at
the same time.

Definition 5 (Closed theory). A theoryT = (F,S, D) is closediff

* S is closed under transposition, and

» for everyr € D such thatiead(r) = z, it holds that’ € S withRule(r') =
—xr —T.



Example 1 (Cont) The closed version of; is 7{ = (F1, 1, D) such thatS] =
{r1,r3,74} whereRule(r;) = p — —f, Rule(rs) = f — —p, andRule(ry) =
—\f — 9.

The backbone of an argumentation system is naturally themof arguments
They are built from a closed theory using the notion of deiivaschema.

Definition 6 (Argument). Let7 = (F,S,D) be a closed theory. Aargument
defined fronT" is a pair (d, =) such that:

voxe LUl

*» dis a derivation schema for from 7

» 37" C (Facts(d), Strict(d),Def(d)) such thatr € CN(T7)

An argument{d, ) is strictiff Def(d) = 0.

Unlike ASPIC and ASPIC+ systems, arguments are minimal insystem.
This definition of argument is more akin with the intuitivee@that an argument is
a logical proof of a conclusion.

An argument may have several sub-parts, each of which md=alb-argument

Definition 7 (Sub-argument). An argumentd, ) is asub-argumenof (d’, 2’) iff
(Facts(d), Strict(d), Def(d)) C (Facts(d'), Strict(d’), Def(d’)).

Notations: Arg(7) denotes the set of all arguments built from the@ryin the
sense of Definition 6. It = (d, z) is an argumenionc(a) = x andSub(a) is the
set of all its sub-arguments. For a Setf argumentsConcs(E) ={z | (d,z) € £}
andTh(&) is a theory such that:

Th(€) = ( | J Facts(d), | strict(d), | Def(d)).

(d,x)e€ (d,x)e€ (d,x)e€

The undercutting relation is defined as follows:
Definition 8 (Undercutting). Let7 = (F,S, D) be a closed theory and, x), (d', 2') €
Arg(T). The argumentd, =) undercuts the argumef’, z'), denoted byd, =) R,, (d', z'),
iff x € Def(d).

Let us illustrate this relation by some examples.

Example 1 (Cont) The setArg(7;) contains:



= ar: (((6,0)),0)

a2 : (((p,0)),p)

a3 : (((p,0), (=fir1)), ~f)

v aq: (((p,0), (=fm1), (r2,74)),72)
a5 (((6,0), (f,72)), f)

" ag : (((b,0), (f,72), (=p,73)), —p)

a4 undercuts botla; andag sincers € Def(ds) andry € Def(dg).
Obviously, strict arguments cannot be attacked using éhégion.

Proposition 1. Let7 = (F,S, D) be atheory. For any argumente Arg((F,S,0)),
Bb € Arg(T) such thahR ,a.

Note that self-attacking arguments may exist.

Example 2. Consider the closed theoffp = (F2,S2, D2) such thatF, = {p},
Sy = {r1,r2}, Dy = {r3} with Rule(ry) = t — r3, Rule(ry) = =t — r3 and
Rule(rz) =p =t.

The setirg(7;) contains the three arguments:

a1 : (((p,0)),p)
= az: (((p,0), (t,73)),1)
"as: (((p> ®)> (t,T‘g), (T37T1)>7T3)

The argument3 undercuts itself ands,.
Throughout the paper, we study the following rule-basedrarntation system.

Definition 9 (AS). An argumentation systerfAS) defined over a closed theory
T = (F,S8,D) is apairH = (Arg(T),R,) whereR, C Arg(T) x Arg(T)
and R, is defined according to Definition 8.

Arguments are evaluated using extension-based semantipesed by Dung
is his seminal paper [3]. These semantics are based on twadt)ns:

» Conflict-freenessA set £ of arguments is conflict-free iffla,b € £ such
thataR ,b.

» Defence A seté of arguments defends an argumeriff for any argument
b such thabvR,a, Ic € € such that:R,b.



Let us now recall the semantics that will be used for evahgatine arguments
of any argumentation system (in the sense of Definition 9).

Definition 10 (Semantics).LetH = (Arg(7 ), R.) be an argumentation system
defined over a closed theofy, and let€ C Arg(T).

» £ IS a naive extensioniff it is a maximal (with respect to set inclusion)
conflict-free subset afrg(7).

» £ is a complete extensioiff it is a conflict-free set which defends all its
elements and contains any argument it defends.

» £ is apreferred extensioiff it is a maximal (with respect to set inclusion)
complete extension.

» £ is astable extensioiff £ is conflict-free and/a € Arg(7)\ &, 3b € €
such thathR ,a.

» £ is agrounded extensioiff it the minimal (with respect to set inclusion)
complete extension.

Notations: Ext, (7{) denotes the set of all extensions of sysi&mnder semantics
y wherey € {n,p, s, c, g}, n (respectivelyp, s, ¢, g) stands for naive (respectively
preferred, stable, complete, grounded).

It is worth recalling that an argumentation system may netlsable exten-
sions, and it has a single grounded extension.

The extensions of a system are used for definingpthasible conclusionso
be drawn from the theory over which the system is built. Aréites a plausible
conclusion iff it is a common conclusion to all the extensioNote that a similar
definition was used in [16] for drawing conclusions with ASRlystem.

Definition 11 (Plausible conclusions).Let’ H = (Arg(7T),R.) be an argumen-
tation system built over a closed thedfy = (F,S,D). The set ofplausible
conclusionf H under semanticg (y € {n,p, s,c, g}) is

g if Exty(H) =10
Outputy(H) = { ﬂ&_ € Ext, (M) Concs(&;) else.

It is worth noticing that an argumentation system aim@@akeninghe infer-
ence power of the consequence operatoirom which the system is built. Indeed,
the inclusionOutput, (%) C CN(T) holds. As we will see later, when the theory
T is consistent and coherent the equalititput, (H) = CN(7) holds under any
of the recalled semantics. Note also that when the arguith@mtsystem has no
extensions, it does not recommend any conclusion as plausib
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Example 1 (Cont) The argumentation systefd; = (Arg(7{),R.) has a single
stable extension which is also preferréd:= {a1, as, a3, as}. Thus,0utput (H;) =

Dutputp(’}-h) ={p,b,~f,r2}.

Example 2 (Cont) The argumentation systefids = (Arg(72), R.) has a single
preferred extension€ = {a1} and thusOutput,(Hz) = {p}. However under
stable semantic§utput,(H2) = 0 sinceExts(H ) 0.

Remark: One may wonder why admissible semantics is not investigatékis
paper. The main reason is that, as shown by Dung himself ipdgper [3], the
emptyset is an admissible extension of any argumentatistersy Consequently,
according to Definition 11, the set of plausible conclusiohany argumentation
system is always empty¥{tput(#) = @) whatever the theory at hand. Even if
the theory7 = (F, S, D) over which the system is built is consistent, the system
will not be able to infer any conclusion, missing thus int@tconclusions. This
shows that admissible semantics is not suitable for ddfleatasoning.

3. Satisfaction of rationality postulates

Let us now analyze the properties of the argumentation sydifined in the
previous section. We show that it satisfies all the ratitygdostulates proposed
in [16], namelyconsistencyindirect consistengyand closure under strict rules
Recall that indirect inconsistency follows from the twoatlpostulates.

Under complete, grounded, preferred and stable semasetiesy extension
returns a consistent set of conclusions (unless the saitiopthe theory is incon-
sistent) and the set of conclusions of every extension sedander strict rules,
that is, it is not possible that an extension supports a ogianhx and forgetsy if
x — y € S. However, both properties are violated under naive sewwsanftihis is
not surprising since naive semantics does not take intoustc¢be orientation of
attacks, and thus the distinction between strict and disfeasiles is neglected.

Theorem 1. Let H = (Arg(7),R.) be an argumentation system built over a
closed theory] = (F,S, D) such thatExt,(H) # 0 withy € {s,p,c,g}. For
any€& € Ext,(#), the following two properties hold:
» Concs(€) is consistent iftN((F, S, 0)) is consistent. (Consistency)
*» Concs(&) = CN((Concs(€),S,0)). (Closure under strict rules)

* CN((Concs(€),S,0)) is consistent ifEN((F, S, 0)) is consistent. (Indirect
Consistency)

The following properties follow from the previous theorem.
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Corollary 1. LetH = (Arg(7),R.) be an argumentation system built over a
closed theory] = (F,S, D) such thatExt, (H) # 0 withy € {s,p,c,g}. The
following two properties hold:

* Output, (H) is consistent iftN((F, S, 0)) is consistent,
* Output, (H) = CN((Output,(H),S,0)).

