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Abstract

We study the dynamics of an elastic structure composed of a cylindrical rod

in contact with a bead at one extremity. Wave propagation within the cylin-

drical rod is considered linear and dispersionless while the bead-rod contact

shows a highly nonlinear behavior as expected from the Hertz’s model of con-

tact. The resonance curves of the nonlinear contact depend on the excitation

amplitude, where a downshift of the resonance frequency with increasing ex-

citation amplitude is observed. The prediction of the resonance frequency

shift by the Hertz’s model is compared to the experimental results and shows

a disagreement. A better agreement is found by considering the losses with

a viscoelastic model, namely the Kuwabara and Kono or Brilliantov model.

The observation of the nonlinear effects linked to the resonance of the mass-

spring system can lead to the design of nonlinear elastic metamaterials, where

the wave propagation is controlled by nonlinear isolated resonators.
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1. Introduction

In studying granular materials, especially when considering the wave dy-

namics, the definition of the contact law between the particles is of primary

importance. The elastic component of the normal contact force between

two elastic spheres, without solid bridge between them, is well described in

acoustics by the Hertz’s contact law [1], which remains relevant in many

cases [1, 2]. In this model, the relation between the force F and the relative

displacement between the two sphere centers δ scales as F ∝ δ3/2, which

represents a highly nonlinear relation that purely comes from the geometry

of the problem. In addition to the nonlinear behavior, another consequence

of the Hertz’s model is the low equivalent moduli of the contact compared to

the elastic parameters of the material constituting the bodies in contact. As a

result, the velocities of acoustic waves in granular media are small compared

to the velocities of acoustic waves propagating in the bulk of elastic solids.

The problem of one bead in contact with a homogeneous elastic medium can

be viewed, at frequencies much below the first spheroidal resonance of the

bead, as the problem of a rigid mass connected to the elastic medium by a

nonlinear stiffness. This bead in contact can therefore be considered as a

nonlinear isolated resonator since the low equivalent moduli of the contact

induces a resonance of this mass-spring system at frequencies where the in-

coming wavelength in the elastic medium is much larger than the diameter
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of the bead.

The wave propagation within an elastic solid can be controlled by the

interaction of the elastic wave with nonlinear isolated resonators, namely

elastic spheres in contact. These features have been used to design an acoustic

rectifier [3], tunable functional switches [4], tunable phononic crystals [5] or

to study the attenuation of surface waves in a colloidal based metamaterial

[6, 7]. Nevertheless, the fine design of a metamaterial based on the nonlinear

behavior of granular materials requires a quantitative agreement between the

model of contact and the actual experimental behavior.

The comparison of the predictions of the contact models with experimen-

tal measurements have essentially been performed by studying the collision

process and the coefficient of restitution of a bouncing ball (see [8–12] and

the references therein). The problem of collision between two particles has

large implications, from astrophysics (Saturn’s rings and planet formation

for instance) to industrial processes (granulation, handling of fine powders

to name a few) and numerous models have been proposed (see [10, 11] and

the references therein).

Here, we propose a different approach to study the granular contact re-

straining ourselves to the case of elastic or viscoelastic contact, which are

relevant in the case of acoustic wave propagation (small oscillating or pulsed

strains). We consider the case of one bead in contact with a homogeneous

elastic solid and which is maintained in contact only by its own weight. This

structure presents a resonance frequency and can be considered as a nonlinear

isolated elastic resonator. The resonance frequency depends on the amplitude

of excitation as it can be seen in Fig. 1(c), where the resonance frequency is

3



decreasing with increasing excitation amplitude. It offers the possibility to

compare the experimental results of the widely observed nonlinear effect of

resonance frequency shift with the predictions of the theoretical models and

conclude whether the latter capture correctly this feature. The experimental

setup, which is shown in Fig. 1(a) and (b), is reduced to its simplest form and

the unknown parameters are therefore limited. The amplitude-dependence

of the resonance frequencies of granular media has been previously used to

characterize the compaction of a granular assembly [13, 14]. In addition,

nonlinear elastic resonances are typical in geomaterials [15], cracked solids

and more generally mesoscopic materials containing internal solid contacts

[16, 17], and for this reason have been also widely studied in the context of

ultrasonic non destructive testing [18–21].

