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Abstract. Recently, the notion of similarity between arguments, namely those
built using propositional logic, has been investigated and several similarity mea-
sures have been defined. This paper shows that those measures may lead to in-
accurate results when arguments are not concise, i.e., their supports contain in-
formation that is useless for inferring their conclusions. For circumventing this
limitation, we start by refining arguments for making them concise. Then, we
propose two families of similarity measures that extend existing ones and that
deal with concise arguments.

Keywords: Logical arguments · Similarity.

1 Introduction

Argumentation is a reasoning process based on the justification of claims by arguments.
It has received great interest from the Artificial Intelligence community, which used it
for solving various problems like decision making (eg., [1, 2]), defeasible reasoning
(eg., [3, 4]), handling inconsistency in propositional knowledge bases (eg., [5, 6]), etc.

In case of inconsistency handling, an argument is built from a knowledge base and
contains two parts: a conclusion, which is a single propositional formula, and a support,
which is a minimal (for set inclusion) and consistent subset of the base that infers log-
ically the conclusion. Examples of arguments are A = 〈{p ∧ q}, p〉, B = 〈{p}, p〉 and
C = 〈{p ∧ p}, p〉. Such arguments may be in conflict and thus an evaluation method,
called also semantics in the literature, is used for evaluating their strengths. Some
weighting semantics, like h-Categorizer [5], satisfy the Counting (or strict monotony)
principle defined in [7]. This principle states that each attacker of an argument con-
tributes to weakening the argument. For instance, if the argument D = 〈{¬p},¬p〉 is
attacked by A,B,C, then each of the three arguments will decrease the strength of D.
However, the three attackers are somehow similar, thus D will loose more than nec-
essary. Consequently, the authors in [8] have motivated the need for investigating the
notion of similarity between pairs of such logical arguments. They introduced a set
of principles that a reasonable similarity measure should satisfy, and provided several
measures that satisfy them. In [9] the authors introduced three possible extensions of
h-Categorizer that take into account similarities between arguments.

While the measures from [8] return reasonable results in most cases, they may lead
to inaccurate assessments if arguments are not concise. An argument is concise if its
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support contains only information that is useful for inferring its conclusion. For in-
stance, the argument A is not concise since its support {p ∧ q} contains q, which is
useless for the conclusion p. Note that minimality of supports does not guarantee con-
ciseness. For example, the support of A is minimal while A is not concise. The simi-
larity measures from [8] declare the two arguments A and B as not fully similar while
they support the same conclusion on the same grounds (p). Consequently, bothA andB
will have an impact onD using h-Categorizer. For circumventing this problem, we pro-
pose in this paper to clean up arguments from any useless information. This amounts to
generating the concise versions of each argument. The basic idea is to weaken formulas
of an argument’s support. Then, we apply the measures from [8] on concise arguments
in two ways, leading to two different families of measures.

The paper is organized as follows: Section 2 recalls the measures proposed in [8],
Section 3 shows how to make arguments concise, Section 4 refines existing measures,
and Section 5 concludes and presents some perspectives.

2 Background

We consider classical propositional logic (L,`), where L is a propositional language
built up from a finite setP of variables, called atoms, the two Boolean constants> (true)
and ⊥ (false), and the usual connectives (¬, ∨, ∧, →, ↔), and ` is the consequence
relation of the logic. A literal of L is either a variable of P or the negation of a variable
of P , the set of all literals is denoted by P±. A formula φ is in negation normal form
(NNF) if and only if it does not contain implication or equivalence symbols, and every
negation symbol occurs directly in front of an atom. NNF(φ) denotes the NNF of φ.
For instance, NNF(¬((p → q) ∨ ¬t)) = p ∧ ¬q ∧ t. Lit(φ) denotes the set of literals
occurring in NNF(φ), hence Lit(¬((p→ q)∨¬t)) = {p,¬q, t}. Two formulas φ, ψ ∈ L
are logically equivalent, denoted by φ ≡ ψ, iff φ ` ψ and ψ ` φ. In [10], the authors
defined the notion of independence of a formula from literals as follows.

