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Abstract  

Relative permittivity, also known as static dielectric constant, is a key property of solvents in electrolyte 

solutions. It strongly influences the solubility of solutes and, therefore, it can be used as a predictive 

tool in chemical engineering processes. Relative permittivity also plays an essential role in the 

modeling of phase equilibria of electrolyte systems, since it is involved in the Debye-Hückel model 

and in the Mean Spherical Approximation, commonly used to represent long-range interactions 

between ions. In this paper, we propose a new temperature-dependent correlation for the relative 

permittivity of liquid water, methanol and ethanol, valid in a wide temperature range, including very 

high temperatures. Comparison with other literature equations evidenced that the main interest of the 

proposed correlation is to allow satisfactory predictions of the relative permittivity, not only in the 

range of validity of other literature models, but also in the high temperature domain, including 

supercritical temperatures for water. The new correlation is then used with the NRTL-PRA EoS to 

predict vapor pressure of water with several salts, including single electrolytes and two-salts mixtures; 

it must be noted that the modeling presented in this work is relevant for any GE/EoS model, since in 

this case (binary interactions between water and ions being equal to zero), the excess Gibbs energy 

reduces to the Long-Range term derived from the Pitzer-Debye-Hückel model. A temperature-

dependent correction of the solvent relative permittivity is proposed to account for its dependence on 

ion mole fraction in this Long-Range term. Results thus obtained show that this correction leads to an 

accurate prediction both: for vapor pressures of aqueous electrolyte solutions in a very wide 

temperature domain and for the modeling of vapor-liquid equilibria of methanol-water and ethanol-

water mixtures with several salts.   

Key words: relative permittivity, electrolytes, GE/EoS approach, phase equilibria, NRTL-PRA EoS 

1- Introduction 

 Electrolyte systems are involved in many industrial applications and natural processes. We can 

cite, among many others, offshore petroleum exploitations, precipitation and crystallization processes, 

water treatment and production of fertilizers. In nature, electrolytes play a substantial role in many 

geothermal systems and biological processes for living organisms such as, for example, transmission 

and conduction of nerve impulses in human body. For electrolyte solutions, the static dielectric 

constant, also known as relative permittivity, is an essential physical property of the solvent since it is 

a measure of its capability to separate electrolyte into ions: solvents with a high relative permittivity, 

such as water, lead to complete dissociation of the electrolyte. The relative permittivity of the solvent 

strongly influences the behavior of electrolytes in solutions; in particular, it directly affects the 
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solubility of the solute [1] and therefore it can be used to predict this property by means of theoretical 

equations [1, 2] or empirical correlations [3, 4]. Consequently, equations for relative permittivity are 

of great interest for chemical engineering processes. The dielectric constant also plays an essential role 

in the modeling of phase equilibria of electrolyte systems. Indeed, although an abundance of models 

was proposed in literature for phase equilibria (LIQUAC [5, 7], LIFAC [6, 7], e-NRTL [8, 9], PSRK-

LIFAC [10], VTPR-LIFAC [11], e-CPA [12], e-PC SAFT [12], SAFT-VRE [13, 14], SAFT-VR Mie 

[15], NRTL-PRA [16]…), all these models account for ion-ion interactions by means of a long-range 

term derived from the Debye-Hückel model [17] or the Mean Spherical Approximation (MSA) [18,19]. 

Both of these long-range interaction models involve the relative permittivity of the solvent. Therefore, 

the equation used for the static dielectric constant directly affects the accuracy of the phase equilibria 

representation.  

 Several equations were developed in literature for the calculation of the relative permittivity of 

polar liquids. Some of them [20, 21] are based on theories such as the Onsager [22] and Kirkwood 

theories [23]. Many empirical correlations were also proposed to represent the dependence on 

temperature [16, 24-30] and/or on density [14, 15, 31, 32]. However, except for those developed in 

[24] for ethanol and in [26] for water, these correlations are limited to temperatures lower than 400K. 

Moreover, density-dependent expressions increase complexity when they are used in GE/EoS models.  

 In this paper, the temperature dependent correlation presented in [16] is extended to a wide 

temperature range by fitting the parameters on a large data base including temperatures up to 823K for 

water and more than 500K for methanol and ethanol. Considering temperatures above the critical point 

of water leads to a correlation suitable for chemical engineering processes involving supercritical water 

such as, for instance, Supercritical Water Oxidation [33], for which salt solubility is of great interest. 

Results obtained for the relative permittivity are compared with those provided by literature 

correlations. The new correlation is then used with the NRTL-PRA equation of state for the prediction 

of vapor pressure of water with several salts and the modeling of vapor-liquid equilibria in methanol-

water and ethanol-water mixtures. It must be noted that the results for vapor pressure of aqueous 

electrolytes are relevant for any GE/EoS model, since in this case, binary interactions between water 

and ion being equal to zero, the excess Gibbs energy reduces to the Long-Range term derived from the 

Pitzer-Debye-Hückel model [34].  

2- A temperature dependent correlation for the relative permittivity of liquids for a wide 

temperature range 

 In [16], Neau et al. presented the correlation developed by Neau and Raspo [35] for the 

representation of the relative permittivity of polar compounds with respect to temperature:  

 𝜀𝑟(𝑇) = 𝐴0 + 𝐴1𝑇 + 𝐴2𝑇
2 + 𝐴4 𝑇⁄ + 𝐴5𝐿𝑛(𝑇) (1) 

However, the parameters were fitted on “data” generated from CRC Handbook correlations valid only 

for temperatures lower than 400K. In the present paper, we considered a large database including 

temperatures up to 823K for water, 525K for methanol and 513K for ethanol (see Table 1). The 

objective was to obtain simultaneously similar results to those given by literature correlations in the 

temperature range where they are defined and an accurate representation of the relative permittivity in 

the high temperature domain; it is worth recalling that the comparison between experimental and 

calculated data should be performed in the limits of experimental uncertainties (about 1%-3% for 

temperatures larger than 400 K). The fitted parameter values are reported in Table 2.  

 In order to evaluate the new correlation, a comparison was performed with literature models. Since 

we wanted to use the same correlation for all the compounds, the equations proposed by Fernández et 
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al. [26] and Tan et al. [27] especially for water were not considered in this study. Therefore, the new 

correlation was compared with those given in the CRC Handbook of Chemistry and Physics [24] and 

by Zuo and Fürst [25], Zuber et al. [29] and Chunxi and Fürst [30], respectively defined by:  

 𝜀𝑟(𝑇) = 𝐴0 + 𝐴1𝑇 + 𝐴2𝑇
2 + 𝐴3𝑇

3 (2) 

 𝜀𝑟(𝑇) = 𝐴0 + 𝐴1𝑇 + 𝐴2𝑇
2 + 𝐴3𝑇

3 + 𝐴4 𝑇⁄  (3) 

The values of parameters Ai in Eqs. (2) and (3), together with those given in [16] for Eq. (1), are 

reported in Table 3; the temperature range of validity of each equation is also indicated, except for Eq. 