This article is organized as follows. In Sec. 2, the experimental setup is

described. In Sec. 3, the modeling of the wave propagation in the elastic

rod is reviewed. In Sec. 4, the theoretical models to be compared to the

experimental results are presented while in Sec. 5, the theoretical predictions

of the resonance frequency shift by each contact model are derived. Then, in

Sec. 6, the theoretical predictions are compared to the experimental results

and finally, in Sec. 7, the obtained results including difficulties arising with

the analysis of the Q factors are discussed.

2. Experimental setup

The acoustic wave is excited on one side of a cylindrical rod by a piezo-

electric transducer. On the other side, the rod is in contact with a spherical

bead, which is maintained only by its own weight as shown in Fig. 1(a) and
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(b). The rod is made of stainless steel with a Poisson’s ratio of ν = 0.27,

a mass density ρ = 7.7.103 kg.m−3 and a Young’s modulus in the range

E = 190− 210 GPa. The bead is also made of stainless steel, and its mate-

rial parameters are assumed to be the same as those of the rod. The length of

the rod is lrod = 10 cm. The first acoustic longitudinal resonance of the rod

is measured at 8.5 kHz (the interface between the rod and the piezoelectric

transducer is neither purely rigid nor free, that is why this first resonance

cannot be predicted easily with the sound velocity and the length of the

rod). The radius of the bead is rbead = 7.938 mm. The section of the rod

in contact with the bead has been polished to enhance the reproducibility

of the results. The roughness of the bead is ∼ 25 nm. The dynamic dis-

placement of the bead is measured by a laser vibrometer. The excitation and

acquisition are performed using a Stanford SR 785 analyzer in a swept sine

mode from 1.5 to 3.5 kHz, from low to high frequencies and from high to

low frequencies, as excitation signal. The amplitude of the excitation signal

follows the protocol shown in Fig. 1(d). The first measurement is performed

at very low amplitude of excitation in order to determine the resonance fre-

quency in the linear regime. The resonance frequency found from this first

measurement is considered as the reference resonance frequency f0 for the

protocol. The amplitude of excitation is then increased step by step, and

between each step, the measurement at low amplitude is performed again in

order to monitor the evolution of the linear resonance frequency f0(n). If

the shift ∆f0 = [f0(n) − f0]/f0 of the measured linear resonance frequency

compared to the reference frequency is larger than 2%, the following (higher

amplitude) measurements of the protocol are removed from the analysis. The
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Figure 1: (a) Picture and (b) schematics of the experimental setup. (c) Example of

measured displacements of the bead δ normalized by the static overlap δ0 at different

amplitudes of excitation. The resonance frequency depends on the amplitude of excitation

and at the larger amplitudes on whether the excitation frequency sweep is performed from

low to high frequencies or from high to low frequencies. (d) Experimental protocol of

excitation amplitude. Example of one measurement protocol with the resonance frequency

(e) in the linear regime and (f) in the nonlinear regime. The dashed curves correspond to

the data removed from the analysis.

experimental dataset is composed of 28 amplitude protocols. An example of

the results obtained from one measurement protocol is shown in Fig. 1(e)

and (f).
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3. Wave propagation in rods

The compressional wave propagation takes place in the rod with a diame-

ter ar = 12 mm. The plane wave propagation is assumed when the radius of

the rod is much smaller than the wavelength. Thus, the considered frequency

range is assumed to be at low frequencies, i.e., ω/(2π) < VT/(2πar) ' 40 kHz

where ω is the cyclic frequency and VT is the transverse wave velocity in the

material constituting the rod, and the wave is considered as longitudinal and

the propagation unidimensional. The dispersion relations of the longitudinal

modes can be found by numerically solving Pochhammer-Chree equation [22]

2p(q2 + k2)J1(par)J1(qar)/ar − (q2 − k2)2J0(par)J1(qar)− 4k2pqJ1(par)J0(qar) = 0, (1)

where q2 = ω2/V 2
T −k2, p2 = ω2/V 2

L −k2, k is the wave number, Jn are Bessel

function of the first kind and order n, and VL is the velocity of longitudinal

wave in the material constituting the rod. At low frequencies, the disper-

sion of the first longitudinal mode remains small and the group and phase

velocities vg and vφ, respectively, can be found from the Rayleigh’s equation

vg ' vφ '