Definition 1 (Literals Independence). Let φ ∈ L and l ∈ P±. The formula φ is
independent from the literal l iff ∃ψ ∈ L such that φ ≡ ψ and l /∈ Lit(ψ). Otherwise,
φ is dependent on l. DepLit(φ) denotes the set of all literals that φ is dependent on.

For instance, DepLit((¬p∨q)∧(¬p∨¬q)) = {¬p} while DepLit(¬p∧q) = {¬p, q}.
A finite subset Φ of L, denoted by Φ ⊆f L, is consistent iff Φ 0 ⊥, it is inconsistent

otherwise. Two subsets Φ, Ψ ⊆f L are equivalent, denoted by Φ ∼= Ψ , iff ∀φ ∈ Φ,
∃ψ ∈ Ψ such that φ ≡ ψ and ∀ψ′ ∈ Ψ , ∃φ′ ∈ Φ such that φ′ ≡ ψ′. We write
Φ 6∼= Ψ otherwise. This definition is useful in the context of similarity where arguments
are compared with respect to their contents. Assume, for instance, p and q that stand
respectively for “bird” and “fly”. Clearly, the two rules “birds fly” and “everything
that flies is a bird” express different information. Thus, the two sets {p, p → q} and
{q, q → p} should be considered as different. Note that {p, p→ q} 6∼= {q, q → p} even
if CN({p, p→ q}) = CN({q, q → p}), where CN(Φ) denotes the set of all formulas that
follow from the set Φ of formulas.

Let us now recall the backbone of our paper, the notion of logical argument.
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Definition 2 (Argument). An argument built under the logic (L,`) is a pair 〈Φ, φ〉,
where Φ ⊆f L and φ ∈ L, such that:

– Φ is consistent, (Consistency)
– Φ ` φ, (Validity)
– @Φ′ ⊂ Φ such that Φ′ ` φ. (Minimality)

An argument 〈Φ, φ〉 is trivial iff Φ = ∅.

It is worth noticing that trivial arguments support tautologies. It was shown in [11]
that the set of arguments that can be built from a finite set of formulas is infinite.

Example 1. The following pairs are all arguments.
A = 〈{p ∧ q}, p〉 B = 〈{p}, p〉
C = 〈{p ∧ q ∧ r}, r〉 D = 〈{p ∧ q, p ∧ r}, p ∧ q ∧ r〉
E = 〈{p ∧ q, (p ∨ q)→ r}, r〉 F = 〈{p ∧ q}, p ∨ q〉

Notations: Arg(L) denotes the set of all arguments that can be built under the logic
(L,`). For any A = 〈Φ, φ〉 ∈ Arg(L), the functions Supp and Conc return respectively
the support (Supp(A) = Φ) and the conclusion (Conc(A) = φ) of A.

In [11], the notion of equivalence of arguments has been investigated, and differ-
ent variants of equivalence have been proposed. The most general one states that two
arguments are equivalent if their supports are equivalent (in the sense of ∼=) and their
conclusions are equivalent (in the sense of ≡). For the purpose of our paper, we focus
on the following one that requires equality of conclusions.

Definition 3 (Equivalent Arguments). Two argumentsA,B ∈ Arg(L) are equivalent,
denoted by A ≈ B, iff (Supp(A) ∼= Supp(B)) and (Conc(A) = Conc(B)).

In [8], the authors have investigated the notion of similarity between pairs of ar-
guments, and have introduced several measures which are based on the well-known
Jaccard measure [12], Dice measure [13], Sorensen one [14], and those proposed in
[15–18]. All these measures compare pairs of non-empty sets (X and Y ) of objects.
Table 1 shows how to adapt their definitions for comparing supports (respectively con-
clusions) of arguments, which are sets of propositional formulas. In that table, Co(Φ, Ψ)
is a function that returns for all Φ, Ψ ⊆f L a set of formulas such that:

Co(Φ, Ψ) = {φ ∈ Φ | ∃ψ ∈ Ψ such that φ ≡ ψ}.

The definition of each similarity measure between sets of formulas follows the
schema below that we illustrate with the Jaccard-based measure. For all Φ, Ψ ⊆f L,

sj(Φ, Ψ) =


|Co(Φ,Ψ)|

|Φ|+|Ψ |−|Co(Φ,Ψ)| if Φ 6= ∅, Ψ 6= ∅
1 if Φ = Ψ = ∅
0 otherwise.