(1) with parameters of [16] (indeed, as specified at the beginning of this section, these parameters were 

fitted only on data “generated” from literature correlations and their “extrapolation” toward 

temperatures up to 650K). For the sake of clarity, the following notations are used hereinafter:  

 NR correlation:   Eq. (1) with parameters given in [16], 

 CRC correlation: Eq. (2) with parameters of [24], 

 ZZC correlation: Eq. (3) with parameters of [25] for water and ethanol and [29] for methanol. 

 Table 4 presents the mean relative deviations obtained with the various correlations for the 

different temperature ranges of validity of literature correlations and in the high temperature domain. 

It can be noted that:  

- As expected, all correlations give satisfactory results in their temperature range of validity; but the 

new correlation is the only one which provides excellent results for all compounds, whatever the 

temperature range considered. 

- Concerning the other literature models in the high temperature domain, we observe that the NR 

correlation, also derived from Eq. (1), leads to less bad results in this domain. For ethanol, deviations 

given by the CRC correlation are quite similar, since these data also belonged to the range of validity 

(Table 3). Except this case, huge errors are obtained with the CRC and ZZC correlations. 

Above results are also illustrated in Fig. 1: only the new correlation is able to provide, for the three 

compounds, an accurate representation of experimental data in the whole range of temperatures; results 

obtained with the NR correlation are obviously much less satisfactory; concerning models derived from 

the other equations: the ZZC correlation (Eq. (3)) gives the worst and totally false evolution of εr for 

temperatures larger than 350K for alcohols and 500K for water; a rather similar behavior is also 

observed with the CRC correlation (Eq. (2)) for water and methanol.  

 In order to check, as for Eq. (1), the capability of Eqs. (2) and (3) to describe the behavior of 

relative permittivity at high temperatures, parameters Ai of these two equations were fitted on the 

database of Table 1. Resulting curves are presented in Fig. 2 together with those provided by our new 

correlation. The parameter fitting obviously improves the representation of relative permittivity; 

however, an incorrect variation is still observed for very high temperatures (T>650K for water, and 

T>520K for alcohols).  

 As a conclusion, results presented herewith evidence: first, that the use of literature models, CRC 

and ZZC, should be restricted to modelings in their validity domain; second, that the new correlation 

is the only one suitable for an accurate prediction of the relative permittivity, not only in the range of 

validity of literature models, but also in the high temperature domain. 

3- Application to phase equilibria of electrolyte systems with a GE/EoS model 

 In this work, we considered the NRTL-PRA EoS [36], based on the Peng-Robinson equation of 

state [37] and the generalized NRTL GE model [38], modified in [16] to account for electrolytes. Table 
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5 resumes the general expressions of the compressibility factor Z and the excess Gibbs energy E
EoSg  

for electrolytes; appendices A and B successively describe the estimation of the pure component 

parameters ai and bi and the binary interaction parameters ji  with respect to the model group 

contribution parameters [39], kQ  and LK (respectively reported in Tables 6 and 7a, 7b and 7c).  

The purpose of this section is to extend, by means of the NRTL-PRA equation [16], the use of the 

new correlation, proposed for the relative permittivity, to the prediction of vapor pressure of aqueous 

electrolyte solutions and to the modeling of vapor-liquid equilibria in methanol-water and ethanol-

water mixtures with salts.  

3.1- Prediction of the vapor pressure of aqueous electrolyte solutions 

 In the case of aqueous electrolyte solutions, since binary interaction parameters LK between 

water and ions are equal to zero (Tables 7), the excess Gibbs energy E
EoSg  (Table 5) reduces to the 

long-range term E
LRg  derived from the Pitzer-Debye-Hückel model [34]:  

  







 z

zxE
LR

E
EoS I

IA
RTgg 


1ln

4
 (4) 

Consequently, results obtained in this section are of general interest for any GE/EoS model based on 

the same long-range term to account for ion-ion interactions.  

 The new correlation was used in the estimation of the solvent permittivity r
 , involved in the 

expression of E
LRg  in Table 5, to predict the vapor pressure of water with 6 single salts and 4 mixed 

electrolytes (Table 8). It can be noted that, except for NaCl, KCl and LiBr, experimental data are only 

available for temperatures lower than 400K. Moreover, except for LiCl and LiBr, the maximum 

molality does not exceed 10.5. The analysis of preliminary results obtained by means of the new 

correlation led to the following conclusions:  

● First: results obtained with the NR and the new correlations were compared for the modelling of 

the system H2O-NaCl (Figs. 3a-3d). As shown in Figs. 3a and 3c: 

 both modelings overestimate the vapor pressure for temperatures lower than 450K, but they 

exhibit different trends in the high-temperature range (T>450K): the NR correlation 

overestimates Pvap for all the molalities (Fig. 3b), while the new correlation leads to satisfactory 

predictions in the whole temperature range for m = 1 and up to T = 525K for m = 3 and m = 6.  

 however, for larger temperatures (Fig. 3d), the new correlation underestimates Pvap and this 

underestimation increases with increasing values of m.  

● Second: since the binary interaction parameters 𝛤𝐻2𝑂 𝑁𝑎+⁄  and 𝛤𝐻2𝑂 𝐶𝑙−⁄  are set to zero in the original 

model [16] (Tables 7), we have “tried” to improve the modeling by fitting these parameters to the 

experimental vapor pressure data of H2O-NaCl (Table 8). Results obtained by fitting parameters 

in the low-temperature range (T<450K) and predicting in the high-temperature range (T>450K), 

and conversely, are summarized in Fig. 4. The following conclusions can be drawn:  

 Figures 4a and 4d reveal that the fitting of parameters leads to quite satisfactory representations 

in the corresponding temperature range. However, in both cases, Figs. 4b and 4c, clearly show 

that the predictions of vapor pressures in the other temperature range are strongly deteriorated. 
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http://creativecommons.org/licenses/by-nc-nd/4.0


Raspo and Neau, Fluid Phase Equilibria, 506, 112371, 2020. https://doi.org/10.1016/j.fluid.2019.112371 

 

© 2020. Licensed under the Creative Commons http://creativecommons.org/licenses/by-nc-nd/4.0 5 

 Moreover, the values of the fitted parameters are very different for the two temperature domains 

(Fig. 4). This proves that vapor pressures cannot be modeled with a single set of parameters in 

the whole domain; therefore, the binary interaction parameters 𝛤𝐻2𝑂 𝑁𝑎+⁄  and 𝛤𝐻2𝑂 𝐶𝑙−⁄  were 

maintained to zero.  