√
E

ρ

[
1− ν

(
kar
2

)2]
, (2)

where E is the Young’s modulus of the material constituting the rod, ρ and

ν, its mass density and its Poisson’s ratio, respectively. The group velocity

of the first longitudinal mode is estimated to be vg = 4950 − 5220 m.s−1 as

shown in Fig. 2.
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Figure 2: Group velocity of the first longitudinal mode from the Pochhammer-Chree

equation resolution with E = 210 GPa (blue dots) and E = 190 GPa (green dots) and

from the Rayleigh’s equation with E = 210 GPa (red continuous curve) and E = 190 GPa

(orange continuous curve).

4. Contact models

4.1. Hertz model

Following the Hertz theory of contact [1, 23], the relative displacement δ

between two spheres, with a radius r1 and r2, in contact under a force F is

δ =

[
3

4

F

E∗R1/2

]2/3
, and F = 4E∗R1/2δ3/2/3, (3)

where R is the relative radius of the contact which is deduced from

R =
r1r2
r1 + r2

, (4)

and
1

E∗
=

1− ν21
E1

+
1− ν22
E2

, (5)
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where E1,2 and ν1,2 are the Young’s modulus and Poisson’s Ratio, respec-

tively, of the beads 1 and 2. In our case, the bead of radius r1 is in contact

with a plane surface. This sphere-plane contact can be modeled consid-

ering that the radius r2 tends to infinity and consequently R = r1. The

amplitude-dependent normal stiffness KN of the contact is obtained from

the force-displacement relation in Eq. (3) with

KN = ∂F/∂δ = 2E∗(Rδ)1/2. (6)

The overlap δ can be decomposed into a static overlap δ0, resulting here from

the applied static force induced by the weight of the bead, and a dynamic

overlap δd = δa sin(τ) with τ = ωt, which is due to the acoustic wave. At

the first order of approximation and by considering that the amplitude of

the acoustic displacement δa is much smaller than the static overlap δ0 i.e.,

δa � δ0, the contact between the bead and the rod can be approximated by

the normal linear stiffness

K0 =
∂F

∂δ

∣∣∣∣
δ0

= 2E∗(Rδ0)
1/2. (7)

From the normal linear stiffness, the linear resonance frequency of the mass-

spring system can be found for a massmb of the bead with f0 = (K0/mb)
1/2/(2π).

The static external force F0 applied on the contact is only due to the weight

of the bead, no additional normal force is introduced. The static overlap,

linear stiffness and linear resonance frequency are predicted to be, consider-

ing the two values of Young’s Modulus E = 190 GPa and E = 210 GPa,

δ0 = 55−50 nm, K0 = 4.3.106−4.6.106 N.m−1 and fHertzres = 2.60−2.70 kHz.
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4.2. Viscoelastic model

In the numerous studies on the collision between two particles, dissipative

forces are added to the purely elastic contact model from Hertz. Dissipation

at the contact level can come from different mechanisms that contribute to

the energy losses. The first one is the radiation of acoustic waves in the two

bodies. The second one is the possible plastic deformation. The third one

is the losses due to the viscoelastic behavior of the material constituting the

beads [24]. Here, we consider only the last type of dissipative mechanism

by neglecting the acoustic energy radiation and assuming that there is no

plastic deformation at the contact [24, 25]. Considering a yield stress of

Y = 6.12 GPa for stainless steel, the limit force for plastic deformations

can be estimated to be Fl = 1.63π3Y 3R2/(24E∗2) ' 6.5.103 N [2], which

is much larger than estimated dynamic maximum dynamic force at 3 kHz

Fd = mbω
2δ0 ' 0.3 N, wich of the same as the static force F0 ' 0.16 N

applied here.

