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Abstract Rule-based argumentation systems are developed for reasoning about defeasible1

information. As a major feature, their logical language distinguishes between strict rules2

(encoding strict information) and defeasible rules (describing general behavior with excep-3

tional cases). They build arguments by chaining such rules, define attacks between them, 14

use a semantics for evaluating the arguments and finally identify the plausible conclusions5

that follow from the rules. Focusing on the family of inconsistency-based attack relations,6

this paper presents the first study of the outcomes of such systems under various acceptabil-7

ity semantics, namely naive, stable, semi-stable, preferred, grounded and ideal. It starts by8

extending the existing list of rationality postulates that any rule-based system should satisfy. 29

Then, it defines the key notion of option of a theory (a theory being a set of facts, a set of10

strict rules and a set of defeasible rules). For each of the cited semantics, it characterizes the11

extensions of a rule-based system that satisfies all the postulates in terms of options of the12

theory under which the system is built. It also fully characterizes the set of plausible con-13

clusions of the system. The results show that designing a rule-based argumentation system14

requires great care.15

Keywords Defeasible reasoning · Rule-based systems · Argumentation16

1 Introduction17

Argumentation is a promising approach for reasoning about inconsistent information. It con-18

sists of generating arguments that support claims, defining attacks between them, evaluating19
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the arguments using a given semantics and finally identifying the plausible claims on the20

basis of the strength of their arguments.21

Dung proposed in [1] various semantics at an abstract level, i.e., without taking into account22

the structure of arguments or the nature of attacks. His abstract framework was instantiated23

by several scholars. The idea is as follows: Start with a knowledge base whose elements are24

encoded in a logical language, generate arguments using the consequence operator attached25

to the language, identify the attacks and apply Dung’s semantics for the evaluation task. There26

were two major categories of instantiations for this abstract framework. The first category27

uses deductive logics (such as propositional logic [2,3] or any Tarskian logic [4]), whereas28

the second category uses rule-based languages. These languages distinguish between:29

• facts which are information about particular instances like “My laptop is heavy.”30

• strict rules which encode general laws about classes of instances like “First generation31

laptops are heavy.” Such rules do not have exceptions.32

• defeasible rules which describe general behavior with exceptional cases. Defeasible rules33

correspond thus to what is called defaults in [5] or conditional assertions in [6,7].34

Examples of rule-based argumentation systems are: aspic [8], its extended version aspic+35

[9], DeLP [10] and the systems developed in [11–15]. Despite the popularity of these systems,36

the results they return have not been characterized yet, except the system discussed in [11].37

The following questions are thus still open:38

• what are the underpinnings of the extensions under various semantics?39

• do the semantics return different results as at the abstract level?40

• what is the number of extensions a system may have?41

• what are the plausible conclusions with such systems?42

In this paper, we answer all the four questions in three steps: We start by defining a rule-based43

argumentation system over a knowledge base called theory (a set of facts, a set of strict rules44

and a set of defeasible rules). The system uses a notion of derivation schema for generating45

arguments from the theory. For the sake of generality, the attack relation is left unspecified.46

However, it has the property of being conflict-dependent, that is, it captures the inconsistency47

that may be present in the theory. It is worth mentioning that all existing attack relations (like48

rebuttal and assumption attack) are conflict-dependent. A notable exception is undercutting49

which aims at blocking the application of defeasible rules [16].50

In a second step, we extend the list of postulates (consistency, closure under strict rules)51

proposed in [17]. The aim of those postulates is to mathematically capture what humans52

perceive as rationale behavior from the semantics of defeasible theories. They are thus desir-53

able properties that a system should satisfy. We introduce three new postulates. The first54

one, strict precedence, ensures that any claim that follows from the strict part of a theory is55

a plausible conclusion of the argumentation system. The second postulate, exhaustiveness,56

ensures a form of completeness of the extensions of an argumentation system. The third57

postulate, closure under sub-arguments, states that an argument cannot be accepted if one of58

its sub-parts is questionable.59

Finally, we investigate the outputs of rule-based argumentation systems that satisfy all60

the postulates. We show that naive extensions return options of the theory (an option being a61

sub-theory that gathers a maximal-up to consistency-set of the facts, strict rules, and defeasi-62

ble rules). Furthermore, the set of plausible conclusions under the naive semantics contains63

all the conclusions that are drawn from all the options. Stable extensions return preferred64

options but not necessarily all of them; it depends on the attack relation at work. Unlike65

options, preferred options are options that contain the strict part. Should not all preferred66
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A formal characterization of the outcomes of rule-based…

options be picked as stable extensions, defining an attack relation that discards exactly the67

spurious ones thus turns out to be tricky. The same results hold under preferred semantics.68

We also characterize both ideal and grounded extensions. We show that the ideal extension of69

an argumentation system is the set of arguments built from the free part of a theory (i.e., the70

sub-theory that contains the strict part as well as all defeasible rules that are not involved in71

any minimal conflict). The grounded extension is a subset of the ideal extension. This means72

that under grounded semantics, an argumentation system may miss intuitive conclusions.73

74 The paper is structured as follows: Section 2 recalls Dung’s semantics. Section 3 introduces75

the logical language that will be used in the paper. Section 4 defines rule-based argumen-76

tation systems. Section 5 introduces a list of postulates that such systems should satisfy.77

Section 6 studies the outcomes of rule-based systems under naive, stable, semi-stable, pre-78

ferred, grounded and ideal semantics. Section 7 discusses how our results may apply to79

existing systems, and the last section concludes.80

2 Abstract argumentation framework81

An argumentation framework consists of a set of arguments and a binary relation express-82

ing attacks among the arguments. Throughout this section, the structure and the origin of83

arguments are left unspecified.84

Definition 1 (Argumentation framework) An argumentation framework is a pair H =85

(A, R) where A is a non-empty (possibly infinite) set of arguments and R ⊆ A × A is86

an attack relation. A pair (a, b) ∈ R means that a attacks b. A set E ⊆ A attacks an argument87

b iff ∃a ∈ E such that (a, b) ∈ R.88

Notation We sometimes use the infix notation aRb to denote (a, b) ∈ R.89

An argumentation framework (A, R) is represented as a graph, argumentation graph,90

whose nodes are the arguments of A and its edges are the attacks in R. Arguments are91

evaluated using a semantics, i.e., a set of criteria that should be satisfied by an argument92

in order to be acceptable. Throughout this paper, we focus on extension-based semantics93

initially introduced by Dung [1]. Such semantics look for acceptable sets of arguments,94

called extensions. Each extension represents a coherent point of view and satisfies two basic95

properties: conflict-freeness and defense.96

Definition 2 (Conflict-freeness, defense, admissibility) Let H = (A, R) be an argumentation97

framework and E ⊆ A.98

• E is conflict-free iff ∄a, b ∈ E such that (a, b) ∈ R.99

• E defends an argument a iff ∀b ∈ A, if (b, a) ∈ R, then E attacks b.100

• E is an admissible set iff E is conflict-free and defends all its elements.101

The following definition recalls the main semantics that were proposed in [1,18,19]. It is102

worth noticing that all those semantics are based on the notion of admissibility.103

Definition 3 (Semantics) Let H = (A, R) be an argumentation framework, and E ⊆ A be104

a conflict-free set.105

• E is a naive extension iff it is a maximal (w.r.t. ⊆) conflict-free set.106

• E is a complete extension iff E is an admissible set that contains any argument it defends.107
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• E is a preferred extension iff E is a maximal (w.r.t. ⊆) complete extension.108

• E is a stable extension iff E attacks any argument in A\E .109

• E is a semi-stable extension iff E is a complete extension and the union of the set E and110

the set of all arguments attacked by E is maximal (w.r.t. ⊆).111

• E is a grounded extension iff E is a minimal (w.r.t. ⊆) complete extension.112

• E is an ideal extension iff E is a maximal (w.r.t. ⊆) admissible set contained in every113

preferred extension.114

An argumentation framework has a single grounded (respectively ideal) extension. How-115

ever, it may have several naive, admissible, complete, preferred, stable and semi-stable116

extensions. It may also have zero stable extensions.117

Notations Let H = (A, R) be an argumentation framework. We denote by Extx (H) the set118

of all extensions of H under semantics x ∈ {n, p, s, ss}, where n (respectively119

p, s, ss) stands for naive (respectively preferred, stable and semi-stable). We120

denote by GE(H) (respectively IE(H)) the single grounded (respectively ideal)121

extension of H. When we do not need to refer to a particular semantics, we write122

Ext(H) for short.123

The following result recalls some key properties of these semantics.124

Property 1 [1,18,19] Let H = (A, R) be an argumentation framework.125

• Exts(H) ⊆ Extn(H)126

• Exts(H) ⊆ Extp(H)127

• If |Exts(H)| > 0, then Exts(H) = Extss(H)128

• H has one grounded (respectively ideal) extension129

• GE(H) ⊆ IE(H)130

When Exts(H) = Extp(H), the framework H is said to be coherent. It is also worth131

recalling that an argumentation framework that has an infinite set of arguments may have an132

infinite number of extensions (under multiple-extensions semantics).133

Let us now illustrate the different semantics on the argumentation framework H1 depicted134

below.135

e b

c

d a f g

136

This framework has eight naive extensions:137

• E1 = {a, c, g},138

• E2 = {d, e, f },139

• E3 = {b, d, f },140

• E4 = {a, e, g},141

• E5 = {a, b, g},142

• E6 = {b, e, g},143

• E7 = {b, d, g}, and144

• E8 = {c, f }.145
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A formal characterization of the outcomes of rule-based…

H1 has one stable/semi-stable extension E3 and two preferred extensions: E3 and E6 = {a, g}.146

Its grounded and ideal extensions are empty (GE(H1) = IE(H1) = ∅).147

Consider now the following argumentation framework H2 borrowed from [19]. It lays148

bare some differences between ideal and grounded semantics.149

a b c d

150

It can be checked that:151

• GE(H2) = ∅,152

• Extp(H2) = {{b, c}, {b, d}}, and153

• IE(H2) = {b}.154

Throughout the paper, we will refer to the seven semantics of Definition 3 by the reviewed155

semantics, and by extension-based semantics to any semantics, which partitions the power156

set of the set of arguments into two parts: extensions and non-extensions. Note that there157

are other semantics in the literature like recursive [20] and stage [21] that follow this line of158

research. This distinction is important since some of the results in the next sections hold for159

any extension-based semantics, while others hold under the reviewed ones.160

3 Rule-based logical language161

In what follows, L is a set of literals, i.e., atoms or negation of atoms. The negation of an162

atom x from L is denoted ¬x . We consider two additional constants ⊤ and σ such that ⊤ /∈ L163

and σ /∈ L. Three kinds of information are distinguished:164

• Facts, which are elements of L ∪ {⊤}165

• Strict rules, which are of the form x1, . . . , xn → x (x, x1, . . . , xn denoting literals in L)166

• Defeasible rules, which are of the form x1, . . . , xn ⇒ x or of the form ⊤ ⇒ x167

(x, x1, . . . , xn denoting literals in L)168

Facts are information about particular instances. A strict rule expresses general information169

that has no exception. It is read as follows: If x1, . . . , xn hold, then x always holds. A170

defeasible rule of the form x1, . . . , xn ⇒ x expresses general information that may have171

exceptions and is read as follows: If x1, . . . , xn hold, then generally x holds as well. A172

defeasible rule of the form ⊤ ⇒ x expresses that x is a defeasible fact and is read as follows:173

generally x holds. Unlike existing systems like ASPIC [8] where a strict rule with an empty174

body represents a fact, in our formalism we keep general information and factual information175

separate.176

Let L′ be a set of atoms used for naming rules with the constraints L∩L′ = ∅, ⊤ /∈ L′ and177

σ /∈ L′. Every rule has a unique name and two rules cannot have the same name. Throughout178

the paper, rules are named r, r1, r2, . . .179

Definition 4 (Theory) A theory is a triple T = (F, S, D) where F = {⊤}∪ X , with X ⊆ L,180

is a set of facts, and S ⊆ L′ (respectively D ⊆ L′) is a set of strict (respectively defeasible)181

rules’ names. T is finite iff all three sets F , S and D are finite.182

Note that ⊤ is a fact in any theory. Note also that the two sets S and D contain names of183

rules and not the corresponding rules themselves. Throughout the paper, (F, S,∅) is referred184

to as the strict part of a theory T = (F, S, D).185
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Notations Let r ∈ L′, the functionRule(r) returns the (strict or defeasible) rule whose name186

is r . For each rule x1, . . . , xn → x (respectively x1, . . . , xn ⇒ x or ⊤ ⇒ x)187

whose name is r , the head of the rule is Head(r) = x and the body of the188

rule is Body(r) = {x1, . . . , xn} or Body(r) = {⊤}. Let T = (F, S, D) and189

T ′ = (F ′, S ′, D′) be two theories. We say that T is a sub-theory of T ′, written190

T ⊑ T ′, iff F ⊆ F ′ and S ⊆ S ′ and D ⊆ D′. The relation ⊏ is the strict version191

of ⊑ (i.e., it is the case that at least one of the three inclusions is strict).192

The notion of consistency is defined as follows:193

Definition 5 (Consistency) A set X ⊆ L is consistent iff ∄x, y ∈ X such that x = ¬y. It is194

inconsistent otherwise.195

This simple definition of consistency is sufficient since the language L contains only196

literals. However, it is not suitable in case of richer languages. Assume that L is a propositional197

language. Thus, the set {x, y,¬x∨¬y} is consistent with respect to the above definition while198

it is clearly not the case. Thus, richer languages require a stronger definition of consistency199

like the one proposed in [22].200

Without loss of generality, throughout the paper we make the three following assumptions201

about rules.202

Assumptions The body of every (strict/defeasible) rule is finite and not empty. Moreover,203

for each rule r ,Body(r)∪{Head(r)} is consistent. We say that r is consistent.204

Note that the fact that rules are consistent does not ensure the consistency of a set of rules.205

[23] discussed different forms of rule consistency. One of them is illustrated by the example206

{x ⇒ y, y ⇒ ¬x} where both defeasible rules are consistent whereas together lead to an207

inconsistent rule x ⇒ ¬x .208

Let us now show how new information (i.e., literal) is produced from a given theory. This209

is generally the case when (strict and/or defeasible) rules are fired in a derivation schema.210

Below we provide a definition which generalizes derivations as defined by [10,24] and others.211

Definition 6 (Derivation schema) Let T = (F, S, D) be a theory, x ∈ L. A derivation212

schema for x from T is a finite sequence d = 〈(x1, r1), . . . , (xn, rn)〉 such that:213

• xn = x214

• for i ∈ {1, . . . , n},215

• xi ∈ F and ri = σ , or216

• xi = Head(ri ), with ri ∈ S ∪ D and Body(ri ) ⊆ {x1, .., xi−1}217

Seq(d) = {x1, . . . , xn}.218

Facts(d) = {xi | i ∈ {1, . . . , n}, ri = σ }.219

Strict(d) = {ri | i ∈ {1, . . . , n}, ri ∈ S}.220

Def(d) = {ri | i ∈ {1, . . . , n}, ri ∈ D}.221

In order to improve readability, we somehow abuse the notation: we use the rules them-222

selves instead of their names.223

Example 1 Consider the theory T1 such that F1, S1, D1 are as follows.224

F1

{

p

q
S1

⎧

⎨

⎩

p → s (r1)

q → ¬s (r2)

p, s → u (r3)

D1

⎧

⎨

⎩

¬s ⇒ t (r4)

t, u ⇒ v (r5)

p ⇒ q (r6)

225
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A formal characterization of the outcomes of rule-based…

Each of (1)–(7) below is a derivation schema from theory T1226

〈(p, σ )〉 (1)227

〈(q, σ ), (¬s, r2)〉 (2)228

〈(p, σ ), (s, r1), (u, r3)〉 (3)229

〈(p, σ ), (s, r1), (p, σ ), (u, r3)〉 (4)230

〈(p, σ ), (q, σ ), (s, r1), (u, r3)〉 (5)231

〈(p, σ ), (q, r6), (¬s, r2)〉 (6)232

〈(p, σ ), (q, σ ), (¬s, r2), (s, r1), (u, r3), (t, r4), (v, r5)〉 (7)233

A derivation schema is not necessarily consistent (such as (7) above), as it may contain234

opposite literals in the form xi = ¬x j for some i and j . (A derivation d is consistent235

iff Seq(d) is consistent.) Moreover, a derivation schema is not necessarily minimal (for set236

inclusion) as shown in Example 1: compare (3) with (4). The former is a proper sub-sequence237

of the latter.238

Definition 7 (Minimal derivation schema) Let T be a theory and x ∈ L. A derivation schema239

for x from T is minimal iff none of its proper subsequences is a derivation schema for x from240

T .241

Interestingly enough, there are two ways for a derivation schema not to be minimal for242

set inclusion: (i) involving superfluous literals, i.e., literals that do not serve toward inferring243

the conclusion as is illustrated by (5) in Example 1 (q is of no use there), (ii) involving244

redundancy (hence, repeated literals) as illustrated by (4) in Example 1 (p is repeated twice).245

Definition 8 (Focused derivation schema) Let T = (F, S, D) be a theory and x ∈ L. A246

derivation schema d = 〈(x1, r1), . . . , (xn, rn)〉 for x from T is focused iff it can be reduced247

to a minimal one by just deleting repeated pairs (xi , ri ).248

Property 2 Let T = (F, S, D) be a theory and x ∈ L. A derivation schema d =249

〈(x1, r1), . . . , (xn, rn)〉 for x from T is minimal iff d is focused and the literals x1, . . . , xn250

are pairwise distinct.251

Notations For a theory T , CN(T ) denotes the set of all literals that have a derivation schema252

from T . We call CN(T ) the potential consequences drawn from T (for short,253

consequences) but they need not be definitive as they may happen to be dismissed254

by opposite conclusions.255

The following property applies to the consequences drawn from a given theory.256

Property 3 Let T = (F, S, D) be a theory.257

• CN(T ) ⊆ F ∪ {Head(r) | r ∈ S ∪ D} ⊆ L258

• If T is finite, then CN(T ) is finite259

• F ⊆ CN((F, S,∅)) ⊆ CN(T )260

• ⊤ ∈ CN(T )261

• CN(T ) = {⊤} iff F = {⊤} and ∄r ∈ D such that Body(r) = {⊤}.262

• If d is a derivation schema from T , Seq(d) ⊆ CN(T )263

Some rules may not be activated (i.e., the literals in their body have no derivation schema).264