● Third: the bad results obtained with increased molalities in Fig. 3d suggest that ion mole fraction 

should be taken into account in the solvent permittivity r
  as was recommended in particular by 

Maribo-Mogensen et al. [86]. Indeed:  

 it is known that the presence of salt leads to a decrease of the solvent relative permittivity (even 

if this observation was usually done for temperatures lower than 400K). According to equations 

of Table 5, a decrease of r
  induces an increase of parameter Ax and, consequently, an 

overestimation of the vapor pressure, as observed in Figs. 3a and 3c for temperatures lower than 

450K.  

 On the other hand, the underestimation of Pvap for high temperatures with the new correlation 

suggests an increase of r
  for increasing molalities. This behavior is quite surprising, but it is 

in agreement with results of Gavish and Promislow [87] and Walther and Schott [88]. Indeed, 

the former showed that the decrease of the relative permittivity of aqueous solution of NaCl 

depends on temperature, since it is less important for molalities larger than 4 as temperature 

increases [87]. Moreover, according to the study of Walther and Schott [88] it also appears that, 

for aqueous solution of KCl, the relative permittivity increases at high temperatures by addition 

of KCl.  

So, as proposed in [86] and [89], we introduced a correction factor E in the solvent relative permittivity 

r
  to account for the dependence on ion mole fraction:  

 Evbx
SF

ii

p

i

riSFr   
1

**














 



  (5) 
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
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kkk
ion
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v
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*

5

1060.11
10)(1,


  (6) 

and:  )15.498(02.0 th6.0)( TT   (7) 

Equation (6) shows that the temperature-independent formula of [86] and [89] has been modified to 

account for the dependence on temperature by introducing the function δ; this function was determined 

so that r
  decreases for low temperatures and increases for temperatures larger than 500K. For the ion 

specific parameter αk (Eq. (6)), the values (Table 9) proposed by Maribo-Mogensen et al. [86] and 

Michelsen and Mollerup [89] were used, except for Li+, which needed a specific estimation.  

 Always for the system H2O-NaCl, Figures 5.a and 5.b show that this temperature dependent 

correction factor really provides accurate prediction of the vapor pressures for both low and high 

temperature ranges.  

 The influence of the new correlation of the solvent relative permittivity r


, with (Eq. (5)) or 

without (Table 5) the correction factor E (Eq. (6)) was then checked on the set of aqueous electrolyte 

solutions reported in Table 8. Results obtained for molalities m smaller than 10, which concerns the 
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major part of literature data, are presented in Tables 10 and 11. The analysis of results led to the 

following conclusions: 

- For single salts, with molalities less than 10 (Table 10), the correction factor E strongly improves 

the prediction of vapor pressure in the low-temperature range (T<450K) for all the electrolytes, with 

deviations usually less than 6%. The strongest improvements are obtained for LiCl, NaBr and LiBr, 

since these three salts exhibit the largest maximum molality (mmax ≈ 9.5) and, consequently, the 

most important influence of xion on r
 .  

- Always in Table 10, but in the high-temperature range (T>450K) that concerns only three salts, 

results are also really improved by the correction factor for NaCl and KCl, even if for LiBr 

deviations remain too large.  

- Even for smaller values of m, results are really improved by the introduction of the correction factor, 

as for KBr in Table 10 or for mixed electrolytes in Table 11. In both cases, deviations obtained 

without the factor E are rather small, even if the vapor pressure is still overestimated, as described 

in Figs. 6a and 7a; as shown in Figs. 6b and 7b, much better results are obtained thanks to the 

introduction of the correction factor E.  

 Results obtained for higher molalities (m>10) are presented in Table 12. For the four electrolytes 

concerned, vapor pressure estimations are highly improved by the introduction of the correction factor 

E, even if, obviously, deviations remain much larger than those previously obtained for m<10 

(especially for LiBr with an error of 95% in the high-temperature range). 

3.2- Representation of vapor-liquid equilibria in alcohol-water-salts systems  

 This section focuses on the modeling of vapor-liquid equilibria of methanol-water and ethanol-

water mixtures with several salts by means of the NRTL-PRA EoS (Table 5) with r
  calculated by 

Eq. (5). As specified in [36], mixtures containing only associating components (as methanol, ethanol 

and water) are assumed to be miscible mixtures, it means without phase splitting, and in this case 

0E
dissg  ; this assumption was extended to ions in [16]. So, for methanol-water and ethanol-water 

mixtures with salts, the excess Gibbs energy only contains the Short-Middle-Range term E
SMRg  and the 

Long-Range term E
LRg : 

 
E E E

EoS SMR LRg g g   (8) 

In this work, the interaction parameters between alcohol groups OH(ol1), OH(ol2) and ions in E
SMRg  

were fitted on literature data of Table 13; the corresponding new values of parameters LK are 

reported in Tables 7.  

Results of the modeling of vapor-liquid equilibria are reported in Table 13 and illustrated, 

respectively, in Figs. 8 and 9 where phase equilibria are represented with respect to the salt-free mole 

fraction x1 of alcohol. It must be noted that: 

- Experimental data only concern low pressures (P ≤ 1bar) and temperatures below 400K, where Eq. 

(5) leads to a decrease of the solvent relative permittivity. 

- Table 13 reveals that, apart from mixtures methanol-water-NaBr and ethanol-water-LiCl, the 

NRTL-PRA EoS provides a satisfactory representation of VLE for all mixtures, with deviations on 

pressure lower than 5% for isothermal data and, at most, about 1% for isobaric data for all mixtures. 

These results are confirmed by Figs. 8.a-8.c and Figs. 9.a-9.b.  
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- Concerning mixtures with NaBr (Fig. 8.d) and LiCl (Fig. 9.c), for which higher deviations are 

observed in Table 13, both figures show, however, that, even for these two systems, phase equilibria 

are correctly described up to ms=4 for methanol-water-NaBr and up to ms=1 for ethanol-water-

LiCl.  

The group parameters LK of Tables 7, fitted on data of Table 13, were then used for the prediction 

of VLE for the methanol-water system with two-salts mixtures. As shown in Table 14, the NRTL-PRA 

EoS provides very satisfactory results for the three systems considered.  