In [8], a similarity measure between arguments is a function that assigns to every
pair of arguments a value from the interval [0, 1]. The greater the value, the more similar
are the arguments. Such measure should satisfy some properties including symmetry.
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Extended Jaccard sj(Φ, Ψ) =
|Co(Φ, Ψ)|

|Φ|+ |Ψ | − |Co(Φ, Ψ)|
Extended Dice sd(Φ, Ψ) =

2|Co(Φ, Ψ)|
|Φ|+ |Ψ |

Extended Sorensen ss(Φ, Ψ) =
4|Co(Φ, Ψ)|

|Φ|+ |Ψ |+ 2|Co(Φ, Ψ)|
Extended Symmetric Anderberg sa(Φ, Ψ) =

8|Co(Φ, Ψ)|
|Φ|+ |Ψ |+ 6|Co(Φ, Ψ)|

Extended Sokal and Sneath 2 sss(Φ, Ψ) =
|Co(Φ, Ψ)|

2(|Φ|+ |Ψ |)− 3|Co(Φ, Ψ)|
Extended Ochiai so(Φ, Ψ) =

|Co(Φ, Ψ)|√
|Φ|
√
|Ψ |

Extended Kulczynski 2 sku(Φ, Ψ) =
1

2

(
|Co(Φ, Ψ)|
|Φ| +

|Co(Φ, Ψ)|
|Ψ |

)
Table 1. Similarity Measures for Sets Φ, Ψ ⊆f L.

Definition 4 (Similarity Measure). A similarity measure is a function S : Arg(L) ×
Arg(L)→ [0, 1] such that:

Symmetry: for all a, b ∈ Arg(L), S(a, b) = S(b, a).
Maximality: for any a ∈ Arg(L), S(a, a) = 1.
Substitution: for all a, b, c ∈ Arg(L), if S(a, b) = 1 then S(a, c) = S(b, c).

In [8], several similary measures have been defined. They apply any measure from
Table 1 for assessing similarity of both arguments’ supports and their conclusions. Fur-
thermore, they use a parameter that allows a user to give different importance degrees to
the two components of an argument. Those measures satisfy additional properties (see
[8] for more details).

Definition 5 (Extended Measures). Let 0 < σ < 1 and x ∈ {j, d, s, a, ss, o, ku}. A
similarity measure Sσx is a function assigning to any pair (A,B) ∈ Arg(L)×Arg(L) a
value Sσx (A,B) = σ ·sx(Supp(A), Supp(B)) +(1−σ) ·sx({Conc(A)}, {Conc(B)}).

Example 1 (Continued). Let σ = 0.5 and x = j.

– S0.5j (A,B) = 0.5 · 0 + 0.5 · 1 = 0.5

– S0.5j (A,D) = 0.5 · 0.5 + 0.5 · 0 = 0.25

– S0.5j (A,F ) = 0.5 · 1 + 0.5 · 0 = 0.5

3 Concise Arguments

The two argumentsA = 〈{p∧q}, p〉 andB = 〈{p}, p〉 are not fully similar according to
the existing measures while they support the same conclusion and on the same grounds.
This is due to the non-conciseness of A, which contains the useless information q in
its support. In what follows, we refine arguments by removing from their supports such
information. The idea is to weaken formulas in supports.
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Definition 6 (Refinement). Let A,B ∈ Arg(L) such that A = 〈{φ1, . . . , φn}, φ〉 and
B = 〈{φ′1, . . . , φ′n}, φ′〉. B is a refinement of A iff:

1. φ = φ′,
2. There exists a permutation ρ of the set {1, . . . , n} such that ∀k ∈ {1, . . . , n},
φk ` φ′ρ(k) and Lit(φ′ρ(k)) ⊆ DepLit(φk).

Let Ref be a function that returns the set of all refinements of a given argument.

The second condition states that each formula of an argument’s support is weak-
ened. Furthermore, novel literals are not allowed in the weakening step since such liter-
als would negatively impact similarity between supports of arguments. Finally, literals
from which a formula is independent should be removed since they are useless for in-
ferring the conclusion of an argument. It is worth mentioning that an argument may
have several refinements as shown in the following example.