Let us consider the following example.265
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L. Amgoud, P. Besnard

Example 2 Let T2 = (F2, S2, D2) be a theory such that266

F2

{

p

q
S2

{

p → t (r1)

s → u (r2)
D2

{

p ⇒ q (r3)

u ⇒ v (r4)
267

There are rules here whose head is not a consequence of T2. In symbols,CN(T2) = {p, q, t} ⊂268

{p, q, t, u, v} = F2 ∪ {Head(r) | r ∈ S2 ∪ D2}. Namely, the two rules r2 and r4 are not269

activated.270

It is also easy to show that CN is monotonic. Note that a similar result was shown in [25]271

for the logic underlying the ASPIC system [8].272

Property 4 Let T and T ′ be two theories. If T ⊑ T ′ then CN(T ) ⊆ CN(T ′).273

Let us now introduce the key notion of option which is useful for characterizing the274

extensions of argumentation systems under various semantics. An option is a maximal (for275

set inclusion) consistent sub-theory of a given theory.276

Definition 9 (Option) Let T = (F, S, D) be a theory. An option of T is a sub-theory277

T ′ = (F ′, S ′, D′) of T such that:278

• F ′ ⊆ F , S ′ ⊆ S and D′ ⊆ D279

• CN(T ′) is consistent280

• ∄T ′′ ⊑ T such that T ′
⊏ T ′′ and CN(T ′′) is consistent.281

Opt(T ) denotes the set of all options of T .282

Let us illustrate this new notion by the following example.283

Example 3 Consider T3 such that F3, S3, D3 are as follows.284

F3

⎧

⎨

⎩

p

q

¬s

S3

{

t, v → s (r1) D3

⎧

⎨

⎩

p ⇒ t (r2)

q ⇒ u (r3)

u ⇒ v (r4)

285

The theory T3 has seven options:286

• O1 = (F3, S3, {r2, r3})287

• O2 = (F3, S3, {r2, r4})288

• O3 = (F3, S3, {r3, r4})289

• O4 = (F3,∅, D3)290

• O5 = ({p, q}, S3, D3)291

• O6 = ({p,¬s}, S3, D3)292

• O7 = ({q,¬s}, S3, D3)293

A theory has at least one option which is the theory itself in case it is consistent. This is294

the case in Example 2: Opt(T2) = {T2}.295

Property 5 Let T = (F, S, D) be a theory.296

• Opt(T ) �= ∅.297

• Opt(T ) = {T } iff CN(T ) is consistent.298

We show next that options are all pairwise distinct.299

Proposition 1 For all O, O′ ∈ Opt(T ), if CN(O) = CN(O′), then O = O′.300
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A formal characterization of the outcomes of rule-based…

The definition of option does not make any difference between the strict part of a the-301

ory (i.e., its facts and strict rules) and its defeasible part. In rule systems [24], the former302

takes precedence over the latter since it represents the “certain” information of a theory. For303

instance, in default logic the certain part belongs to every extension of a theory [5]. This304

precedence is captured by the following notion of preferred option.305

Definition 10 (Preferred option) Let T = (F, S, D) be a theory. A preferred option of T is306

a sub-theory T ′ = (F ′, S ′, D′) of T such that:307

• F ′ = F and S ′ = S, D′ ⊆ D,308

• CN(T ′) is consistent,309

• ∀r ∈ D\D′, CN((F, S, D′ ∪ {r})) is inconsistent.310

POpt(T ) denotes the set of all preferred options of T .311

Let us illustrate this notion by an example.312

Example 3 (Cont) The theory T3 has three preferred options: O1, O2 and O3. ⊓⊔313

Unlike options, the defeasible rules of a theory do not necessarily belong to at least one314

preferred option of the theory as shown by the following example.315

Example 4 The theory T4 such that316

F4

{

p

q
S4

{

p → s (r1) D4

{

p ⇒ ¬s (r2)317

has a single preferred option O = (F4, S4,∅) which does not contain the unique defeasible318

rule r2.319

Every preferred option is an option. The converse holds only when the theory is consistent320

in which case the latter is the only (preferred) option (cf. Property 5).321

Property 6 Let T = (F, S, D) be a theory.322

• POpt(T ) ⊆ Opt(T ).323

• Opt(T ) ⊆ POpt(T ) iff CN(T ) is consistent.324

A theory may not have preferred options. This is in particular the case when the strict part325

(the set of facts and strict rules) is inconsistent.326

Property 7 Let T = (F, S, D) be a theory.327

• POpt(T ) = ∅ iff CN((F, S,∅)) is inconsistent.328

• For all r ∈ D, if CN((F, S, {r})) is consistent, then there exists a preferred option O329

such that (F, S, {r}) ⊑ O.330

Notice that the set of consequences of an (preferred) option is not necessarily maximal331

for set inclusion as shown by Example 3.332

Example 3 (Cont) We have CN(O1) = {p, q,¬s, t, u} and CN(O2) = {p, q,¬s, t}. Thus,333

CN(O2) ⊆ CN(O1). ⊓⊔334

Notations For a set B of theories, we denote the set of its maximal elements as Max(B) =335

{T ∈ B | ∄T ′ ∈ B such that CN(T ) � CN(T ′)}.336
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L. Amgoud, P. Besnard

Note that in general, maximal preferred options may be different from maximal options.337

Consider, for instance, the theory in Example 3. Its maximal options are O4 and O5, while338

its maximal preferred options are O1 and O3.339

340 Let us now introduce the concept of free part of a theory T = (F, S, D). It is the sub-341

theory that is made of the set of facts, the set of strict rules and the defeasible rules which342

are involved in every preferred option of T .343

Definition 11 (Free sub-theory) The free sub-theory of a theory T = (F, S, D) is344

Free(T ) = (F, S,
⋂

(F,S,Di )∈POpt(T )

Di ).345

The following result summarizes some basic properties of this sub-theory.346

Property 8 Let T be a theory.347

• For any O ∈ POpt(T ), Free(T ) ⊑ O348

• CN(Free(T )) is consistent349

4 Rule-based argumentation systems350

In this section, we propose an instantiation of Dung’s framework that allows reasoning351

about defeasible information, i.e., drawing conclusions from a theory T = (F, S, D). The352

instantiation is referred to as argumentation system keeping thus the term framework for the353

abstract formalism of Dung. The backbone of an argumentation system is naturally the notion354

of argument. Intuitively, an argument is a justification of a claim, i.e., it provides evidence355

that the claim is true. Thus, it should satisfy at least the three following basic properties:356

(i) internal coherence, (ii) relevance to the claim it justifies and (iii) truth preserving (i.e.,357

it guarantees the truth of the claim). It is true that humans’ arguments may be inconsistent,358

but they are seen as fallacious by reasonable people. Furthermore, the topic of the paper is359

not reasoning about humans’ arguments. It is rather reasoning about inconsistent theories by360

using arguments as a building block of the proposed logic.361

Definition 12 (Argument) Let T = (F, S, D) be a theory. An argument defined from T is362

a pair (d, x) such that:363

• x ∈ L364

• d is a derivation schema for x from T (Truth preserving)365

• Seq(d) is consistent (Internal coherence)366

• ∄T ′
⊏ (Facts(d),Strict(d),Def(d)) such that x ∈ CN(T ′) (Relevance)367

An argument (d, x) is strict iff Def(d) = ∅.368

Example 1 (Cont) Below are the nine arguments that are built from the theory T1.369

• (〈(p, σ )〉, p)370

• (〈(q, σ )〉, q)371

• (〈(p, σ ), (q, r6)〉, q)372

• (〈(p, σ ), (s, r1)〉, s)373

• (〈(q, σ ), (¬s, r2)〉,¬s)374

• (〈(p, σ ), (q, r6), (¬s, r2)〉,¬s)375

• (〈(p, σ ), (s, r1), (u, r3)〉, u)376
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A formal characterization of the outcomes of rule-based…

• (〈(q, σ ), (¬s, r2), (t, r4)〉, t)377

• (〈(p, σ ), (q, r6), (¬s, r2), (u, r3)〉, t)378

Note that there is no argument in favor of v since all derivation schemas for v are inconsistent.379

Derivations (4) and (5) do not give birth to arguments since they are not minimal. ⊓⊔380

Notations Let T be a theory, Arg(T ) denotes the set of all arguments built from T in the381

sense of Definition 12. If a = (d, x) is an argument, then Conc(a) = x . For a382

set E of arguments, Concs(E) = {x | (d, x) ∈ E} and Th(E) is a theory such383

that384

Th(E) =

⎛

⎝

⋃

(d,x)∈E

Facts(d),
⋃

(d,x)∈E

Strict(d),
⋃

(d,x)∈E

Def(d)

⎞

⎠ .385

The following result shows that an argument provides a minimal derivation schema for a386

conclusion.387

Theorem 1 Let T be a theory. For any consistent sequence d = 〈(x1, r1), . . . , (xn, rn)〉 from388

T , the following two statements are equivalent:389

• (d, x) is an argument (from T )390

• d is a focused derivation schema from T such that x = xn391

An argument may have several sub-parts, each of which may give birth to an argument,392

called sub-argument of the original argument.393

Definition 13 (Sub-argument) An argument (d, x) is a sub-argument of (d ′, x ′) iff394

(Facts(d), Strict(d), Def(d)) ⊑ (Facts(d ′), Strict(d ′), Def(d ′)).395

Notations The function Sub(.) returns the set of all sub-arguments of a given argument.396

Example 1 (Cont) The argument (〈(q, σ ), (¬s, r2)〉,¬s) has two sub-arguments: (〈(q, σ )〉,397

q) and itself. By contrast, (〈(q, σ )〉, q) is not a sub-argument of (〈(p, σ ), (q, r6)〉, q). ⊓⊔398

Property 9 If (d, x) is a sub-argument of (d ′, x ′), then Seq(d) ⊆ Seq(d ′).399

The converse is not true as shown next.400

Example 5 Consider the two arguments a and b:401

• a = (〈(p, σ ), (t, p → t)〉, t)402

• b = (〈(p, σ ), (q, p → q), (t, q ⇒ t)〉, t)403

Note that Seq(a) = {p, t} ⊆ {p, q, t} = Seq(b) but a is not a sub-argument of b since the404

theory ({p}, {p → t}, σ ) is not a sub-theory of ({p}, {p → q}, {q ⇒ t}).405

Argumentation systems that use a Tarskian logic such as propositional logic may have406

infinite sets of arguments even when the theories (called knowledge bases) over which they407

are built are themselves finite (cf. [26]). We show that this is not the case for rule-based408

argumentation systems. Indeed, the sets of arguments are finite as soon as the theories are409

finite.410

Proposition 2 If a theory T is finite, then Arg(T ) is finite.411
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L. Amgoud, P. Besnard

The set of arguments built from a given theory cannot be empty since the set of facts of a412

theory contains at least ⊤.413

Property 10 For a theory T = (F, S, D), Arg(T ) �= ∅.414

The construction of arguments in all existing structured argumentation systems is a415

monotonic process. By structured systems, we mean argumentation systems that build their416

arguments from knowledge bases encoded in particular logics. These include ASPIC [8],417

ASPIC+ [9], DeLP [10], ABA [27] and those discussed in [4]. Thus, unlike Dung’s frame-418

work where arguments are abstract entities, in structured systems arguments have a clear419

origin and a precise structure. Hunter studied in [25] the properties of the logics underlying420

existing structured systems. The results show that the set of arguments built from a knowl-421

edge base cannot be shrunk when the base is extended by new information. The following422

result shows that this property holds also for the kind of logic discussed in this paper.423

Proposition 3 Let T and T ′ be two theories. If T ⊑ T ′, then Arg(T ) ⊆ Arg(T ′).424

A rule-based instantiation of Dung’s abstract framework is defined as follows:425

Definition 14 (Argumentation system) An argumentation system defined over a theory T =426

(F, S, D) is a pair H = (Arg(T ), R) where Arg(T ) is the set of arguments built from T427

in the sense of Definition 12 and R ⊆ Arg(T ) × Arg(T ) is an attack relation.428

For the sake of generality, the attack relation of an argumentation system is left unspecified429

in the sequel. Thus, it may be instantiated in different ways. In existing rule-based argumen-430

tation systems like the ASPIC system as defined in [8,17] and its extended version ASPIC+431

[9], three kinds of attack relations are used: (i) rebut, initially proposed in [28], which requires432

that two arguments have opposite conclusions, (ii) assumption attack, proposed also in [28],433

according to which an argument undermines a premise of another argument, and (iii) under-434

cut, proposed in [16], which allows an argument to prevent the application of a defeasible435

rule in another argument. The two first relations are conflict-dependent, i.e., they capture436

the inconsistency of the theory over which an argumentation system is built. Such relations437

should show no attack from argument a to b unless their derivation schemas contain opposite438

literals.439

Definition 15 (Conflict-dependency) Let H = (Arg(T ), R) be an argumentation sys-440

tem. The attack relation R is conflict-dependent iff for all (d, x), (d ′, x ′) ∈ Arg(T ), if441

(d, x) R (d ′, x ′) then Seq(d) ∪ Seq(d ′) is inconsistent.442

An important feature of conflict-dependent attack relations is that they do not admit self-443

attacking arguments, mainly since arguments are consistent.444

Proposition 4 Let H = (Arg(T ), R) be an argumentation system. If R is conflict-445

dependent, then for all a ∈ Arg(T ) (a, a) /∈ R.446

Conflict-dependency is somehow related to the notion of conflict-freeness of sets of argu-447

ments. Indeed, when the attack relation is conflict-dependent, the set of arguments built from448

any consistent theory is conflict-free with respect to this relation.449

Proposition 5 Let H = (Arg(T ), R) be an argumentation system built over a theory T .450

For every T ′ ⊑ T , if CN(T ′) is consistent and R is conflict-dependent, then Arg(T ′) is451

conflict-free.452
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A formal characterization of the outcomes of rule-based…

Another feature of all the attack relations in existing rule-based argumentation systems is453

the fact that they privilege strict arguments.454

Definition 16 (Strict argument precedence) Let H = (Arg(T ), R) be an argumentation455

system built over a theory T . An attack relation R privileges strict arguments iff for all456

a = (d, x), b = (d ′, x ′) ∈ Arg(T ), if a is strict and Seq(d) ∪ Seq(d ′) is inconsistent, then457

aRb.458

A consequence of this property is that the set Arg(Free(T )) is admissible (i.e., it is459

conflict-free and defends all its elements). We will show in a subsequent section that this460

result is crucial for characterizing ideal extension.461

Theorem 2 Let H = (Arg(T ), R) be an argumentation system built over a theory T =462

(F, S, D) such that CN((F, S,∅)) is consistent. If R is conflict-dependent and privileges463

strict arguments, then Arg(Free(T )) is an admissible set of H.464

Unless stated otherwise, in what follows we do not make any assumption about the attack465

relation of a rule-based argumentation system. However, the arguments of the latter are466

evaluated using any of the semantics recalled in Definition 3. The extensions of a system467

are used for defining the plausible conclusions to be drawn from the theory over which the468

system is built. A literal is a plausible conclusion of a system iff it is a common conclusion469

to all the extensions.470

Definition 17 (Plausible conclusions) Let H = (Arg(T ), R) be an argumentation system471

built over a theory T . The set of plausible conclusions of H under semantics x is472

Output(H) =

{

{z ∈ L | ∀E ∈ Extx (H), ∃a ∈ E s.t. Conc(a) = z} if Extx (H) �= ∅

∅ else
473

The set of plausible conclusions coincides with the set of common conclusions of the474

extensions, of course when extensions exist.475

Property 11 Let H = (Arg(T ), R) be an argumentation system built over a theory T such476

that Extx (H) �= ∅ where x is any of the reviewed semantics. The equality Output(H) =477
⋂

Ei ∈Extx (H) Concs(Ei ) holds.478

Finally, it is obvious that the plausible conclusions of an argumentation system are con-479

sequences of the theory over which it is built.480

Property 12 Let H = (Arg(T ), R) be an argumentation system built over a theory T . The481

inclusion Output(H) ⊆ CN(T ) holds under any extension-based semantics.482

It is worth noticing that under admissible semantics, the set of plausible conclusions of any483

argumentation system is empty. This is mainly due to the fact that the empty set is always484

an admissible extension. This makes this semantics unsuitable for defeasible reasoning.485

Complete semantics suffers from the same problem. Indeed, since under this semantics486

extensions are not maximal for set inclusion, the empty set may be an extension leading487

thus to an empty set of plausible conclusions. Stable semantics may also be unsuitable for488

argumentation systems that do not have extensions. However, we show in a subsequent section489

that rule-based systems that satisfy some desirable properties do have stable extensions, in490

particular when the attack relation is conflict-dependent.491
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5 Postulates for rule-based argumentation systems492

Like any reasoning model, argumentation systems should enjoy some desirable properties or493

rationality postulates that ensure their soundness. The first work on postulates in argumen-494

tation was done by [17] in the context of rule-based systems. Starting from the observation495

that some existing systems like those proposed in [12,29] suffer from two main problems: (i)496

returning inconsistent sets of plausible conclusions and (ii) forgetting intuitive conclusions,497

the authors proposed three postulates which prevent the encountered problems. In what fol-498

lows, we recall the three postulates and propose three new ones. The first postulate proposed499

in [17] concerns the consistency of the set of conclusions supported by every extension.500

Postulate 1 (Consistency) An argumentation system H = (Arg(T ), R) built over a theory501

T = (F, S, D) satisfies consistency under semantics x iff for any E ∈ Extx (H), Concs(E)502

is consistent.503

A rule-based system which satisfies this postulate has necessarily a consistent set of504

plausible conclusions.505

Property 13 [17] If an argumentation system H = (Arg(T ), R) satisfies consistency under506

semantics x (x being any extension-based semantics), then Output(H) is consistent.507

The second postulate ensures a form of “completeness” of the outputs of an argumentation508

system. It says that if there is an argument with conclusion x in an extension of the system,509

and there exists a strict rule x → y in the theory over which the system is built, then y510

should also be supported by an argument in the same extension. Recall that a strict rule has511

no exception. Thus, as soon as x is true, y holds for sure.512

Postulate 2 (Closure under strict rules) An argumentation system H = (Arg(T ), R) built513

over a theory T = (F, S, D) is closed under strict rules under semantics x iff for any514

E ∈ Extx (H), Concs(E) = CN((Concs(E), S,∅)).515

If an argumentation system is closed under strict rules, then its set of plausible conclusions516

is also closed under strict rules.517

Property 14 [17] Let H = (Arg(T ), R) be an argumentation system built over a theory518