4- Conclusion 

 In this paper, we proposed a new empirical temperature-dependent correlation for the relative 

permittivity of liquid water, methanol and ethanol, valid in a wide temperature range including 

temperatures up to 823K for water and more than 500K for methanol and ethanol. Results obtained 

with this new equation were compared with those provided by several literature correlations ([16], [24], 

[25], [29]). They showed that, contrary to other correlations, our model allows an accurate 

representation of the relative permittivity, not only in the range of validity of literature models, but also 

in the high temperature domain.  

 The new correlation was then used in a GE/EoS model, the NRTL-PRA EoS ([36], [16]), to predict 

vapor pressure of water with several salts, including single electrolytes and two-salts mixtures. As 

binary interaction parameters of the NRTL-PRA EoS between water and ions are equal to zero, results 

obtained in this work are relevant for any GE/EoS model, since the excess Gibbs energy reduces to the 

Long-Range term derived from the Pitzer-Debye-Hückel model [34]. A preliminary study on the water-

NaCl system revealed the necessity to take into account ion mole fraction in the solvent permittivity of 

the Pitzer-Debye-Hückel term. However, contrary to the decrease usually observed at low 

temperatures, an increase of the relative permittivity of the solvent with increasing salt molality was 

obtained for temperatures larger than 450K. Consequently, we developed a temperature-dependent 

correction term by modifying the temperature-independent version originally proposed by Maribo-

Mogensen et al. [86] and Michelsen and Mollerup [89]. We showed that this correction term leads to 

an accurate prediction of vapor pressures of aqueous electrolyte solutions, both in the low temperature 

and high temperature domains for molalities lower than 10.   

 Finally, the NRTL-PRA EoS with the new correlation and the temperature-dependent correction 

of the solvent relative permittivity in the Pitzer-Debye-Hückel term was successfully applied to the 

representation of vapor-liquid equilibria of methanol-water and ethanol-water mixtures with several 

salts. Results obtained on isothermal and isobaric VLE are very satisfactory, even if slightly less 

agreement was obtained for NaBr in methanol and LiCl in ethanol for high molalities.  

List of symbols 

a attractive term  

b covolume 

e charge of one electron 

g molar Gibbs free energy 

k  Boltzmann's constant.  

m  molality (with respect to H2O) 

ms  molality (with respect to water+alcohol) 

M  molecular weigth 

n mole number 
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N number of data points 

 aN  Avogadro's number  

P pressure 

p component number 

q surface area factor 

R ideal gas constant 

Qk, Rk NRTL-PRA subgroup contribution parameters 

T temperature 

v molar volume 

Z compressibility factor 

Zk charge number of ion k 

x mole fraction 

y vapor phase composition 

Greek letters 

α alpha function  

εr relative permittivity 

ε0 vacuum permittivity 

Γji interaction parameter between molecules j and i 

ΓLK interaction parameter between main groups K and L 

ω acentric factor 

θiK  probability that a contact from molecule i involves a main group K 

νiK  number of main group K in molecule i 

Subscript 

diss dissociation property 

i pure component property 

ion ion property 

LR Long-Range interaction 

P, T, y pressure, temperature, vapor mole fraction 

res residual property 

salt salt property 

SF Salt-Free 

SMR Short-Middle-Range interaction 

tot total number of components : SF (solvents) + ions 

vap vapor 

Superscript 

E excess property at constant pressure 

 

APPENDIX A. EoS pure component parameter estimation 

 The attractive term ai and the covolume bi in Table 5 are estimated from the critical temperature 

and pressure, Tci and Pci respectively, by the formulae:  

  
2 2

0.45723553 ,  0.07779607i i

i i

c c
i r i

c c

R T RT
a f T b

P P
   (A-1) 
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where Tr is the reduced temperature, 
ir cT T T , and f(Tr) is the generalized Soave function [84]: 

    
2

1 1r rf T m T    
 

 (A-2) 

For ethanol,we still consider the original Soave function corresponding to γ = 0.5 [85] with the 

parameter m correlated to the acentric factor ω (ω = 0.6350) through the equation: 

 m = 0.379642 + 1.48503ω -0.164423ω² +0.016666ω3 (A-3) 

On the other hand, for water and methanol, γ and m parameters are fixed to the values previously 

proposed in [84] to improve vapor pressure representations:  

γ = 0.65, m = 0.6864   for water (A-4) 

γ = 0.9, m = 0.6969     for methanol (A-5) 

APPENDIX B. Group contribution parameter estimation 

In the NRTL-PRA EoS, binary interaction parameters Γji in the expression of E
SMR g  (Table 5) are 

estimated with the group contribution method developed in [39]:  

 ji iK jL iL LK
K L

       , 0  KK   (B-1) 

where θiK is the probability that a contact from a molecule i involves a main group K : 

( ) ( ),  k
iK ik K i ik K k

ik k

Q
q Q

q
      (B-2) 

with νik(K) the number of subgroup k belonging to the main group K in a molecule i and iq its 

corresponding surface area factor; the values of group parameters Qk are reported in Table 6. 

 The dependence of group contribution parameters ΓLK with respect to temperature is given, in 

Tables 7a, 7b and 7c, by: 

(0) (1) (2)0

0

  1   1LK LK LK LK

T T

T T
   

  
      

   
 (B-3) 

where T0 = 298.15K and (2)
LK =0, except for interactions between the group H2O and groups OH of 

alcohols (Table 7c).  
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measurements and references (Ref.). Modeling: isothermal data, with number of pressures (NP) and 

deviations (ΔP/P%); isobaric data, with number of temperatures (NT) and deviations (ΔT/T%); vapor 

phase composition data, with number of points (Ny) and deviations (Δy/y%). 

type* : salt molality (m), mole fraction of salt (x). 

Table 14.  Prediction of isothermal VLE provided by the NRTL-PRA EoS for methanol-water mixture 

with two salts at 298.15K. Literature data: intervals of experimental pressures (P-range), amount of 

salt introduced in the solvent mixture (m-range), type of measurements (salt molality m), references 

(Ref.), number of pressures (NP) and deviations (ΔP/P); vapor phase composition data, with number of 

points (Ny) and deviations (Δy/y%)  
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Fig. 1. Relative permittivity for (a) water, (b) methanol, (c) ethanol. Variation of εr with respect to 

temperature obtained with: the new correlation (purple solid line), NR correlation (pink dashed line), 

CRC correlation (orange dash-dotted line) and ZZC correlation (blue dotted line). Circles correspond 

to experimental data of Table 1 and the two vertical dotted lines delimitate the temperature range of 

the CRC Handbook of Chemistry and Physics [24].  

Fig. 2. Relative permittivity for (a) water, (b) methanol, (c) ethanol. Variation of εr with respect to 

temperature obtained with the new correlation (purple solid line) and with fitted parameters for Eq. (2) 

(orange dash-dotted line) and Eq. (3) (blue dotted line). Circles correspond to experimental data of 

Table 1 and the two vertical dotted lines delimitate the temperature range of the CRC Handbook of 

Chemistry and Physics [24].  