Considering all the possible models of viscoelastic contact between two

spheres, we use here the model developed in [24–26], where a viscous stress

proportional to the strain rate is introduced [27] into the analysis of the

contact problem. The viscoelastic description corresponds therefore to a

Kelvin-Voigt model. The dissipation due to viscoelasticity adds a dissipative

part in the normal force which is written [25, 26]

F =
4

3
E∗R1/2

(
δ3/2 +

3

2
Aδ1/2

∂δ

∂t

)
, (8)

with

A =
1

E

1 + ν

1− ν

[
4

3
η1(1− ν + ν2) + η2(1− 2ν)2

]
, (9)

10



and where η1,2 are the bulk viscosities of the material constituting the beads,

made of the same material with Young’s modulus E and Poisson’s ratio ν.

Due to the lack of information on the dissipative coefficients η1,2, the viscous

bulk constants are considered as fitting parameters with η1 = η2 ≡ η. The

definition of the parameter A can change following the references. The one

given in [25] has been corrected in [28] and has been recalculated in [26]. It

should be noticed that a similar expression to Eq. (8) can be obtained by

considering an imaginary part in the elastic moduli, thus writing the normal

force as

F = (C1 + iC2)δ
3/2 = (C1 + iωC

′

2)δ
3/2 = C1δ

3/2 + C
′

2δ
1/2∂δ

∂t
, (10)

where C1, C2 and C
′
2 are constants. The geometry of the problem of the

contact between two spheres induces, in addition to the nonlinear force-

displacement relation, a displacement-dependent dissipative force. It should

be noticed that this model is in agreement with the experimental measure-

ments of the restitution coefficient en and its dependence on the impact

velocity v0. By writing the elastic force in the general form [9]

f el ∝ δ1+α, (11)

and the viscoelastic force in the general form

f vis ∝ ∂δ

∂t
δξ0
(
∂δ/∂t

∂δ0/∂t

)ξ1
, (12)

where ∂δ0/∂t is a typical velocity scale, the velocity dependence of the resti-

tution coefficient is then [9]

1− en ∝ v
[2(ξ0+ξ1)−α(1−ξ1)]/(2+α)
0 . (13)
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In order to get a good agreement with the experimental results [8, 9], the

exponent in Eq. (13) should be equal to 1/5 i.e.,

2(ξ0 + ξ1)− α(1− ξ1)
2 + α

=
1

5
, (14)

which is the case for the viscoelastic model in Eq. (8).

4.3. Adhesion

At the contact level, an adhesion can appear due to the interatomic forces.

Many models have been developed, among which are the Dejarguin-Muller-

Toporov model (DMT) [29], the Johnson-Kendall-Robert model (JKR) [30]

and the Maugis-Dugdale model (MD) [31] ; each of them being relevant de-

pending on the problem under study. The prevalence of one of the model can

be determined with the adhesion map of Johnson et al. [32]. The adhesion

map is governed by two parameters. The first one is the Muller’s parameter

µ defined with [33, 34]

µ =
32

3πz0

(
γ2R

E∗2

)1/3

, (15)

where γ is the surface energy, z0 is the equilibrium separation. Similarly,

the Tabor’s parameter λ [35] can be used and is defined as λ = 1.16µ. It

should be noticed that the work of adhesion w (commonly denoted as surface

energies ∆γ = γ1 + γ2 + γ12) is often used instead of the the surface energy

γ. When the two contact surfaces are made of the same material, we have

w = 2γ. The second parameter is the ratio of the external applied force to

the adhesion force. If the external applied force F is large enough compared

to the adhesion force Fa i.e., Fa/F < 0.05, then the Hertz model can be

applied [32]. Considering a small external force compared to the adhesion
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force and if µ < 1, then the DMT model applies. If µ > 5, then the JKR

model applies. If 1 < µ < 5, then the MD model applies.

Here, considering the surface energy of stainless steel as γ = 0.7 J.m−2

and the equilibrium separation z0 = 4.10−10 m [36], µ = 57 and the JKR

model applies since the static external force F0 is small F0/(2πγR) = 4.5.

