N

N

Autoxidation of the sea ice biomarker proxy IPS0O25 in
the near-surface oxic layers of Arctic and Antarctic
sediments

Jean-Francois Rontani, Lukas Smik, Simon Belt

» To cite this version:

Jean-Francois Rontani, Lukas Smik, Simon Belt. Autoxidation of the sea ice biomarker proxy IPSO25
in the near-surface oxic layers of Arctic and Antarctic sediments. Organic Geochemistry, 2019, 129,
pp.63-76. 10.1016/j.orggeochem.2019.02.002 . hal-02325900

HAL Id: hal-02325900
https://hal.science/hal-02325900
Submitted on 22 Oct 2021

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License


https://hal.science/hal-02325900
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

Version of Record: https://www.sciencedirect.com/science/article/pii/S014663801930018X
Manuscript_aa0b487c2bfd49bfcd768e8tb581{298

3 Autoxidation of the sea ice biomarker proxy IR the near-surface oxic layers of Arctic

4  and Antarctic sediments

6 Jean-Francois RonténhiLukas Smik Simon T. Beft

8  ?Aix Marseille Univ, Université de Toulon, CNRS/INSU/IRD, Mediterranean Institute of
9  Oceanography (MIO) UM 110, 13288 Marseille, France

10 P Biogeochemistry Research Centre, School of Geography, Earth and Environmental
11 Sciences, University of Plymouth, Drake Circus, Plymouth, Devon PL4 8AA, UK

12

13
14
15
16
17
18

19  * Corresponding author. Tel.: +33-4-86-09-06-02; fax: +33-4-91-82-9&4tail address
20 jean-francois.rontani@mio.osupytheas.fr (J.-F. Rontani)
21

1

© 2019 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/


http://www.elsevier.com/open-access/userlicense/1.0/
https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S014663801930018X
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S014663801930018X

22
23
24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

ABSTRACT

Over the last decade or so, the mono- and di-uragatlihighly branched isoprenoid (HBI)
lipids IP.s (Ice Proxy with 25 carbon atoms) and IR§(Qce Proxy for the Southern Ocean
with 25 carbon atoms) have emerged as useful @daresea ice in the Arctic and Antarctic,
respectively. A more complete understanding ofrttespective proxy signatures, however,
requires more detailed knowledge of their stabilityhe water column and in sediments. In
the current study, we focused on the autoxidatfd®P80;s, first by performing laboratory-
based oxidation reactions on a purified sampledadacterizing products based on detailed
mass spectral analysis. We then analysed for the s&idation products in near-surface
sediments retrieved from the Arctic and the Aniarend some suspended organic matter
from the Antarctic. Our data show that IPS@ susceptible to partial autoxidation within the
oxic layers of Arctic and Antarctic sediments, wehihe same processes appear not to be so
important in the water column. Although the numbkprimary autoxidation reactions
identified in sediments was not as large as inratiooy experiments, there was evidence for
their subsequent modification by biotic degradatiQuoantifying the extent of degradation of
IPSOys and IRs in sediments, and thus the impact of such prooedke use of these
biomarkers as paleo sea ice proxies, remains cigatig at this stage, since most of the
primary oxidation products do not accumulate, kelie to secondary biodegradation
reactions. Some interesting differences in reagtivere also observed between IRS&nd

IP,s present in the same Arctic sediments. This sugdbat factors other than environmental

control may influence the IPSEIP,s ratio (i.e. DIRs) in Arctic sediments.

Keywords IPSQs5; Degradation; Autoxidation; Arctic and Antarctiedsments; Biotic and

abiotic interactions; 112, DIPos.
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1. I ntroduction

Cys and Go highly branched isoprenoid (HBI) alkenes (commahibiting 1-6
double bonds) are ubiquitous biomarkers foundwide range of marine and lacustrine
sediments (Rowland et al., 1990; Belt et al., 2@Aninghe Damsté et al., 2004). Despite
this, HBIs appear to be biosynthesized by a retftismall number of diatom taxa belonging
to theHaslea, Navicula, Pleurosigma, BerkelefghizosoleniaandPseudosolenigenera
(Volkman et al., 1994; Sinninghe-Damsté et al., %2 ®elt et al., 2001a, 2001b, 2016; Grossi
et al., 2004; Brown et al., 2014; Kaiser et al1@0 Amongst the more recent investigations,
a mono-unsaturatecb£HBI alkene (3,9,13-trimethyl-6-(1,5-dimethylhexytradec-1-ene)
was identified in Arctic sea ice and in underlyseggiments (Belt et al, 2007; Vare et al,
2009). Since this HBI is believed to only be mageértain Arctic sea ice diatoms (Belt et
al., 2007; Brown et al., 2014) and appears reltisable in the geological record, its
analysis in marine sedimentary archives provideay measure of seasonal Arctic sea ice
in the past. More commonly referred to as;lffce Proxy with 25 carbon atoms), this HBI has
been used as the basis for sea ice reconstrusiiamning different Arctic regions and over a
range of timescales (see Belt, 2018 for a recamipdation of sea ice reconstructions).