T = (F, S, D). If H is closed under strict rules under semantics x (x being any extension-519

based semantics), then Output(H) = CN((Output(H), S,∅)).520

A third postulate, called indirect consistency, was proposed in [17]. It ensures that every521

closed (under strict rules) extension should satisfy consistency. It was shown that a system that522

satisfies consistency and closure under strict rules satisfies this form of indirect consistency.523

Property 15 [17] Let H = (Arg(T ), R) be an argumentation system built over a theory524

T = (F , S, D). If H satisfies consistency and is closed under strict rules under semantics x525

(x being any extension-based semantics), then for any E ∈ Extx (H),CN((Concs(E), S,∅))526

is consistent.527

It is worth mentioning that the three previous results hold for any attack relation and528

under any extension-based acceptability semantics, thus under any of the semantics recalled529

in Definition 3 and others like recursive semantics [20].530

531
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A formal characterization of the outcomes of rule-based…

In any axiomatic approach, the axioms (or postulates) should ideally all be independent532

from each other, i.e., none is deduced from the others. Thus, in the sequel indirect consistency533

is abandoned since it follows from Postulates 1 and 2. We propose next three new postulates534

which were already defined in [30] for argumentation systems that use a logic in the sense of535

[22]. The first one says that if an argument belongs to an extension, then all its sub-arguments536

should be in the extension. Thus, an argument cannot be accepted if one of its sub-parts is537

questionable. This is a natural requirement since plausible conclusions inferred from a theory538

rely on their supporting arguments which should be unassailable.539

Postulate 3 (Closure under sub-arguments) An argumentation system H = (Arg(T ), R)540

built over a theory T = (F, S, D) is closed under sub-arguments under semantics x iff for541

any E ∈ Extx (H), if a ∈ E then Sub(a) ⊆ E .542

Argumentation systems that satisfy both consistency and closure under sub-arguments543

enjoy a strong version of consistency. Indeed, the set of consequences that follow from the544

theory of an extension is consistent.545

Proposition 6 Let H = (Arg(T ), R) be an argumentation system built over a theory T =546

(F, S, D) such that Extx (H) �= ∅ (x being any extension-based semantics). If H satisfies547

consistency and closure under sub-arguments, then for any E ∈ Extx (H), CN(Th(E)) is548

consistent.549

Let us illustrate this result with an example.550

Example 6 Let T5 = (F5, S5, D5) be a theory such that S5 = ∅ and551

F5

{

x

¬x
D5

{

x ⇒ y (r1)

¬x ⇒ z (r2)
552

Consider the two arguments (d1, y), (d2, z) with d1 = 〈(x, σ ), (y, r1)〉 and d2 =553

〈(¬x, σ ), (z, r2)〉. Assume that the set E = {(d1, y), (d2, z)} is an extension of (Arg(T5), R)554

under a given semantics. Clearly, CN((Concs(E), S,∅)) = {y, z} is consistent. However,555

Th(E) = T and CN(T ) = {x,¬x, y, z} is inconsistent. Proposition 6 ensures that the argu-556

mentation system (Arg(T5), R) violates at least one of the consistency or closure under557

sub-arguments postulates.558

Since facts and strict rules are the certain part in a theory (facts being observable and559

strict rules having no exceptions), they should be plausible conclusions of any argumentation560

system. It is worth mentioning that this principle is applied, for instance, in default logic561

where the non-defeasible information of a default theory is part of all extensions [5]. Of562

course this makes sense when the non-defeasible information is consistent.563

Postulate 4 (Strict precedence) An argumentation system H = (Arg(T ), R) built over a564

theory T = (F, S, D) satisfies strict precedence under semantics x iff CN((F, S,∅)) ⊆565

Output(H).566

Notice that argumentation systems that have no extensions violate this postulate. Similarly,567

systems that evaluate their arguments using a semantics which considers the empty set as an568

extension (like admissible semantics) violate strict precedence. Such systems are thus not569

suitable for defeasible reasoning since they may miss intuitive conclusions.570

Proposition 7 Let H = (Arg(T ), R) be an argumentation system built over a theory571

T = (F, S, D) such that ∅ ∈ Extx (H). H violates strict precedence under semantics x.572
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We show next that if an argumentation system satisfies consistency and strict precedence,573

then the strict part of the theory over which it is built is consistent.574

Proposition 8 Let H = (Arg(T ), R) be an argumentation system built over a theory T =575

(F, S, D) such that Extx (H) �= ∅. If H satisfies consistency and strict precedence under576

semantics x, then CN((F, S,∅)) is consistent.577

The last postulate ensures a form of completeness of the extensions of an argumentation sys-578

tem under any semantics. It says that if the sequence of an argument is part of the conclusions579

of a given extension, then the argument should belong to the extension. Informally: If each580

step in the argument is good enough to be in the extension, then so is the argument itself. It581

is worth pointing out that this postulates holds for both strict and defeasible rules.582

Postulate 5 (Exhaustiveness) An argumentation system H = (Arg(T ), R) built over a583

theory T = (F, S, D) satisfies exhaustiveness under semantics x iff for any E ∈ Extx (H),584

for any (d, x) ∈ Arg(T ), if Seq(d) ⊆ Concs(E), then (d, x) ∈ E .585

Argumentation systems that satisfy exhaustiveness and closure under sub-arguments have586

complete extensions, i.e., they are closed in terms of arguments.587

Proposition 9 Let H = (Arg(T ), R) be an argumentation system such that Extx (H) �= ∅588

(x being any extension-based semantics). If H is closed under sub-arguments and satisfies589

exhaustiveness under semantics x, then for all E ∈ Extx (H), E = Arg(Th(E)).590

When an argumentation system satisfies strict precedence and exhaustiveness, then its591

strict arguments are part of any extension. This holds under any extension-based semantics.592

Proposition 10 Let H = (Arg(T ), R) be an argumentation system such that Ext(H) �= ∅593

(under an extension-based semantics). If H satisfies exhaustiveness and strict precedence,594

then for any E ∈ Ext(H), Arg((F, S,∅)) ⊆ E .595

An axiomatic approach should obey an important feature: The postulates should be com-596

patible, i.e., they can be satisfied all together by an argumentation system under a given597

semantics. Fortunately, this is the case of the five postulates discussed in this section.598

Proposition 11 The five postulates are compatible.599

The four postulates (consistency, closure under sub-arguments, closure under strict rules,600

strict precedence) are independent. None of them follows from a subset of the three others.601

However, as will be shown in the next section, exhaustiveness follows from consistency and602

closure under sub-arguments when an argumentation system uses a conflict-dependent attack603

relation and naive or stable semantics for evaluating arguments.604

6 Outcomes of rule-based argumentation systems605

This section analyzes the outputs of rule-based argumentation systems under the reviewed606

semantics, i.e., those recalled in Definition 3, that are suitable for defeasible reasoning. Recall607

that complete semantics is not a good candidate for such reasoning since its extensions are608

not maximal (for set inclusion) and may thus lead to an empty set of plausible conclusions,609

and missing intuitive conclusions. We analyze the extensions under each semantics. Indeed,610
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A formal characterization of the outcomes of rule-based…

we characterize the set Concs(.) of conclusions and the theory Th(.) of each extension. We611

also characterize the set Output(.) of plausible conclusions that are drawn by a rule-based612

argumentation system from a theory.613

Note that the argumentation system described in Sect. 4 is not fully specified since its attack614

relation is left undefined and may thus be instantiated in different ways. For the purpose of615

our study, we do not need to consider a particular attack relation. Since any reasonable616

argumentation system should satisfy the discussed postulates, throughout this section we617

only focus on systems that satisfy the postulates. Such systems exist and ASPIC, defined618

in [17], is one of them. Indeed, it was shown in [17] that ASPIC, which uses restricted619

rebut as attack relation, satisfies consistency and closure under both sub-arguments and strict620

rules under all Dung’s semantics. Furthermore, the attack relation in ASPIC privileges strict621

arguments (by definition) and the strict part of a theory is assumed to be consistent. Thus, the622

system satisfies strict precedence under the same semantics. Finally, from our Proposition623

15 (respectively Proposition 13), it follows that it also satisfies exhaustiveness under stable624

(respectively naive) semantics. The results we provide next hold for any instantiation of the625

attack relation R. This means that whatever the attack relation that is considered, the outcome626

will be the same. This shows also that all the reasonable rule-based argumentation systems627

that can be built over the same theory are equivalent [31,32], in the sense they provide the628

same extensions and the set of plausible conclusions under a given semantics.629

Before presenting the formal results concerning the reviewed semantics, below are some630

results that hold under any extension-based semantics, thus under all the reviewed semantics631

but also under several other semantics (e.g., recursive semantics [20], the one used in DeLP632

system [10], stage semantics [21], …). The first result characterizes the set of conclusions of633

each extension of an argumentation system which is closed under sub-arguments.634

Proposition 12 Let H = (Arg(T ), R) be an argumentation system such that Ext(H) �=635

∅ (under an extension-based semantics). If H is closed under sub-arguments, then for any636

E ∈ Ext(H),637

• Concs(E) = X ∪ {Head(r) | r ∈ Y ∪ Z} where Th(E) = (X, Y, Z)638

• Concs(E) = CN(Th(E))639

• ∀(d, x) ∈ Arg(Th(E)), Seq(d) ⊆ Concs(E)640

The next result shows that if an argumentation system over a theory satisfies strict prece-641

dence, closure under both sub-arguments and strict rules, then the set of literals deduced642

from Th(E), the theory of an extension E , is exactly the same set that is obtained from Th(E)643

extended by all facts and strict rules which are not in Th(E).644

Theorem 3 Let H = (Arg(T ), R) be an argumentation system built over a theory T =645

(F, S, D) such that Ext(H) �= ∅ (under an extension-based semantics). If H satisfies strict646

precedence and closure under both strict rules and sub-arguments, then for any E ∈ Ext(H),647

CN (Th(E)) = CN

⎛

⎝

⎛

⎝F, S,
⋃

(d,x)∈E

Def(d)

⎞

⎠

⎞

⎠ .648

We also show that the theory of an extension can be extended into a sub-theory (of the649

argumentation system) which infers, using the notion of derivation, all the conclusions that650

are supported by arguments of the extension. This (i.e., Theorem 4) will be useful in proving651

various results in the next sections.652
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Theorem 4 Let H = (Arg(T ), R) be an argumentation system built over a theory T =653

(F, S, D) such that Ext(H) �= ∅ (under an extension-based semantics). If H satisfies strict654

precedence, and closure under both strict rules and sub-arguments, then for any E ∈ Ext(H),655

Concs(E) = CN(O) for O = (F, S, ζ ) such that656

ζ =

⎛

⎝

⋃

(d,x)∈E

Def(d)

⎞

⎠ ∪
{

r | r ∈ D and Body(r) � CN(Th(E))
}

.657

6.1 Naive semantics658

Before characterizing the extensions as well as the plausible conclusions of a rule-based659

argumentation system, let us first show some additional links between the postulates in the660

particular case of naive semantics. The first result shows that exhaustiveness follows from661

consistency and closure under sub-arguments. This is the case when the attack relation is662

conflict-dependent.663

Proposition 13 Let H = (Arg(T ), R) be an argumentation system built over a theory T664

such that R is conflict-dependent. If H satisfies consistency and closure under sub-arguments665

under naive semantics, H satisfies exhaustiveness under naive semantics.666

The second result shows that when an argumentation system is closed under sub-arguments667

and satisfies the consistency postulate under naive semantics, then every naive extension of668

the system is closed in terms of arguments.669

Proposition 14 Let H = (Arg(T ), R) be an argumentation system built over a theory670

T such that R is conflict-dependent and H satisfies consistency and closure under sub-671

arguments under naive semantics. For any E ∈ Extn(H), E = Arg(Th(E)).672

Strict precedence is problematic in case of naive semantics since it may be violated by a673

rule-based argumentation system. This is mainly due to the fact that the orientation of attacks674

is not taken into account when computing naive extensions; thus, there is no way to enforce675

the postulate. We show next that strict arguments are part of any naive extension only when676

they neither are attacked nor attack any argument.677

Theorem 5 Let H = (Arg(T ), R) be an argumentation system built over a theory T =678

(F, S, D) such that R is conflict-dependent. For any E ∈ Extn(H), Arg((F, S,∅)) ⊆ E iff679

for any a ∈ Arg((F, S,∅)), ∄b ∈ Arg(T ) such that aRb or bRa.680

We have previously shown that the five postulates are compatible in the general case.681

Indeed, under stable and preferred semantics, it was shown that the ASPIC system satisfies682

all the postulates. In case of naive semantics, this is not always true. Strict precedence is683

not compatible with consistency when the strict part is inconsistent, or it is consistent but684

in conflict with the defeasible part. For instance, any argumentation system built over the685

theory of Example 3 will violate at least one of the two postulates under naive semantics.686

Theorem 6 Let H = (Arg(T ), R) be an argumentation system built over a theory T =687

(F, S, D) such that R is conflict-dependent. If ∃a, b ∈ Arg(T ) such that a ∈ Arg((F, S,∅))688

and Conc(a) = ¬Conc(b), then H cannot satisfy both strict precedence and consistency689

under naive semantics.690
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A formal characterization of the outcomes of rule-based…

In case of the ASPIC system, the argument b cannot be strict since the strict part (i.e.,691

CN(F, S,∅)) is assumed to be consistent. Moreover, there is only one conflict between a and692

b and which emanates from a since strict arguments cannot be attacked by defeasible ones.693

Thus, strict precedence is violated.694

We show next that, assuming consistency and closure under sub-arguments, naive exten-695

sions are maximal.696

Theorem 7 Let H = (Arg(T ), R) be an argumentation system built over a theory T such697

that R is conflict-dependent and H satisfies consistency and closure under sub-arguments698

under naive semantics. For all E, E ′ ∈ Extn(H), if Concs(E ′) ⊆ Concs(E) then E = E ′.699

The following theorem characterizes naive extensions. It says that every naive extension700

of an argumentation system which satisfies consistency and closure under sub-arguments has701

a unique corresponding maximal option in the theory at hand.702

Theorem 8 Let H = (Arg(T ), R) be an argumentation system built over a theory T703

such that R is conflict-dependent and H satisfies consistency and closure under sub-704

arguments under naive semantics. For any E ∈ Extn(H), there exists a unique option705

O ∈ Max(Opt(T )) such that Th(E) ⊑ O and Concs(E) = CN(O).706

Note that the inclusion Th(E) ⊆ O is due to the fact that a theory Th(E) of an extension707

E contains only activated (strict and defeasible) rules, while maximal options may contain708

non-activated ones. Thus, the elements which in O but not in Th(E) are non-activated rules.709

Notations For E any extension of H such that O in Max(Opt(T )) satisfies Th(E) ⊑ O and710

Concs(E) = CN(O), let711

Option(E)
def
= O.712

We prove that no two naive extensions return the same option. Moreover, every extension is713

exactly the set of all arguments that can be built from its corresponding option.714

Theorem 9 Let H = (Arg(T ), R) be an argumentation system built over a theory T such715

that R is conflict-dependent and H satisfies consistency and closure under sub-arguments716

under naive semantics.717

• For all E, E ′ ∈ Extn(H), if Option(E) = Option(E ′), then E = E ′
718

• For any E ∈ Extn(H), E = Arg(Option(E))719

We have shown that each naive extension captures exactly one maximal option and it720

supports all, and only, the consequences of that option. Theorem 10 states that every maximal721

option has a corresponding naive extension. So, there is a bijection from the set of naive722

extensions to the set of maximal options.723

Theorem 10 Let H = (Arg(T ), R) be an argumentation system built over a theory T such724

that R is conflict-dependent and H satisfies consistency and closure under sub-arguments725

under naive semantics.726

• For any O ∈ Max(Opt(T )), Arg(O) ∈ Extn(H)727

• For any O ∈ Max(Opt(T )), O = Option(Arg(O))728

• For all O, O′ ∈ Max(Opt(T )), if Arg(O) = Arg(O′) then O = O′
729
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Example 3 (Cont) The theory T3 has seven options, of which only two are maximal:730

Max(Opt(T3)) = {O4, O5}. For all argumentation system H built over T3, if the attack731

relation of H is to be conflict-dependent and consistency and closure under sub-arguments732

satisfied, then Extn(H) = {Arg(O4),Arg(O5)}.733

From the previous results, it follows that there is a bijection between the set of naive734

extensions of an argumentation system and the maximal options of the theory over which the735

system is built.736

Corollary 1 Let H = (Arg(T ), R) be an argumentation system built over a theory T such737

that R is conflict-dependent and H satisfies consistency and closure under sub-arguments738

under naive semantics. There is a bijection between Extn(H) and Max(Opt(T )).739

The previous results require only the satisfaction of two postulates: consistency and closure740

under sub-arguments. We show next that when a rule-based argumentation system satisfies741

all the five postulates, there is a bijection between the set of naive extensions of the system742

and the maximal preferred options of the theory over which it is built. The reason is that in743

such a case, the maximal options of the theory coincide with the maximal preferred ones.744

Recall that in general, maximal preferred options may be different from maximal options.745

Theorem 11 Let H = (Arg(T ), R) be an argumentation system built over a theory T such746

that R is conflict-dependent and H satisfies consistency, strict precedence and closure under747

both strict rules and sub-arguments under naive semantics. The equality Max(POpt(T )) =748

Max(Opt(T )) holds.749

Corollary 2 Let H = (Arg(T ), R) be an argumentation system built over a theory T such750

that R is conflict-dependent and H satisfies consistency, strict precedence and closure under751

both strict rules and sub-arguments under naive semantics. There is a bijection between752

Extn(H) and Max(POpt(T )).753

It is possible to delimit the number of naive extensions of any argumentation system that754

satisfies consistency and closure under sub-arguments. It is exactly the number of maximal755

options of the theory at hand.756

Corollary 3 Let H = (Arg(T ), R) be an argumentation system built over a theory T such757

that R is conflict-dependent and H satisfies consistency and closure under sub-arguments758

under naive semantics. The equality |Extn(H)| = |Max(Opt(T ))| holds.759

It follows also that when a theory is finite, then any system built over it has a finite number760

of naive extensions.761

Corollary 4 Let H = (Arg(T ), R) be an argumentation system built over a theory T such762

that R is conflict-dependent and H satisfies consistency and closure under sub-arguments763

under naive semantics. If T is finite, then H has a finite number of naive extensions.764