Fig. 3. Vapor pressure of water with NaCl for various molalities m:  m = 1,  m = 3,  m = 6. 

Prediction with the NRTL-PRA EoS for m = 0 (solid blue line), m = 1 (dashed pink line), m = 3 (dash-

dotted green line) and m = 6 (dotted orange line) and, for r
  in E

LRg  (Table 5):  the NR correlation (a, 

b) and the new correlation (c, d). 

Fig. 4. Vapor pressure of water with NaCl for various molalities m:  m = 1,  m = 3,  m = 6. 

Calculation with the NRTL-PRA EoS by fitting binary interaction parameters 𝛤𝐻2𝑂 𝑁𝑎+⁄  and 𝛤𝐻2𝑂 𝐶𝑙−⁄  

for m = 0 (solid blue line), m = 1 (dashed pink line), m = 3 (dash-dotted green line) and m = 6 (dotted 

orange line) and with the new correlation for r


 in E
LRg  : (a, b) Parameters fitted on data for T up to 

450K (
2

(0)

H O Na
  = -3543.75, 

2

(1)

H O Na
  = 4050.00, 

2

(0)

H O Cl
  = -3041.30, 

2

(1)

H O Cl
  = 1013.77, 

2 2

(2) (2) 0
H O Na H O Cl

    ); (c, d) Parameters fitted on data for T>450K (
2

(0)

H O Na
  = 1628.80, 

2

(1)

H O Na
  = 

-2166.91, 
2

(0)

H O Cl
  = 1929.33, 

2

(1)

H O Cl
  = 845.94, 

2 2

(2) (2) 0
H O Na H O Cl

    ).  

Fig. 5. Vapor pressure of water with NaCl for various molalities m:  m = 1,  m = 3,  m = 6. 

Prediction with the NRTL-PRA EoS for m = 0 (solid blue line), m = 1 (dashed pink line), m = 3 (dash-

dotted green line) and m = 6 (dotted orange line) and, in 
E
LRg , r


 calculated with Eq.(5) and the new 

correlation.  

Fig. 6. Vapor pressure of water with KBr for various molalities m (  m = 2,  m = 4,  m = 6). 

Prediction with the NRTL-PRA EoS for m = 0 (solid blue line), m = 2 (dashed pink line), m = 3 (dash-

dotted green line) and m = 6 (dotted orange line) and, in 
E
LRg , r


 calculated with Eq.(5) and the new 

correlation.  

Fig. 7. Vapor pressure of water with NaCl1 and KBr2 for m1 = m2 = 1 ( ) and m1 = m2 = 2 ( ). 

Prediction with the NRTL-PRA EoS for m1 = m2 = 0 (solid blue line), m1 = m2 = 1 (dashed pink line) 

and m1 = m2 = 2 (dash-dotted green line) and, in 
E
LRg , r


 calculated with Eq.(5) and the new 

correlation. 

Fig. 8. VLE of methanol(1)-water(2) with: (a) NaCl at T=396K for ms=0 ( ), ms=2.76 ( ), ms=4.84 ( ), 

(b) KCl at P=1.01bar for m=0.5 ( ), m=1 ( ), m=2 ( ), (c)  LiCl at P=1.01bar for m=1 ( , ), m=2 (
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, ), m=4 ( , ), (d) NaBr at T=313K for ms=1 ( ), ms=2 ( ), ms=4 ( ). Calculation with the NRTL-

PRA EoS (─).  

Fig. 9. VLE of ethanol(1)-water(2) with: (a) NaCl at P=1.01bar for xNaCl=0 ( ), xNaCl=0.01 ( ), xNaCl=0.03 

( , ), xNaCl=0.05 ( ), (b) KCl at T=298K for ms=0 ( ), ms=0.3 ( ), ms=0.5 ( ), ms=1 ( ), (c) LiCl at 

T=298K for ms=0 ( ), ms=0.5 ( ), ms=1 ( ). Calculation with the NRTL-PRA EoS (─). 
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Table 1 

Database for relative permittivity: number of data points (N), interval of experimental temperatures (T-

range in Kelvin) and references (Ref). 

Compound N T- range (K) References 

Water 192 193.15 – 823.15 [31], [41] – [53] 

Methanol 158 163.20 – 525.00 [54] – [71] 

Ethanol 109 130.60 – 513.20 [54], [59], [62], [69], [71] – [83] 

 

 

 

Table 2 

New correlation: fitted parameter values of Eq. (1) for relative permittivity.  

Compound A0 A1 A2 A4 A5 

Water -1664.4988 -0.884533 0.0003635 64839.1736 308.3394 

Methanol -1750.3069 -0.99026 0.0004666 51360.2652 327.3124 

Ethanol -1522.2782 -1.00508 0.0005211 38733.9481 293.1133 
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Table 3 

Parameter values of the literature correlations for relative permittivity, together with their temperature 

range of validity. NR: Eq. (1) with parameters given in [16], CRC: Eq. (2) with parameters of [24], 

ZZC: Eq. (3) with parameters of [25, 30] for water and ethanol and [29] for methanol.  

Correlation A0 A1 A2 103 A3 106 A4 A5 T-range (K) 

Water 

NR 5154.4005 2.44666 -0.9500 - -83627.2140 -954.9807 - 

CRC 249.2100 -0.796069 0.72997 0.00 - - 273 – 372 

ZZC -19.2905 -0.019678 0.13189 -0.31144 29814.5 - 288 – 403 

Methanol 

NR 2808.6924 1.49172 -0.6300 - -42566.6494 -530.4343 - 

CRC 193.4100 -0.92211 1.2839 0.00 - - 177 – 293 

ZZC 104.6200 0.090108 -2.5998 4.8503 1000.00 - 176 – 318 

Ethanol 

NR -288.2401 -0.06543 0.01200 - 18909.8285 47.0709 - 

CRC 151.4500 -0.87020 1.9570 -1.5512 - - 163 – 523 

ZZC 175.7200 -0.35350 -2.0285 5.0644 -3.0699 - 288 – 328 
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Table 4 

Mean percent relative deviations on relative permittivity obtained with various correlations for data 

described in Table 1. Interval of experimental temperatures (T-range in Kelvin, with, in parenthesis, 

according to Table 3, the correlation concerned by this range of validity), number of data points (N) 

and name of the correlation: NR: Eq. (1) with parameters given in [16], CRC: Eq. (2) with parameters 

of [24], ZZC: Eq. (3) with parameters of [25, 30] for water and ethanol and [29] for methanol.  