A related di-unsaturated HBI (2,6,10,14-tetramethyB-methylpent-4-enyl)-
pentadec-6(17)-ene), sometimes referred to as dlieiseco-produced with 12 in the Arctic,
and is also biosynthesized by some Antarctic sedimtoms (Nichols et al., 1993; Johns et
al., 1999; Belt et al., 2016). Interestingly, howeVP:s has not been reported in sea ice,
sediments or the water column from around the AtitarAs such, diene Il has been
proposed as a proxy measure for sea ice in then&wuOcean, and the term IP§Qce
Proxy for the Southern Ocean with 25 carbon atdmas)been recently proposed (Belt et al.,

2016). Although IPS& appears to be a common constituent of Antarctiasa sediments
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(for near-coastal regions, at least; Nichols ¢tl#193; Johns et al., 1999; Belt et al., 2016;
Belt, 2018, 2019), analysis of IP&0n downcore Antarctic archives has so far resuled
only a relatively small number of palaeo sea i@®nstructions, at least in comparison with
IP,s for the Arctic (e.g., Collins et al., 2013; Etoaau et al., 2013; Barbara et al., 2016;
Campagne et al., 2016; see also Belt, 2018, 2018 fecent review and summary). Finally,
in the Arctic, the ratio IPS£IP,s (sometimes referred to as DiPhas previously been
proposed as a possible indicator of variabilitgéa ice conditions or even of sea surface
temperatures (SST) (e.g., Fahl and Stein, 2013 8tal., 2012; Cabedo-Sanz et al., 2013).

As with all proxies, including those based on imndiixal or combinations of
biomarkers, their application requires careful cdesation of alteration and preservation
between their source and sedimentary environménsgsnecessary, therefore, to determine
the magnitude and relative importance of varionsidiand/or abiotic processes that can
influence the preservation of the original souligaature. In the case of HBIs, bacterial
degradation of some HBIs was studied several dscagie (Robson and Rowland, 1988), yet
the effects of photo- and autoxidation on thesepmmds have been examined only
relatively recently.

Motivation for the more recent studies stems pdrtyn the proxy signatures of
certain HBIs such as jPand IPS@s, as described above, together with the now wedkkm
high reactivity of terrestrial and marine organiatter, more generally, in the Arctic (Rontani
et al., 2012, 2016, 2017). By studying the reatstiof a range of HBI alkenes towards
different abiotic processes in solvents and in seget diatoms (Rontani et al., 2011, 2014),
extremely low reactivities of mono- and di-unsatedaHBIs were observed and attributed to
the presence of relatively unreactive terminal delonds. Such lack of reactivity is
consistent with the general lack of degradatiotPgf in the water column following sea ice

melt (Brown et al., 2016; Rontani et al., 2018a)wdver, lipid autoxidation is not limited to



97 the water column, and can potentially be an impongp@ocess in the oxic layers of sediments,
98 especially for regions of low accumulation ratebeve near-surface sediments megresent
99 relatively long time intervals (decades to censljriéndeed, as part of a recent laboratory-

100 based investigation into the autoxidation ofsJR series of oxidation products were

101  characterized that could also be identified insedit material from the Canadian Arctic

102  (Rontani et al., 2018a). This study demonstratedstisceptibility of IR towards

103  autoxidation in Arctic sediments, a process that mare prevalent in cases where

104  sequestered ice algal material experienced relativrg residence times in the oxic layer.

105  On the other hand, the near-ubiquity ofslfd surface sediments from across the Arctic

106  suggests that such oxidation reactions likely pbriis sedimentary content, rather than

107  remove it.

108 In the present work, we aimed to determine whelff8,salso undergoes

109  autoxidation in near-surface Arctic and Antarctdisnents and, therefore, whether palaeo sea

110  ice reconstructions using this proxy should conside possible impact of this type of

111  degradation. To achieve this, oxidation of purifie®&Qs was carried out under more

112 powerful oxidative conditions than previously emy@d (Rontani et al., 2014) and the main

113 products were identified by high resolution masscg@l analysis. The same oxidation

114  products were then analysed for, and quantifiedegiment samples from the Canadian

115  Arctic and the West Antarctic Peninsula (WAP).

116

117 2. Experimental

118

119 2.1. Sediment sampling

120 Sediment material from the Arctic was taken frotyoa core obtained from Barrow

121  Strait (STN 4) in the Canadian Arctic on board @@GS Amundsen in 2005 (Belt et al.,
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2013). The box core was sectioned on board, withssumples (1 cm resolution) then frozen
(=20 °C) prior to being freeze-dried and stored(=@ to +4 °C) prior to analysis (Rontani et
al., 2018a). The redox boundary layer was idemti€ising the change (reduction) in Mn
content as described previously (Vare et al., 2808wn, 2011 and References cited therein).
Sediment material from the WAP (see Belt et all@fbr details of locations) was obtained
from the upper 0—1 cm of box cores collected betw2@02 and 2011 and then held at the
British Antarctic Survey (UK) or the British Oce&ediment Core Research Facility
(BOSCORF, UK) at +4 °C. Suspended particulate mé8BM) were obtained off the coast

of East Antarctica as described previously (Rongaail., 2018b) (Supplementary Fig. S1).

2.2.  Chemicals

A sample of purified IPS§ was obtained from a culture of the marine diatdaslea
ostreariaas described previously (Johns et al., 1999).