Example 1 (Continued).

– {〈{p}, p〉, 〈{p ∧ p}, p〉} ⊆ Ref(A)
– {〈{p ∧ r}, r〉, 〈{q ∧ r}, r〉, 〈{r}, r〉} ⊆ Ref(C)
– {〈{p ∧ q, r}, p ∧ q ∧ r〉, 〈{q, p ∧ r}, p ∧ q ∧ r〉} ⊆ Ref(D)
– {〈{p ∨ q, (p ∨ q)→ r}, r〉, 〈{p, p→ r}, r〉, 〈{q, q → r}, r〉} ⊆ Ref(E)
– {〈{p}, p ∨ q〉, 〈{q}, p ∨ q〉, 〈{p ∨ q}, p ∨ q〉} ⊆ Ref(F )

The following property shows that there exists a unique possible permutation ρ for
each refinement of an argument.

Proposition 1. For all A = 〈{φ1, . . . , φn}, φ〉, B = 〈{φ′1, . . . , φ′n}, φ′〉 ∈ Arg(L)
such that B ∈ Ref(A), there exists a unique permutation ρ of the set {1, · · · , n} such
that ∀k ∈ {1, . . . , n}, φk ` φ′ρ(k).

A trivial argument is the only refinement of itself.

Proposition 2. For any trivial argument A ∈ Arg(L), Ref(A) = {A}.

A non-trivial argument has a non-empty set of refinements. Moreover, it is a refine-
ment of itself only if the formulas of its support do not contain literals from which they
are independent.

Proposition 3. Let A ∈ Arg(L) be a non-trivial argument. The following hold:

– Ref(A) 6= ∅,
– A ∈ Ref(A) iff ∀φ ∈ Supp(A), Lit(φ) = DepLit(φ).

We show next that the function Ref is idempotent and that equivalent arguments
have the same refinements.

Proposition 4. Let A,B ∈ Arg(L). The following hold:

– If B ∈ Ref(A), then Ref(B) ⊆ Ref(A).
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– If A ≈ B, then Ref(A) = Ref(B).

We are now ready to define the backbone of the paper, the novel notion of concise
argument. An argument is concise if it is equivalent to any of its refinements. This
means that a concise argument cannot be further refined.

Definition 7 (Conciseness). An argument A ∈ Arg(L) is concise iff for all B ∈
Ref(A), A ≈ B.

Example 1 (Continued). The two refinements 〈{p ∧ r}, r〉 and 〈{q ∧ r}, r〉 of the argu-
ment C are not concise. Indeed, 〈{r}, r〉 ∈ Ref(〈{p ∧ r}, r〉), 〈{r}, r〉 ∈ Ref(〈{q ∧
r}, r〉) while 〈{r}, r〉 6≈ 〈{p ∧ r}, r〉, and 〈{r}, r〉 6≈ 〈{q ∧ r}, r〉.

For any argument from Arg(L), we generate its concise versions. The latter are
simply its concise refinements.

Definition 8 (Concise Refinements). A concise refinement of an argumentA ∈ Arg(L)
is any concise argument B such that B ∈ Ref(A). We denote the set of all concise re-
finements of A by CR(A).

Example 1 (Continued).

– 〈{p}, p〉 ∈ CR(A)

– 〈{r}, r〉 ∈ CR(C)

– {〈{p ∧ q, r}, p ∧ q ∧ r〉, 〈{q, p ∧ r}, p ∧ q ∧ r〉} ⊆ CR(D)

– {〈{p ∨ q, (p ∨ q)→ r}, r〉, 〈{p, p→ r}, r〉, 〈{q, q → r}, r〉} ⊆ CR(E)

– {〈{p}, p ∨ q〉, 〈{q}, p ∨ q〉, 〈{p ∨ q}, p ∨ q〉} ⊆ CR(F )

Next we state some properties of concise refinements.