T-range (K) N CRC ZZC NR new correlation 

Water 

273 – 372 (CRC) 93 0.16 0.17 0.83 0.20 

288 – 403 (ZZC) 86 0.22 0.24 0.94 0.19 

404 – 823 52 364 326 113 5.69 

Methanol 

177 – 293 (CRC) 59 1.33 1.68 1.95 1.68 

176 – 318 (ZZC) 109 1.90 2.10 2.25 1.91 

319 – 525 48 169 346 30.81 3.16 

Ethanol 

288 – 328 (ZZC) 53 3.47 2.21 3.81 1.26 

163 – 513 (CRC) 104 24.88 275 25.59 1.59 
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Table 5  

The NRTL-PRA EoS [16].  

 Compressibility factor : 

                2

1

1 1 2

Pv
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RT



  
  

  
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b
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1

SF
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p

SF i
i

b x b
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1

1

0.53
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bRT b RT RT
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

 
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  
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 Excess Gibbs energy for electrolyte mixtures: 

                E
diss

E
LR

E
SMR

E
EoS gggg   

 

 E
SMRg  is the Short-Middle-Range excess Gibbs energy: 

           
tot totp p

j j jiE
SMR i i ji
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x q G
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 E
LRg  is the Long-Range excess Gibbs energy:  
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 E
dissg  is the dissociation excess Gibbs energy:   

               
( 1) 0

( )
( )

  = ( )ixE
diss i i i assoi

i i asso

g x X X E




  

  (for mixtures of Methanol, Ethanol, … with hydrocarbons) 

  with :      
0 0 2i iii assoE G ( / z )E   (z=10)   

   and :      1 1(1 )i i i iX X / K X    

               
2

1 (1 2 ) 1 4 2i i i i i i iX K x K x K x     
   

 

 

 

https://doi.org/10.1016/j.fluid.2019.112371
http://creativecommons.org/licenses/by-nc-nd/4.0


Raspo and Neau, Fluid Phase Equilibria, 506, 112371, 2020. https://doi.org/10.1016/j.fluid.2019.112371 

 

© 2020. Licensed under the Creative Commons http://creativecommons.org/licenses/by-nc-nd/4.0 23 

 

https://doi.org/10.1016/j.fluid.2019.112371
http://creativecommons.org/licenses/by-nc-nd/4.0


Raspo and Neau, Fluid Phase Equilibria, 506, 112371, 2020. https://doi.org/10.1016/j.fluid.2019.112371 

 

© 2020. Licensed under the Creative Commons http://creativecommons.org/licenses/by-nc-nd/4.0 24 

 

 

Table 6  

NRTL-PRA groups K and subgroups k: surface area Qk [Ref.].  

 

K k Qk     Ref.  

Paraffin (PAR) 

CH3 0.848 [40] 

CH2 0.540 [40] 

CH 0.228 [40] 

C 0.000 [40] 

Water (H2O) H2O 1.400 [40] 

Alcohol (OH) OH 1.152 [40] 

Sodium cation (Na+) Na+ 0.360 [16] 

Potassium cation (K+) K+ 0.500 [16] 

Lithium cation (Li+) Li+ 0.230 [16] 

Chlorine anion (Cl-) Cl- 0.720 [16] 

Bromine anion(Br-) Br- 0.780 [16] 
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Table 7a 

Values (in J/mol) of the NRTL-PRA group interaction parameters (0)
LK  (ol1 = methanol, ol2 = ethanol). This work: parameters between alcohol groups 

(OH(ol1), OH(ol2)) and ions. Other parameters are taken from [16] and [36]. 

L\K PAR H2O 
OH 

(ol1) 

OH 

(ol2) 
Na+ K+ Li+ Cl- Br- 

PAR 0.00 2398.94 * 4521.85 -
 

-
 

-
 

- -
 

H2O 3245.43 0.00 -1200.31 2642.32 0.00 0.00 0.00 0.00 0.00 

OH(ol1) * -620.11 0.00 - 6729.25 2215.36 3346.72 7423.70 7962.64 

OH(ol2) 2932.98
 

-1310.63 - 0.00 6764.51 8969.38 9966.39 5419.55 - 

Na+ - 0.00 2766.20 8192.42 0.00
 

0.00
 

0.00
 

0.00 0.00
 

K+ - 0.00 2071.76 6501.73 0.00
 

0.00
 

0.00
 

0.00 0.00
 

Li+ - 0.00 7162.38 13825.95 0.00
 

0.00
 

0.00
 

0.00 0.00
 

Cl- - 0.00 2332.18 6869.51 0.00
 

0.00
 

0.00
 

0.00 0.00
 

Br- - 0.00 3062.71 - 0.00 0.00 0.00 0.00 0.00 

 

* (0) OH/CH3 =
 

1535.09 * (0)  CH3/OH =
 

-235.94 

* (0) OH/CH2 =
 

2185.15 * (0) CH2/OH =
 

2220.91 

 * (0) OH/CH = 9573.00 * (0) CH/OH = 10290.82 
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Table 7b 

Values (in J/mol) of the NRTL-PRA group interaction parameters (1)
LK  (ol1 = methanol, ol2 = ethanol). This work: parameters between alcohol groups 

(OH(ol1), OH(ol2)) and ions. Other parameters are taken from [16] and [36]. 

L\K PAR H2O 
OH 

(ol1) 

OH 

(ol2) 
Na+ K+ Li+ Cl- Br- 

PAR 0.00 -3417.62 * -5087.56 -
 

-
 

-
 

- -
 

H2O -294.87 0.00 -1232.08 -3373.49 0.00 0.00 0.00 0.00 0.00 

OH(ol1) * -2731.35 0.00 - -9548.61 -7625.90 -868.06 -6076.39 -6076.39 

OH(ol2) -2016.20
 

-3903.14 - 0.00 -6496.54 -21048.62 -27560.76 -6496.54 - 

Na+ - 0.00 -2885.49 -30883.64 0.00
 

0.00
 

0.00
 

0.00 0.00
 

K+ - 0.00 -16425.91 -22064.20 0.00
 

0.00
 

0.00
 

0.00 0.00
 

Li+ - 0.00 -10567.79 -51286.41 0.00
 

0.00
 

0.00
 

0.00 0.00
 

Cl- - 0.00 -4100.77 -16772.53 0.00
 

0.00
 

0.00
 

0.00 0.00
 

Br- - 0.00 -15555.29 - 0.00 0.00 0.00 0.00 0.00 

 

* (1) OH/CH3 =
 

2629.81 * (1)  CH3/OH =
 

-6159.54 

* (1) OH/CH2 =
 

-37.35    * (1) CH2/OH =
 

-92.72 

 * (1) OH/CH =    -201.30   * (1) CH/OH = -152.30 
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Table 7c 

Values (in J/mol) of the non-zero NRTL-PRA group interaction parameters (2)
LK  (ol1 = methanol, ol2 

= ethanol) [16].  