Treatment of IPSg3 with a stoichiometric amount of perchloroperbenzid in dry
dichloromethane (4 h at 50 °C) mainly afforded &gpdxy-2-(4-methylpentyl)-3-(3-
methylpent-4-enyl)-6,10-dimethylundecarig (93%) (Belt et al., 2007) and to a lower extent
1,2-epoxy-3,9,13-trimethyl-6-(1-methylidene-5-mdttexyl)-tetradecane2} (7%) (total yield
85%). Differentiation between these two isomers diéiicult due to their very similar mass
spectra and so required LiAjHleduction to the corresponding alcohols (see below

Oxidation of IPS@s using RuC{ andtert-butyl hydroperoxide in cyclohexane at room
temperature for 16 h (Seki et al., 2008) and sulessigNaBH-reduction in ether-methanol
(4:1, viv) produced 6-methylidene-2,10,14-trimetfiy(3-methylpent-4-enyl)-pentadecan-5-
ol (3) and 3,9,13-trimethyl-6-(1-methylidene-5-methylii@xetradec-1-en-3-ol) in low
yield. It is interesting to note that using a mnetwf RuC} andtert-butyl hydroperoxide

failed to attack the tertiary allylic position at@C likely due to steric hindrance.



147 LiAIH 4-reduction of the mixture of epoxidésand?2 in dry diethyl ether (1 h at room
148  temperature) afforded 2,6,10,14-tetramethyl-7-(3hylpent-4-enyl)-pentadecan-6-&)(@nd
149  3,9,13-trimethyl-6-(1-methylidene-5-methylhexyl}rdecan-2-olg), respectively (total

150  yield 95%).

151 Treatment of IPSg3 with a stoichiometric amount of Os@ dioxane-pyridine (8:1,
152 v/v) at room temperature for 1 h (McCloskey and N&ti@nd, 1965) afforded 2-(4-

153  methylpentyl)-3-(3-methylpent-4-enyl)-6,10-dimethgtecane-1,2-diol7j (yield 60%).

154 3,9,13-Trimethyl-6-(1-methylene-5-methylhexyl)redecane-1,2-dioBj was

155  obtained in small amounts after hydrolysis of thexéde?2 in a mixture of MeOH and HCI
156 2N (5:1, v/v) at 50 °C for 2 h. Under these comdfi epoxidd mainly isomerized to allylic
157  alcohols.

158 3,7,11,15-Tetramethylhexadecan-1,2-d8)Ias produced by Pd/CaG@atalysed
159  hydrogenation of 3-methylidene-7,11,15-trimethylagecan-1,2-dioll0) (Rontani et al.,

160  2018), whose synthesis from phytol was describedipusly (Rontani and Aubert, 2005).
161 2,6,10,14-Tetramethylpentadecan-2-dl)(was produced by condensation of 6,10,14-
162  trimethylpentadecan-2-on&2) with methyllithium in anhydrous diethyl ether gr®viously
163  described (Rontani et al., 2013a).

164

165  2.3. Induction of autoxidation in solvent

166 Autoxidation experiments were performed under amogphere of air in 15 ml screw-
167  cap flasks containing IPS6X10 pg).tert-butyl hydroperoxide (300 pl of a 6.0 M solution in
168  decane), diert-butyl nitroxide (1.2 mg) and hexane (2 ml). Afgtirring, the flask was

169 incubated in the dark at 65 °C. A relatively higinperature was selected in order to

170  accelerate the autoxidation reactions. Aliquot®(@0 were withdrawn from the reaction

171 mixture after incubation for different times. Eaglb-sample was evaporated to dryness under
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a stream of nitrogen and analyzed by gas chromebgrelectron ionization quadrupole
time of flight mass spectrometry (GC—QTOF) afteBNa reduction (Section 2.5) and

derivatization (Section 2.7) for identification lofdroxylated oxidation products.

2.4. Reduction of oxidation products

Hydroperoxides resulting from IP$£oxidation were reduced to the corresponding
alcohols by reaction with excess NaBiH diethyl ether:methanol (4:1, v/v) at room
temperature (1 h). After reduction, a saturatedtsm of NH,CI (10 ml) was added
cautiously to remove any unreacted reducing ageatpH was adjusted to 1 with dilute HCI
(2 N) and the mixture shaken and extracted wittahexchloroform (5 ml, 4:1, v/v; x3). The
combined extracts were dried over anhydrougSiy, filtered and evaporated to dryness

under a stream of nitrogen.

2.5. Sediment and SPM treatment

Sediments or SPM material (collected on GF/F §ltgorosity 0.8 um) were placed in
MeOH (15 ml) and hydroperoxides were reduced tatreesponding alcohols with excess
NaBH, (70 mg, 30 min at 20 °C). Following the reductgtap, water (15 ml) and KOH (1.7
g) were added and the mixture saponified by refigX2 h). After cooling, the contents of the
flask were acidified (HCI, to pH 1) and extractadee times with dichloromethane (DCM)
(30 ml). The combined DCM extracts were dried cueinydrous Nz50,, filtered and
concentrated to give the total lipid extract (TLEjnce IPS@; oxidation product content was
quite low relative to other lipids, accurate qufacdition required further separation of the
TLE using column chromatography (silica; Kiesel§@) 8 x 0.5 cm). IPS§&was recovered

in the hexane eluate and its oxidation producthendichloromethane eluate.
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2.6. Derivatization

In order to analyse for hydroxylated products @leohols and carboxylic acids), lipid
extracts were derivatized by dissolving them in B0@yridinebis-
(trimethylsilytrifluoroacetamide (BSTFA; Supelc®;1, v/v) and silylated (50 °C, 1 h). After
evaporation to dryness under a stream Hftie derivatized residue was re-dissolved in 100
ul BSTFA (to avoid desilylation of fatty acids), tiper with an amount of solvent (ethyl
acetate) dependent on the mass of the extracthandanalyzed using GC-QTOF and GC-

MS/MS.