In [16, 22] another desirable propertlpsure under sub-argumentsas dis-
cussed. It states that every extension should contain eltib-arguments of its
arguments. Hopefully, our system satisfies this propertieuall the reviewed se-
mantics. It also satisfies a novel propertycoherencewhich ensures that it is not
possible for an extension to use a defeasible rule in ons afgluments, and at the
same time to block that rule by another argument.

Theorem 2. Let H = (Arg(7),R.) be an argumentation system built over a
closed theory] = (F,S, D) such thatExt, (#H) # 0, wherey € {n,p,s,c, g}.
For any & € Ext,(H), the following two properties hold:

» For eacha € &, Sub(a) C €. (Closure under sub-arguments)
» The theoryTh(€) is coherent. (Coherence)

The previous results show that the outcomes of the new angtatien sys-
tem (its extensions and set of plausible conclusions)fgatise properties under
grounded, complete, stable and preferred semantics. Howbey do not say any-
thing about the kind of conclusions the system draws fromearth We answer
this question in the next section in which we provide full werizations of the
system’s outcomes.

4. Formal characterization of extensions and plausible cariusions

This section provides formal characterizations of the @utes of the system
under the five reviewed semantics. For each semantics, waatbaze the exten-
sions in terms of sub-theories of the theory over which trstesy is built. Indeed,
we show one-to-one correspondences between extensiotsr (@rgiven seman-
tics) and particular sub-theories of the theory over whiah system is built. In
other words, we show that extensions and those sub-theameethe two faces of
the same coin. We also delimit the number of extensions, hadacterize the
set of plausible conclusions. As we will see an argumentagigstem may return
different results under the studied semantics.

11



4.1. Naive semantics

A sub-theory that corresponds to a naive extension is caléde option A
naive option represents thpossible states of the workthat may be reached in a
theory. Formally, it is a maximal (for set inclusion) suledny of the initial theory
that considers all the facts and all the strict and defeasides that are applicable
(i.e., their bodies hold).

Definition 12 (Naive option). A naive optionof a closed theory” = (F,S,D) is
a sub-theory(F’, S’, D’) such that

 FF=F,S'CSandD’' C D
» (F,S', D) is coherent
* Vr € S'UD’, Body(r) C CN((F', S, D))

» AS”, D" such that(F', S, D) c (F',S8",D") and (F/,S",D") satisfies
the previous conditions.

NOpt(7) denotes the set of naive options of the closed thgory

Thus, a naive option is obtained by taking all the facts andagimal (w.r.t.
set inclusion) subset of (strict and defeasible) rules abttie sub-theory remains
coherent and all the added rules are applicable. Noticenthatiority is given to
strict rules over defeasible ones. This is explained bydcethat naive semantics
does not distinguish between attackers and attacked argame

Example 3. Consider the closed version of thedfy = (F3, S3, D3) whereFs =
{z,y}, S3 = {ra,r5,76}, D3 = {r1,re,r3}, Rule(r1) = © = t, Rule(ry) =
y = u, Rule(rs) = t = s, Rule(ry) = t — 72, Rule(rs) = u — 71, and
Rule(rg) = s — r3. The theoryT; has three naive options:

" OnO = (]:3767 {T17T27T3}) CN(OHO) = {$7y7t>u> S}
" Onl = (]:37 {T4}7 {T17T3}) CN(Onl) = {w,y,t,s,rg}
. On2 = (]:3, {7‘5}, {7‘2}) CN(Ong) = {SL’,y,’LL,’ﬁ}

Let us now establish the relationship between the naiveneikies of an argu-
mentation system and the naive options of the closed the@mwehich the system
is built. Each naive extension returns one naive option amdraive extensions
cannot return the same naive option.

Theorem 3. Let X = (Arg(7),R,) be an argumentation system built over a
closed theoryr .
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» Forany€ € Ext, (H), there exists a single naive optiéh < NOpt(7) such
that Th(€) = O andConcs (&) = CN(O). We definaioption(€) % 0.
» Forall £,&" € Ext,(H), if NOption(E) = NOption(E’) thené = &'.
» Forany& € Ext,(H), £ = Arg(NOption(&)).
The following theorem shows that inversely, each naiveaopteads to one
naive extension and two different naive options cannotrnetiie same naive ex-
tension.

Theorem 4. Let H = (Arg(T),R,) be an argumentation system built over a
closed theoryr .

» For any O € NOpt(7), Arg(O) € Ext,(H).
» ForanyO € NOpt(7), O = NOption(Arg(O)).
» Forall 01,0y € NOpt(T), if Arg(O;) = Arg(O3), thenO; = Os.

Let us illustrate the two results on the running example.

Example 3 (Cont) The arguments built frorfig are summarized below.

“ar: ({(2,0)),2)

“az: (((v,0)),y)

az: (((2,0), (t,m1)),1)

“ay: (((2,0), (1), (ra, 7)), 72)

a5 (((y,0), (u,72)),u)

a6 : (((y,0), (u,72), (r1,75)),71)

a7 ({(2,0), (t,r1), (s,73)), 5)

*as: (((2,0), (t,r1), (s,73), (r3,76)),73)

The graph of attacks is depicted in Figure 1. It is easy toklieat the argu-
mentation systeri{s = (Arg(73), R.) has three naive extensions:
v & ={a1, a2, as, as, ar},
r £ = {al, as, az, a4, CL7} and
» & = {a1, az, as, ag}

which capture the naive optioid®,, O,,; andO,,5 respectively. Indeedh(&y) =
Opno (resp. Th(&1) = On1, Th(&1) = O,1) andConcs(&y) = CN(O,y) (resp.
Concs (&) = CN(Op1), Concs(E) = CN(O)2)).
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Figure 1: Graph of attacks built from the thedfy

The previous results show a bijection between naive optamusnaive exten-
sions. Since any argumentation system always admits atdaasaive extension
(since at least arguments of the fofitp, #)) wherep € F are not attacked), a
closed theory admits at least one naive option (unless thef dacts is empty).
The number of naive extensions is delimited as follows.

Corollary 2. LetH = (Arg(7T),R.) be an argumentation system built over a
closed theoryr. It holds that|Ext,, ()| = |NOpt(T)|.

The plausible conclusions of an argumentation system umaige semantics
are the literals that follow from all the naive options of theory over which the
system is built. Formally:

Corollary 3. LetH = (Arg(7),R.) be an argumentation system built over a
closed theoryr .
Output,(H) = ﬂ CN(O).
OeNopt(T)

Example 3 (Cont)Under naive semantic8ptput,,(H) = CN(Opp) NCN(Op1) N
CN(On2) = {z,y}.

To conclude, under naive semantics, a rule-based argutioensystem infers
the literals that follow from all the options of the closeardny over which the
system is built.

4.2. Stable semantics

The purpose of this section is to characterize the exteasisrwell as the set
of plausible conclusions of the system described in thigpapder stable seman-
tics. As we will show later, the sub-theories of a closed thdbat capture stable
extensions are callestable optionsand are defined as follows:
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Definition 13 (Stable Option). A stable optiorof a closed theory” = (F, S, D)
is a sub-theory 7', S’, D) such that

v FF=F,8=8SandD' CD
» (F',S',D') is coherent
» Vr € D', Body(r) C CN((F',S',D"))

» Vr ¢ D' we have: either € CN((F',S’,D’)) or 3z € Body(r) such that
x ¢ CN((F', 8", D))

S0pt(7) denotes the set of stable options of thepry

The strict rules of a stable optia = (F,S,D’) are not necessarily all ap-
plicable. LetS” be the subset of strict rules that are applicabl®in.e., " =
{r € §|Body(r) C CN(O)}. Then, the sub-theor)’ = (F,S”,D’) is a naive
option of 7 which clearly has the same conclusiongaé.e.,CN(O) = CN(O’)).
In addition, every strict (respectively defeasible) rulevhich is kept outside)’
is not applicable (respectively is not applicable or is sti@tr € CN(O')). The
latter constraint does not hold necessarily for every napton. Accordingly,
every stable option corresponds to a single naive optiornthH®miconverse is not
true. Thus, in addition to an “internal condition” (cohecei satisfied by both
naive options and stable options, the latter require artiaddi “external condi-
tion” which consists ofustifying each rule kept outside. Notice, that this idea is
not new in non-monotonic reasoning. We find it namely in tratidiction between
Reiter’s extensions [23] and Lukaszewicz’s extension$if2default logic as well
as between answer sets [25] andnswer sets [26] in logic programming. Let us
illustrate stable options and their relationship with eabptions.