What about the plausible conclusions that are drawn from a theory using an argumentation765

system that satisfies the postulates? From the previous results, it is easy to show that they are766

the literals that follow from all the maximal options.767

Theorem 12 Let H = (Arg(T ), R) be an argumentation system built over a theory T such768

that R is conflict-dependent and H satisfies consistency and closure under sub-arguments769

under naive semantics.770

Output(H) =
⋂

Oi ∈Max(Opt(T ))

CN(Oi )771
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A formal characterization of the outcomes of rule-based…

Example 3 (Cont) Any argumentation system H that can be built over the theory T3 and has a772

conflict-dependent attack relation and satisfies consistency and closure under sub-arguments773

will have as output the set Output(H) = CN(O4) ∩ CN(O5) = {p, q, t, u, v}.774

Let us summarize the main results: under naive semantics, any rule-based argumentation775

system may violate strict precedence. However, the other postulates can be satisfied. In such776

a case , if the attack relation is conflict-dependent, then any argumentation system will infer777

exactly the literals that follow from all the maximal options of the theory over which the778

system is built. This is due to the bijection that holds between the set of naive extensions and779

the set of maximal options. In case the system satisfies also strict precedence and closure780

under strict rules, then the maximal options of the theory coincide with the maximal preferred781

options.782

6.2 Stable semantics783

As for naive semantics, exhaustiveness follows from consistency and closure under sub-784

arguments in case of stable semantics.785

Proposition 15 Let H = (Arg(T ), R) be an argumentation system built over a theory T786

such that R is conflict-dependent. If H satisfies consistency and closure under sub-arguments787

under stable semantics, then the following two properties hold:788

• H satisfies exhaustiveness under stable semantics.789

• For any E ∈ Exts(H), E = Arg(Th(E)).790

Stable extensions of rule-based argumentation systems satisfying the five postulates return791

maximal preferred options. This means that if one instantiates Dung’s framework and does792

not get maximal preferred options with stable extensions, then the instantiation certainly793

violates at least one of the postulates. Note that strict precedence may be satisfied by an794

argumentation system under stable semantics while it is violated by the same system under795

naive semantics. This is due to the fact that the orientation of attacks plays an important796

role in stable semantics, then strict precedence can be enforced by choosing an appropriate797

orientation.798

Theorem 13 Let H = (Arg(T ), R) be an argumentation system defined over a theory T799

such that R is conflict-dependent. If H satisfies consistency, strict precedence and closure800

under both sub-arguments and strict rules under stable semantics, and Exts(H) �= ∅, then801

for any E ∈ Exts(H), there exists a unique option O ∈ Max(POpt(T )) such that:802

• Th(E) ⊑ O803

• Concs(E) = CN(O)804

• E = Arg(O)805

Two stable extensions cannot capture the same maximal preferred option.806

Theorem 14 Let H = (Arg(T ), R) be an argumentation system defined over a theory T807

such that R is conflict-dependent. If H satisfies consistency, strict precedence and closure808

under both sub-arguments and strict rules under stable semantics and Exts(H) �= ∅, then809

for all E, E ′ ∈ Exts(H), if Option(E) = Option(E ′) then E = E ′.810

The previous results characterize the stable extensions of rule-based argumentation sys-811

tems that satisfy the postulates. However, they do not guarantee that each maximal preferred812
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option of a theory has a corresponding stable extension. To put it differently, it does not guar-813

antee a bijection between the sets Exts(H) and Max(POpt(T )) and thus does not ensure814

the equality |Exts(H)| = |Max(POpt(T ))|. In case of argumentation systems that use a815

Tarskian logic for representing information and for computing arguments, it was shown in816

[4] that this equality depends on the attack relation that is chosen. We show next that this is817

also the case for rule-based systems.818

Given T , let ℜs be the set of all attack relations that are conflict-dependent and that ensure819

the five postulates under stable semantics:820

ℜs = {R ⊆ Arg(T ) × Arg(T ) | R is conflict-dependent and (Arg(T ), R) satisfies821

the five postulates under stable semantics for any theory T }.822

This set contains three disjoints subsets of attack relations, i.e., ℜs = ℜs1 ∪ ℜs2 ∪ ℜs3 :823

• ℜs1 : the set of relations such that |Exts(H)| = 0824

• ℜs2 : the set of relations such that |Exts(H)| = |Max(POpt(T ))|825

• ℜs3 : the set of relations such that |Exts(H)| < |Max(POpt(T ))|826

Let us analyze separately each category of attack relations. The following result shows827

that the set ℜs1 is empty, meaning that there is no attack relation which prevents the existence828

of stable extensions. To say it differently, any argumentation system which satisfies the829

postulates has at least one stable extension.830

Theorem 15 ℜs1 = ∅.831

A consequence of this postulate is that stable extensions coincide with semi-stable ones.832

Indeed, it was shown in [18] that when stable extensions exist, they coincide with semi-stable833

extensions.834

Corollary 5 For all argumentation system H = (Arg(T ), R), if R ∈ ℜs2 ∪ ℜs3 , then835

Exts(H) = Extss(H).836

From the previous results, it is possible to delimit the number of stable extensions of837

rule-based argumentation systems that satisfy the five postulates.838

Corollary 6 Let H = (Arg(T ), R) be an argumentation system defined over a theory T839

such that R is conflict-dependent. If H satisfies the five postulates, then840

1 ≤ |Exts(H)| ≤ |Max(POpt(T ))|.841

It follows that when a theory is finite, any argumentation system built over it has a finite842

number of stable extensions.843

Corollary 7 Let H = (Arg(T ), R) be an argumentation system built over a theory T such844

that R is conflict-dependent and H satisfies the five postulates. If T is finite, then H has a845

finite number of stable extensions.846

Attack relations of category ℜs2 induce a bijection between the set of stable extensions of847

an argumentation system and the set of maximal preferred options of the theory over which848

the system is built. Indeed, every preferred option gives a stable extension.849

Theorem 16 Let H = (Arg(T ), R) be an argumentation system over a theory T such that850

R ∈ ℜs2 . For any O ∈ Max(POpt(T )), Arg(O) ∈ Exts(H).851

123

Journal: 10115 Article No.: 1227 TYPESET DISK LE CP Disp.:2018/6/7 Pages: 45 Layout: Small

A
u

th
o

r
 P

r
o

o
f



u
n
co

rr
ec

te
d

p
ro

o
f

A formal characterization of the outcomes of rule-based…

Example 3 (Cont) The theory T3 has seven options, of which only two are preferred maximal:852

Max(POpt(T3)) = {O1, O3}. Thus, for all argumentation system H built over T3, if the853

attack relation of H is of category ℜs2 , then Exts(H) = {Arg(O1),Arg(O3)}. Recall854

that under naive semantics, there is no argumentation system over T3 that can satisfy strict855

precedence. The ones that guarantee consistency and closure under sub-arguments will all856

have the following naive extensions: Extn(H) = {Arg(O4),Arg(O5)}.857

Argumentation systems with an attack relation from ℜs2 are coherent, meaning that the858

preferred extensions exhaust all the stable ones. It follows thus that the three semantics (semi-859

stable, stable, preferred) coincide. This means that semi-stable and preferred semantics have860

no added value with respect to stable semantics since they guarantee the same results.861

Theorem 17 For any argumentation system H = (Arg(T ), R) such that R ∈ ℜs2 , it holds862

Exts(H) = Extss(H) = Extp(H).863

In case an argumentation system satisfies strict precedence under naive semantics (see864

Theorem 5), then its extensions coincide with the stable ones. To put differently, in case865

naive semantics can guarantee strict precedence, stable semantics becomes useless since it866

provides no added value with respect to naive semantics.867

Theorem 18 For all argumentation system H = (Arg(T ), R) such that R ∈ ℜs2 , if H868

satisfies the postulates under naive semantics, then869

Extn(H) = Exts(H) = Extss(H) = Extp(H).870

Plausible conclusions of rule-based argumentation systems that use attack relations in871

category ℜs2 are exactly the literals that follow from all the maximal preferred options of the872

theory at hand.873

Theorem 19 Let H = (Arg(T ), R) be an argumentation system built over a theory T such874

that R ∈ ℜs2 .875

Output(H) =
⋂

Oi ∈ Max(POpt(T ))

CN(Oi ).876

Systems that use relations in ℜs3 choose a proper subset of the maximal preferred options877

of T and make inferences from them. Their output sets are as follows:878

Theorem 20 Let H = (Arg(T ), R) be an argumentation system built over a theory T such879

that R ∈ ℜs3 .880

Output(H) =
⋂

Oi ∈X

CN(Oi )881

with X = {Oi ∈ Max(POpt(T )) | Ei = Arg(Oi ) ∈ Exts(H)}.882

These attack relations introduce a critical discrimination between the maximal preferred883

options of a theory. Hence, great care must be exercised when designing rule-based argumen-884

tation systems based on stable semantics: The principles governing the interaction between885

⇒ and R must be both rigorously and meticulously specified so as to avoid trouble of which886

the following example is an easy case.887
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Example 7 Consider T6 such that F6, S6, D6 are as follows:888

F6

{

p

q
S6 = ∅ D6

{

p ⇒ s (r1)

q ⇒ ¬s (r2)
889

The theory T6 has two maximal preferred options:890

• O1 = (F6, S6, {r1})891

• O2 = (F6, S6, {r2})892

For a system H whose attack relation is in ℜs3 either (i) Arg(O1) or (ii) Arg(O2) is its893

unique stable extension. In case (i), s ∈ Output(H) and ¬s /∈ Output(H).894

In case (ii), ¬s is the plausible conclusion. By the obvious symmetry (don’t be misled by895

negation!1), either choice would be arbitrary, and this is an instance where an attack relation896

from ℜs2 is alright.897

To sum up, attack relations satisfying the postulates can be split into two categories: ℜs2898

and ℜs3 . Relations from ℜs2 make semi-stable semantics and preferred semantics to collapse899

into stable semantics. They offer no added value with respect to the latter. Stable semantics900

may, however, be more valuable than naive semantics. Indeed, the theories for which strict901

precedence cannot be satisfied under naive semantics are handled correctly under stable902

semantics. This latter can enforce the satisfaction of strict precedence if the attack relation903

is defined in an appropriate way. For those theories where the postulate is satisfied, stable904

semantics collapses into naive semantics. With attack relations from category ℜs3 , pitfalls905

threaten as preferred options are discarded, and a lot of care must be exercised when designing906

such an argumentation system.907

6.3 Preferred semantics908

Preferred semantics was originally proposed in order to overcome the limitation of stable909

semantics which does not guarantee the existence of extensions. Indeed, any argumentation910

system has at least one preferred extension which may be empty. We show that in case of911

rule-based systems the empty set cannot be an extension.912

Theorem 21 Let H be an argumentation system built over a theory T = (F, S, D) such913

that H satisfies the strict precedence postulate under preferred semantics. Extp(H) �= {∅}.914

Unlike the cases of naive and stable extensions, a preferred extension may capture a proper915

sub-part of a maximal preferred option. For instance, it is not impossible that a preferred916

extension captures only the strict part of theory T6 in Example 7.917

Theorem 22 Let H = (Arg(T ), R) be an argumentation system built over a theory T such918

that R is conflict-dependent and H satisfies the five postulates under preferred semantics. For919

any E ∈ Extp(H), ∃O ∈ Max(POpt(T )) such that Th(E) ⊑ O and Concs(E) ⊆ CN(O).920

Each preferred extension corresponds to exactly one maximal preferred option. It either921

returns all the consequences of that option, or chooses a subset. The latter contains all the922

conclusions that follow from the strict part and some conclusions that follow using defeasible923

rules. We show next that there is at least one maximal preferred option which is captured by924

a preferred extension. This is mainly due to the fact that stable extensions exist.925

1 There is an apparent asymmetry between s and ¬s but it is meaningless because we can choose an atom

t to represent the intuitive statement formalized by ¬s and then the intuitive statement formalized by s gets

represented as ¬t . As an illustration about numbers, by letting odd instead of even, or vice versa, to be an

atom of L, asymmetry about negation could be reversed, while in both cases the meaning would be the same.
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Theorem 23 Let H = (Arg(T ), R) be an argumentation system built over a theory T =926

(F, S, D) such that R is conflict-dependent and H satisfies the five postulates under preferred927

semantics. There exists O ∈ Max(POpt(T )) such that Arg(O) ∈ Extp(H).928

Example 7 (Cont) At least one of Arg(O1) and Arg(O2) is a preferred extension of an929

argumentation system H = (Arg(T6), R) which satisfies the five postulates.930

Two preferred extensions refer to different preferred options.931

Theorem 24 Let H = (Arg(T ), R) be an argumentation system such that R is conflict-932

dependent and H satisfies exhaustiveness and closure under sub-arguments under preferred933

semantics. Let E, E ′ ∈ Extp(H) and O ∈ Max(POpt(T )). If Th(E) ⊑ O and Th(E ′) ⊑ O,934

then E = E ′.935

We show next that the free part of a theory, i.e., the sub-theory, which consists of the set936

of facts, the set of strict rules and the defeasible rules which are involved in every preferred937

option, is part of any preferred extension of argumentation systems that satisfy the postulates.938

Indeed, the set Arg(Free(T )) is part of every preferred extension of any argumentation939

system which satisfies consistency, exhaustiveness, strict precedence and closure under sub-940

arguments.941

Theorem 25 Let H = (Arg(T ), R) be an argumentation system over a theory T =942

(F, S, D) such that R is conflict-dependent and privileges strict arguments (recall Defi-943

nition 16), and H satisfies consistency, exhaustiveness, strict precedence and closure under944

sub-arguments under preferred semantics.945

Arg(Free(T )) ⊆
⋂

Ei ∈Extp(H)

Ei .946

From the previous results, it follows that the number of preferred extensions does not947

exceed the number of maximal preferred options of the theory over which the system is built.948

Theorem 26 Let H = (Arg(T ), R) be an argumentation system built over a theory T such949

that R is conflict-dependent and H satisfies the five postulates under preferred semantics.950

1 ≤ |Extp(H)| ≤ |Max(POpt(T ))|951

When a theory is finite, any argumentation system built over it has a finite number of952

preferred extensions.953

Corollary 8 Let H = (Arg(T ), R) be an argumentation system built over a theory T such954

that R is conflict-dependent and H satisfies the five postulates under preferred semantics. If955

T is finite, then H has a finite number of preferred extensions.956

Let us now characterize the plausible conclusions that are drawn from a theory T by an957

argumentation system H satisfying the rationality postulates under preferred semantics. Let958

ℜp be the set of all attack relations that ensure the postulates under preferred semantics:959

ℜp = {R ⊆ Arg(T ) × Arg(T ) | R is conflict-dependent and (Arg(T ), R)960

satisfies the five postulates under preferred semantics}.961

In his seminal paper [1], Dung has shown that the stable extensions of an argumentation962

system are also preferred extensions of the system. Consequently, the set ℜp is a subset of963

ℜs .964

123

Journal: 10115 Article No.: 1227 TYPESET DISK LE CP Disp.:2018/6/7 Pages: 45 Layout: Small

A
u

th
o

r
 P

r
o

o
f



u
n
co

rr
ec

te
d

p
ro

o
f

L. Amgoud, P. Besnard

Property 16 ℜp ⊆ ℜs .965

Then, ℜp contains three disjoint subsets of attack relations: ℜp = ℜp1 ∪ ℜp2 ∪ ℜp3 :966

• ℜp1 : the relations which are in ℜp ∩ ℜs1 .967

• ℜp2 : the relations which are in ℜp ∩ ℜs2 .968

• ℜp3 : the relations which are in ℜp ∩ ℜs3 .969

Let us analyze each category of attack relations separately. The first set is empty (i.e.,970

ℜp1 = ∅) since we have shown previously that there is no attack relation which prevents an971

argumentation system from having stable extensions (ℜs1 = ∅).972

Attack relations of category ℜp2 lead to coherent argumentation systems (i.e.,Exts(H) =973

Extp(H)) as shown in Theorem 17. Thus, preferred semantics does not provide an added974

value with respect to stable semantics. Moreover, there is a bijection between the two sets:975

Extp(H) and Max(POpt(T )).976

Corollary 9 Let H = (Arg(T ), R) be an argumentation system over a theory T such that977

R ∈ ℜp2 .978

• For any E ∈ Extp(H), ∃O ∈ Max(POpt(T )) such that Concs(E) = CN(O) and979

Th(E) ⊑ O.980

• For any O ∈ Max(POpt(T )), Arg(O) ∈ Extp(H).981

• For any O ∈ Max(POpt(T )), O = Option(Arg(O)).982

In the case of attack relations of category ℜp2 , Arg(Free(T )) is equal to the intersection983

of all preferred extensions.984

Theorem 27 Let H = (Arg(T ), R) be an argumentation system over a theory T . If R ∈985

ℜp2 , then986

Arg(Free(T )) =
⋂

Ei ∈Extx (H)

Ei987

where x ∈ {p, s, ss}.988

The output of an argumentation system is in this case the same as under stable semantics,989

i.e., the plausible conclusions given in Theorem 19.990

Let us now analyze attack relations of category ℜp3 . Remember that in this case stable991

semantics chooses only some maximal preferred options of the theory at hand. Four situations992

may be encountered:993

1. The stable extensions and the preferred extensions of an argumentation system coincide.994

Thus, preferred semantics has no added value with respect to stable semantics. Moreover,995

it may lead to arbitrary results as discussed in the previous subsection when R ∈ ℜs3996

(see Example 7 where one of the defeasible rules is chosen in an arbitrary way).997

2. The preferred extensions consider additional but not all maximal preferred options (other998

than the ones chosen by stable semantics). This case is similar to the previous one, and the999

argumentation system may return arbitrary results. Note that Example 7 is not sufficient1000

to show this case since stable semantics will return one of O1 and O2 while preferred1001

semantics will return the second one, which corresponds more to the case above. In order1002

to exemplify this case, consider the following theory T7.1003
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Example 8 Consider T7 such that F7, S7, D7 are as follows:1004

F7

{

p

t
S7 = ∅ D7

⎧

⎪

⎪

⎨

⎪

⎪

⎩

p ⇒ q (r1)

q ⇒ s (r2)

t ⇒ ¬s (r3)

t ⇒ ¬q (r4)