2.7. GC-QTOF analyses

Accurate mass spectra were obtained with an Agi8aoB/7200 GC-QTOF System
(Agilent Technologies, Parc Technopolis - ZA Cobdeuf, Les Ulis, France). A cross-linked
5% phenyl-methylpolysiloxane (Macherey Nagel; O@tisaMS Accent) column (30 m
0.25 mm, 0.2%m film thickness) was employed. Analysis was perfed with an injector
operating in pulsed splitless at 280 °C and thendeeperature programmed from 70 °C to
130 °C at 20 °C/min, then to 250 °C at 5 °C/min #reh to 300 °C at 3 °C/min. The carrier
gas (He) was maintained at 08640 Pa until the end of the temperature program.
Instrument temperatures were 300 °C for the trarisfe and 230 °C for the ion source.
Accurate mass spectra were recorded across the man§0—-700 at 4 GHz with nitrogen as
collision gas (1.5 ml/min). The QTOF-MS instrumentvided a typical resolution ranging
from 8009 to 12252 fromy/z 68.9955 to 501.970®erfluorotributylamine (PFTBA) was
utilized for daily MS calibrationStructural assignments were based on interpretafion
accurate mass spectral fragmentations and confibjp@dmparison of retention times and

mass spectra of oxidation products with those tientic synthesized compounds.
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2.8. GC-MS/MS analyses

GC-EIMS/MS experiments were performed using anexgil7890A/7010 tandem
guadrupole gas chromatograph system equipped vt source (Agilent Technologies,
Parc Technopolis - ZA Courtaboeuf, Les Ulis, Franéecross-linked 5% phenyl-
methylpolysiloxane (Agilent; HP-5MS) (30 m0.25 mm, 0.2%m film thickness) capillary
column was employed. Analyses were performed witingector operating in pulsed splitless
mode set at 270 °C and the oven temperature prageainfrom 70 °C to 130 °C at 20
°C/min, then to 250 °C at 5 °C/min and then to 30Gt 3 °C/min. The pressure of the carrier
gas (He) was maintained at 0.69 X P@ until the end of the temperature program aed th
programmed from 0.68 10° Pa to 1.4% 10° Pa at 0.04« 10° Pa/min. The following mass
spectrometric conditions were employed: electragrgyy 70 eV; transfer line, 300 °C; source
temperature, 230 °C; quadrupole 1 temperature,’C5Quadrupole 2 temperature, 150 °C;
collision gas (N) flow, 1.5 ml/min; quench gas (He) flow, 2.25 mmih; mass range, 50-700
Da; cycle time, 313 ms. Collision induced dissaom{CID) was optimized by using
collision energies at 5, 10, 15 and 20 eV.

Quantification of oxidation produc8 5 and7 was carried out with external standards
in multiple reaction monitoring (MRM) mode. Precorrsons were selected from the more
intense and specific ions observed in El mass spdBte to the very low amounts of IP§O
available, these compounds could not be producedffitient amounts to be used as external
standard during their quantification in sedimemhgkes. TMS derivative of structurally
similar isoprenoid compounds (3-methylidene-7,14rirGethylhexadecan-1,2-diolQ) for
compound3, 2,6,10,14-tetramethylpentadecan-24dl)(for compound and 3,7,11,15-
tetramethylhexadecan-1,2-di@) for compound’) (see Appendix) were thus used as external

standards. Correction factors that took into actthm proportion of the selected precursor

10



246  ion in the EIMS of each compound and that of tHected MRM transition in each CID-MS
247  were employed.

248

249 3. Results

250

251 3.1.  Autoxidation of IPS@in solvent

252 A number of different oxidation products could katted after incubation of IPS0D
253  in hexane in the presenceteft-butyl hydroperoxide (radical enhancer) andati-butyl

254 nitroxide (radical initiator) (Porter et al., 199)65 °C and subsequent NaRtdduction and
255  silylation. Comparison of retention times and aateimass spectra of these compounds
256  (Figs. 1 and 2) with qualitative standards prepdmedxidation of purified IPSg3 (Section
257  2.2) allowed formal identification of compounti$59.2%),2 (5.9%),3 (9.3%),4 (10.2%)

258 and7 (traces). A compound derived from the attack eftdrminal tertiary carbon atoms was
259 also detected and tentatively attributed to 10-yietbne-2,6,14-trimethyl-9-(3-methylpent-
260 4-enyl)-pentadecan-2-0l8) or 6-methylidene-2,10,14-trimethyl-7-(3-methylpdrenyl)-
261 pentadecan-2-oll) (7.6%) on the basis of the accurate mass fragatiens observed (Fig.
262 1D).