L\K H2O 
OH 

(ol1) 

OH 

(ol2) 

H2O 0.00 -600.00 1274.05 

OH(ol1) -370.03 0.00 - 

OH(ol2) -2081.32 - 0.00 

 

 

Table 8  

Literature data of vapor pressure Pvap of aqueous electrolytes: number of data points (N), interval of 

experimental temperatures (T-range in Kelvin), maximum molality (mmax), interval of experimental 

pressures (P-range in bar) and references (Ref). 

Salt 1 Salt 2 N T-range (K) mmax P-range (bar) Ref. 

NaCl - 295 303 – 598 10.41 0.03 – 118.14 [90]-[102] 

KCl - 199 303 – 623 4.80 0.04 – 163.97 [99], [103]-[106] 

LiCl - 215 303 – 373 24.65 0.01 – 0.87 [104], [107]-[109] 

NaBr - 74 283 – 368 10.35 0.01 – 0.79 [103]-104], [110]-[111] 

KBr - 66 283 – 368 6.16 0.01 – 0.78 [103]-[104], [110] 

LiBr - 266 293 – 530 27.26 0.01 – 16.34 [104], [108], [112]-[115] 

NaCl KBr 25 333.15 2.00 0.19 [116] 

NaCl KCl 48 343.15 3.35 0.30 [117]-[118] 

NaBr KBr 40 343.15 2.96 0.30 [117] 

NaBr KCl 25 333.15 2.00 0.19 [116] 

 

 

Table 9 

Values of ion-specific parameter αk in Eq. (6).  

Ion Na+ K+ Li+ Cl- Br - 

αk (m3/mol) 1.062 10-4 8.16 10-5 2.200 10-4 1.173 10-4 1.348 10-4 
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Table 10  

Mean percent relative deviation ΔPvap/Pvap% on vapor pressure of aqueous electrolyte solutions with 

maximum molality mmax < 10. Prediction with the NRTL-PRA EoS and the new correlation for the 

relative permittivity of water Without (Table 5) or With (Eq. (5)) the correction factor E. Literature 

data: number of data points (N) and maximum pressure (Pmax in bar). 

Salt T < 450K T > 450K 

 N mmax Pmax 

(bar) 

Without E With E N mmax Pmax 

(bar) 

Without E With E 

NaCl 150 7.20 9.18 6.98 2.99 142 9.96 118.14 5.30 2.55 

KCl 79 4.41 7.91 1.97 1.17 120 4.80 163.97 2.78 1.86 

LiCl 96 9.44 0.87 27.84 2.73 - - - - - 

NaBr 73 9.55 0.79 15.95 5.97 - - - - - 

KBr 66 5.93 0.78 5.31 1.92 - - - - - 

LiBr 78 9.48 4.57 46.69 4.74 9 8.97 18.90 43.20 31.07 

 

 

Table 11  

Mean percent relative deviation ΔPvap/Pvap% on vapor pressure of aqueous electrolyte solutions with 

two electrolytes. Prediction with the NRTL-PRA EoS and the new correlation for the relative 

permittivity of water Without (Table 5) or With (Eq. (5)) the correction factor E. Literature data: 

number of data points (N), maximum molality between salt 1 or salt 2 (mmax) and maximum pressure 

(Pmax in bar). 

Salt 1 Salt 2 N mmax Tmax (K) Pmax (bar) Without E With E 

NaCl KBr 25 2.00 333.15 0.19 5.05 1.90 

NaCl KCl 48 3.35 343.15 0.30 3.97 1.96 

NaBr KBr 40 2.96 343.15 0.30 4.89 2.45 

NaBr KCl 25 2.00 333.15 0.19 5.10 2.00 
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Table 12  

Mean percent relative deviation ΔPvap/Pvap% on vapor pressure of aqueous electrolyte solutions with 

maximum molality mmax > 10. Prediction with the NRTL-PRA EoS and the new correlation for the 

relative permittivity of water Without (Table 5) or With (Eq. (5)) the correction factor E. Literature 

data: number of data points (N) and maximum pressure (Pmax in bar). 

Salt T < 450K T > 450K 

 N mmax Pmax 

(bar) 

Without E With E N mmax Pmax 

(bar) 

Without E With E 

NaCl - - - - - 3 10.41 75.93 23.36 4.22 

LiCl 119 21.96 0.49 208.34 12.87 - - - - - 

NaBr 1 10.35 0.04 56.88 23.15 - - - - - 

LiBr 131 27.26 2.81 344.45 17.87 48 27.26 16.34 170.64 94.96 

 

 

 

 

 

 

 

https://doi.org/10.1016/j.fluid.2019.112371
http://creativecommons.org/licenses/by-nc-nd/4.0


Raspo and Neau, Fluid Phase Equilibria, 506, 112371, 2020. https://doi.org/10.1016/j.fluid.2019.112371 

 

© 2020. Licensed under the Creative Commons http://creativecommons.org/licenses/by-nc-nd/4.0 30 

Table 13 

Mean percent relative deviations ΔP/P% and ΔT/T% on isothermal VLE and isobaric VLE, respectively, together with Δy/y% on the vapor phase, 

obtained with the NRTL-PRA EoS for alcohol-water mixtures with several salts. Literature data: intervals of experimental temperatures (T-range), 

pressures (P-range), amount of salt introduced in the solvent mixture (m-range), type* of measurements and references (Ref.). Modeling: isothermal 

data, with number of pressures (NP) and deviations (ΔP/P%); isobaric data, with number of temperatures (NT) and deviations (ΔT/T%); vapor phase 

composition data, with number of points (Ny) and deviations (Δy/y%). 

type* : salt molality (m), mole fraction of salt (x). 