The adhesion force (pull-off force) is then Fc = 3πγR. The relation between

the external force F and the relative displacement δ is not explicit but is

implicit through the contact radius a. The contact radius is controled by

[34]

a3 =
3R

4E∗
[F + 2 + Fc + (4FFc + 4Fc)

1/2]. (16)

The relative displacement δ and the force F are

δ =
πa

2E∗
(p0 + 2p′0) and F = πa2

(
2p0
3

+ 2p′0

)
, (17)

with

p0 =
2aE∗

πR
and p′0 = −

(
4γE∗

πa

)1/2

. (18)

The linear stiffness of the contact is written [34]

Kjkr
0 = 2E∗a[3− 3(ac/a)3/2]/[3− (ac/a)3/2], (19)

where a3c = 3FcR/(4E
∗). The static relative displacement predicted by the

JKR model is δ0 = 67 − 62 nm, the resonance frequency is f jkrres = 2.74 −

2.86 kHz. The force displacement relation of the Hertz and JKR model are

plotted in Fig. 3.

4.4. Roughness

The surface roughness of the beads can also affect the force-displacement

relation. By considering the contact between two spheres with fractal rough
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Figure 3: Force-overlap F − δ relation from the Hertz model (red curve) and the JKR

model (blue dashed curve). The static overlaps are marked by circle for both models.

surfaces, the following relation between the stiffness and the applied force is

found [37]:

KN ∝ F 1/(H+1), (20)

where H (0 < H ≤ 2) is the Hurst exponent that characterizes the roughness

of the surfaces. For H = 2, the Hertz law is found. This leads to a force-

displacement relation of the form

F ∝ δn = δ(1+H)/H . (21)

Therefore, 3/2 ≤ n < +∞ depending on the value of H. Following another

approach, previous studies indicate that the values of the exponent n can be

modified by the presence of an oxide layer, whose elastic modulus is much

lower than the one of the initial material, at the surface of the sphere and

forms a soft shell. The soft shell model gives n = 2 [38].
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5. Resonance frequency shift

Using the Hertz or JKR models, the linear resonance frequency is pre-

dicted to be below 3 kHz, which is far below the first resonance of the rod

measured at f rod0 ' 8.5 kHz. This experimental system can therefore be

reduced to the simplest case of single mass-spring system, the mass being

the mass of the bead mb, the spring being the contact. As stated before, the

stiffness of the contact is found by deriving the nonlinear force-displacement

relation KN = ∂F/∂δ and thus depends on the overlap δ, which can be de-

composed into a static part δ0 and a dynamic part due to the acoustic wave

δa sin(τ), giving δ = δ0 + δa sin(τ). At very low amplitude of excitation, the

acoustic amplitude δa is negligible against the static overlap δ0. The reso-

nance frequency only depends on the static part of the overlap.

When the acoustic amplitude becomes non-negligible against the static over-

lap, the resonance frequency depends on the amplitude of excitation. The

resonance frequency f res is proportional to the square root of the ratio of the

stiffness KN of the contact to the mass mb, i.e., f res = (KN/mb)
1/2/(2π).

Then, at the first order, ∆f/f0 ' (∆KN/K0 − ∆m/mb)/2. Since the

mass of the bead mb is constant in the case here, the resonance frequency

shift ∆f/f0 is only proportional to the relative modification of the stiffness

∆f/f0 ' ∆KN/(2K0). The relative modification of the stiffness ∆KN can

be found by averaging the stiffness KN over a wave period, which is writ-

ten ∆KN/K0 = 〈KN − K0〉/K0 = 〈∂F/∂δ − K0〉/K0. Finally, we obtain

∆f/f0 ' 〈∂F/∂δ −K0〉/(2K0) [13, 39]. As shown in Fig. 4, the first order

approximation of the resonance frequency shift remains valid for all the cases

considered here. This procedure can be applied to all the contact models ex-
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posed in Sec. 4.

5.1. Hertz model

Considering the force-displacement relation in Eq. (3), we find that

∆KN −K0

K0

=
2E∗(Rδ)1/2 − 2E∗(Rδ0)

1/2

2E∗(Rδ0)1/2
=

(
δa sin τ + δ0

δ0

)1/2

−1. (22)

Finally, the resonance frequency shift predicted by the Hertz model is found

with
∆fhertz

f0
' 1

4π

∫ 2π

0

(
δa
δ0

sin τ + 1

)1/2

dτ − 1

2
, (23)

which can be solved numerically.