263

264  3.2.  Autoxidation of IPSg} in Arctic and Antarctic sediments

265 The DCM eluates obtained after chromatographidifsaation of the total lipid

266  extracts from the sediments investigated were ardlyn MRM mode. The use of the

267  transitionsn/z 365— 275,m/z 365— 135 andnwz 365— 149 and the comparison of

268  retention time with the oxidation products chardzea during the thermal incubation

269 reactions allowed the unambiguous detection ofitbehol3 (Fig. 3). In contrast, we failed to

270  detect the oxidation producis2 and4. Taking into account: (i) the presence of the IRSO

11
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290

291

292

293

294

295

oxidation produc8 in the sediments and (ii) the well-known labil@yepoxides, we searched
for the presence of the reduction and hydrolysiglpcts of the main oxidation produkcti.e.
2,6,10,14-tetramethyl-7-(3-methylpent-4-enyl)-peietzan-6-ol §) (Fig. 2A) and 2-(4-
methylpentyl)-3-(3-methylpent-4-enyl)-6,10-dimethgtiecane-1,2-diol7§ (Fig. 2C)). By
using appropriate MRM transitions, we were ablddtect the tertiary alcohslin DCM
eluates of both Arctic and Antarctic sediments (RBig In contrast, diol could only be
identified in the Arctic sediment extracts (Fig. 5)

As described in Section 2.8, quantification of connpds3, 5 and7 involved the use
of TMS derivatives of structurally similar isopred@ompounds as external standards. The
transitions employed for quantification werer{iz 365— 275 andn/z 353— 263 (loss of
trimethylsilanol by the precursor ion) for the dlob3 and the standartD, respectively; (ii)
m/z 353— 117 andwz 341 — 117 (formation of the product ion TMS*GCH-CH) for the
tertiary alcohob and the standartll, respectively; (iii)m/z 423— 333 andn/z 355— 265
(loss of trimethylsilanol by the precursor ion) fbe diol7 and the standar@ respectively.
As indicated in Section 2.8, corrective factorsevapplied to accommodate structural
differences between the oxidation product and treesponding standard. The resulting

concentrations of compoun8s5 and7 are given in Tables 1 and 2.

3.3.  Autoxidation of IPSg}in Antarctic SPM

We also analysed for IPS§oxidation products in lipid extracts of suspengadicles
collected at different water depths in the polynsgion west of the Dalton Iceberg Tongue
(East Antarctica) and where an intense autoxidaifsome other lipids was previously
observed (Rontani et al., 2018b). However, comps@n8 and7 could not be identified in

any of the samples analysed.

12
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4, Discussion

4.1. Autoxidation of IPS£&in solvent

It is well-known that addition of ROOe radicalsadC=C bond competes with allylic
hydrogen abstraction when there is a double boaidigreither conjugated or 1,1-disubstituted
(Schaich, 2005). Consistent with this, we obseefiidient addition of peroxyl radicals to the
1,1-disubstituted 6-17 double bond of IR§@ffording epoxidel as the major product
(59.2% of total oxidation products) after fast amrolecular homolytic substitution (Fossey et
al., 1995) (Fig. 6). In contrast, addition to themtiinal 23-24 double bond was relatively
minor (5.9% of total oxidation products). Additiohperoxyl radicals to the 6-17 double
bond also resulted in the formation of trace am®wihthe diol7 after subsequent oxygen
addition and hydrogen abstraction (Fig. 6).

Parallel to these peroxyl radical addition readdioras a series of competitive
hydrogen abstraction reactions leading to the ftionaf hydroperoxide45-18 (see
Appendix), which manifest as alcoh@s4, 13 and14 following NaBH,-reduction during
treatment. Hydrogen atom abstraction from theiallgarbon atoms 5 and 22 of IPg@nd
subsequent oxidation of the resulting radicalsiétdyhydroperoxide45 and16, respectively
(Fig. 6), is as expected given the relatively stalylic radicals formed (Fig. 6), with the
additional formation of hydroperoxidd3 and18 presumably attributable to the stability of
their respective tertiary radical precursors. Sampgly, we failed to detect oxidation products
resulting from hydrogen atom abstraction at carbotiespite the stability of the tertiary
allylic radical formed. These results are consistéth the very low efficiency of
autoxidative processes at the allylic C-7 previpadlserved in the case of (6-17, 9-10, 23-24)
HBI triene (Rontani et al., 2014). We suggest thatlack of reaction at C-7 results from

steric hindrance during hydrogen abstraction bybihlky tert-butylperoxyl radicals employed

13
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during the incubation and is supported by the tafobxidation of the allylic carbon 7
observed during treatment of IPgWith RuCk- tert-butyl hydroperoxide (see Section 2.2).
Hydrogen atom abstraction from non-allylic terti@arbon atoms appeared to be limited to
the external tertiary carbon atoms 2 and 14 ofiibkecule (and not to carbon 10), also likely

due to steric hindrance.