Example 3 (Cont) The closed theor§s has one stable optia® = (F3, Ss, {r2}).
Note that the only strict rule i3 which is applicable fo© is r5. If we discard
from O the remaining non-applicable strict rules, we get exatityriaive option
Opn2 andCN(O) = CN(O,,2). Note also that each rule which is not includedlp,

is justified. Namely, the strict rules, andr¢ are note applicablet (€ Body(ry),

t ¢ CN(Op2), s € Body(rg), ands ¢ CN(O,2)); the defeasible rule; is such
thatr; € CN(O,,2) and the defeasible rubg is not applicable € Body(r3) and

t ¢ CN(O,2)). S00,,2 gives rise to a stable option by adding all the non-applieabl
strict rules. This is not the case 6, andO,,;. Indeed, adding the missing strict
rules to them leads to incoherent sub-theories.

It is worthy to say that a closed theory may not have stabl@wogt This is
not surprising since as we will show, there is a bijectionnaetn the set of stable
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extensions and the set of stable options. Indeed, everlestatension gives birth
to a stable option and two stable extensions cannot reteradime stable option.

Theorem 5. Let H = (Arg(7),R.) be an argumentation system built over a
closed theoryl” such thaExts(H) # 0.
» Forany€ € Ext4(H), there exists a single stable optiGhe S0pt(7) such
that Th(£) T O andConcs (&) = CN(O). We definsoption(€) & 0.
» Forall £,&" € Ext (M), if SOption(E) = SOption(E’) thenE = ¢&'.
» Forany& € Exty(H), £ = Arg(SOption(£)).

Inversely, every stable option leads to one stable extaresial two stable op-
tions cannot lead to the same stable extension.

Theorem 6. Let H = (Arg(7),R,) be an argumentation system built over a
closed theoryl” such thatExt(H) # 0.

» ForanyO € S0pt(7), Arg(O) € Exts(H).
» ForanyO € S0pt(7), O = SOption(Arg(O)).
» For all 01,05 € SDpt(T), if Arg((’)l) = Arg(Og) thenO; = O,.

Example 3 (Cont)Among the three naive extensions of the argumentationrsyste
‘H3 built from 73, the only stable extension& = {a1, az, as, ag} which captures
the stable optiorO = (F3,Ss,{r2}). Indeed,Th(&;) C O andConcs(&) =
CN(O).

We have seen so far that there is a one to one correspondetmoeehenaive
(respectively stable) extensions and naive options (otispdy stable options). We
have also shown that every stable option is a sub-theoryehaive option. Thus,
the number of stable extensions of a rule-based systemiisitdal as follows.

Corollary 4. Let’H = (Arg(7),R.) be an argumentation system built over a
closed theory/". The following inequalities hold:

[Exts ()] = [S0pt(T)| < [NOpt(T)|.

Under stable semantics, the plausible conclusions of amaggtation system
are the literals that follow from all the stable options of theory over which the
system is built.
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Corollary 5. Let’H = (Arg(7),R.) be an argumentation system built over a
closed theoryl” such thaExt,(H) # 0.

Output,(H) = ﬂ CN(O).
Oesopt(T)

Example 3 (Cont) The theoryT; has one stable optiaf? = (F3,Ss, {r2}). Thus,
Outputs(H) = CN(O) = {I’, Yy, u, Tl}'

Let us summarize: The rule-based argumentation systemedeiinthe pre-
vious section may not have stable extensions, in which ¢asay miss intuitive
conclusions like facts. When the system has stable extemnsibreturns exactly
the literals that follow from all the stable options of thes#d theory at hand.

4.3. Preferred semantics

Preferred semantics was proposed in [3] in order to palttedimit of stable
semantics which does not guarantee the existence of extansihe family of ar-
gumentation systems we are investigating in this papeesiffom this drawback.
Preferred semantics guarantees extensions. We show aegti¢isub-theories that
capture preferred extensions are the so-calleterred options

Definition 14 (Preferred Option). A preferred optionof a closed theory] =
(F,S,D) is asub-theorf F',S', D) s.t.

 FF=F,8=8SandD’' CD

v (F',S', D) is coherent

» Vr € D/, Body(r) C CN((F',S', D))

» VD" C D, if 3’ € D’ such that’ € CN(F,S,D”) then3r” € D" such
thatr” € CN(F, S, D’)

» D" such thatD’ ¢ D” and (F', S’, D") satisfies the previous conditions.

POpt(7) denotes the set of preferred options of thepry

Example 3 (Cont) Consider again the closed theo¥y. There are three sub-
theories of73 that satisfy the first four conditions of Definition 16:

* Opo = (F3,83,0),
v Opy = (F3,83,{r2}),
v Ops = (F3,83,{r1}).
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The maximal ones (that satisfy also the last condition offi&dn 16) areOp; and
Ops. Notice thatOp; is exactly the unique stable optiondf. The other preferred
option Op, captures a sub-part of the naive opti6h = (Fs,{r4},{r1,73}).
Indeed, by keeping iPp, only the strict rues that are applicable we obtahi, =
(]:3, {7‘4}, {7‘1}). We have :Op/2 C 02 andCN(Opg) = CN(Op/Z) - CN(OQ).

The following theorem shows that every preferred extentgans to a single
preferred option.

Theorem 7. Let H = (Arg(7),R.) be an argumentation system built over a
closed theoryr.
» For any € € Ext,(H), there exists a single preferred optiéh € POpt (7))
S.L.Th(E) C O andConcs(€) = CN(O). We defin@0ption(&) & 0.
» Forall £,&" € Exty,(H), if POption(€) = POption(E’) thené = &',
» Forany& € Ext,(H), £ = Arg(POption(&)).

Inversely, every preferred option corresponds to a singtéepred extension
and two preferred options cannot return the same prefertetigon.

Theorem 8. Let H = (Arg(7),R,) be an argumentation system built over a
closed theoryr .

» ForanyO € POpt(7), Arg(O) € Extp(H).

» ForanyO € POpt(7), O = POption(Arg(O)).

» Forall 01,05 € POpt(T), if Arg(O1) = Arg(O3) thenO; = Os.

Example 3 (Cont) The argumentation systefi; constructed from the theory
has two preferred extensions:
" gpl = {ala az, as, aﬁ}v

v Epy = {a1,a2,a3,a4}.

They capture the preferred optio%); andOp- respectively. Indeedh(Ep;) C
Op; (resp.Th(Epz) T Opz) andConcs(Epy) = CN(Opy) (resp. Concs(Epa) =
CN(Op2)).

The number of preferred extensions of an argumentatioresyAt is exactly
the number of preferred options of the closed theory oveckvtiie system is built.
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Corollary 6. LetH = (Arg(7),R,) be an argumentation system built over a
closed theoryy/". The following property holds:

[Extp,(#)| = [POpt (7).

The plausible conclusions of an argumentation system,rysrééerred seman-
tics, are the literals that follow from all the preferrediops of the theory at hand.

Corollary 7. LetH = (Arg(7T),R.) be an argumentation system built over a
closed theoryr .

Output,(H) = ﬂ CN(O).
OePopt(T)

Example 3 (Cont)Outputy(Hs) = CN(Op1) N CN(Ops) = {z,y}.

Unlike stable semantics, facts are always plausible carsemps under pre-
ferred semantics.

4.4. Complete semantics

Let us now define the sub-theories corresponding to compldtnsions, we
call themcomplete options

Definition 15 (Complete Option). A complete optionof a closed theory] =
(F,S,D) is asub-theory 7', S', D) s.t.

 FF=F,8=8SandD' CD

v (F',S', D) is coherent

» Vr € D/, Body(r) C CN((F',S', D))

» VD" C D, if 3’ € D' such thatr’ € CN(F,S,D”) then3r” € D" such
thatr” € CN(F, S, D’)

v Vr ¢ D', VD; C D such thatr € D; and Body(r) C CN(F,S,Dy),
ID" C D, Dy NCN(F, S, D") # 0 and ¥r" € D",v" ¢ CN(F', S, D)

COpt(7) denotes the set of complete options of thebry

Example 3 (Cont)Consider again the closed thedfy. There are three complete
options of73:

u OCO = (.7:3783,@),
v Ocy = (F3,83,{r2}),

19



u OCQ = (.7:3783, {7“1}).

Let us show for instance th&c, is a complete option df;. The first four con-
ditions are clearly satisfied. Let us show that the fifth cbadiholds for the three
rulesrq, 7o andrs. Let us start by and letD; = {r;}, we haver; € D; and
Body(ri1) C CN(F,S,D;). TakeD” = {rq}, we haveD; N CN(F,S,D") =
{r1} # 0 andry ¢ CN(F',S’,0). A similar reasoning is valid for the other choices
of Dy, namely forD; = {7“1, 7”2}, D = {7“1, 7”3} andD; = {7“1, 9, 7“3}.