Salt T-range (K) P-range (bar) m-range type Ref. NP ΔP/P% NT ΔT/T% Ny Δy/y% 

Methanol            

     -NaCl 298-397 0.05-4.99 0-5.38 m [119]-[125] 165 3.19 14 0.59 131 6.74 

 318-382 0.15-1.01 0-0.563 x [126]-[127] - - 17 0.57 17 9.41 

     -KCl 298-373 0.05-1.01 0-2 m [119], [128] 8 2.86 32 0.15 40 6.92 

 341-372 1.01 0-0.105 x [122], [129] 36 4.91 11 0.77 47 10.37 

     -LiCl 339-372 1.01 1-4 m [128] - - 47 0.22 47 4.86 

     -NaBr 298-371 0.06-1.01 0-7.10 m [119], [128]-

[129] 

29 9.45 23 0.27 52 6.20 

 339-373 1.01 0-0.166 x [122], [129] 31 13.40 12 0.38 43 10.57 

Ethanol            

     -NaCl 298-367 0.04-0.93 0-1 m [130]-[132] 31 3.94 28 0.10 28 5.22 

 306-367 0.12-1.01 0-0.347 x [126]-[128], 

[131], [133]-

[134] 

- - 96 1.18 96 15.45 

     -KCl 298-354 0.04-0.93 0-3.98 m [129]-[130] 23 3.22 6 1.26 6 20.09 

     -LiCl 298-364 0.03-0.93 0.5-4 m [129]-[135] 96 8.55 6 0.57 36 16.52 

 369-377 0.12-0.93 0.21-0.30 x [129] - - 18 12.02 18 80.17 
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Table 14 

Prediction of isothermal VLE provided by the NRTL-PRA EoS for methanol-water mixture with two 

salts at 298.15K. Literature data: intervals of experimental pressures (P-range), amount of salt 

introduced in the solvent mixture (m-range), type of measurements (salt molality m), references (Ref.), 

number of pressures (NP) and deviations (ΔP/P); vapor phase composition data, with number of points 

(Ny) and deviations (Δy/y%). 

Salt1+Salt2 P-range (bar) m-range type Ref. NP ΔP/P% Ny Δy/y% 

NaCl+KCl 0.07-0.08 0.50-2.50 m [119] 5 4.86 5 4.85 

NaBr+KCl 0.07 1-4 m [119] 4 2.24 4 5.39 

NaCl+NaBr 0.07 1-4 m [119] 4 2.20 4 5.14 
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Fig. 1. Relative permittivity for (a) water, (b) methanol, (c) ethanol. Variation of εr with respect to 

temperature obtained with: the new correlation (purple solid line), NR correlation (pink dashed line), 

CRC correlation (orange dash-dotted line) and ZZC correlation (blue dotted line). Circles correspond 

to experimental data of Table 1 and the two vertical dotted lines delimitate the temperature range of 

the CRC Handbook of Chemistry and Physics [24].  
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Fig. 2. Relative permittivity for (a) water, (b) methanol, (c) ethanol. Variation of εr with respect to 

temperature obtained with the new correlation (purple solid line) and with fitted parameters for Eq. (2) 

(orange dash-dotted line) and Eq. (3) (blue dotted line). Circles correspond to experimental data of 

Table 1 and the two vertical dotted lines delimitate the temperature range of the CRC Handbook of 

Chemistry and Physics [24].  
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Fig. 3. Vapor pressure of water with NaCl for various molalities m:  m = 1,  m = 3,  m = 6. 

Prediction with the NRTL-PRA EoS for m = 0 (solid blue line), m = 1 (dashed pink line), m = 3 (dash-

dotted green line) and m = 6 (dotted orange line) and for r
  in E

LRg  (Table 5):  the NR correlation (a, 

b) and the new correlation (c, d).  
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Fig. 4. Vapor pressure of water with NaCl for various molalities m:  m = 1,  m = 3,  m = 6. 

Calculation with the NRTL-PRA EoS by fitting binary interaction parameters 𝛤𝐻2𝑂 𝑁𝑎+⁄  and 𝛤𝐻2𝑂 𝐶𝑙−⁄  

for m = 0 (solid blue line), m = 1 (dashed pink line), m = 3 (dash-dotted green line) and m = 6 (dotted 

orange line) and with the new correlation for r
  in E

LRg  : (a, b) Parameters fitted on data for T up to 

450K (
2

(0)

H O Na
  = -3543.75, 

2

(1)

H O Na
  = 4050.00, 

2

(0)

H O Cl
  = -3041.30, 

2

(1)

H O Cl
  = 1013.77, 

2 2

(2) (2) 0
H O Na H O Cl

    ); (c, d) Parameters fitted on data for T>450K (
2

(0)

H O Na
  = 1628.80, 

2

(1)

H O Na
  = 

-2166.91, 
2

(0)

H O Cl
  = 1929.33, 

2

(1)

H O Cl
  = 845.94, 

2 2

(2) (2) 0
H O Na H O Cl

    ).   
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Fig. 5. Vapor pressure of water with NaCl for various molalities m:  m = 1,  m = 3,  m = 6. 

Prediction with the NRTL-PRA EoS for m = 0 (solid blue line), m = 1 (dashed pink line), m = 3 (dash-

dotted green line) and m = 6 (dotted orange line) and, in E
LRg , r

  calculated with Eq.(5) and the new 

correlation.  

 

 

 

Fig. 6. Vapor pressure of water with KBr for various molalities m (  m = 2,  m = 4,  m = 6). 

Prediction with the NRTL-PRA EoS for m = 0 (solid blue line), m = 2 (dashed pink line), m = 3 (dash-

dotted green line) and m = 6 (dotted orange line) and, in E
LRg , r

  calculated with Eq.(5) and the new 

correlation.  
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Fig. 7. Vapor pressure of water with NaCl1 and KBr2 for m1 = m2 = 1 ( ) and m1 = m2 = 2 ( ). 

Prediction with the NRTL-PRA EoS for m1 = m2 = 0 (solid blue line), m1 = m2 = 1 (dashed pink line) 

and m1 = m2 = 2 (dash-dotted green line) and, in E
LRg , r

  calculated with Eq.(5) and the new 

correlation.  
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Fig. 8. VLE of methanol(1)-water(2) with: (a) NaCl at T=397K for ms=0 ( ), ms=2.76 ( ), ms=4.84 ( ), 

(b) KCl at P=1.01bar for m=0.5 ( ), m=1 ( ), m=2, (c) LiCl at P=1.01bar for m=1 ( , ), m=2 ( , ), 

m=4 ( , ), (d) NaBr at T=313K for ms=1 ( ), ms=2 ( ), ms=4 ( ). Calculation with the NRTL-PRA 

EoS (─).  
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Fig. 9. VLE of ethanol(1)-water(2) with:  (a) NaCl at P=1.01bar for xNaCl=0 ( ), xNaCl=0.01 ( ), 

xNaCl=0.03 ( , ), xNaCl=0.05 ( ), (b) KCl at T=298K for ms=0 ( ), ms=0.3 ( ), ms=0.5 ( ), ms=1 ( ), 

(c) LiCl at T=298K for ms=0 ( ), ms=0.5 ( ), ms=1 ( ). Calculation with the NRTL-PRA EoS (─). 
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