4.2. Degradation of IPSgin Arctic and Antarctic sediments

Despite the relative recalcitrance of mono- andrdiaturated HBIs towards free
radical oxidation, reported previously (Rontanakt 2011, 2014), oxidation produgtould
be detected in most of the Arctic and Antarcticiseahts (Tables 1 and 2), confirming the
partial autoxidation of IPS£in both regions. On the other hand, the failurdetect the
major oxidation product of this diene in the inctibya experiments (i.e. compourdl likely
results from: (i) the lack of specificity of its IavIRM transitions, thus making it difficult to
identify, (ii) an intense degradation during theatment (NaBktreduction, alkaline
hydrolysis and acidification) or (iii) the well-kmm biotic and abiotic lability of epoxides in
sediments, more generally. Indeed, epoxides magrgondalcoholysis and hydrolysis during
alkaline hydrolysis and are converted to chloromglduring acidification with HCI
(Marchand and Rontani, 2001).

Some epoxides are also slowly reduced to alcohoisgl NaBH,-reduction (Zabeti et
al., 2010), but this is not the case for epoXidErom a biological perspective, these epoxides
react readily with a large number of cell compogsenich as DNA or proteins (Swaving and
de Bont, 1998) so their removal is essential fatdy@a to survive. This involves two main
types of enzymes: glutathione transferases (GSWIEE catalyse the reduction of the
epoxide ring to an alcohol, Kieslich et al., 1986) epoxide hydrolases (which catalyse the

hydrolysis of the epoxide ring to a diol, Michaetsal., 1980; Rustemov et al., 1991).
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Moreover, epoxides may also be hydrolysed abidyi¢Minerath et al., 2009) and rearranged
to carbonyl compounds in sediments with high clagtent (Ruiz-Hitzky and Casal, 1985).

The presence of the tertiary alcobdh the sediments investigated (Tables 1 and 2),
may therefore potentially be attributed to the mdun of the epoxide ring of the IP$9
oxidation product by sedimentary bacteria (Fig. 7). However, alcdhalight also be
produced directly from IPS@by bacteria after hydration (pathway Il in Fig.or)
epoxidation (pathway Il in Fig. 7) and subsequenluction (pathway IV in Fig. 7). Indeed,
the involvement of hydration during anaerobic baatelegradation of isoprenoid alkenes
(squalene, pristenes and phytenes, Rontani &048l2, 2013a) and-alk-1-enes (Grossi et al.,
2011) was demonstrated previously. On the othed Haarcterial epoxidation (mediated by
cytochrome P-450-dependent monooxygenases) canqgea@poxides from a broad range of
lipophilic substrates such asalkenes (Soltani et al., 2004), terpenes (Due#.e2003),
unsaturated fatty acids (for a review see Ratletig®4) and alkenones (Zabeti et al., 2010).
Since bacterial epoxidation should act more intaxigion the terminal 23-24 double bond
due to the better proximity of the terminal doubtsd to the heme iron of cytochrome P-450
(Andersen et al., 1997), the formation of epoX@d€ig. 7)and its degradation products
would thus be expected. However, the absence ohalé (resulting from the reduction of
epoxide2 or hydration of the 23-24 double bond of IRS{Fig. 7)) in the sediments analyzed
points to the lack of such bacterial processefhesdormation of alcohd seems thus to
mainly result from bacterial reduction of the eplexring of autoxidation produdt

Further, due to the probable low reactivity of moxygenases towards the 6-17
double bond of IPS&, the formation of dio¥ may be attributed to the biotic (induced by
epoxide hydrolases) or abiotic (clay-catalyzed)rbiysis of epoxidel (pathways V and VI in
Fig. 7). The lack of methoxyhydrins and chlorohpdrderived from the degradation of the

epoxidel in the presence of methanol and hydrochloric aeisiectively, also allow us to
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exclude the possible production of diodluring sample treatment (alkaline hydrolysis and
acidification).

Surprisingly, diol8 could not be detected during MRM analyses of ddrsent
extracts, despite the previous detection of itselstructural analog (i.e. dib®) as an
oxidation product of IR in the same (STN 4) sediments (Rontani et al.8aDIWe attribute
this to (i) the possible coelution of diddlsand8 and (ii) the very weak abundance of the
precursor ion atvz 423 in the mass spectrum of its TMS derivativg(BD), rather than
from a lack of microbial degradation of IP&O

In the sediments from the Arctic (STN 4), we alsterthe generally increasing
proportion of IPS@; oxidation products with depth below the redox bargdFig. 8),
indicative of a progressive reduction of hydropédex5 (produced in the oxic layer) to the
corresponding alcohd, together with reduction and hydrolysis of thexade 1 to yield
alcohol5 and diol7. However, due to the proposed action of sedimgritacteria on the
autoxidation products of IPS6Xsee earlier), the very low amounts of compou)dsand7
relative to their parent compound (< 1%; Fig. Bely underestimate the extent of abiotic
degradation of IPS£&, more generally.

In the Antarctic surface sediments, the proportibaxidation products was always
low, ranging from 0.02 to 1.1% of the residual IRS@able 1). These differences may
potentially be attributed to: (i) the ability foedimentary bacterial communities to degrade
the primary IPS@; autoxidation products, as described above, oth@)different residence
times of algal material within the oxic layer otlgments, which may vary considerably
according to location. On the other hand, the Wgidegradation extent may reflect the
different times that the sediments have been kegtiorage following collection; however, for
the samples analyzed, the lowest percentages cddk#ipn products were observed in the

oldest samples (i.e. in BC 313/316 collected in260mpared to the other box cores
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collected in 2008 and 2011; Table 1). These resaittd those obtained previously fopdP
(Rontani et al., 2018a), highlight the importantéhe measurement of redox boundary layers
in upper sections of sediment cores and sedimentedies to estimate the residence time of
algal material in the oxic environment and thusdktnt of autoxidative degradation and its

impact on paleo sea ice reconstruction based onsth@f HBI tracers.