1005

The theory T7 has three maximal preferred options:1006

• O1 = (F7, S7, {r1, r2})1007

• O2 = (F7, S7, {r1, r3})1008

• O3 = (F7, S7, {r3, r4})1009

Assume that Arg(O1) is the single stable extension of an argumentation system H =1010

(Arg(T7), R) which satisfies the five postulates. Thus, Arg(O1) is also a preferred extension1011

of H. Case 2 suggests either Arg(O2) or Arg(O3) (not both) is another preferred extension.1012

Thus, as in Example 7, some rules are discarded in an arbitrary way.1013

3. The preferred extensions return all the maximal preferred options of the theory. This1014

means that stable semantics chooses some maximal preferred options and preferred1015

semantics considers the remaining ones. This case coincides exactly with the case of1016

attack relations of category ℜp2 (see Theorem 19). Indeed, the argumentation system1017

returns all the conclusions that follow from all maximal preferred options of the theory.1018

Note that this output is also ensured by stable semantics when R ∈ ℜs2.1019

4. Some of the preferred extensions provide proper sub-parts of maximal preferred options.1020

In this case, the result of the argumentation system may be arbitrary as can be seen on1021

the following example.1022

Example 8 (Cont) Consider an argumentation system H = (Arg(T7), R) such that R ∈1023

ℜp3 . Assume that H has two preferred extensions: E1 and E2. From Theorem 23, one of1024

them captures necessarily a maximal preferred option. Let E1 be such extension, and let1025

Option(E1) = O1. Case 4 suggests that there is at least another preferred extension, say1026

E2 such that Option(E2) ⊏ Oi (i = 2, 3). Assume that i = 2 and Th(E2) = (F7, S7, {r3}).1027

Note that since preferred extensions are maximal for set inclusion, it cannot be the case that1028

Th(E2) = (F7, S7, {r1}) (since E2 would be a subset of E1). One can notice that among the1029

four rules, r4 is not used, which is unjustified.1030

To sum up, attack relations of category ℜp3 may lead either to arbitrary results or to1031

results which can be provided by stable semantics.1032

6.4 Grounded: ideal semantics1033

This section analyzes the outcomes of rule-based systems under grounded and ideal seman-1034

tics. Recall that both semantics ensure only one extension, which may be empty, for an1035

argumentation system. Moreover, the grounded extension GE(H) of an argumentation sys-1036

tem H is a sub-part of the ideal extension IE(H) of the same system. Consequently, the1037

conclusions supported by the former are also supported by the latter, i.e., Concs(GE(H)) ⊆1038

Concs(IE(H)). Note also that the output set of an argumentation system is exactly1039

Concs(GE(H)) (respectively Concs(IE(H))) in case of grounded (respectively ideal)1040

semantics. Before presenting the formal results, it is worth mentioning that an argumentation1041

system that satisfies the postulates under preferred semantics does not necessarily satisfy the1042

postulates under grounded/ideal semantics. Similarly, a system that satisfies the postulates1043
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under ideal semantics may violate some of the postulates under grounded semantics. That is1044

why in the following we study each semantics separately.1045

The ideal extension, introduced in [19], is a maximal (for set inclusion) admissible set that1046

is a subset of each preferred extension. In case of a rule-based argumentation system which1047

satisfies the postulates, it returns a sub-part of one of the preferred options of the theory over1048

which the system is built. Formally:1049

Theorem 28 If an argumentation system H satisfies the five postulates under ideal seman-1050

tics, then there exists a preferred option O ∈ POpt(T ) such that Th(IE(H)) ⊑ O and1051

CN((F, S,∅)) ⊆ Concs(IE(H)) ⊆ CN(O).1052

Note that the outcome under ideal semantics may be arbitrary. This is in particular the case1053

when the semantics selects one preferred option and draws all the conclusions that follow1054

from this option. However, when the attack relation is of category ℜp2 and privileges strict1055

arguments (recall Definition 16), then the ideal extension is exactly the set Arg(Free(T )).1056

Theorem 29 If an argumentation system H satisfies the five postulates under ideal semantics1057

and R ∈ ℜp2 and privileges strict arguments, then IE(H) = Arg(Free(T )).1058

The above result shows that ideal semantics allows the inference of literals only from the1059

free part of a theory.1060

Corollary 10 If an argumentation systemH satisfies the five postulates under ideal semantics1061

and R ∈ ℜp2 and privileges strict arguments, then Output(H) = CN(Free(T )).1062

Note that in this case grounded extension may be more cautious than ideal one and may1063

miss intuitive (free) conclusions since GE(H) ⊆ Arg(Free(T )).1064

The grounded extension of any argumentation system which satisfies the postulates under1065

grounded semantics captures a sub-part of a preferred option, i.e., it behaves exactly like1066

ideal extension.1067

Theorem 30 If an argumentation system H satisfies the five postulates under grounded1068

semantics, then there exists a preferred option O ∈ POpt(T ) such that Th(GE(H)) ⊑ O1069

and CN((F, S,∅)) ⊆ Concs(GE(H)) ⊆ CN(O).1070

7 Related work1071

The abstract argumentation framework proposed by Dung [1] was used for reasoning about1072

defeasible information, and more generally for handling inconsistency. It was thus instanti-1073

ated in different ways, considering different logical languages for representing information.1074

Examples of such languages are propositional language (e.g.,[2,3]) and rule-based ones (e.g.,1075

[8,9,11,27,29,33]).1076

All the instantiations are defined in a similar way: define arguments and attacks, then1077

apply Dung’s semantics on the defined graph, and infer the formulas that follow from all1078

extensions. Some of these works are incomplete since there is one important step which is1079

missing: characterizing the set of inferences that are drawn from a theory/knowledge base,1080

i.e., describing formally how the output relates to the theory.1081

For filling this gap, in [4], we considered argumentation systems that use Tarskian log-1082

ics, covering thus the systems studied in [2,3]. In [11,33], we focused on rule-based logics.1083

Here we faced two issues: First, the logical languages that are considered in the literature1084
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are different. In ASPIC [8], defeasible rules express defaults and any uncertain informa-1085

tion. In ABA [27], uncertain information is encoded by assumptions. In ASPIC+ [9], several1086

types of information are considered (axioms, ordinary premises, issues, assumptions, strict1087

rules and defeasible rules). The differences between all these types are unclear, especially1088

between strict rules and axioms (both represent certain and non-defeasible information), and1089

between ordinary premises, assumptions and defeasible rules (which all represent uncertain1090

and defeasible information). Consequently, we have chosen the logical language used in the1091

ASPIC system [8,17]. It considers facts and strict rules (for encoding strict information) and1092

defeasible rules (for encoding assumptions, defeasible rules, ordinary premises). Another1093

issue with rule-based argumentation systems is that there are two types of attack relations:1094

inconsistency-based ones and undercut which amounts to blocking the application of defea-1095

sible rules. For a better understanding of each type of attack relation, we studied in [11]1096

argumentation systems that use undercut as their sole attack relation, and in this paper we1097

studied the impact of inconsistency-based ones.1098

Our formalism uses the same logical language as ASPIC and a more general inconsistency-1099

based attack relation. Our results apply thus to ASPIC when its undercut relation is empty.1100

Note that our results and those from [11] should be combined for characterizing the outcomes1101

of the ASPIC system when it uses the two kinds of relations. This is left for future work.1102

ASPIC+ uses a “richer” logical language since its aim was to unify all existing argumen-1103

tation systems. It can thus be seen a union of several elementary systems: ABA for dealing1104

with assumptions, ASPIC for dealing with strict/defeasible information, and the systems1105

defined in [4] for dealing with Tarskian logics. In [4], we have characterized this sub-class1106

of ASPIC+. In this paper, we characterized the sub-class capturing ASPIC.1107

The last well-known argumentation system, called ABA, cannot be compared to our for-1108

malism since the two systems use different logical languages. While ABA uses assumptions1109

for capturing the defeasible information in a theory, our formalism uses defeasible rules.1110

8 Conclusion1111

The paper provides the first investigation on the outputs of rule-based argumentation systems1112

that use inconsistency-based attack relations. The study is general in the sense that it keeps1113

the attack relation unspecified. Thus, the system can be instantiated with any of the attack1114

relations that are used in existing systems. The results show that under naive semantics, the1115

systems return the literals that follow from all the options of the theory at hand. Stable and1116

preferred semantics either do not provide an added value with respect to naive semantics1117

or the attack relation of a system should be formalized in a very rigorous way in order to1118

avoid arbitrary results. Ideal semantics returns the free part of a theory, whereas the grounded1119

semantics returns a sub-part of the free part meaning that it may miss interesting conclusions.1120

Acknowledgements The authors are very grateful to the reviewers for their many insightful comments.1121

Appendix: Proofs1122

Proof of Property 2 LetT = (F, S, D)be a theory and x ∈ L. Let d = 〈(x1, r1), . . . , (xn, rn)〉1123

be a derivation schema for x from T .1124
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(−→) Let us assume that there exist xi and x j such that xi = x j but i �= j .1125

Clearly, we can further assume i < j without loss of generality. For each (xk, rk)1126

in d where k > j , x j ∈ Body(rk) is trivially equivalent to xi ∈ Body(rk)1127

hence Body(rk) ⊆ {x1, . . . , x j−1, x j+1, . . . , xk−1}. Therefore, 〈(x1, r1), . . . , (x j−1, r j−1),1128

(x j+1, r j+1), . . . , (xn, rn)〉 is also a derivation schema, but it is a proper subsequence1129

of d , a contradiction arises. Now, let us assume that d fails to be focused. There1130

exists i ∈ {1, . . . , n − 1} such that xi /∈ Body(r j ) for every j > i . Consequently,1131

〈(x1, r1), . . . , (xi−1, ri−1), (xi+1, ri+1), . . . , (xn, rn)〉 is also a derivation schema for x in1132

T , contradicting the minimality of d .1133

(←−) Let us assume that d fails to be minimal although d is focussed and the literals1134

x1, . . . , xn are pairwise distinct. As d is not minimal, there exists a proper subsequence d ′
1135

of d which is a derivation schema for x in T . Let us write 〈(xk+1, rk+1), . . . , (xn, rn)〉 for1136

the largest common final subsequence of d and d ′. Now, k exists (and k > 0) because d ′ is1137

a proper subsequence of d . As d ′ is a derivation schema for xn and d ′ is a subsequence of1138

d and x1, . . . , xn are pairwise distinct, k < n ensues. Since d is focussed, xk ∈ Body(r j )1139

for some j > k. So, (x j , r j ) is in 〈(xk+1, rk+1), . . . , (xn, rn)〉. As d ′ is a derivation schema,1140

Body(r j ) ⊆ {x1, . . . , xk−1} (remember, d ′ is a subsequence of 〈(x1, r1), . . . , (xk−1, rk−1),1141

(xk+1, rk+1), . . . , (xn, rn)〉). Hence, xk ∈ {x1, . . . , xk−1}. That is, x1, . . . , xn are not pairwise1142

distinct. ⊓⊔1143

Proof of Property 3 Let T = (F, S, D) be a theory.1144

• The inclusions CN(T ) ⊆ F ∪ {Head(r) | r ∈ S ∪ D} ⊆ L follow trivially from1145

Definition 6.1146

• If T is finite, then F, S, D are finite. Thus, the set F ∪ {Head(r) | r ∈ S ∪ D} is finite.1147

From the first item, CN(T ) is finite.1148

• For any x ∈ F , the sequence 〈(x, σ )〉 is a derivation schema for x from T . Thus,1149

x ∈ CN(T ) and this proves the inclusion F ⊆ CN(T ).1150

• ⊤ ∈ CN(T ) since ⊤ ∈ F and F ⊆ CN(T ).1151

• Assume that F = {⊤} and ∄r ∈ D such that Body(r) = {⊤}. Thus, since the body of1152

any other rule in T is assumed to be non-empty, no rule in S ∪ D can be applied, hence1153

CN(T ) = {⊤}. Conversely, if CN(T ) = {⊤}, then F = {⊤} (since F ⊆ CN(T )) and1154

∄r ∈ D such that Body(r) = {⊤} (since each such rule is applicable when it exists).1155

• Let d = 〈(x1, r1), . . . , (xn, rn)〉 be a derivation schema for x ∈ L from T . From Defini-1156

tion 6, for each xi (i = 1, . . . , n), there exists a derivation schema from T for xi . Thus,1157

Seq(d) ⊆ CN(T ). ⊓⊔1158

Proof of Property 4 Let T = (F, S, D) and T ′ = (F ′, S ′, D′) be two theories such that1159

T ⊑ T ′. Let x ∈ CN(T ). So, there exists a derivation schema d = 〈(x1, r1), . . . , (xn, rn)〉1160

for x from T . Since T ⊑ T ′, Facts(d) ⊆ F ′ and Strict(d) ⊆ S ′ and Def(d) ⊆ D′.1161

Therefore, d is also a derivation schema for x from T ′. ⊓⊔1162

Proof of Property 5 The two properties follow trivially from the definition of option. ⊓⊔1163

Proof of Property 6 The inclusion POpt(T ) ⊆ Opt(T ) follows trivially from Definitions 91164

and 10.1165

Assume that CN(T ) is consistent. From Property 5, Opt(T ) = {T }. Since (F, S,∅) ⊑ T ,1166

POpt(T ) = {T }. Assume now that Opt(T ) ⊆ POpt(T ). Since Opt(T ) �= ∅, for all1167

O ∈ Opt(T ) it holds that O ∈ POpt(T ). Thus, for all O ∈ Opt(T ), (F, S,∅) ⊑ O. It1168
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follows that (F, S,∅) ⊑ Free(T ).2 Assume that CN(T ) is inconsistent. Then, there exists1169

a minimal conflict2 C = (X, Y, Z) ⊑ T . Since (F, S,∅) ⊑ Free(T ), X = Y = ∅. But,1170

by assumption, the body of every defeasible rule is not empty. Thus, CN(C) = ∅. This1171

contradicts the fact that CN(C) is inconsistent. ⊓⊔1172

Proof of Property 7 Let T = (F, S, D) be a theory.1173

Assume that CN((F, S,∅)) is consistent. Thus, there exists a preferred option O such that1174

either (i) for all r ∈ D, CN((F, S, {r})) is inconsistent meaning that O = CN((F, S,∅)) or1175

(ii) there exists r ∈ D such that CN((F, S, {r})) is consistent thus (F, S,∅) ⊏ O. In both1176

cases, POpt(T ) �= ∅. Assume now that CN((F, S,∅)) is inconsistent. Since F and S should1177

be part of any preferred option and the set of consequences of a preferred option should be1178

consistent, then POpt(T ) = ∅.1179

Let r ∈ D and assume thatCN((F, S, {r})) is consistent. From Definition 10, (F, S, {r}) is1180

either a preferred option (iff for all r ′ ∈ D such that r �= r ′,CN((F, S, {r, r ′})) is inconsistent).1181

Or, there exists a preferred option O = (F, S, {r} ∪ D′) where D′ ⊆ D\{r}. ⊓⊔1182

Proof of Property 8 Let T = (F, S, D) be a theory and Free(T ) = (F, S, D′). From1183

the definition of Free(T ), Free(T ) ⊑ O for all O ∈ POpt(T ). From Property 4,1184

CN(Free(T )) ⊆ CN(O). Since CN(O) is consistent, then so is for CN(Free(T )). ⊓⊔1185

Proof of Property 9 Let (d, x) be a sub-argument of (d ′, x ′). Let xi ∈ Seq(d). There are1186

two possibilities:1187

• xi ∈ Facts(d), thus xi ∈ Facts(d ′) since Facts(d) ⊆ Facts(d ′). So, xi ∈1188

Seq(d ′).1189

• xi = Head(r) with r ∈ Strict(d) ∪ Def(d); thus, r ∈ Strict(d ′) ∪ Def(d ′) since1190

Strict(d) ⊆ Strict(d ′) and Def(d) ⊆ Def(d ′). So, xi ∈ Seq(d ′).1191

⊓⊔1192

Proof of Property 10 Let T = (F, S, D) be a theory. Since ⊤ ∈ F by Definition 4,1193

(〈⊤, σ 〉,⊤) ∈ Arg(T ) and thus Arg(T ) �= ∅. ⊓⊔1194

Proof of Property 11 Let H = (Arg(T ), R) be an argumentation system over a theory1195

T and Ext(H) its set of extensions under any extension-based semantics. Assume that1196

Ext(H) �= ∅.1197

Let x ∈ Output(H). Thus, for all E ∈ Ext(H), ∃a ∈ E such that Conc(a) = x . It1198

follows that x ∈ Concs(Ei ), ∀Ei ∈ Ext(H) and hence x ∈
⋂

Ei ∈Ext(H) Concs(Ei ).1199

Assume now that x ∈
⋂

Ei ∈Ext(H) Concs(Ei ). Thus, ∀Ei , ∃ai ∈ Ei such that Conc(ai ) =1200

x . Consequently, x ∈ Output(H). ⊓⊔1201

Proof of Property 12 Let H = (Arg(T ), R) be an argumentation system built over a theory1202

T . Let x ∈ Output(H). From Definition 17, ∃(d, x) ∈ Arg(T ). From Definition 12, d is1203

a derivation for x from T . Thus, x ∈ CN(T ). ⊓⊔1204

Proof of Property 16 Let R ∈ ℜp and let H = (Arg(T ), R) be a rule-based argumentation1205

system built over a theory T = (F, S, D). Since H satisfies the five postulates, thus for all1206

E ∈ Extp(H),1207

2 LetT be a theory.Free(T ) is a sub-theory (X, Y, Z)ofT such that for all minimal conflict C = (X ′, Y ′, Z ′)

of T , it holds that X ∩ X ′ = ∅ and Y ∩Y ′ = ∅ and Z ∩ Z ′ = ∅. A minimal conflict of theory T is a sub-theory

C of T such that CN(C) is inconsistent and ∄C ′
⊏ C such that CN(C ′) is inconsistent.
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• Concs(E) is consistent1208

• Concs(E) = CN(Concs(E), S,∅)1209

• For all a ∈ E , Sub(a) ⊆ E1210

• for all (d, x) ∈ Arg(T ), if Seq(d) ⊆ Concs(E), then (d, x) ∈ E .1211

From Property 1, Exts(H) ⊆ Extp(H), then for all E ∈ Exts(H), E satisfies the above1212

four properties. Thus, H satisfies consistency, exhaustiveness and closure under both sub-1213

arguments and strict rules. Let us now show that it also satisfies strict precedence under1214

stable semantics. From Property 11, Output(H) =
⋂

Ei ∈Extp(H) Concs(Ei ). Thus, for1215

all E ∈ Extp(H), Output(H) ⊆ Concs(E). Since H satisfies strict precedence under1216

preferred semantics, CN(F, S,∅) ⊆ Concs(E). Thus, the property is satisfied by every1217

stable extension. ⊓⊔1218

Proof of Proposition 1 Let T = (F, S, D). Let O, O′ ∈ Opt(T ) be such that CN(O) =1219