5.2. Viscoelastic contact

Considering the force-displacement relation in Eq. (8), the stiffness KN

of the contact is

KN =
∂F (δ0 + δa sin τ)

∂δ
=

∂

{
4
3
E∗
√
R

[
(δ0 + δa sin τ)3/2 + 3

2
Aω(δ0 + δa sin τ)1/2δa cos τ

]}
∂δa sin τ

,

(24)

where ω is the cyclic pulsation at the resonance. Finally, the resonance

frequency shift predicted by the viscoelastic model is

∆f vis

f0
' 1

4π

∫ 2π

0

(
δa
δ0

sin τ+1

)1/2

dτ+
A

4πδ
1/2
0

∫ 2π

0

∂(ω(δ0 + δa sin τ)1/2δa cos τ)

∂δa sin τ
dτ−1

2
,

(25)

which can also be solved numerically. Because of the nonlinear behavior of the

viscoelastic losses induced by the geometry of the problem (contact sphere-

plane), the viscoelastic losses have an influence on the resonance frequency

shift, which is represented by an additional term in Eq. (25) compared to

the prediction in Eq. (23).
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5.3. Adhesion

Since there is no explicit relation between the force and the displacement

in the JKR model, the prediction of the resonance frequency shift has to be

performed numerically.

The resonance frequency shift predicted by the Hertz, viscoelastic and

JKR models are shown in Fig. 4 as a function of the overlap δa/δ0. The pre-

dictions from the viscoelastic model present a large resonance frequency shift

while the predictions from the Hertz and JKR models do not substantially

differ. The JKR model will therefore not be considered in the comparison

with the experimental measurement of the resonance frequency shift.

5.4. Surface roughness

Considering the force-displacement relation in Eq. (21), the stiffness is

KN =
∂F

∂δ
= nC(δ0 + δ)n−1, (26)

where C is a constant. The resonance frequency shift is then predicted with

∆f

f0
' 1

4π

∫ 2π

0

(
δa
δ0

sin t+ 1

)n−1
dt− 1

2
. (27)

The maximum frequency shift for δa = δ0 as a function of the exponent n is

shown in Fig. 5. The frequency shift is negative if 1 < n < 2, and is positive

otherwise. The minimum value predicted in this case of resonance frequency

shift is around -0.05 for a value of the exponent close to the one of the Hertz

model n = 3/2. As seen in Fig. 1(c), the resonance frequency is decreasing

with increasing excitation amplitude. This indicates that 1 < n < 2 and that

this model can predict a resonance frequency shift similar or smaller than

the one predicted by the Hertz model.

17



Figure 4: Theoretical predictions of the resonance frequency shift ∆f/f0 as a function

of the acoustic overlap δa from the Hertz (red dotted curve), JKR (green continuous

curve) and viscoelastic with η = 1.05 MPa.s−1 (black dashed curve) models. Theoretical

predictions of the resonance frequency shift without the first order approximation, i.e.,

∆f/f0 = (
√
KN/mb −

√
K0/mb)/

√
K0/mb from the viscoelastic model (gray continuous

curve). The acoustic overlap δa is normalized to the static overlap δ0 predicted by the

Hertz model.

6. Experimental results

The bead and the rod are assumed to be composed of the same ma-

terial, the dissipative constant is chosen to be η = 1.05 MPa.s−1 giving

A = 1.1.10−5. The Young modulus is E = 210 GPa in the following analysis.

The measured linear resonance frequencies f0 of each of performed protocols

can be compared to the predictions of the Hertz and the JKR models fHertz0

and fJKR0 , which is shown in Fig. 6. The range of experimentally measured

linear resonance frequencies is larger than the range of the combined predic-

tions of both Hertz and JKR models. This is attributed to the irregularity of
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Figure 5: Maximum resonance frequency shift for δa = δ0 as a function of the exponent

of the force-displacement relation predicted from Eq. (27).

the surfaces in contact. For instance, the rugosity of bead surface is 25 nm

(manufacturer’s data), which is not negligible compared to the static overlap

predicted, δ0 = 55− 67 nm. In conclusion, these experimental results do not

allow us to discriminate between those two models.