4.3. Degradation of IPSgin Antarctic SPM

The failure to detect compounds5 and7 in lipid extracts of strongly autoxidized
suspended particles (Rontani et al., 2018b) celtkat different water depths in the polynya
region west of the Dalton Iceberg Tongue (East Autitza) is in good agreement with: (i) the
relative recalcitrance of di-unsaturated HBIs tadgafree radical oxidation processes
(Rontani et al., 2011, 2014), and (ii) the expeciealt residence time of highly aggregated
ice algae (i.e. the source of IPgJQRiebesell, 1991; Alldredge et al., 1993; Passz0?2)
within the water column. It also enables us to eaelthe possible biological formation of

these compounds in ice algae.

4.4. Potential effects of degradation processetherDIP.sindex

Due to the co-occurrence of IPg@generally reported as diene Il in the Arctic) and
IP2s in Arctic sea ice, particles and sediments undarice (Belt et al., 2007; Vare et al.,
2009), it has been suggested that the ratio betthese two biomarkers (viz IPSP,s or
DIP,s (Cabedo-Sanz et al., 2013)) may potentially previdther insights into Arctic sea ice
conditions (e.g., Fahl and Stein, 2012; Stein eRéll12; Cabedo-Sanz et al., 2018has also
been suggested that variable RIRight be indicative of changes to SST based oresom
empirical observations and alignment with other $&ixies (Vare et al., 2009; Cabedo-Sanz

et al., 2013; Xiao et al., 2013; Muller and St&i@14; Ruan et al., 2017); however, there are
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as yet no in situ data to support these interpogisi(Belt, 2018). In general, proxies based on
ratios of biomarkers are better at accommodatiagetfects of degradative processes, even if
such effects cannot be totally eliminated. Indéedas previously demonstrated that, under

some conditions, autoxidative and biodegradatiacgsses may act selectively osy-£and
Cs7:3 alkenones, thus negatively impacting onthg index (for a review, see Rontani et al.,

2013b). It is feasible, therefore, that differehtiagradation of IR and IPS@s may also
influence the DIR; ratio, with substantially increased values, assesome sedimentary
records (Fahl and Stein, 2012; Miller and Steid430esulting from a preferential
degradation of IR2. Previously, however, autoxidative degradatiothete two HBIs
measured in solvents (Rontani et al., 2014), shamagher degradation rate for IPgSk =
0.004 K') compared to IR (k = 0.001 H). Unfortunately, due to the mineralisation of the
major part of substrates by bacteria, comparisahegfficiency of bacterial degradation
processes on jPand IPSQ@son the basis of the quantities of metabolites detis difficult.
However, we note that significant proportions (a@5% of the residual substrate) of 2,8,12-
trimethyl-5-(1,5-dimethylhexyl)-tridecanoic acidd), resulting from bacterial cleavage of the
23-24 double bond of 5, were detected in sediments from Barrow Stragt TN 4)

(Rontani et al., 2018c), while we failed to detidset corresponding metabolite of IPS@.e.
2,8,12-trimethyl-5-(1-methylidene-5-methylhexyljd@canoic acid4l)) in the same
sediments. This suggests a preferential bacteg@adlation of 1R, which could potentially

be attributed to the presence of toxic autoxidatipexides in algal material containing
IPSQs, which are in lower abundance (or absent) in s of IBs. More detailed analyses

of factors that control the DjPratio, however, will be required in the future.

4.5. Consequences for P IPSQs and DIPs-based sea ice reconstructions
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As with all lipid-based proxies, those involving KBsuch as I2 and IPSGQs require
careful consideration of their alteration and presgon during transport through the water
column and deposition in sediments, including deteing the magnitude and relative
importance of biotic and/or abiotic processes. Whibth autoxidative and bacterial
degradation products of JPwere identified and quantified previously in Accsurficial
sediments (Rontani et al., 2018c), here we dematestithat IPSg may also be affected by
such processes in Arctic and Antarctic sedimentshi& stage, the characterisation of
signature degradation products from these biotitabiotic processes mainly provides useful
‘qualitative’ indicators of diagenetic alteratiohtbese two paleo sea ice tracers.
Unfortunately, subsequent reaction of most of thag@ry oxidation products by sedimentary
bacteria limits their accumulation in sedimentgréy preventing any accurate quantitative
estimates of the extent of degradation gf Bhd IPSQs, and thus of the ratio between them
(i.e. DIP:s). The impacts of sedimentary degradation g #hd IPSQs on their use as paleo
sea ice proxies therefore remains difficult to assa this stage. On the other hand, the
somewhat higher accumulation of 2,8,12-trimethylk%-dimethylhexyl)-tridecanoic acid
(20) in some oxic sediments could potentially provégeni-quantitative estimates of the role

of bacterial degradation of #P(Rontani et al., 2018c).