We show that every complete extension leads to a completenophd two
complete extensions cannot return the same complete option

Theorem 9. Let X = (Arg(7),R,) be an argumentation system built over a
closed theoryr .
» For any € € Ext.(H), there exists a single complete optiéhe COpt(T)
such thatth(€) T O andConcs(€) = CN(O). LetCOption(€) & ©.
» Forall £,&" € Ext.(H), if COption(€) = COption(E’) thené = &'.
» Forany€& € Ext.(#H), € = Arg(COption(&)).

Inversely, every complete option corresponds to a singhepbete extension
and two complete options cannot return the same complet@asrn.

Theorem 10. Let H = (Arg(7),R.) be an argumentation system built over a
closed theoryr .

» ForanyO € COpt(T), Arg(O) € Ext.(H).

» ForanyO € COpt(7), O = COption(Arg(O)).

» For all 01, O, € CDpt(T), if Arg((’)l) = Arg(Og) thenO; = Os.

Example 3 (Cont) The argumentation systef; constructed fron¥z has three
complete extensions:

u ECO = {al,ag},
L 561 = {al,ag,a5,a6} and
" 562 - {CLl,CLQ,CLg,CL4}.

They capture the complete optio®%&,, Oc; andOc, respectively. Indeedh(Ecy) T
Ocy (resp.Th(Ecy) C Ocy, Th(Ecz) C Ocz) andConcs(Ecy) = CN(Ocyp) (resp.
Concs(£cy) = CN(Ocy), Concs(Ecz) = CN(Oca)).
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From the bijection between the set of complete extensioddtanset of com-
plete options, it follows that the number of complete eximms of an argumenta-
tion systemH is exactly the number of complete options of the theory oveiciv
the system is built.

Corollary 8. LetH = (Arg(7T),R.) be an argumentation system built over a
closed theoryr. It holds that

[Ext.(H)[ = [COpt(T)|.

The plausible conclusions of an argumentation system,ruzaaplete seman-
tics, are the literals that follow from all the complete opis of the theory at hand.

Corollary 9. LetH = (Arg(7),R.) be an argumentation system built over a
closed theoryr .

Output, (H) = ﬂ CN(O).
Oecopt(T)

Example 3 (Cont)Output.(Hs) = CN(Ocy) N CN(Ocy) NCN(Oca) = {z,y}.

4.5. Grounded semantics

We introduce in this section the sub-theory, caligolunded optionwhich cor-
responds to the grounded extension of an argumentatioarsyst is the minimal
(for set inclusion) complete option.

Definition 16 (Grounded Option). Thegrounded optiorof a closed theoryy =
(F,S,D) is the sub-theory ', S’, D) such that

» (F',S8',D') is a complete option,

» D" C D’ such that F',S’, D") is a complete option.
GOpt(7) denotes the grounded option of thedry
Example 3 (Cont) There are three complete options Bf Ocy = (F3,Ss,0),
Ocy = (F3,83,{r2}) andOcy = (F3,S83,{r1}). Clearly, Ocs is the grounded

option (i.e.,GOpt(73) = Ocs) since it has the minimal (wrt set inclusion) set of
defeasible rules.

Now, let us show that the grounded extension leads to thengemlioption, and
from the grounded option, one can get the grounded extension
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Naive Option

|

{Comple\te Optioﬁ; ______ TGrounded Optioﬂ1

— —

Figure 2: Relationships between options (plain arrowspreutputs (dotted arrows)).

Theorem 11. Let H = (Arg(7),R.) be an argumentation system built over a
closed theoryr. Let& be the grounded extension&f The following two proper-
ties hold.

* Th(&) C GOpt(7) andConcs(E) = CN(GOpt(T)).
v £ = Arg(GOpt(T)).

Example 3 (Cont) The grounded extension of the systéfp constructed fronys
is: &€ = {a1,az}. It captures the grounded optiddcs. Indeed,Th(E) C Ocs and
Concs(€) = CN(Ocs).

The plausible conclusions of an argumentation system,ngrdended seman-
tics, are the literals that follow from the grounded optidrnihe theory at hand.

Corollary 10. LetH = (Arg(7),R.) be an argumentation system built over a
closed theory". Output () = CN(GOpt(T)).

Example 3 (Cont)Outputg(Hs3) = CN(Oc3) = {z,y}.

4.6. Relationships between the different kinds of optiarktheir outputs

From the one to one correspondences established in the@rdrhsit follows
that the same well-known relationships between the exdanwf the five seman-
tics exist between the five families of options. Figure 2 depthe relationships
between the different kinds of options and their outputs lahp(respectively dot-
ted) arrow from X-Option to Y-Options means that every X optis a Y Option
(respectivelyOutput y(.) € Outputy(.)).
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5. Conclusion

There are a couple of rule-based argumentation systems lite¢tature. Some
of them like ASPIC and its extended version ASPIC+ are shawsatisfy the
rationality postulates defined in [16], namely the consisgeand closure under
strict rules of their sets of plausible conclusions. WHiles tis testimony to some
strength of these formalisms, it does not say anything att@kind of plausible
conclusions they draw from a theory. Surprisingly, the atgpf these systems
(their extensions and their plausible conclusions) hawembeen characterized.
The authors of those systems provide only examples to shatihb outputs are
meaningful. This is certainly not sufficient. Our paper ie first that attempts
a systematic study of the outcomes of rule-based systenes madl/e, grounded,
complete, stable and preferred semantics. There are tvableotxceptions. The
first work, done in [19], consideredfeagmentof our logical language and rebuttal
as attack relation. Blocking rules was not allowed. Extemsiwere characterized
in terms of sub-theories. However, some sub-theories milgav@ corresponding
extensions. Thus, there is no bijection between the two. f@unalism is thus
more general and our characterizations of its outcomes are accurate since
they are one-to-one correspondences. The second work @& 28], investi-
gated the link between logic programming semantics anchaegtation ones. The
theory over which an argumentation system is built is a lpgagram, that is, only
one type of rules is used. The paper shows that Dung’s setsdmive counter-
parts in logic programming. Another well-known argumeiotatsystem is ABA
[2]. Unlike all other rule-based argumentation systems,itiitial version of ABA
is not based on the notion of argument. It manipulates setssafmptions and the
attack relation is between pairs of assumption sets. In @] authors proposed
an equivalent version which makes use of arguments. Thedbzinguage con-
sidered in ABA is different from ours since it uses assumiwhile in our paper
we do not. As argued in [30], ABA does not satisfy in genera donsistency
postulate while our system satisfies all the postulatesgsexgbin [16]. Finally, we
fully characterized the plausible conclusions of our systmder various semantics
while such characterization is not available for ABA. In J[&hother system was
proposed for reasoning about stratified default theoridee the initial version of
ABA, the system is not based on the notion of argument thusshom different
from our approach. It allows subsets of a theory to attackvargdefault. Stable
semantics was used for solving the conflicts. Unlike our papecharacterization
results are provided. However, the authors have shown ltkeatdystem satisfies
basic properties of a nonmonotonic consequence relaticim &8l deduction, con-
ditioning, and cumulativity.

In addition to the characterizations of the system’s ougsnthe other main
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novelty of our paper is the exclusive use of undercut for dmgpconflicts between
arguments. This relation is always coupled with rebuttal/@nassumption attack
which handle inconsistency in other systems. In our paperhave shown that
undercut is powerful enough to perfectly fulfill the role @buttal. Indeed, the
characterization results show that extensions under atheafeviewed semantics
are consistent and coherent sub-theories. This mean$dyatld not contain pairs
of arguments which are in conflict wrt one of the two relatioRsirthermore, the
maximality for set inclusion in case of naive, preferred atable semantics sug-
gests that not only all possible conflicts are captured iabo correctly solved.
Finally, the system satisfies all the rationality postidatader any semantics while
in ASPIC and ASPIC+, for each semantics, one should useexéiiff definition of
rebuttal (restricted vs unrestricted) in order to satibfy postulates.

Regarding the definition of undercut, there are three pralpadn the literature
which are all equivalent. The first definition is the one falém in our paper and
in [10]. The idea is to assign a name to every defeasible mideta allow these
names to be in heads of other rules. Unlike in [10], in our papames of rules
may only be in heads of strict rules. The reason is that untisitows exceptions
of defeasible rules, and exceptions are certain informatt@r instance, in case of
penguin, the rule “birds fly” is not applicable. The secondpmsal, given in [17]
and followed in [16], uses an objectivation operator whigimsforms any defeasi-
ble rule into a literal. The latter plays the role of the narh#e rule in our system.
The last definition, proposed in [32, 33, 34], extends th&ckldanguage by a new
form of rules with which one can block defeasible rules. Véhat the definition
is, none of these systems characterized its outcomes.