CN(O′). Let O = (X, Y, Z) and O′ = (X ′, Y ′, Z ′). For all x ∈ X , x ∈ CN(O) and thus1220

x ∈ X ′. The same holds for all x ′ ∈ X ′. Thus, X = X ′.1221

Let r ∈ Y ∪ Z . There are two cases: (i) Body(r) � CN(O). Consequently, Body(r) �1222

CN(O′). Thus, CN(O′ ⊕ r) is consistent. So, r ∈ Y ′ ∪ Z ′ (by definition of an option).1223

(ii) Body(r) ⊆ CN(O). Consequently, Body(r) ⊆ CN(O′). Thus, CN(O′ ⊕ r) is consis-1224

tent. So, r ∈ Y ′ ∪ Z ′ (by definition of an option). ⊓⊔1225

Proof of Proposition 2 If T is finite, then CN(T ) is finite (apply Property 3). Consequently,1226

Arg(T ) is finite. ⊓⊔1227

Proof of Proposition 3 Let T and T ′ be two theories such that T ⊑ T ′. Let (d, x) be an1228

argument defined from T . All items in Definition 12 are independent from T except for d1229

being a derivation schema for x from T . Hence, for (d, x) to be an argument defined from1230

T ′, it is enough that d be a derivation schema for x from T ′. Now, this is equivalent to1231

x ∈ CN(T ′). By Property 4, the latter follows from x ∈ CN(T ) (which is itself proved from1232

the fact that d is a derivation schema for x from T ). Thus, (d, x) is an argument defined from1233

T ′. ⊓⊔1234

Proof of Proposition 4 Let H = (Arg(T ), R) be an argumentation system such that R is1235

conflict-dependent. Let a = (d, x) ∈ Arg(T ) be such that (a, a) ∈ R. Since R is conflict-1236

dependent, Seq(d) is inconsistent. This is impossible since a is an argument (thus Seq(d)1237

should be consistent). ⊓⊔1238

Proof of Proposition 5 Let H = (Arg(T ), R) be an argumentation system built over a1239

theory T such that CN(T ) is consistent and R is conflict-dependent. Assume that Arg(T )1240

is not conflict-free. Thus, there exist (d, x), (d ′, x ′) ∈ Arg(T ) such that (d, x)R(d ′, x ′).1241

Consequently,Seq(d)∪Seq(d ′) is inconsistent. Besides, from Property 3,Seq(d) ⊆ CN(T )1242

and Seq(d ′) ⊆ CN(T ). Thus, CN(T ) is inconsistent. Contradiction. ⊓⊔1243

Proof of Proposition 6 Let H be an argumentation system which satisfies consistency and1244

closure under sub-arguments. From Proposition 12, ∀E ∈ Ext(H)Concs(E) = CN(Th(E)).1245

Since H satisfies consistency, ∀E ∈ Ext(H) Concs(E) is consistent. Thus, so is for1246

CN(Th(E)). ⊓⊔1247

Proof of Proposition 7 Let H = (Arg(T ), R)be an argumentation system built over a theory1248

T = (F, S, D) such that ∅ ∈ Ext(H). Thus, Output(H) = ∅. Assume that H satisfies1249

strict precedence, then CN((F, S,∅)) ⊆ Output(H). Since ⊤ ∈ F and from Property 3, it1250

holds that F ⊆ CN((F, S,∅)), then ⊤ ∈ Output(H). ⊓⊔1251
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Proof of Proposition 8 Let H = (Arg(T ), R) be an argumentation system built over a1252

theory T = (F, S, D). Assume that H satisfies consistency and strict precedence. From1253

Property 13, it holds that Output(H) is consistent. From strict precedence, CN((F, S,∅))1254

⊆ Output(H). Thus, CN((F, S,∅)) is consistent. ⊓⊔1255

Proof of Proposition 9 Let H = (Arg(T ), R) be an argumentation system such that1256

Ext(H) �= ∅ (under an extension-based semantics). Assume that H is closed under1257

sub-arguments and satisfies exhaustiveness. Let E ∈ Ext(H). From the monotonicity of1258

Arg, it holds that E ⊆ Arg(Th(E)). Let (d, x) ∈ Arg(Th(E)). From Proposition 12,1259

Seq(d) ⊆ Concs(E). From the exhaustiveness postulate, (d, x) ∈ E . ⊓⊔1260

Proof of Proposition 10 Let H = (Arg(T ), R) be an argumentation system such that1261

Ext(H) �= ∅ (under an extension-based semantics). Assume that H satisfies exhaustiveness1262

and strict precedence. Since H satisfies strict precedence, CN((F, S,∅)) ⊆ Output(H).1263

From Property 11, for all E ∈ Ext(H), CN((F, S,∅)) ⊆ Concs(E). Let (d, x) ∈1264

Arg((F, S,∅)). Thus, Seq(d) ⊆ CN((F, S,∅)). From exhaustiveness, (d, x) ∈ E . ⊓⊔1265

Proof of Proposition 11 In order to prove the compatibility of the postulates, it is sufficient1266

to give an example of a system which satisfies all the five postulates. This system is ASPIC1267

as defined in [17]. Proposition 1 in [17] shows that the system is closed under sub-arguments1268

under any Dung’s semantics. Proposition 8 in [17] shows that the system is closed under1269

strict rules under complete semantics, thus under stable semantics. Property 2 in [17] shows1270

that the system satisfies consistency under any Dung’s semantics. From Proposition 13, the1271

system satisfies exhaustiveness. Let us now show that the system satisfies strict precedence.1272

This follows from the definition of attack relation (Definition 16 in [17]) according to which1273

a strict argument cannot be attacked. Thus, it belongs to any stable extension. ⊓⊔1274

Proof of Proposition 12 Let H be an argumentation system such that Ext(H) �= ∅ where1275

Ext(H) is its set of extensions under an extension-based semantics. Assume that H is closed1276

under sub-arguments and let E ∈ Ext(H) and Th(E) = (X, Y, Z).1277

• Let x ∈ Concs(E). Thus, ∃(d, x) ∈ E where d is a derivation for x from (Facts(d),1278

Strict(d), Def(d)). From Property 3, x ∈ Facts(d) (thus x ∈ X ), or x = Head(r)1279

where r ∈ Strict(d) (thus r ∈ Y ) or x ∈ Def(d) (thus x ∈ Z ).1280

Assume now that x ∈ X . Thus, ∃(d, y) ∈ E such that x ∈ Facts(d). Besides,1281

(〈(x, σ )〉, x) is a sub-argument of (d, y). Since H is closed under sub-arguments,1282

(〈(x, σ )〉, x) ∈ E , and thus, x ∈ Concs(E).1283

Let r ∈ Y ∪ Z . Thus, ∃(d, x) ∈ E such that r ∈ Strict(d) ∪ Def(d). Let1284

d = 〈(x1, r1), . . . , (xi , r), (xi+1, ri+1) . . . , (xn = x, rn)〉 with xi = Head(r). Thus,1285

there exists a sub-sequence d ′ of d which is a derivation for xi . This derivation is minimal1286

(for set inclusion since (d, x) is an argument). Thus, (d ′, xi ) is an argument. Moreover,1287

it is a sub-argument of (d, x). Since H is closed under sub-arguments, (d ′, xi ) ∈ E .1288

Consequently, xi ∈ Concs(E). Thus, Concs(E) = X ∪ {Head(r) | r ∈ Y ∪ Z}.1289

• From the definitions of the two functions Concs and Th, it follows that Concs(E) ⊆1290

CN(Th(E)). From Property 3, CN(Th(E)) ⊆ X ∪ {Head(r) | r ∈ Y ∪ Z}. From above,1291

CN(Th(E)) ⊆ Concs(E).1292

• Assume now that a = (d, x) ∈ Arg(Th(E)). For all xi ∈ Seq(d), xi ∈ CN(Th(E)).1293

Since H is closed under sub-arguments, CN(Th(E)) = Concs(E). Then, xi ∈1294

Concs(E). Thus, Seq(d) ⊆ Concs(E).1295

⊓⊔1296
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Proof of Proposition 13 Let H = (Arg(T ), R) be an argumentation system built over a1297

theory T such that R is conflict-dependent and H satisfies consistency and closure under1298

sub-arguments. Assume that H violates exhaustiveness. Thus, there exists E ∈ Extn(H)1299

and there exists a = (d, x) ∈ Arg(T ) such that Seq(d) ⊆ Concs(E) but (d, x) /∈ E . So,1300

∃b = (d ′, x ′) ∈ E such that aRb or bRa. Since R is conflict-dependent, Seq(d) ∪ Seq(d ′)1301

is inconsistent. Thus, ∃y ∈ Seq(d) such that ¬y ∈ d ′. But, y,¬y ∈ CN(Th(E)). Since H1302

is closed under sub-arguments, CN(Th(E)) = Concs(E). Thus, y,¬y ∈ Concs(E). This1303

contradicts the fact that H satisfies consistency. ⊓⊔1304

Proof of Proposition 14 Let H = (Arg(T ), R) be an argumentation system built over a1305

theory T such that R is conflict-dependent and H satisfies consistency and closure under sub-1306

arguments. From Proposition 13, H satisfies exhaustiveness. From Proposition 9, it follows1307

that for all E ∈ Extn(H), E = Arg(Th(E)). ⊓⊔1308

Proof of Proposition 15 The proof is similar to that of Propositions 13 and 14. ⊓⊔1309

Proof of Theorem 1 Let T be a theory and d = 〈(x1, r1), . . . , (xn, rn)〉 a consistent sequence1310

from T .1311

(−→) Assume that (d, x) is an argument from T . d = 〈(x1, r1), . . . , (xn, rn)〉 yields1312

x = xn (Definition 12). Assume that d is not focused. Let d∗ be obtained from d by deleting1313

all repeated pairs. Since d is not focused, d∗ is not minimal. Therefore, there exists (xk, rk) in1314

d∗ (hence in d) such that depriving d∗ from (xk, rk) still gives a derivation of x from T . Since1315

d∗ contains no repeated pair, for every (xi , ri ) in d∗, if i �= k then either xi �= xk or ri �= rk .1316

For rk �= σ , the former implies the latter hence ri �= rk whenever i �= k. Thus, depriving1317

d∗ from (xk, rk) gives a derivation d ′ of x from T such that Facts(d ′) ⊆ Facts(d) and1318

Strict(d ′) ⊆ Strict(d) and Def(d ′) ⊆ Def(d), with one of the latter two inclusions1319

being strict. That is, there exists T ′
⊏ (Facts(d),Strict(d),Def(d)) such that x ∈1320

CN(T ′), thereby contradicting Definition 12. The remaining case is rk = σ . Since d∗ contains1321

no repeated pair, no (xi , ri ) in d∗ is (xk, σ ) except for i = k and it follows that d∗ deprived1322

from (xk, rk) gives a derivation d ′ of x from T such that Facts(d ′) ⊂ Facts(d) while1323

Strict(d ′) ⊆ Strict(d) and Def(d ′) ⊆ Def(d). As above, a contradiction arises.1324

(←−) Assume that d is a focused derivation schema from T such that xn = x . By1325

the definitions, x ∈ L and d is a derivation schema for x from T . Due to the hypoth-1326

esis in the statement of the theorem, Seq(d) is consistent. Assume that there exists1327

T ′ = (F ′, S ′, D′) ⊏ (Facts(d),Strict(d),Def(d)) such that x ∈ CN(T ′). That is, there1328

exists a derivation d ′ = 〈(x ′
1, r ′

1), . . . , (x ′
m, r ′

m)〉 for some m < n such that Facts(d ′) = F ′
1329

and Strict(d ′) = S ′ and Def(d ′) = D′. Let d∗ be a minimal derivation schema for x from1330

T obtained from d by deleting all repeated pairs. Accordingly,Facts(d∗) = Facts(d) and1331

Strict(d∗) = Strict(d) and Def(d∗) = Def(d). Since Strict(d ′) ⊆ Strict(d)1332

and Def(d ′) ⊆ Def(d), if (x ′
i , r ′

i ) is in d ′ with r ′
i �= σ then there exists k such that (xk, rk)1333

is in d∗ where rk = r ′
i (also, xk = x ′

i because x ′
i = Head(r ′

i ) = Head(rk) = xk). Similarly,1334

since Facts(d ′) ⊆ Facts(d), if (x ′
i , r ′

i ) is in d ′ with r ′
i = σ then there exists k such that1335

(xk, rk) is in d∗ where x ′
i = xk and rk = r ′

i = σ . That is, d ′ is a proper subsequence of a1336

reordering of d∗, thereby contradicting the minimality of d∗.1337

Indeed, let us show that no initial proper fragment of a reordering d∗
ι of d∗ is a1338

minimal derivation of x . Assume a reordering d∗
ι = 〈(x∗

ι1, r∗
ι1), . . . , (x∗

ιp, r∗
ιp)〉 of d∗ =1339

〈(x∗
1 , r∗

1 ), . . . , (x∗
p, r∗

p)〉 such that dι = 〈(x∗
ι1, r∗

ι1), . . . , (x∗
ιq , r∗

ιq)〉 is a minimal derivation of1340

x from T for some q < p. Let j be the greatest index from 1 . . . p such that x∗
j is in Seq(d∗)1341

but not in Seq(dι) (clearly, j < p). Since d∗ is minimal, there must exist h > j such that1342

x∗
j ∈ Body(r∗

h ) (otherwise d∗ deprived of (x∗
j , r∗

j ) would give a proper subsequence also1343
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being a derivation of x). By Property 2, x∗
h �= x∗

i for i �= h. Hence,Head(r∗
i ) �= x∗

h for i �= h.1344

Together with x∗
j /∈ Seq(dι) and x∗

j ∈ Body(r∗
h ), this entails x∗

h /∈ Seq(dι). Therefore, j is1345

not the greatest index such that x∗
j is in Seq(d∗) but not in Seq(dι). ⊓⊔1346

Lemma 1 Let H = (Arg(T ), R) be an argumentation system built over a theory T =1347

(F, S, D) such that CN((F, S,∅)) is consistent and R is conflict-dependent and privileges1348

strict arguments. For all a ∈ Arg(Free(T )), b ∈ Arg(T ), if aRb or bRa, then ∃a′ ∈1349

Sub(a) such that a′ is strict and a′Rb.1350

Proof Let H = (Arg(T ), R) be an argumentation system built over a theory T = (F, S, D)1351

such that CN((F, S,∅)) is consistent. Assume that R is conflict-dependent and privileges1352

strict arguments.1353

Assume that ∃a = (d, x) ∈ Arg(Free(T )) and ∃b = (d ′, x ′) ∈ Arg(T ) such that1354

bRa or bRa. Since R is conflict-dependent, Seq(d) ∪ Seq(d ′) is inconsistent and thus1355

CN(Th({a})) ∪CN(Th({b})) is inconsistent (since from Property 3, Seq(d) ⊆ CN(Th({a}))1356

and Seq(d ′) ⊆ CN(Th({b}))).1357

Let Th({a}) = (X, Y, Z) and Th({b}) = (X ′, Y ′, Z ′). Let us show that CN((F, S, Z ′)) is1358

inconsistent. Assume that CN((F, S, Z ′)) is consistent. Thus, there exists a preferred option1359

O ∈ POpt(T ) such that (F, S, Z ′) ⊑ O. Since (X, Y, Z) ⊑ Free(T ) and Free(T ) ⊑ O,1360

(F, S, Z ∪ Z ′) ⊑ O. From Property 4, CN((F, S, Z ∪ Z ′)) ⊆ CN(O). Thus, CN(O) is1361

inconsistent. This contradicts the fact that O is an option.1362

Let Z∗ be the smallest (for set inclusion) subset of Z ′ such that CN((F, S, Z∗)) is incon-1363

sistent. Thus, for all r ∈ Z∗, CN((F, S, Z∗\{r})) is consistent. It follows that for all r ∈ Z∗,1364

there exists a preferred option O ∈ POpt(T ) such that (F, S, Z ∪ Z∗\{r}) ⊑ O by Prop-1365

erty 8.1366

Assume that for every strict a′′ ∈ Sub(a), Seq(d ′′) ∪ Seq(d ′) is consistent. How-1367

ever, Seq(d) ∪ Seq(d ′) is inconsistent (since aRb or bRa while R is conflict-dependent).1368

Hence, Head(Def(d)) ∪ Head(Def(d ′)) is inconsistent, say y ∈ Head(Def(d)) and1369

¬y ∈ Head(Def(d ′)). Should no such y be in F ∪Head(S), then there would be a preferred1370

option O = (F, S, DO ) with ¬y ∈ Head(DO ). A contradiction arises, because a = (d, x)1371

being in Arg(Free(T )) means that Def(d) is a subset of DO for every preferred option1372

O = (F, S, DO ).1373

That is, there exists a′′ = (d ′′, x ′′) ∈ Sub(a) such that a′′ is strict and Seq(d ′′)∪Seq(d ′)1374

is inconsistent. Since R privileges strict arguments, a′′Rb. ⊓⊔1375

Proof of Theorem 2 Let H = (Arg(T ), R) be an argumentation system built over a theory1376

T = (F, S, D) such that CN((F, S,∅)) is consistent. Assume that R is conflict-dependent1377

and privileges strict arguments.1378

We show first that Arg(Free(T )) is conflict-free. From Property 8, CN(Free(T )) is1379

consistent. Since R is conflict-dependent, from Proposition 5, Arg(Free(T )) is conflict-1380

free.1381

Let us now show that Arg(Free(T )) defends its elements. Assume that ∃a = (d, x) ∈1382

Arg(Free(T )) and ∃b = (d ′, x ′) ∈ Arg(T ) such that bRa. From Lemma 1, there exists1383

a′ = (d ′′, x ′′) ∈ Sub(a) such that a′ is strict, hence a ∈ Arg(Free(T )), and a′Rb. ⊓⊔1384

Proof of Theorem 3 Let H = (Arg(T ), R) be an argumentation system built over a theory1385

T = (F, S, D) such that Ext(H) �= ∅. Assume that H satisfies strict precedence and1386

closure under both strict rules and sub-arguments. Let E ∈ Ext(H) and Th(E) = (X, Y, Z).1387