Proposition 5. Let A ∈ Arg(L). The following hold:

1. For any B ∈ CR(A) the following hold: B ∈ Ref(B) and ∀C ∈ Ref(B), C ≈ B.
2. CR(A) 6= ∅.
3. If A is non-trivial, then CR(A) is infinite.
4. If A ≈ B, then CR(A) = CR(B).
5. ∀B ∈ Ref(A), CR(B) ⊆ CR(A).

The following result shows that any formula in the support of a concise argument
cannot be further weakened without introducing additional literals.

Proposition 6. Let A,B ∈ Arg(L) such that B ∈ CR(A). For any φ ∈ Supp(B), if
∃ψ ∈ L such that φ ` ψ, ψ 6` φ, and 〈(Supp(B) \ {φ}) ∪ {ψ}, Conc(B)〉 ∈ Arg(L),
then Lit(ψ) \ Lit(φ) 6= ∅.
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4 Similarity Measures

As already said in previous sections, although the similarity measures from Definition
5 return reasonable results in most cases, they might lead to inaccurate assessments if
the arguments are not concise. Indeed, as we illustrated in Section 2, the measures from
Definition 5 declare the two arguments A = 〈{p ∧ q}, p〉 and B = 〈{p}, p〉 as not fully
similar, while they support the same conclusion based on the same grounds (p).

In this section, we extend those measures in two ways, leading to two families of
similarity measures, using concise refinements of arguments, and we show that they
properly resolve the drawbacks of the existing measures. Note that by Proposition 5(3),
every non-trivial argumentA has infinitely many concise refinements. This is due to the
fact that every formula α from a support of a concise refinement can be equivalently
rewritten in infinitely many ways using the same set of literals (eg. α ≡ α ∧ α ≡
α ∧ α ∧ α ≡ · · · ). In the rest of the paper, we will consider only one argument from
CR(A) per equivalence class. For that reason, we consider a fixed set L ⊂ L such that
φ ∈ L there exists a unique ψ ∈ L such that ψ ≡ φ. Furthermore, we assume that each
ψ ∈ L contains only dependent literals.

Definition 9. Let A ∈ Arg(L). We define the set

CR(A) = {B ∈ CR(A) | Supp(B) ⊂ L}.

In this way, we obtain a finite set of non-equivalent concise refinements.

Proposition 7. For every A ∈ Arg(L), the set CR(A) is finite.

Now we propose our first family of similarity measures. In the following definition,
for A ∈ Arg(L), Σ ⊆f Arg(L) and a similarity measure S from Definition 5, we
denote by Max(A,Σ, S) the maximal similarity value betweenA and an argument from
Σ according to S, i.e.,

Max(A,Σ, S) = max
B∈Σ

S(A,B).

The first family of measures compares the sets of concise refinements of the two
arguments under study. Indeed, the similarity between A and B is the average of max-
imal similarities (using any existing measure from Definition 5) between any concise
refinement of A and those of B.

Definition 10 (A-CR Similarity Measures). Let A,B ∈ Arg(L), and let S be a simi-
larity measure from Definition 5. We define A-CR similarity measure3 by

sACR(A,B, S) =

∑
Ai∈CR(A)

Max(Ai, CR(B), S) +
∑

Bj∈CR(B)

Max(Bj , CR(A), S)

|CR(A)|+ |CR(B)|
.

The value of A-CR similarity measure always belongs to the unit interval.

Proposition 8. LetA,B ∈ Arg(L), Sσx a similarity measure where x ∈ {j, d, s, a, ss, o, ku}
and 0 < σ < 1. Then sACR(A,B, S

σ
x ) ∈ [0, 1].

3 A in A-CR stands for “average”.
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Next we show that the new measure properly resolves the problem of non-conciseness
of the argument A = 〈{p ∧ q}, p〉 from our running example. We illustrate that by con-
sidering Extended Jaccard measure with the parameter σ = 0.5.4

Example 1 (Continued). It is easy to check that CR(A) = {〈{p}, p〉} and CR(B) =
{〈{p}, p〉}. Then sACR(A,B, S

0.5
j ) = 1 while S0.5j (A,B) = 0.5.

Now we define our second family of similarity measures, which is based on com-
parison of sets obtained by merging supports of concise refinements of arguments. For
an argument A ∈ Arg(L), we denote that set by

US(A) =
⋃

A′∈CR(A)

Supp(A′).