This work will be extended in two ways. First, we will consideeighted the-
ories, i.e., theories in which defeasible rules may not rliheesame importance.
Second, we plan to use ranking semantics [4] for evaluatiggnaents. Such se-
mantics were already used in argumentation systems deklign handling in-
consistency in propositional knowledge bases [35]. Thelteshow that they lead
to more discriminating results than those of extension sgics® Furthermore, the
argumentation approach goes beyond the maximal conssibbases computed
by the well-known coherence-based approach [36].
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Appendix: Proofs

Notations: Throughout this section, when we do not need to refer to acpéat
semantics, we writ€xt () to denote the set of extensions of the argumentation
system?{. The functionName returns the name of a (strict or defeasible) rule.

Proof of Proposition 1. Follows immediately from the fact thaef(d) = () for all
(d,z) € Arg((F,S,0)). [ |

Proof of Theorem 1. Let # = (Arg(7),R.) be an argumentation system built
over theoryT = (F,S, D). Assume thakxt(H) # 0 and let€ € Ext(H).
Closure under strict rules: Let& € Ext.(H). Assume that € CN((Concs(£),S,0))
andz ¢ Concs(€). Let X = {z1,...,z,} be the minimal for set inclusion sub-
set ofConcs(€) such thatr € CN((X,S,0)). For eachw;, there existsy; € &
such thatConc(a;) = x;. There exists a minimal derivation schema fousing
ai,...,a, and additional strict rules. Let be that derivation.(d, z) is an ar-
gument andd, x) ¢ £. There are two cases: § U {(d, z)} is conflicting, i.e,
there existe) = (d',2') € & such thathR,(d,z) or (d,z)Ryb. If bR, (d,x),
then Conc(b) € Def(d). However,Def(d) = UDef(a;). Thus, there exists
i € {1,...,n} such thatConc(b) € Def(a;), i.e.,bRya;. This contradicts the
fact that€ is conflict-free. If(d, z)R,b, then sinces defends its elementSg € £
such thattR,(d, z), i.e.,Conc(c) € Def(d). Then,3a; € Sub((d,z)) such that
cRya;. But,a; € £. ii) £ does not defendd,z). Letb € Arg(7) such that
bR, (d,x). Then,Conc(b) € Def(d). Then,bRa; for somea; € Sub((d,z)) and
a; € €. Sincef defends its elements, théhattacksb. Since preferred, grounded
and stable extensions are complete, then the property boltkr those semantics
as well.
Consistency:Let £ € Ext,(#H) wherey € {p, s, g, c}, and assume th@bncs(E)
is inconsistent. Thusja,b € & such thata = (d,x), b = (d',—x), d =
((x1,71)s oy (Tpyrn)), d = (2470, oy (2h,, 7)), 2 = @ andal, = —z.
Moreover,z, ~x € L.

If @ andb are both strict (i.eDef(d) = () andDef (d’) = 0), thenCN((F, S, 1))
is inconsistent. Assume now thel((F,S,0)) is consistent. It follows that
or/andb is defeasible (i.e.Def(d) # () or/andDef(d’) # (). Assume that is
defeasible. Ifr,, € D, thenName(—~z — r,) € S (sinceT is closed). Since
€ is closed under strict rules antlc € Concs(€), thenr, € Concs(£). Thus,
CN(Th(E)) N Defs(Th(E)) # (. This contradicts the fact thah(&) is coherent
by Theorem 2. Assume now that ¢ D. Letr; € Def(d) be such that for all
Jj > 1, rj is either a fact or a strict rule. By definition of a derivation, € S.
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Letr, = y1,...,y1 — z. SinceS is closed under contraposition, then for all
1 <j <l Name(yi,...,Yj—1,Yj+1,---, ¥ — —y;) € S. Moreover, there exists a
minimal sub-derivationi; of d for eachy;. Thus,

XJ = <d17dj—17dj+17' .. 7dl7d,7 (_‘yjﬂyhyj—hyj-i-la N _‘yja_‘yj)>

is a derivation of-y;. Since arguments are minimal, thek;, —y;) € Arg(T).
Note that(d;, y;) € Sub(a). SinceH is closed under sub-arguments, tlién y;) €
£ and thusy; € Concs(€). SinceH is closed under strict rulesyy; € Concs(E)
forallj=1,...,L

The same reasoning holds for each strict mile .., y; — y betweenr; and
rn. Indeed,—y; € Concs(€) for all : = 1,...,1. By definition of derivation,
there exists a strict rule afterr; such thatlead(r;) € Body(r) thus—Head(r;) €
Concs(£). Thus,Name(—Head(r;) — 7;) € S. Since’H is closed under strict
rules,r; € Concs(&). But,r; € Defs(€) (sincer; € Def(d)). This contradicts the
fact thatTh(&) is coherent by Theorem 2.
Indirect consistency: If CN((F,S,)) is inconsistent, we have seen that consis-
tency is violated, i.e., there exists at least one extenSi@uch thatConcs(€)
is inconsistent. Since by monotony ©ff, Concs(€£) C CN(Concs(£)). Hence,
CN(Concs(&)) is inconsistent, and indirect consistency is violated. ulvss now
thatCN((F, S, 1)) is consistent. From previous result, consistency is satisfiVe
know also that closure under strict rules is satisfied. Thediect consistency is
satisfied, since it was shown in [16] that indirect consisyefiollows from Consis-
tency and Closure under strict rules. [

Proof of Theorem 2. Let # = (Arg(7),R.) be an argumentation system built
over theoryT = (F,S, D). Assume thakxt(H) # () and let€ € Ext(H).
Coherence: Assume thaBz € Concs(€) N Defs(Th(E)). Thus,z € L. More-
over,3Ja,b € &£ such thatConc(a) = =z andz € Defs({b}). Then,aR,b. This
contradicts the fact that is conflict-free.

Closure under sub-arguments:Leta = (d,z),b = (d',2’) € Arg(T) such that
ac&, b¢ & andb e Sub(a).

Assume thattf € Ext (#H). There exist: € £ such thatcR,b. Letc =
(d",2"). Then,z” € Def(d') and thusz” € Def(d) sinceDef(d’) C Def(d).
ConsequentlygR ,a. This contradicts the fact th&tis conflict-free.

Assume now thaf € Ext,,(H), then& U {b} is conflicting. Then, there exists
¢ € £ such thattR b or bR,c. Assume thabR,c. Thenz’ € L. Since elements
of £’ cannot be in the body of any rule then= b, thusaR,c. This contradicts the
fact that it is conflict-free. Assume now thaR,,b. As above, it follows thatR,a
and this contradicts the fact th&tis conflict-free.
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Assume now thaf € Ext.(H). Sinceb ¢ £ then there are two cases£i){b}
is conflicting, i.e., there exists € £ such thattR b or bR,c. As above, we get
either ¢cR,a or aR,c. In both casesf is not conflict-free and this contradicts
the fact that it is a complete extension. di)does not defend. Thus, there exists
c=(d",2") € Arg(T) such thatR,b. Then,z” € Def(d') and thust” € Def(d)
meaning thatR,a. Sincef is a complete extensiofd € &£ such thatdR,c.
Thus, £ defends. Since grounded and preferred extensions are completethibe
property holds under the two semantics as well. [

Proof of Corollary 1. Let’H = (Arg(7),R.) be an argumentation system built
over a closed theor§y” = (F,S,D) s.t. Ext(H) # 0. Assume thabutput(H)
is inconsistent theAz, -z € Output(#). Thus, for all€ € Ext(H), z,~x €
Concs(&). From Theorem 1, this is only possibleCifi((F, S, ?)) is inconsistent.
SinceCN is monotonicPutput(H) C CN((Qutput(H), S, 0)).
Letz € CN((Output(H),S,0)) and assume that ¢ Output(#), thus, there
exists€ € Ext(H) such thatr ¢ Concs(€). This contradicts Theorem 2. |

Proof of Theorem 3. Let H = (Arg(7 ), R.) be a system built over a theof.

» Let £ € Ext,(#H) and letO = Th(E). Itis clear thatO is uniquely de-
termined from&. Let us show tha© is a naive option.O = (F',S8',D’)
such that7”" = (4 ,)ec Facts(d), 8" = Ugpee Strict(d) andD’ =
U d,2)ce Def(d).