Since X ⊆ F and Y ⊆ S, (X, Y, Z) ⊑ (F, S, Z). From Property 4, CN((X, Y, Z)) ⊆1388

CN((F, S, Z)).1389
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Let us now show that CN((F, S, Z)) ⊆ CN((X, Y, Z)). Since H satisfies strict prece-1390

dence, CN((F, S,∅)) ⊆ Output(H). From Property 11, Output(H) ⊆ Concs(E).1391

Since H is closed under sub-arguments, Concs(E) = CN(Th(E)) by Proposition 12. Hence,1392

CN((F, S,∅)) ⊆ CN((X, Y, Z)). Furthermore, from Property 3, F ⊆ CN((F, S,∅)). Thus,1393

X = F , i.e., Th(E) = (F, Y, Z). Let x ∈ CN((F, S, Z)). Then, there exists a derivation1394

schema1395

d = 〈(x1, r1), . . . , (xn, rn)〉1396

for x from (F, S, Z). There are two cases:1397

• For any i = 1, . . . , n, ri ∈ {σ } ∪ Y ∪ Z . Hence, d is also a derivation schema for x from1398

(F, Y, Z). Thus, x ∈ CN((F, Y, Z)).1399

• There exists 1 < i ≤ n such that ri ∈ S\Y (note that the two theories (F, Y, Z) and1400

(F, S, Z) differ only on S\Y ). Let i be the first step where an element of S\Y is used1401

in the derivation d . Note also that i > 1 since strict rules have non-empty bodies. Thus,1402

for any j < i , r j ∈ {σ } ∪ Y ∪ Z and 〈(x1, r1), . . . , (x j , r j )〉 is a derivation schema of x j1403

from (F, Y, Z). Thus, x j ∈ CN((F, Y, Z)). Furthermore,Body(ri ) ⊆ {x1, . . . , xi−1}, so1404

Body(ri ) ⊆ CN((F, Y, Z)). Since Concs(E) = CN(Th(E)), Body(ri ) ⊆ Concs(E).1405

Since H is closed under strict rules, Head(ri ) ∈ Concs(E) = CN((F, Y, Z)), i.e., xi ∈1406

CN((F, Y, Z)). We repeat the same reasoning for showing that each xi ∈ CN((F, Y, Z))1407

and conclude that x ∈ CN((F, Y, Z)).1408

⊓⊔1409

Proof of Theorem 4 Let H = (Arg(T ), R) be an argumentation system built over a theory1410

T = (F, S, D) such that H satisfies strict precedence, and closure under both strict rules1411

and sub-arguments.1412

Let E ∈ Ext(H) and Th(E) = (X, Y, Z). From Theorem 3 and Proposition 12, it holds1413

that1414

CN(Th(E)) = CN((F, S, Z)) = Concs(E). (*)1415
1416

Let O = (F, S, Z ∪ Z ′) where Z ′ = {r | r ∈ D\Z and Body(r) � CN(Th(E))}. Since1417

(F, S, Z) ⊑ O, then from Property 4 and (*), Concs(E) ⊆ CN(O). Let us now show that1418

CN(O) ⊆ Concs(E). Let x ∈ CN((F, S, Z ∪ Z ′)). Then, there exists a derivation schema1419

d = 〈(x1, r1), . . . , (xn, rn)〉1420

for x from (F, S, Z ∪ Z ′). There are two cases:1421

• For any i = 1, . . . , n, ri ∈ {σ } ∪ S ∪ Z . Hence, d is also a derivation schema for x from1422

(F, S, Z). Thus, x ∈ CN((F, S, Z)), and from (1), x ∈ Concs(E).1423

• Assume that there exists 1 < i ≤ n such that ri ∈ Z ′ (note that the two theories (F, S, Z)1424

and (F, S, Z ∪ Z ′) differ only on Z ′). Let i be the first step where an element of Z ′ is1425

used in the derivation d . Since the bodies of defeasible rules are not empty, i > 1. It1426

follows that for any j < i , ri ∈ {σ } ∪ S ∪ Z , thus 〈(x1, r1), . . . , (x j , r j )〉 is a derivation1427

schema of x j from (F, S, Z). Thus, x j ∈ CN((F, S, Z)). Furthermore, by Definition 6,1428

Body(ri ) ⊆ {x1, . . . , xi−1}. Then, Body(ri ) ⊆ CN((F, S, Z)). This contradicts the fact1429

that ri ∈ Z ′ and thus such ri does not exist.1430

⊓⊔1431
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A formal characterization of the outcomes of rule-based…

Proof of Theorem 5 Let H = (Arg(T ), R) be an argumentation system built over a theory1432

T = (F, S, D) such that R is conflict-dependent. Assume that for all E ∈ Extn(H),1433

Arg((F, S,∅)) ⊆ E . Assume now that ∃a ∈ Arg((F, S,∅)) and ∃b ∈ Arg(T ) such1434

that aRb or bRa. Since R is conflict-dependent, (b, b) /∈ R (cf. Proposition 4). Thus,1435

∃E ∈ Extn(H) such that b ∈ E . Consequently, a, b ∈ E , this contradicts the fact that E is1436

conflict-free (since it is a naive extension).1437

Assume now that for all a ∈ Arg((F, S,∅)), ∄b ∈ Arg(T ) such that aRb or bRa. This1438

means that arguments of Arg((F, S,∅)) are not attacked. Thus, they belong to every naive1439

extension. ⊓⊔1440

Proof of Theorem 6 Let H = (Arg(T ), R) be an argumentation system built over a theory1441

T = (F, S, D) such that R is conflict-dependent. Assume that ∃a, b ∈ Arg(T ) such that1442

a ∈ Arg((F, S,∅)) and Conc(a) = ¬Conc(b). Thus, (b, b) /∈ R and ∃E ∈ Extn(H)1443

such that b ∈ E . If H satisfies strict precedence, then Conc(a) ∈ Concs(E) meaning that1444

Concs(E) is inconsistent. Thus, H violates consistency. If H satisfies consistency, then1445

Conc(a) /∈ Concs(E) meaning that H violates strict precedence. ⊓⊔1446

Proof of Theorem 7 Let H = (Arg(T ), R) be an argumentation system built over a theory1447

T such that R is conflict-dependent and H satisfies consistency and closure under sub-1448

arguments. Let E, E ′ ∈ Extn(H) such that Concs(E ′) ⊆ Concs(E).1449

Assume that ∃a = (d, x) ∈ E\E ′. Thus, ∃b = (d ′, x ′) ∈ E ′ such that aRb or bRa. Since R1450

is conflict-dependent,Seq(d)∪Seq(d ′) is inconsistent. ButH is closed under sub-arguments.1451

Thus, Proposition 12 gives Concs(E) = CN(Th(E)) and Concs(E ′) = CN(Th(E ′)).1452

Besides, Seq(d) ⊆ CN(Th(E)) and Seq(d ′) ⊆ CN(Th(E ′)) using Propositions 12 and 14.1453

Since CN(Th(E ′)) ⊆ CN(Th(E)), Seq(d) ∪ Seq(d ′) ⊆ CN(Th(E)). Thus, CN(Th(E)) is1454

inconsistent. This contradicts the fact that H satisfies consistency.1455

The same reasoning holds for a = (d ′, x ′) ∈ E ′\E . ⊓⊔1456

Proof of Theorem 8 Let H = (Arg(T ), R) be an argumentation system built over a theory1457

T such that R is conflict-dependent and H satisfies consistency and closure under sub-1458

arguments. Let E ∈ Extn(H).1459

From Proposition 6, CN(Th(E)) is consistent. Thus, ∃O ∈ Opt(T ) such that Th(E) ⊑1460

O. From Property 4, CN(Th(E)) ⊆ CN(O). Since H is closed under sub-arguments,1461

CN(Th(E)) = Concs(E) by Proposition 12. Thus, Concs(E) ⊆ CN(O). Assume now1462

that ∃x ∈ CN(O)\Concs(E). Then, there exists a minimal derivation d for x from O. From1463

Property 3, Seq(d) ⊆ CN(O). Since CN(O) is consistent, (d, x) is an argument. In addition1464

(d, x) /∈ E . Then, ∃(d ′, x ′) ∈ E such that (d, x)R(d ′, x ′) or (d ′, x ′)R(d, x). Since R is1465

conflict-dependent, then Seq(d) ∪ Seq(d ′) is inconsistent. But, Seq(d ′) ⊆ Concs(E).1466

So, Seq(d) ∪ Seq(d ′) ⊆ CN(O). This contradicts the fact that O is an option. So,1467

CN(O) ⊆ Concs(E).1468

Since both Concs(E) ⊆ CN(O) and CN(O) ⊆ Concs(E) have now been proved, the1469

required CN(O) = Concs(E) follows.1470

Let us now show that O ∈ Max(Opt(T )). Assume that ∃O′ ∈ Opt(T ) such that1471

CN(O) ⊆ CN(O′). Thus, ∃x ∈ CN(O′) and x /∈ CN(O). Thus, there exists a minimal deriva-1472

tion d for x from O′. Since CN(O′) is consistent and Seq(d) ⊆ CN(O′) (from Property 3),1473

(d, x) is an argument. In addition (d, x) /∈ E (since x /∈ CN(O)). Then, ∃(d ′, x ′) ∈ E such1474

that (d, x)R(d ′, x ′) or (d ′, x ′)R(d, x). Since R is conflict-dependent, Seq(d) ∪ Seq(d ′) is1475

inconsistent. But, Seq(d ′) ⊆ Concs(E). So, Seq(d)∪Seq(d ′) ⊆ CN(O′). This contradicts1476

the fact that O′ is an option.1477
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From Proposition 1, it follows that for all O, O′ ∈ Max(Opt(T )), if CN(O) = CN(O′) =1478

Concs(E), then O = O′. ⊓⊔1479

Proof of Theorem 9 Let H = (Arg(T ), R) be an argumentation system built over a theory1480

T such that R is conflict-dependent and H satisfies consistency and closure under sub-1481

arguments.1482

• Let E, E ′ ∈ Extn(H). From Theorem 8, ∃O, O′ ∈ Max(Opt(T )) such thatConcs(E) =1483

CN(O) and Concs(E ′) = CN(O′). If O = O′, then Concs(E) = Concs(E ′). From1484

Theorem 7, E = E ′.1485

• Let E ∈ Extn(H) and O = Option(E). Thus, Th(E) ⊑ O and Concs(E) = CN(O).1486

From Proposition 3, Arg(Th(E)) ⊆ Arg(O). From Proposition 14, Arg(Th(E)) = E .1487

Thus, E ⊆ Arg(O). Assume now that ∃a = (d, x) ∈ Arg(O) and a /∈ E . Thus,1488

∃b = (d ′, x ′) ∈ E and aRb or bRa. Since R is conflict-dependent, Seq(d)∪Seq(d ′) is1489

inconsistent. Besides, Seq(d) ⊆ CN(O) and Seq(d ′) ⊆ CN(Th(E)). Since H is closed1490

under sub-arguments, CN(Th(E)) = CN(O). Thus, Seq(d) ∪ Seq(d ′) ⊆ CN(O). This1491

contradicts the fact that O is an option.1492

⊓⊔1493

Proof of Theorem 10 Let H = (Arg(T ), R) be an argumentation system built over a theory1494

T such that R is conflict-dependent and H satisfies consistency and closure under sub-1495

arguments.1496

• Let O ∈ Max(Opt(T )). Thus, CN(O) is consistent. From Proposition 5, since R is1497

conflict-dependent, Arg(O) is conflict-free. Assume now that Arg(O) /∈ Extn(H).1498

Thus, ∃a = (d, x) ∈ Arg(T ) such that a /∈ Arg(O) and Arg(O) ∪ {a} is conflict-1499

free. Consequently, ∃E ∈ Extn(H) such that Arg(O) ∪ {a} ⊆ E . It follows that1500

Concs(Arg(O) ∪ {a}) ⊆ Concs(E). Since CN(O) is consistent, Concs(Arg(O)) =1501

CN(O). Thus, CN(O) ∪ {x} ⊆ Concs(E). From Theorem 8, ∃O′ ∈ Max(Opt(T )) such1502

that Concs(E) = CN(O′). Then, CN(O) ∪ {x} ⊆ CN(O′). This contradicts the fact that1503

O is a maximal option.1504

• Let O ∈ Max(Opt(T )). By definition of Th, Th(Arg(O)) ⊑ O. From Property 4,1505

CN(Th(Arg(O))) ⊆ CN(O). Besides, from first item, Arg(O) ∈ Extn(H). From The-1506

orem 8, ∃O′ ∈ Max(Opt(T )) such that Th(Arg(O)) ⊑ O′ and Concs(Arg(O)) =1507

CN(O′). Since H is closed under sub-arguments,CN(Th(Arg(O))) = Concs(Arg(O)).1508

Consequently, CN(O′) ⊆ CN(O). From Proposition 1, O = O′.1509

• Let O, O′ ∈ Max(Opt(T )). Assume that Arg(O) = Arg(O′).1510

It follows that Option(Arg(O)) = Option(Arg(O′)). From item 2, it follows that1511

O = O′.1512

⊓⊔1513

Proof of Theorem 11 Let H = (Arg(T ), R) be an argumentation system built over a the-1514

ory T = (F, S, D) such that R is conflict-dependent and H satisfies consistency, strict1515

precedence and closure under both strict rules and sub-arguments.1516

Let us show that Max(Opt(T )) ⊆ Max(POpt(T )). Let O ∈ Max(Opt(T )). From1517

(item 1) of Theorem 10, Arg(O) ∈ Extn(H). From Theorem 8, Concs(Arg(O)) =1518

CN(Option(Arg(O))). From Corollary 1, Option(Arg(O)) = O. Hence, Concs1519

(Arg(O)) = CN(O). From Theorem 4, there exists O′ = (F, S, Z) such that1520

Z =

⎛

⎝

⋃

(d,x)∈Arg(O)

Def(d)

⎞

⎠ ∪
{

r | r ∈ D and Body(r) � CN (Th (Arg(O)))
}

1521
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A formal characterization of the outcomes of rule-based…

and Concs(Arg(O)) = CN(O′). Since Concs(Arg(O)) = CN(O) and using Proposition1522

12, Concs(Arg(O)) = CN(Th(Arg(O))), then CN(Th(Arg(O))) = CN(O) and we get1523

Z =

⎛

⎝

⋃

(d,x)∈Arg(O)

Def(d)

⎞

⎠ ∪
{

r | r ∈ D and Body(r) � CN(O)
}

1524

and CN(O) = CN(O′). From Proposition 1, it follows that O = O′. Furthermore, O ∈1525

Max(Opt(T )) and is maximal (for set inclusion) up to consistency and contains the strict1526

part of T , then O ∈ Max(POpt(T )).1527

Let us now show that Max(POpt(T )) ⊆ Max(Opt(T )). Let O ∈ Max(POpt(T )). By1528

definition of preferred option, CN(O) is consistent. Since R is conflict-dependent, Arg(O)1529

is conflict-free by Proposition 5. Assume now that Arg(O) /∈ Extn(H). Thus, ∃a ∈1530

Arg(T )\Arg(O) such that Arg(O) ∪ {a} is conflict-free. Consequently, ∃E ∈ Extn(H)1531

such that Arg(O) ∪ {a} ⊆ E . Thus, Concs(Arg(O) ∪ {a}) ⊆ Concs(E). Since CN(O) is1532

consistent,Concs(Arg(O)) = CN(O). Thus,CN(O)∪{Conc(a)} ⊆ Concs(E). From The-1533

orem 8, ∃O′ ∈ Max(Opt(T )) such that Concs(E) = CN(O′). Then, CN(O)∪{Conc(a)} ⊆1534

CN(O′). This means that O′ ∈ POpt(T ) (since it contains all consequences of the strict1535

part of T ). This contradicts the fact that O is a maximal preferred option. Consequently,1536

Arg(O) ∈ Extn(H). From Theorem 8, O ∈ Max(Opt(T )). ⊓⊔1537

Proof of Theorem 12 Let H = (Arg(T ), R) be an argumentation system built over a theory1538

T such that R is conflict-dependent and H satisfies consistency and closure under sub-1539

arguments. From Property 11, Output(H) =
⋂

Ei ∈Extn(H)

Concs(Ei ). From Theorem 8, for1540

allEi ∈ Extn(H), there exists a uniqueOi ∈ Max(Opt(T )) such thatConcs(Ei ) = CN(Oi ).1541

Also, Corollary 1 guarantees that Max(Opt(T )) does not have any additional elements that1542

do not have a mapping in Extn(H). Thus,1543

Output(H) =
⋂

Oi ∈Max(Opt(T ))

CN(Oi ).1544

⊓⊔1545

Lemma 2 Let H = (Arg(T ), R) be an argumentation system built over a theory T =1546

(F, S, D) such that R is conflict-dependent and H satisfies the five postulates. For any1547

E ∈ Exts(H), it holds that (F, S, Z) ∈ Max(POpt(T )) whenever1548

Z =

⎛

⎝

⋃

(d,x)∈E

Def(d)

⎞

⎠ ∪
{

r | r ∈ D and Body(r) � CN(Th(E))
}

.1549

Proof Let H = (Arg(T ), R) be an argumentation system built over a theory T such that1550

R is conflict-dependent and H satisfies the five postulates. Let E ∈ Exts(H) and Th(E) =1551

(X, Y, Z). Let O = (F, S, Z ∪ Z ′) where Z ′ = {r | r ∈ D\Z and Body(r) � CN(Th(E))}.1552

Clearly, Th(E) ⊑ O. From Theorem 4, Concs(E) = CN(O). Since H satisfies consistency,1553

then Concs(E) is consistent, and thus, CN(O) is consistent as well. Since (F, S,∅) ⊑ O1554

and CN(O) is consistent, from Property 7, ∃O′ ∈ POpt(T ) such that O ⊑ O′. From Propo-1555

sition 3, Arg(Th(E)) ⊆ Arg(O) ⊆ Arg(O′). From Proposition 9, E = Arg(Th(E)).1556

Hence, E ⊆ Arg(O) ⊆ Arg(O′). Since R is conflict-dependent, CN(O) and CN(O′) are1557

consistent, then from Proposition 5 Arg(O) and Arg(O′) are both conflict-free. From Prop-1558

erty 1, E ∈ Extn(H). Then, E is maximal (for set inclusion) among conflict-free sets.1559
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Thus, E = Arg(O) = Arg(O′). From consistency of CN(O) and CN(O′), it follows that1560