In Fig. 7, the experimental measurements of the resonance frequency

shift are compared to the theoretical predictions from the Hertz and the

viscoelastic models of contact. The Hertz model, as well as the JKR model

and the model including the surface roughness following the conclusions of

Sec. 5, underestimate the resonance frequency shift. It should be noticed that

there is no fitting parameter in the Hertz model in Eq. (23) that could allow

us to find a good agreement between the Hertz model and the experimental

results. In Fig. 7, the x-coordinate is normalized by δ0, which is the only
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Figure 6: Comparison between the experimental linear resonance frequencies and the

predictions from Hertz (yellow area) and JKR (blue area) models

contributing parameter in Eq. (23). Moreover, the disagreement between

the Hertz model can also be seen on the slope of the frequency shift with the

displacement amplitude in the right panel in Fig. 7. The main contribution

of the Hertz model shows a dependence proportional to δ2a [39], whereas the

experimental results show a dependence closer to δ
3/2
a , which is impossible

to achieve using the Hertz model. On the other hand, the viscoelastic model

shows a good agreement with the experimental results.

7. Discussion on the damping parameters of the viscoelastic model

7.1. Comparison with previous studies

The estimation of the parameters in this paper are based on the Bril-

liantov model [25, 26], which is similar to the Kuwabara-Kono model, which

is written as [24]

F kk = knδ
3/2 + γnδ

1/2∂δ

∂t
. (28)
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Figure 7: Resonance frequency shift ∆f/f0 in linear scale (left) and in logscale (right) as

a function of the normalized acoustic amplitude δa/δ0 in logscale. The acoustic ampitude

δa is the displacement measured at the top of the bead at the resonance. The static

displacement δ0 is found from the Hertz theory considering the weight of the bead. The

theoretical resonance frequency shifts are predicted from the Hertz model ∆fHertz/f0 (red

dotted curve) and from the viscolelastic model ∆fvis/f0 (black dashed curve). (Left) The

gray dots correspond to the measurements with increasing frequencies for the sweep. The

orange dots correspond to the measurements with decreasing frequencies for the sweep.

(Right) Mean value of the frequency shift (blue continuous curve) and interval of 90% of

confidence (blue area).

The Kuwabara-Kono model has been used in [10], where the constants kn and

γn have been scaled to fit previous experimental measurement of the impact

restitution coefficient between two beads. In [10], the material constants

for the stainless steel bead experiments are E = 193 GPa, ν = 0.35, ρ =

7830 kg.m−3 and the radii of the beads are r1 = r2 = 1.27 cm. The stiffness

constant kn is found from kn = 4E∗R1/2/3 = 1.17.1010 and the fit gives

the value γn = 3.31.104 kg.m−1/2.s−1. By using the material and geometric
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constants given in [10] and by using η = 1.05. MPa.s−1 with Eqs. (8) and

(9), we obtain γn = 7.8.104 kg.m−1/2.s−1, which is of the same order as the

value given in [10].

7.2. Q factor analysis

Using the force-diplacement relation in Eq.(8) and keeping only the linear

contributions, the linear equation of motion of the bead is in the from

mb
∂2δd
∂t2

+ 2E∗A(Rδ0)
1/2∂δd

∂t
+ 2E∗(Rδ0)

1/2δd = 0. (29)

The Q factor of the linear oscillator is then

Q = ω0mb/[2E
∗A(Rδ0)

1/2], (30)

with η = 1.05 Mpa.s−1, Q = 5. At small amplitude, the measured Q factor of

the reference resonance curves are 20 < Q < 100 as shown in Fig. 8. It should

be noticed that no correlation appears between the resonance frequencies

shown in Fig. 6 and the measured Q factors for the same resonance curves

as it can be seen in Fig. 8. In Fig. 9, the experimental resonance frequency

shift is compared to those predicted with η = 0.3 MPa.s−1, giving Q = 20 and

η = 55 kPa.s−1, giving Q = 100. By decreasing the value of η, the effect of

the viscous losses on the resonance frequency shift decreases as expected. For

Q = 100, the predicted resonance frequency shift is close to the one predicted

by the Hertz model. It is important to note that, in the experimental results,

the resonance frequency shift does not depend on the Q factor of the reference

curves as it can be seen in Fig. 7, where all the measurements present the

same behavior.
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Figure 8: Q factors of the linear resonance curves as a function of f lin0

The evolution of the Q factor with the excitation amplitude cannot be

estimated precisely by measuring the width of the resonance curve at half

amplitude (or -3 dB method) when the resonance curve becomes asymmetric.