Definition 11 (U-CR Similarity Measures). Let A,B ∈ Arg(L), 0 < σ < 1, and sx
be a similarity measure from Table 1. We define U-CR similarity measure5 by

sUCR(A,B, sx, σ) = σ · sx(US(A), US(B)) + (1− σ) · sx({Conc(A)}, {Conc(B)}).

Next example illustrates that U-CR also properly resolves the problem of non-conciseness
of the argument A = 〈{p ∧ q}, p〉 from our running example.

Example 1 (Continued). Let σ = 0.5 and x = j. It is easy to check that sUCR(A,B, sj, 0.5) =
1 while S0.5j (A,B) = 0.5.

Let us now consider another more complex example where existing similarity mea-
sures provide inaccurate values while the new ones perform well.

Example 2. Let us consider the following arguments:

– A = 〈{p ∧ q, (p ∨ q)→ t, (p ∨ t)→ r}, t ∧ r〉
– B = 〈{p, p→ t, p→ r}, t ∧ r〉

It is easy to check that CR(A) = {A1, A2, A3, A4, A5} and CR(B) = {B1}, where:

– A1 = 〈{p, p→ t, p→ r}, t ∧ r〉
– A2 = 〈{p, p→ t, t→ r}, t ∧ r〉
– A3 = 〈{q, q → t, t→ r}, t ∧ r〉
– A4 = 〈{p ∨ q, (p ∨ q)→ t, t→ r}, t ∧ r〉
– A5 = 〈{p ∧ q, q → t, p→ r}, t ∧ r〉
– B1 = 〈{p, p→ t, p→ r}, t ∧ r〉

It is worth noticing that the Extended Jaccard measure could not detect any similarity
between the supports ofA andB while their concise argumentsA1 andB1 are identical.
Indeed, sj(Supp(A), Supp(B)) = 0 and S0.5

j (A,B) = 0.5 · 0 + 0.5 · 1 = 0.5 while
sUCR(A,B, sj, 0.5) = 0.5 · 39 + 0.5 · 1 = 2

3 = 0.666 and sACR(A,B, S
0.5
j ) = 0.5 · 9

20 +

0.5 · 1 = 29
40 = 0.725.

4 In this section, we slightly relax the notation by simply assuming that p ∈ L. We will make
similar assumptions throughout this section.

5 U in U-CR stands for “union”.
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The following proposition characterizes the arguments which are fully similar ac-
cording to the novel measures. It states that full similarity is obtained exactly in the case
when two arguments have equivalent concise refinements.

Proposition 9. Let A,B ∈ Arg(L), 0 < σ < 1 and x ∈ {j, d, s, a, ss, o, ku}. Then
sACR(A,B, S

σ
x ) = sUCR(A,B, sx, σ) = 1 iff:

– ∀A′ ∈ CR(A), ∃B′ ∈ CR(B) such that Supp(A′) ∼= Supp(B′), Conc(A′) ≡
Conc(B′) and

– ∀B′ ∈ CR(B), ∃A′ ∈ CR(A) such that Supp(B′) ∼= Supp(A′), Conc(B′) ≡
Conc(A′).

In [8], the authors proposed a set of principles that a reasonable similarity measure
should satisfy. Now we show that the new measures satisfy four of them but violate
Monotony. The reason of violation is due to the definition itself of the principle. Indeed,
it is based on the supports of arguments. The new measures do not handle those supports
but those of the concise refinements of the initial arguments.

Proposition 10. Let 0 < σ < 1 and x ∈ {j, d, s, a, ss, o, ku}. The following hold:

(Syntax Independence) Let π be a permutation on the set of variables, andA,B,A′,
B′ ∈ Arg(L) such that
• A′ is obtain by replacing each variable p in A with π(p),
• B′ is obtain by replacing each variable p in B with π(p).

Then sACR(A,B, S
σ
x ) = sACR(A

′, B′, Sσx ) and sUCR(A,B, sx, σ) = sUCR(A
′, B′, sx, σ).