Concs(Arg(O)) = CN(O) and Concs(Arg(O′)) = CN(O′). Then, CN(O) = CN(O′) and1561

O ∈ POpt(T ).1562

Let us now show that O ∈ Max(POpt(T )). Assume that ∃O′ ∈ POpt(T ) such that1563

CN(O) ⊆ CN(O′). Since Concs(E) = CN(O), Concs(E) ⊆ CN(O′). Let x ∈ CN(O′) and1564

x /∈ Concs(E). SinceCN(O′) is consistent, there exists an argument (d, x) ∈ Arg(O′), i.e., d1565

is a derivation of x from O′. Clearly, (d, x) /∈ E . Thus, ∃(d ′, x ′) ∈ E such that (d ′, x ′)R(d, x).1566

Since R is conflict-dependent,Seq(d)∪Seq(d ′) is inconsistent. But,Seq(d ′) ⊆ CN(Th(E))1567

and Seq(d) ⊆ CN(O′). Proposition 13 gives CN(Th(E)) = Concs(E). Then, CN(Th(E)) ⊆1568

CN(O′). Finally, Seq(d) ∪ Seq(d ′) ⊆ CN(O′). This contradicts the fact that CN(O′) is1569

consistent. ⊓⊔1570

Proof of Theorem 13 Let H = (Arg(T ), R) be an argumentation system built over a theory1571

T such that R is conflict-dependent and H satisfies consistency, exhaustiveness, strict prece-1572

dence and closure under both strict rules and sub-arguments. Assume that Exts(H) �= ∅.1573

Let E ∈ Exts(H) and Th(E) = (X, Y, Z). From Lemma 2, the option O = (F, S, Z ′) ∈1574

Max(POpt(T )) with Z ′ = Z ∪ {r | r ∈ D\Z and Body(r) � CN(Th(E))}. Since X ⊆ F ,1575

Y ⊆ S and Z ⊆ Z ′, Th(E) ⊑ O. From Theorem 4, Concs(E) = CN(O).1576

Let us show that E has a unique corresponding preferred maximal option. Assume that1577

∃O1, O2 ∈ Max(POpt(T )) such that Th(E) ⊑ O1, Concs(E) = CN(O1), Th(E) ⊑ O21578

and Concs(E) = CN(O2). Obviously, CN(O1) = CN(O2). However, O1, O2 ∈ POpt(T )1579

according to Property 6 hence Proposition 1 gives O1 = O2.1580

Let us now show that E = Arg(O). SinceTh(E) ⊑ O, from Proposition 3,Arg(Th(E)) ⊆1581

Arg(O). From Proposition 15, E ⊆ Arg(O). Assume now that ∃a = (d, x) ∈ Arg(O) such1582

that a /∈ E . Thus, ∃b = (d ′, x ′) ∈ E and bRa. Since R is conflict-dependent, Seq(d) ∪1583

Seq(d ′) is inconsistent. Besides, Seq(d) ⊆ CN(O) and Seq(d ′) ⊆ CN(Th(E)). Since H1584

is closed under sub-arguments, CN(Th(E)) = CN(O) by Proposition 12. Thus, Seq(d) ∪1585

Seq(d ′) ⊆ CN(O). This contradicts the fact that O is an option. ⊓⊔1586

Proof of Theorem 14 Let H = (Arg(T ), R) be an argumentation system built over a the-1587

ory T such that R is conflict-dependent and H satisfies consistency, strict precedence1588

and closure under both strict rules and sub-arguments. Assume that Exts(H) �= ∅. Let1589

E, E ′ ∈ Exts(H). From Theorem 13, ∃O ∈ Max(POpt(T )) such that Concs(E) = CN(O)1590

and ∃O′ ∈ Max(POpt(T )) such that Concs(E ′) = CN(O′). If O = O′, then Concs(E) =1591

Concs(E ′). Assume that ∃a = (d, x) ∈ E\E ′. Thus, ∃b = (d ′, x ′) ∈ E ′ such that bRa.1592

Since R is conflict-dependent, Seq(d) ∪ Seq(d ′) is inconsistent. But H is closed under1593

sub-arguments. Thus, Concs(E) = CN(Th(E)) and Concs(E ′) = CN(Th(E ′)). Besides,1594

Seq(d) ⊆ CN(Th(E)) and Seq(d ′) ⊆ CN(Th(E ′)). Since CN(Th(E ′)) = CN(Th(E)),1595

Seq(d) ∪ Seq(d ′) ⊆ CN(Th(E)). Thus, CN(Th(E)) is inconsistent. This contradicts the1596

fact that H satisfies consistency. The same reasoning holds for a = (d ′, x ′) ∈ E ′\E . ⊓⊔1597

Proof of Theorem 15 Any argumentation system H = (Arg(T ), R) that satisfies strict1598

precedence should have F as plausible conclusions, i.e., F ⊆ CN((F, S,∅)) ⊆ Output(H).1599

Since ⊤ ∈ F , then Output(H) �= ∅. However, since R ∈ ℜs1 , Exts(H) = ∅. Thus,1600

Output(H) = ∅. ⊓⊔1601

Proof of Theorem 16 Let H = (Arg(T ), R) be an argumentation system over a theory1602

T such that R ∈ ℜs2 . Let O ∈ Max(POpt(T )). Since |Exts(H)| = |Max(POpt(T ))|,1603

from Theorems 13 and 14, ∃E ∈ Exts(H) such that E = Arg(O), hence Arg(O) ∈1604

Exts(H). ⊓⊔1605
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Proof of Theorem 17 Let H = (Arg(T ), R) be an argumentation system built over a1606

theory T such that R ∈ ℜs2. From Corollary 5, Exts(H) = Extss(H). Assume that1607

∃E ∈ Extp(H)\Exts(H). From Theorem 22, there exists O ∈ Max(POpt(T )) such that1608

Th(E) ⊑ O. Since |Exts(H)| = |Max(POpt(T ))|, from Theorem 16,Arg(O) ∈ Exts(H).1609

From Theorems 13 and 14, O = Option(Arg(O)). From Theorem 24, E = Arg(O). ⊓⊔1610

Proof of Theorem 18 Let H = (Arg(T ), R) be an argumentation system such that R ∈ ℜs2 .1611

If H satisfies all the postulates under naive semantics, then from Corollary 1 and Theorem 11,1612

there is a bijection between Extn(H) and Max(POpt(T )). From Theorems 13 and 16,1613

|Exts(H)| = |Max(POpt(T ))|. Since every stable extension is a naive one, Extn(H) =1614

Exts(H). ⊓⊔1615

Proof of Theorem 19 Let H = (Arg(T ), R) be an argumentation system built over a theory1616

T such that R ∈ ℜs2 . From Property 11,1617

Output(H) =
⋂

Ei ∈Exts (H)

Concs(Ei ).1618

From Theorems 13 and 14, for all Ei ∈ Exts(H), there exists a unique Oi ∈ Max(POpt(T ))1619

such that Concs(Ei ) = CN(Oi ). Thus,1620

Output(H) =
⋂

Oi ∈Max(Opt(T ))

CN(Oi ).1621

⊓⊔1622

Proof of Theorem 20 Let H = (Arg(T ), R) be an argumentation system built over a theory1623

T such that R ∈ ℜs3 . From Property 11,1624

Output(H) =
⋂

Ei ∈Exts (H)

Concs(Ei ).1625

From Theorem 13, for all Ei ∈ Exts(H), there exists a unique Oi ∈ Max(POpt(T )) such1626

that Concs(Ei ) = CN(Oi ). Since R ∈ ℜs3 , |Exts(H)| < |Max(POpt(T ))|. Thus,1627

Output(H) =
⋂

Oi ∈X

CN(Oi )1628

with X = {Oi ∈ Max(POpt(T )) | Ei = Arg(Oi ) ∈ Exts(H)}. ⊓⊔1629

Proof of Theorem 21 Let H be an argumentation system built over a theory T = (F, S, D)1630

such that H satisfies the strict precedence postulate, i.e., F ⊆ Output(H). Since ⊤ ∈ F ,1631

Output(H) �= ∅. Hence, Extp(H) �= {∅}. ⊓⊔1632

Proof of Theorem 22 Let H = (Arg(T ), R) be an argumentation system built over a theory1633

T such that R is conflict-dependent and H satisfies the five postulates. Let E ∈ Extp(H) and1634

Th(E) = (X, Y, Z). From Theorem 4, Concs(E) = CN(O) where O = (F, S, Z ∪ Z ′) and1635

Z ′ ⊆ D\Z . Clearly Th(E) ⊑ O. From consistency, Concs(E) is consistent. Then, CN(O)1636

is consistent as well. Then, there exists O′ ∈ Max(POpt(T )) such that O ⊑ O′. Therefore,1637

CN(O) ⊆ CN(O′). Thus, Concs(E) ⊆ CN(O′). ⊓⊔1638

Proof of Theorem 23 Let H = (Arg(T ), R) be an argumentation system built over a the-1639

ory T = (F, S, D) such that R is conflict-dependent and H satisfies the five postulates1640

under preferred semantics. Since Exts(H) ⊆ Extp(H), H satisfies the postulates under1641

stable semantics. Consequently, from Theorem 15, Exts(H) �= ∅. Let E ∈ Exts(H). From1642

Theorem 13, ∃O ∈ Max(POpt(T )) such that E = Arg(O). ⊓⊔1643
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Proof of Theorem 24 Let H = (Arg(T ), R) be an argumentation system built over a theory1644

T such that R is conflict-dependent and H satisfies exhaustiveness and closure under sub-1645

arguments. Let E, E ′ ∈ Extp(H) and O ∈ Max(POpt(T )) such that Th(E) ⊑ O and1646

Th(E ′) ⊑ O. We show that E ∪ E ′ is a preferred extension (which contradicts the fact that E1647

and E ′ are preferred extensions).1648

From Proposition 3,Arg(Th(E)) ⊆ Arg(O) andArg(Th(E ′)) ⊆ Arg(O). Since H satis-1649

fies exhaustiveness and closure under sub-arguments, from Proposition 9, Arg(Th(E)) = E1650

and Arg(Th(E ′)) = E ′. Thus, E ∪ E ′ ⊆ Arg(O). Since CN(O) is consistent and R is1651

conflict-dependent, from Proposition 5 Arg(O) is conflict-free. Consequently, E ∪ E ′ is also1652

conflict-free. Moreover, E ∪ E ′ defends its elements since E and E ′ are preferred extensions.1653

Thus, E ∪ E ′ is an admissible set. Due to E and E ′ being preferred extensions, it follows that1654

E ∪ E ′ = E = E ′. ⊓⊔1655

Proof of Theorem 25 Let H = (Arg(T ), R) be an argumentation system built over a theory1656

T = (F, S, D) such that R is conflict-dependent and privileges strict arguments, and H1657

satisfies consistency, exhaustiveness, strict precedence and closure under sub-arguments.1658

From consistency and strict precedence, it follows by Proposition 8 that CN((F, S,∅)) is1659

consistent.1660

The conclusion of the theorem, i.e., Arg(Free(T )) ⊆
⋂

Ei ∈Extp(H) Ei , is trivial in the1661

case that Arg(Free(T )) is empty. Consider a ∈ Arg(Free(T )). Let E ∈ Extp(H).1662

Let us show that E ∪ {a} is conflict-free. Assume that ∃b = (d2, x2) ∈ E such that aRb1663

or bRa. From Lemma 1, there exists a′ ∈ Sub(a) such that a′ = (d ′
1, x ′

1) ∈ Arg((F, S,∅))1664

and a′Rb. Then, Seq(d ′
1) ∪ Seq(d2) is inconsistent. Since H satisfies strict precedence and1665

exhaustiveness, Arg((F, S,∅)) ⊆ E by Proposition 10, so a′ ∈ E . Consequently, Seq(d ′
1)∪1666

Seq(d2) ⊆ CN(Th(E)) by Proposition 12. Since H satisfies consistency and closure under1667

sub-arguments, by Proposition 6 Concs(E) = CN(Th(E)) is consistent. Contradiction.1668

Let us show that E defends a. Consider b ∈ Arg(T ) such that bRa. From Lemma 1,1669

there exists a′ ∈ Sub(a) such that a′ ∈ Arg((F, S,∅)) and a′Rb. Since H satisfies strict1670

precedence and exhaustiveness, Arg((F, S,∅)) ⊆ E , thus a′ ∈ E .1671

Summing up, E ∪ {a} is an admissible set. However, E ∈ Extp(H) means that E is a1672

maximal admissible set; hence, E ∪ {a} ⊆ E . Therefore, a ∈ E . ⊓⊔1673

Proof of Theorem 26 Let H = (Arg(T ), R) be a system built over a theory T such that1674

R is conflict-dependent and H satisfies the five postulates. From Theorem 22, for all E ∈1675

Extp(H), ∃O ∈ Max(POpt(T )) such that Th(E) ⊑ O and Concs(E) ⊆ CN(O). From1676

Theorem 24, there cannot exist two maximal preferred extensions E and E ′ such thatTh(E) ⊑1677

O and Th(E ′) ⊑ O for some O ∈ Max(POpt(T )). Thus, every maximal preferred option is1678

captured by at most one preferred extension. Then, |Extp(H)| ≤ |Max(POpt(T ))|. ⊓⊔1679

Proof of Theorem 27 Let H = (Arg(T ), R) be an argumentation system built over a theory1680

T = (F, S, D). Assume that R ∈ ℜp2 . The following equalities hold by Theorems 161681

and 17: Extp(H) = Exts(H) = Extss(H) = {Arg(Oi ) | Oi ∈ Max(POpt(T ))}. Let us1682

now show the equality1683

⋂

Oi ∈Max(POpt(T ))

Arg(Oi ) = Arg(
⋂

Oi ∈Max(POpt(T ))

Oi ).1684

Let Max(POpt(T )) = {O1 = (F, S, D1), . . . , On = (F, S, Dn)}. Assume that (d, x) ∈1685

n
⋂

i=1

Arg(Oi ). For any i = 1, . . . , n, (d, x) ∈ Arg(Oi ) and thus1686

(Facts(d),Strict(d),Def(d)) ⊑ Oi .1687
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This means that Def(d) ⊆
⋂n

i=1 Di . Consequently, d is also a derivation schema from1688

(F, S,
⋂n

i=1 Di ) =
⋂n

i=1 Oi . Finally, (d, x) ∈ Arg(
⋂n

i=1 Oi ).1689

Assume now that (d, x) ∈ Arg(
⋂n

i=1 Oi ). Then, d is a derivation schema from1690

(F, S,
⋂n

i=1 Di ). Hence, Def(d) ⊆
⋂n

i=1 Di . Hence, for any i = 1, . . . , n, Def(d) ⊆ Di .1691

Thus, d is a derivation schema from each theory Oi and (d, x) is an argument in each1692

Arg(Oi ).1693

From above, it follows that1694

⋂

Oi ∈Max(POpt(T ))

Arg(Oi ) = Arg(Free(T )).1695

⊓⊔1696

Proof of Theorem 28 Let H be an argumentation system which satisfies the five postulates.1697

From strict precedence and the fact that Output(H) = Concs(IE(H)), it holds that1698

CN((F, S,∅)) ⊆ Concs(IE(H)). From Theorem 4, Concs(IE(H)) = CN(O) such that1699

O = (F, S, Z) where1700

Z =

⎛

⎝

⋃

(d,x)∈IE(H)

Def(d)

⎞

⎠ ∪
{

r | r ∈ D and Body(r) � CN(Th(IE(H)))
}

.1701

It holds thatTh(IE(H)) ⊑ O. From consistency postulate, it follows thatCN(O) is consistent1702

(since Concs(IE(H)) is consistent). Thus, there exists O′ ∈ POpt(T ) such that O ⊑ O′.1703

From Property 4, CN(O) ⊆ CN(O′). Consequently, Concs(IE(H)) ⊆ CN(O′). ⊓⊔1704

Proof of Theorem 29 Let H = (Arg(T ), R) be an argumentation system built over a1705

theory T . Assume that R ∈ ℜp2 and privileges strict arguments. From Theorem 27,1706
⋂

Ei ∈Extp(H) Ei = Arg(Free(T )). From Theorem 2, Arg(Free(T )) is an admissible1707

extension of H. Thus, IE(H) = Arg(Free(T )). ⊓⊔1708

Proof of Theorem 30 The proof is similar to that of Theorem 28. ⊓⊔1709

Proof of Corollary 1 It follows directly from Theorems 8 and 10. ⊓⊔1710

Proof of Corollary 2 It follows directly from Theorem 11 and Corollary 1. ⊓⊔1711

Proof of Corollary 3 It follows from Corollary 1. ⊓⊔1712

Proof of Corollary 4 It follows from Corollary 3, i.e., the equality |Extn(H)| = |Max(Opt1713

(T ))| and the fact that if a theory T is finite, then it has a finite number of options, thus of1714

maximal options. ⊓⊔1715

Proof of Corollary 5 Let H = (Arg(T ), R) be such that R ∈ ℜs2 ∪ℜs3 . From Theorem 15,1716

Exts(H) �= ∅. From Property 1, Exts(H) = Extss(H). ⊓⊔1717

Proof of Corollary 6 Let H = (Arg(T ), R) be an argumentation system built over a theory1718

T such that R is conflict-dependent and H satisfies the five postulates. From Theorem 15,1719

Exts(H) �= ∅. From Theorem 13, |Exts(H)| ≤ |Max(POpt(T ))|. ⊓⊔1720

Proof of Corollary 7 Let H = (Arg(T ), R) be an argumentation system built over a theory1721

T such that R is conflict-dependent and H satisfies the five postulates. If T is finite, then T1722

has a finite number of maximal preferred options. From Corollary 6, H has a finite number1723

of stable extensions. ⊓⊔1724
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Proof of Corollary 8 It follows immediately from Theorem 26. ⊓⊔1725

Proof of Corollary 9 It follows immediately from Theorems 17, 13 and 16. ⊓⊔1726

Proof of Corollary 10 Let H = (Arg(T ), R) be an argumentation system over a the-1727

ory T such that R ∈ ℜp2 and privileges strict arguments. From Theorem 29, IE(H) =1728

Arg(Free(T )). Then,Output(H) = Concs(IE(H)) = Concs(Arg(Free(T ))). Since1729

CN(Free(T )) is consistent, CN(Free(T )) = Concs(Arg(Free(T ))). ⊓⊔1730
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