5. Conclusions

The detection of reduced or hydrolyzed autoxidapiozducts of IPSgyin Arctic and
Antarctic sediments demonstrated that this proxy beapartially degraded abiotically in
near-surface oxic sedimenéspecially in the case of sediment cores contairgtagively
thick oxic layers representing long times of defiosi Unfortunately, due to its high biotic

and abiotic lability, the major autoxidation protlfmrmed (epoxidd) does not accumulate in
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sediments. In contrast, IP&{appeared to be essentially unaffected by autarid@rocesses
in the water column.

The results obtained during this work also confidrtigat, in the environment, biotic
and abiotic degradatigerocesses cannot be considered separately. Inthegdnteractions,
although complex, need to be taken into accouahinorganic geochemical assessment.

Autoxidation reactions of HBIs appear to occur @ity at the unsaturated or allylic
carbon atoms within the lipid framework. Howevéie production of compounds suchl8s
or 14 observed during IPS®autoxidation, and the previous detection of degfiad
products of IRs in Arctic sediments resulting from the free radlimadation of its saturated
tertiary carbon atoms (Rontani et al., 2018a),rbleshow that autoxidation processes can
also affect saturated compounds when algal or bakteaterial experiences long residence

times in the oxic layer of sediments.
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Figure captions

Fig. 1. TOFMS mass spectra of 1,2-epoxy-2-(4-methylpg+8y|3-methylpent-4-enyl)-6,10-
dimethylundecanel] (A) and trimethylsilyl derivatives of: 6-methybkee-2,10,14-trimethyl-
7-(3-methylpent-4-enyl)-pentadecan-5-8) (B), 3,9,13-trimethyl-6-(1-methylidene-5-
methylhexyl)-tetradec-1-en-3-04) (C) and 10-methylidene-2,6,14-trimethyl-9-(3-
methylpent-4-enyl)-pentadecan-2-&BJ or 6-methylidene-2,10,14-trimethyl-7-(3-

methylpent-4-enyl)-pentadecan-2-a#j (D).

Fig. 2. TOFMS mass spectra of trimethylsilyl derivativé#s2,6,10,14-tetramethyl-7-(3-
methylpent-4-enyl)-pentadecan-6-8) (A), 3,9,13-trimethyl-6-(1-methylidene-5-
methylhexyl)-tetradecan-2-06) (B), 2-(4-methylpentyl)-3-(3-methylpent-4-enyl)i®-
dimethylundecane-1,2-diof) (C) and 3,9,13-trimethyl-6-(1-methylene-5-metteptkil)-

tetradecane-1,2-dio8) (D) .

Fig. 3. MRM chromatogramat/z 365— 275,m/z 365— 149 andwz 425— 135) of
silylated standard alcoh8I(A) and DCM fractions obtained from the Antarcitation BC
313 (B) and the 10-11 cm sediment layer of theduye from Barrow Strait (Canadian

Arctic) (C).

Fig. 4. MRM chromatogramsi/z 201 — 111,m/z 353— 117,m/z 353— 297 andwz 423

— 367) of silylated standard alcol®(A) and DCM fraction obtained from the 2—-3 cm

sediment layer of the box core from Barrow Str@iigadian Arctic) (B).
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Fig. 5. MRM chromatogramsi/z 526 — 231 andwz 526 — 142) of silylated standard diol
7 (A) and DCM fractions obtained from the 2—3 cm @B the 10-11 cm (C) sediment layers

of the box core from Barrow Strait (Canadian Arktic

Fig. 6. Proposed mechanisms for the autoxidation of lB80sediments and subsequent

NaBH;-reduction of the resulting hydroperoxides during treatment.

Fig. 7. Proposed mechanisms for the formation and deticedaf epoxided and2 in

sediments.

Fig. 8. Relative percentages of IPg@nd its degradation products in various sediment

sections of the box core from Barrow Strait (Caaadhrctic).
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Tablel

Concentrations of 1PSO,s and its degradation products in Antarctic surface sediments (note

the difference in units between 1PSO,s and its oxidation products).

Station IPSO25 Compound 3 Compound 5
(ngg™) (P9 g™) (g g™)

BC 313 1201.0 101.3 (0.01)° 77.8(0.01)"
BC 316 396.0 569.2 (0.14) 38.1(0.01)
BC 516 49.0 50.0 (0.10) -

BC 566 42.0 230.3 (0.55) 231.7 (0.55)
BC571 14.0 44.4(0.32) 37.0(0.26)
BC 615 93.0 -2 33.4(0.04)
BC 628 29.0 54.5 (0.19) 25.4(0.01)

@ Not detected

® Percentage relative to the residual parent compound.



Table 2

Concentrations of IPS@and its degradation products in sediments fromAticéic station 4

(Barrow Strait)note the difference in units between IR§@nd its oxidation products).

Depth IPSOs Compound3 Compounds Compound?
(cm) (Mg ") (ng g") (ng g") (ng g")
1-2 2.5 0.1 0.8 2.4
2-3 3.2 1.t 14 1.t
4-5 2.C 0.7 2.2 5.¢
6-7 1.7 2.2 2.7 5.8
8-9 1.6 0.2 0.1 0.6

10-11 1.8 4.3 1.6 4.0