= |tis obvious thatS’ C S andD’ C D. Now, for everyxr € F there is an
argument(((z, 0)) ,x) € Arg(T). By definition of undercutting, such
argument has no conflict with any other argument. Thus, gilments
of this form belong to every naive extension, i g.,= F.

= For the sake of contradiction, suppose tBat € CN(F',S’,D’) s.t.
x € D'. Letd be a minimal derivation of in O. Thus(d,z) is an
argument of. sincex € D’ then, from the definition ofh(&), = must
be used in at least an argumentobay(d’, z’), i.e.,z € d'. Therefore,
(d, z)R,(d’,2"). Contradiction with conflict-freeness 6f

» Letr € S'UD'. ris used in at least one argument, sapf £. So,a
has a sub-argument= (((z1,71), ..., (Tn, ™)) , n) With 7, = r and
x, = Head(r). By closeness under sub-arguments (by Theorerh 2),
is also an argument &f. From the definition of derivation schema, for
everyr € Body(r), x = x; for somei s.t. 1 < ¢ < n. Thus, there
is a sub-argument d@f and hence an argumenténand a derivation in
O, for everyz € Body(r). This means that for every € Body(r),

x € CN(0O), i.e.,Body(r) C CN(O).
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» Suppose thatS”, D" s.t.(F, 8", D) C (F',8",D")and(F',S",D")
satisfies the previous conditions. For every nule (S” UD") \ (S’ U
D’), there is at least an argument= (d,z) s.t. r € Strict(d) U
Def(d). Clearly,a ¢ £. But from the coherence dfF’,S”,D") it
must be the case thdb € £ s.t. aR,b or bR,a. Indeed, suppose
for example thatR,b and thatb = (d’,2’), thenxz € d’. That is,
x € CN(F', 8", D") andz € D” which contradicts the coherence of
(F',S8”,D"). We can show in a similar way that it must not be the case
thatbR,a. But, it this case€ U a is conflict-free. Contradiction with
the fact that® is a naive extension.

v Let£,&’ € Ext,(H) andNOption(€) = NOption(E’). Let us show that
E C & Leta = (d,z) € £ Then,d is a derivation forz in NOption(&).
Suppose that, ¢ &’. Thend is not a derivation forz in NOption(&’).
Contradiction, sincéiOption(£) = NOption(&’). We show similarly that
&Ce.

» Let £ € Ext,(H). SinceNOption(€) = Th(£) and from the defini-
tion of functionsTh and Arg it is obvious that€ C Arg(NOption(E)).
Now leta = (d,z) € Arg(NOption(€)). This means that = (d,x) is
constructed fromNOption(£). So,z € CN(NOption(£)) andDef(d) C
Defs(NOption(£)). Suppose thai ¢ £. Sincef is a naive extension then
there isb = (d',2') € £ such thataR,b or bR,a. Fromb € £ we easily
deduce that’ € CN(NOption(£)) andDef(d’) C Defs(NOption(£)). But
then, fromaR,b or bR ,a, NOption(€) must be incoherent. Contradiction
with the fact thatiOption(€) is a naive option.

Proof of Theorem 4.Let H = (Arg(T ), R.) be a system built over a theof.

' Let O = (F,S',D’) € NOpt(T) and let€ = Arg(O). We prove that is a
maximal conflict-free set afrg(7T).
Suppose that there are two argumemts: (d,z) andb = (d',2’) in £ s.t.
aRyb, i.e.,z € Def(d'). But sinced andd’ are derivation schemas forand
2’ respectively inO we have:xz € CN(O) andDef(d') C D', sox € D'.
Contradiction with the coherence of naive opt@n& = Arg(O) is conflict-
free.
Now, suppose thaf is not maximal. Thus there 8’ C Arg(7) s.t. £ C
& and &' is a naive extension of{. From Theorem 3NOption(&’) =
Th(&’) = O’ is a naive option of/. Let O’ = (F,S8"”,D"). Since all
the arguments that use exclusively rules fréfmu D’ belong to&, every
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argument irg’ \ £ uses at least a rulewhich is not inS’ U D’. So, either
(8" ¢ §")or (D' c D”) or both, i.e,O0 = O'. Contradiction with the fact
thatO is a naive option off".

» LetO = (F,S', D) € NOpt(T) and letNOption(Arg(O)) = (F", 8", D").
F" = Ffollows from the fact thahrg(O) contains every argumetz, 0) , ).
Letz € 8" (resp.x € D”). x is used in at least an argumentiafg(O), so
z € 8 (resp.z € D'). Thus, we haveS” C &’ andD” C D'. Inversely,
let 2 € S'(resp.z € D’), sinceBody(xz) C CN(O) (from the definition of
a naive option)x must be used in at least one argumentog(©). Thus
x € F" (resp.x € D"). So,F' C F"andD’ C D”. In summary,F = F”,
§' =8"andD’ = D", i.e.,O = NOption(Arg(O)).

' LetO, = (F,S], D)) andO; = (F, S}, D}) be two naive options. Suppose
that O, # Oy, i.e., eitherS] # S; or D} # D), or both. Suppose that
Si # S5. This means that either thereiiss.t. « € S] andz ¢ S, or there is
zs.t.z € Shandx ¢ S]. Suppose the first case. Theris used in at least an
argument ofirg(O; ) and never used ifirg(O2). So,Arg(O1) # Arg(Os).
By a similar reasoning, we obtain the same conclusion forother case
(thereisz s.t.z € S} andz ¢ S}) and for the case of defeasible rules.

Proof of Corollary 2. Follows immediately from the bijection between naive op-
tions and naive extensions (Theorems 3 - 4). [

Proof of Corollary 3. Follows immediately from the bijection between naive op-
tions and naive extensions (Theorems 3 - 4). [

Proof of Theorem 5.Let H = (Arg(T), Ry) S.t.Exts(H) # 0.

» Let us show that for alf € Exts(#), there is a uniqu&® < S0pt(7T) s.t.
Th(€) C O andConcs(€) = CN(O).
LetE € Ext (M) and letTh(&) = (F',S’, D). We can show thaF’ = F
in a similar way as in Theorem 3, first point. We take = (F,S,D’)
(we completeS’ by the remaining strict rules). Clearl§? is uniquely de-
termined from&. We have thaConcs(£) = CN(Th(E)). Let us show that
CN((F,S,D")) = CN(Th(E)). To do so, it is sufficient to show that every
ruer € S\ & is not applicable inF,S’,D’). Suppose for the sake of
contradiction that there is € S\ &' s.t. r is applicable in(F,S’,D’),
i.e. Body(r) C CN((F,S’,D’)). Thus, there is a minimal derivation in
(F,S,D') for Head(r) usingr as a last rule{d, (z,r)) s.t. z = Head(r),

32



Def(d) C D’ andStrict(d) C &'. Thus,a = ({d, (z,r)),z) is an argu-
ment outsidef but sincef is a stable extension, therelisc € s.t. bR ,a.
So, there is a sub-argumentafa’ = ((d', (z/,7)) ,2’) with v € D" and
b= (d",r"). However since’ € £ (because it uses only rules frashuD’),
this means thaf is not conflict-free. Contradiction. Now let us prove that

O =

(F,S,D') is a stable option.

It is obvious thatD’ C D

Similar to the proof of point 2 in Theorem 3.
Similar to the proof of point 3 in Theorem 3.

Suppose thadr ¢ D' s.t.r ¢ CN((F,S,D’)) andVx € Body(r),x €
CN((F,S,D")). LetBody(r) = {x1,...,x,} andHead(r) = y. Since
for1 < i < k, 2; € CN((F,S,D’)), then there is an argument
a; = (dj,xz;)) € €1 < i < k) for eachx;. Thus, we can con-
struct an argument for y usingr as last rule, i.eq = ((d, (y,7)) ,y)
whereFacts(d) = |J; Facts(d;), Strict(d) = |J,; Strict(d;) and
Def(d) = |J, Def(d;). Sincer ¢ D', a ¢ £, so there id = (d',2') €
E st bRya, i.e., 2’ € Def(d) U {r}. Sincer ¢ CN((F,S,D")), it
cannot be the case that = r, thusz’ € Def(d), sox’ € Def(d;) for
somes s.t. 1 < ¢ < k. This means that’R,a; which contradicts the
conflict-freeness of .

v Let£,&" € Exty(H) andSOption(€) = SOption(E’). Let us show that
EC¢&. Leta = (d,xz) € £ Then,d is a derivation forz in SOption(&).
Suppose that ¢ £’. Thend is not a derivation forz in SOption(&’).
Contradiction, sinc&0ption(£) = SOption(£’). We show similarly that
EgCéE.