(Maximality) For every A ∈ Arg(L), sACR(A,A, Sσx ) = sUCR(A,A, sx, σ) = 1.
(Symmetry) For all A,B ∈ Arg(L), sACR(A,B, Sσx ) = sACR(B,A, S

σ
x ) and

sUCR(A,B, sx, σ) = sUCR(B,A, sx, σ).
(Substitution) For all A,B,C ∈ Arg(L),
• if sACR(A,B, S

σ
x ) = 1, then sACR(A,C, S

σ
x ) = sACR(B,C, S

σ
x ),

• if sUCR(A,B, sx, σ) = 1, then sUCR(A,C, sx, σ) = sUCR(B,C, sx, σ).

The next proposition shows that if we apply A-CR or U-CR to any similarity measure
Sσx from Definition 5 (respectively sx from Table 1), then both novel measures will
coincide with Sσx on the class of concise arguments.

Proposition 11. Let A,B ∈ Arg(L) be two concise arguments. Then, for every 0 <
σ < 1 and x ∈ {j, d, s, a, ss, o, ku}, it holds

sACR(A,B, S
σ
x ) = sUCR(A,B, sx, σ) = Sσx (A,B). (1)

Remark. Note that the equations (1) might also hold for some A and B that are not
concise. For example, let A = 〈{p ∧ q, t ∧ s}, p ∧ t〉 and B = 〈{p, t ∧ s}, p ∧ s〉.
Then CR(A) = {〈{p, t}, p ∧ t〉} and CR(B) = {〈{p, s}, p ∧ s〉}, so sACR(A,B, S

0.5
j ) =

sUCR(A,B, sj, 0.5) = S0.5
j (A,B) = 0.25.

The following example shows that A-CR and U-CR may return different results. In-
deed, it is possible for three arguments A, B and C that A is more similar to B than to
C according to one measure, but not according to the other one.
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Example 3. Let A = 〈{p, p → q1 ∧ q2}, q1 ∨ q2〉, B = 〈{p, s}, p ∧ s〉 and C =
〈{p → q1}, p → q1〉. We have CR(A) = {〈{p, p → q1}, q1 ∨ q2〉, 〈{p, p → q2}, q1 ∨
q2〉, 〈{p, p→ q1∨q2}, q1∨q2〉}, CR(B) = {〈{p, s}, p∧s〉}, CR(C) = {〈{p→ q1}, p→
q1〉}. Consequently:

– sACR(A,B, S
0.5
j ) = 1

6 > sACR(A,C, S
0.5
j ) = 1

8 , but
– sUCR(A,B, sj, 0.5) =

1
10 < sUCR(A,C, sj, 0.5) =

1
8 .

The next example shows that none of the two novel measures dominates the other.
Indeed, some pairs of arguments have greater similarity value according to A-CR, and
other pairs have greater similarity value using U-CR.

Example 3 (Continued). Note that sUCR(A,B, sj, 0.5) < sACR(A,B, S
0.5
j ). Let us consider

A′ = 〈{p ∧ q}, p ∨ q〉, B′ = 〈{p, q}, p ∧ q〉 ∈ Arg(L). sUCR(A′, B′, sj, 0.5) = 0.5 · 23 +
0.5 · 0 = 1

3 = 0.333 and sACR(A
′, B′, S0.5

j ) = 0.5 · 38 + 0.5 · 0 = 3
16 = 0.1875, thus

sUCR(A
′, B′, sj, 0.5) > sACR(A

′, B′, S0.5
j ).

5 Conclusion

The paper tackled the question of similarity between logical arguments. Starting from
the observation that existing similarity measures may provide inaccurate assessments,
the paper investigated the origin of this limitation and showed that it is due to the pres-
ence of useless information in the supports of arguments. It then introduced the novel
notion of concise argument, and a procedure for generating the concise versions of any
argument. These versions are then used together with existing similarity measures for
extending the latter into more efficient measures.

This work can be extended in different ways. The first one consists of identifying
a principle, or formal property for distinguishing the new measures. The second one
consists of investigating other approaches for generating concise arguments, namely
we plan to use the well-known forgetting operator for getting rid of useless literals in
formulas. The Third one consists of using the new measures for refining argumenta-
tion systems that deal with inconsistent information. Finally, we plan to investigate the
notion of similarity for other types of arguments, like analogical arguments.
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