The amplitude-dependence of the inverse Q factor ∆(1/Q) can be found from

the relation [16]

∆

(
1

Q

)
=

1

Qref

(
V δref
Vrefδ

− 1

)
. (31)

where Qref is the Q factor of the reference curve, V are the excitation volt-

age amplitudes (Vref being the voltage excitation amplitude of the reference

measurement), δ is the displacement amplitude measured at the resonance

corresponding to the excitation voltage amplitude V and δref is the displace-

ment amplitude measured at the resonance corresponding to the excitation

voltage amplitude Vref . It can be seen in Fig. 10 that the inverse Q factors

do not show a noticeable dependence on the amplitude below amplitudes of

displacement of the same order as δ0.
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Figure 9: Resonance frequency shift ∆f/f0 in logscale as a function of the normalized

acoustic amplitude δa/δ0 in logscale. The acoustic ampitude δa is the displacement mea-

sured at the top of the bead at the resonance. The static displacement δ0 is found from

the Hertz theory considering the weight of the bead. Frequency shift predicted from the

Hertz model ∆fHertz/f0 (red dotted curve) and from the viscolelastic model ∆fvis/f0

with Q = 5 (black dashed curve), Q = 20 (violet dashed curve) and Q = 100 (green

dashed curve). Mean value of the frequency shift (blue continuous curve) and interval of

confidence (blue area).

In conclusion of this section, the analysis shows us that the viscoelastic model

cannot capture entirely the experimental results. It is not possible to obtain

an agreement on both the Q factor of the linear resonances and the nonlinear

resonance frequency shift with the same viscous constants. This observation

highlights the necessity to refine the model for the viscoelastic losses. In

the same manner, the absence of correlation between the linear resonance

frequency and the Q factor as well as the dispersion in the measured Q fac-

tor values indicate that there are additional dependencies for the Q factor.
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These latter could come from the roughness of the surfaces or the humid-

ity of the surrounding air, leading to an additional layer of viscous fluid at

the surface of the bead. For instance, it has already been observed that the

presence of a viscous fluid at the surface of the beads induces a hardening of

the contacts and increases the dissipation [40, 41]. A control of the humidity

in the surrounding air seems relevant for future experiments in order to test

this assumption.

Figure 10: Inverse Q factor shift ∆1/Q in linear scale as a function of the normalized

acoustic amplitude δ/δ0 in logscale. The gray dots correspond to the measurements with

increasing frequencies for the sweep. The orange dots correspond to the measurements

with decreasing frequencies for the sweep.

8. Summary

In this study, one bead in contact with an elastic solid is considered

as a nonlinear isolated elastic resonator. The nonlinear effect of resonance

frequency shift, i.e., amplitude-dependent resonance frequency, is analyzed
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and the experimental results are compared to the theoretical predictions of

various contact models. The main conclusion is that the classical Hertzian

model is unable to capture the experimental nonlinear behavior as well as

the JKR model with adhesion and a model including the roughness of the

surfaces in contact. A model accounting for the viscoelastic losses at the

level of the contact, which are amplitude-dependent due to the geometry

of the contact, is able to fit the experimental results in a more relevant

manner. However, the analysis and comparison between the theoretically

predicted and experimentally measured Q factors reveal a strong unexpected

disagreement. Interestingly, we found that the nonlinear resonance frequency

shift is a robust feature of the bead-rod contact problem unlike the linear

Q factor and even the linear resonance frequency. This study is a necessary

step towards the design of granular-based metamaterials for the purpose of

elastic wave control. We believe this study could also guide future research

for the investigation of the dynamics of inter-grain contacts with losses.
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