' Let £ € Extg(H). SinceTh(£) C SOption(£) and from the defini-
tion of functionsTh and Arg it is obvious thatf C Arg(SOption(&)).
Now leta = (d,z) € Arg(SOption(£)). a = (d,z) is constructed from
SOption(€). So,Def(d) C Defs(SOption(£)). Suppose that ¢ &.
Since€ is a stable extension then thereis= (d’, 2’) € £ such thatR ,a.
Fromb € £ we easily deduce that' € CN(SOption(£)). But then, from
bRya, SOption(E) must be incoherent. Contradiction with the fact that
SOption(&) is a stable option.

Proof of Theorem 6.Let H = (Arg(T), Ry) S.t.Exts(H) # 0.

v Let O = (F,S,D’) € S0pt(T) and let€ = Arg(O). We prove that is
conflict-free and/b € Arg(7T) \ £, 3a € € s.t.aR,b.
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Suppose that there are two argument (d,z) andb = (d',2') in € s.t.
aRyb, i.e.,x € Def(d'). But sinced andd’ are derivation schemas forand
2’ respectively inO we have:z € CN(O) andDef(d') C D/, sox € D'.
Contradiction with the coherence of stable opti®®nSo,£ is conflict-free.
Now, let us show that¥b € Arg(7) \ &, Jda € £ s.t. aR,b. Letb =
(d,z) ¢ E. Clearly,d uses at least a defeasible rulgr € Def(d)) s.t.

r ¢ D'. From the definition of a stable option, we have two possiblees.
The first case is that € CN(F,S,D’), so there is a minimal derivation
d for rin O, i.e.,a = (d,r) is an argument of. Clearly aR,b since
r € Def(d). The second case is thal; € Body(r) s.t. x; ¢ CN(O).
Let by = (di,z1) be a sub-argument @f Sincex; ¢ CN(O), there is no
derivation ofz; in O, sob; ¢ £. Thus,d; uses at least a defeasible rule
(r1 € Def(dy)) s.t. r1 ¢ D'. Again, from the definition of a stable option,
we have two possible cases. The first case isithat CN(F, S, D’), so there
is a minimal derivation!” for r1 in O, i.e.,a = (d”,r1) is an argument of .
ClearlyaR, b, sincer € Def(d; ), hence , sa’R,b. The second case is that
Jdxg € Body(r1) S.t. z2 ¢ CN(O). Letby = (da, z2) be a sub-argument of
by. Sincexs ¢ CN(QO), there is no derivation afy in O, soby ¢ £. Thus,
dy uses at least a defeasible rule(ro € Def(ds)) s.t. 7o ¢ D’, an so one.
Since the set of argumentsg(7) \ £ is finite, it must exist a sub-argument
by, of b such thatR ,b;, and henceR b for somea € £.

LetO = (F,S,D’) € s0pt(T) andSOption(Arg(0)) = (F",S8",D").
F" = Ffollows from the fact thahrg(O) contains every argumetz, 0) , ).
S§" = S follows from the definition oB80ption. Let us show thaD” = D'.
Letx € D”. x is used in at least an argumentifg(0O), sox € D’. Thus
we have:D” C D'. Inversely, letz € D', sinceBody(z) C CN(O) (from
the definition of a stable option), must be used in at least one argument of
Arg(O). Thusz € D”. So,D' C D”. In summary,F = F’, S = §” and
D' =D",i.e.,O = SOption(Arg(O)).

Let O = (F,81, D)) andOy = (F, S, D)) be two stable options. Sup-
pose that®; # O, i.e., D] # D,. It means that either there is s.t.

z € D} andz ¢ D) or there isz s.t. € D} andx ¢ D]. Suppose the first
case. Theng is used in at least an argumentiafg(©;) and never used in
Arg(Oz). So,Arg(0;) # Arg(O,). By a similar reasoning, we obtain the
same conclusion for the other case (there $st. « € D), andx ¢ D).

Proof of Corollary 4. Follows immediately from the bijection between stable
options and stable extensions (theorems 5 - 6). [
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Proof of Corollary 5. Follows immediately from the bijection between stable
options and stable extensions (theorems 5 - 6). [

Proof of Theorem 7.Let # = (Arg(T), Ry) S.t. Ext,(H) # 0.

» Let us show that for alf € Ext,(#), there is a uniqu& < POpt(7) s.t.
Th(£) C O andConcs(&) = CN(O).
Let € € Ext,(H) and letTh(E) = (F',S', D’). We can show thaF’ = F
in a similar way as in Theorem 3, first point. We taRe= (F,S,D’) (we
completeS’ by the remaining strict rules). Clearly is uniquely deter-
mined from&. We have thaConcs(€) = CN(Th(E)). Let us show that:
CN((F,S,D’")) = CN(Th(&)). To do so, it suffices to show that every rule
r € 8§\ & is not applicable i F,S’, D). Suppose for the sake of con-
tradiction that there is € S\ &’ s.t. r is applicable in(F,S’,D’). Thus,
there is a minimal derivation i(F,S’, D) for Head(r)) usingr as a last
rule: (d, (z,r)) s.t. x = Head(r), Def(d) C D’ andStrict(d) C §'.
Thus,a = ((d, (z,r)),z) is an argument outsid€. « does not attack any
argument off. Indeed, if we suppose the contrary then, sificis a pre-
ferred extension, there isc £ s.t. bR a. So, there is a sub-argument of
a = {d,(2,r")),2") withr" € D" andb = (d”,r"). However since/’ € £
(because it uses only rules frasu D’), this means thaf is not conflict-free
which contradicts the fact th&tis a preferred extension. $oJ {a} is con-
flict free. Moreover, for every € Arg(7) \ (£ U{a}), if cR,a then there is
a sub-argument of: o’ = ((d', (¢/,7")) ,2") with 2’ € D" andc = (d", 2/).
However sincer’ € £ (because it uses only rules froft U D) and€ is a
preferred extension, then theredise £ such thata’R,c. This means that
€ U{a} is conflict-free and defends all its elements. Contradictigth the
fact that€ is maximal. Now let us prove th& = (F,S,D’) € POpt(T).

* |t is obvious thatD’ C D
= Similar to the proof of point 2 in Theorem 3.
= Similar to the proof of point 3 in Theorem 3.

»vD" C D, if I € D' st 1’ € CN(F,S,D”) then there is a min-
imal derivationd’ for ' in (F,S,D"), i.e., (d',r’) is an argument
of Arg(T). Sincer’ € D', there in an argument = (d,z) € &
s.t. ' € Def(d) and we havéR,a. Sincef is a preferred exten-
sion, there is an argument= (d”,z") € £ s.t. cR,b, i.e., there is a
derivationd” for " in (F,S,D’) s.t. d’ € Def(d'). This means that
r” € CN(F,S,D’) andr” € D".

= Suppose that there B” s.t. D’ C D” andD” satisfies the previous
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conditions. Let®O’ = (F,S,D”) and&’ = Arg(O’). The conflict-
freeness of’ follows from the fact that)’ is coherent. Leb = (d, x)
be an argument afrg(7) \ £’ s.t. there is an argumeat= (d’, z’) €
& andbR,a. Thus,z € CN(F,S,Def(d)) andx € Def(d'), i.e.
x € D". But, from the fourth condition of preferred options, thése
r” € Def(d) such that” € CN(O). So, there is an argumeat € &’
such thats’R,b. Consequently¢’ is a preferred extension agdc &’
which contradicts the fact thatis a preferred extension.

* We show by a similar way as in the second point of Theorem 5 fhatll
E,E" € Ext,(H) if POption(E) = POption(E’), & =&,

v Let £ € Extp(H). SinceTh(£) T POption(€) and from the defini-
tion of functionsTh and Arg it is obvious that€ C Arg(POption(&)).
Now leta = (d,z) € Arg(POption(£)). a = (d,z) is constructed from
POption(€). So,Def(d) C Defs(POption(£)). Suppose that ¢ £. Since
£ is a preferred extension then we have two cases. The firstictHs# there
isb = (d,2') € € such thattR,a. Fromb € & we easily deduce that
a2’ € CN(POption(€)). But then, frombR,a, POption(£) must be incoher-
ent. Contradiction with the fact thaOption(&) is a preferred option. The
second case is thatdoes not attack, ¢ does not attack but £ does not
defenda: there isb = (d’,2') ¢ £ such thathR,a and & does not attack
b. FrombR,a we haver’ € d. SinceDef(d) C Defs(POption(£)) then
x C Defs(POption(£)). So,z is used in at least an argument (d”, z”)
of £i.e.,x € d’. Thus,cis attacked by. But sincef is a preferred exten-
sion, then it must contain an argument which attack$his contradict the
hypothesis thaf does not attack.

Proof of Theorem 8.Let # = (Arg(7T), Ry) S.t. Ext,(H) # 0.

» Let O = (F,S,D’) € POpt(T) and let€ = Arg(O). We prove that is
conflict-free,vb € Arg(T) \ &, if Ja € € s.t. bR,a then3c € € s.t. (R,
and¢€ is a maximal subset dfrg(7) satisfying the previous two conditions.
Suppose that there are two argument (d,z) andb = (d',2’) in € s.t.
aRyb, i.e.,z € Def(d'). But sinced andd’ are derivation schemas forand
2’ respectively inO we have:xz € CN(O) andDef(d') C D', sox € D'.
Contradiction with the coherence of preferred opt®n So, £ is conflict-
free.

Now, let us show thatvb € Arg(7)\ &, if Ja € £ s.t.bR,athendc € £ s.t.
cRyb. Letb = (d,x) € Arg(T) \ £ and leta = (d',2') € £ s.t. bRya, i.e.,
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x € CN(F, S,Def(d)) andz € Def(d'). From the fourth conditions of the
definition of a preferred option, theren$ € Def(d) s.t.7” € CN(F, S, D).
So, there is an argumeat= (d”,r”) with d” a minimal derivation of” in

O. Clearly,c¢R ;b.

Finally, Suppose that is not maximal w.r.t. previous conditions. Thus, there
is&’'s.t.& C & and&’ is preferred, i.e.£’ is an maximal conflict-free set of
arguments that defends all its elements. ©&tF, S, D”) = POption(&’).
Clearly, D' # D, because there every argumentéih\ £ uses at least a
rule which is not inD’. Since®’ is a preferred option (Theorem 7 is
maximal, soD’ C D”. This contradicts the fact th&? is a preferred option.

» Similar to the proof of point 2 of Theorem 6.
» Similar to the proof of point 3 of Theorem 6.

Proof of Corollary 6. Follows immediately from the bijection between preferred
options and preferred extensions (theorems 7 - 8). [

Proof of Corollary 7. Follows immediately from the bijection between preferred
options and preferred extensions (theorems 7 - 8). [

Proof of Theorem 9.Let H = (Arg(T), Ry) S.t.Ext.(H) # 0.

» Let us show that for alf € Ext.(#), there is a uniqu&® < COpt(T) s.t.
Th(€) C O andConcs(€) = CN(O).
LetE € Ext.(H) and letTh(&) = (F',S’, D). We can show thaF’ = F
in a similar way as in Theorem 3, first point. We talke= (F,S,D’) (we
completeS’ by the remaining strict rules). Clearly) is uniquely deter-
mined from&. We have thaConcs(€) = CN(Th(E)). Let us show that:
CN((F,S,D’")) = CN(Th(£)). To do so, it suffices to show that every rule
r € 8§\ & is not applicable i F,S’, D). Suppose for the sake of con-
tradiction that there is € S\ &’ s.t. r is applicable in(F,S’,D’). Thus,
there is a minimal derivation i(F,S’, D) for Head(r)) usingr as a last
rule: (d, (z,r)) s.t. x = Head(r), Def(d) C D’ andStrict(d) C §'.
Thus,a = ((d, (z,7)) ,z) is an argument outsid€. « does not attack any
argument off. Indeed, if we suppose the contrary then, sifids a com-
plete extension, there ise £ s.t. bR,a. So, there is a sub-argument @f
a = {(d,(,r")),a") withr" € D" andb = (d",r"). However since’’ € £
(because it uses only rules fra$hiu D’), this means that is not conflict-free
which contradicts the fact th&tis a complete extension. $oJ {a} is con-
flict free. Moreover, for every € Arg(7) \ (£ U{a}), if cR,a then there is
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a sub-argument of: o’ = ((d', («/,7')) ,2") with 2’ € D" andec = (d", 2/).
However sincer’ € £ (because it uses only rules froft U D’) and€ is a
complete extension, then theredise £ such thata’R,c. This means that
£ defendsu. Contradiction with the fact thaf contains all the arguments it
defends. Now let us prove thé& = (F,S,D’) € POpt(T).

* It is obvious thatD’ C D
Similar to the proof of point 2 in Theorem 3.

Similar to the proof of point 3 in Theorem 3.

Similar to the proof of point 4 in Theorem 7.

For the sake of contradiction, suppose thate D\ D, 3D; C D
s.t. r € Dy andBody(r) € CN((F,S,D;)) andvD” C D, if D1 N
CN((F,S8,D")) # 0 thenar” € D", r" € CN((F, S, D")).

From the fact:3D; C D s.t. r € D; andBody(r) € CN((F,S,D1))
we deduce that is applicable in(F,S,D;), so there is at least an
argumentu € Arg((F,S,D;)) whereDefs(a) C D; and clearlya ¢
E. From the factvD” C D, if Dy NCN((F,S,D”)) # () then3r” €
D" r" € CN((F,S,D’)). Leta € Arg((F,S,Dy)). If D" C Dis
s.t. Defs(a) N CN((F,S,D")) # 0 then there is at least argument in
Arg((F,S,D")) which attacksz. Moreover, for all such argument
we haveDefs(b) C D” andDefs(a) N CN((F,S,Defs(b))) # 0. It
follows that3r” € Def(b),r” € CN((F,S,D’)). This means that for
all argumenth R, a there is and argumentin £ s.t. ¢ R, b, i.e. £
defendsa. But this contradicts the fact th&tis a complete extension
sincea ¢ €.

* We show by a similar way as in the second point of Theorem 5 thaall
E,&" € Ext.(H) if COption(€) = COption(E’), & = ¢

= A similar reasoning as that used in the third point of Theovamay be used
to prove that for al€ € Ext.(#), £ = Arg(COption(&)).

Proof of Theorem 10.Let H = (Arg(7T), Ry) S.t. Ext.(H) # 0.

' Let O = (F,S,D') € COpt(T) and let€ = Arg(O). We prove that is
conflict-free,vb € Arg(7) \ &, if Ja € £ s.t. bRya thendc € € s.t. cRyb
and& contains every argument it defends.

The two first conditions are proved in similar way as in Theo&
Now, suppose for the sake of contradiction that the thirdd@d@n does not
hold which means that we suppose that there & £ s.t. £ defendsq, i.e.
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for all b € Arg(T), if _R, a then there exists € £ s.t. ¢ R, b. Letus
puta = (d,z) andD; = Defs(d). Since,a ¢ £ then there is € D\ D’

such thatr; € Defs(d) = D; and clearlyBody(r) C CN((F,S,Dy)).

For all D” C D suppose thaD; N CN((F,S,D")) # 0. It follows that
there is an arguments = (d’,2’) s.t. Defs(d’) C D” anda’ € Dy, i.e.,

b R, a. In this case, there is an argument= (d;,z1) S.t. ¢ Ry b, i.e.,

there exists”” € Defs(d') hencer” € D" s.t. 1 = »”. Since clearly
x1 € CN((F,S, D)) it follows that: 1 € CN((F,S,D’)). This contradicts
the last condition of the definition of a complete option.

= Similar to the proof of point 2 of Theorem 6.
= Similar to the proof of point 3 of Theorem 6.

Proof of Corollary 8. Follows immediately from the bijection between complete
options and complete extensions (theorems 9 - 10). [

Proof of Corollary 9. Follows immediately from the bijection between complete
options and complete extensions (theorems 9 - 10). [

Proof of Theorem 11.LetH = (Arg(7), R.) be an AS built over a closed theory
T=(F,S,D).

v Let £ = Exty(H). £ is the minimal (wrt set inclusion) complete exten-
sion of H. From Theorem 9, it follows that there exists a complete op-
tion O € COpt(7) s.t. Th(E) C O andConcs(E) = CN(O). Let us
put O = (F,S,D’) and suppose for the sake of contradiction ttats
not the grounded option df, i.e., that there exist®” C D’ such that
O’ = (F,S,D")is acomplete option. From Theorem H),= Arg(O')is a
complete extension ¢{. Let us show thaf’ C &. Letr be arule irD’\D”.
From the definition of complete options (third point), itltas that there is
(at least) an argument= (d,z) € Arg(O) = £ s.t.r € Defs(a). Clearly
a ¢ Arg(O') = & sincer ¢ D”. It follows thatf’ C £. Contradiction with
the fact that is the grounded extension &f.

» A similar reasoning as that used in the third point of Theovamay be used
to prove that if€ = Ext,(H), then€ = Arg(GOption(£)).
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