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Varied-Strength Attacks

Leila Amgoud Dragan Doder

October 28, 2019

Abstract

The paper studies how to evaluate arguments in graphs where both arguments
and attacks are weighted. It proposes a broad family of gradual semantics that as-
sign to each argument a numerical value representing its strength, i.e., how robust
is the argument against attacks. It shows that five existing gradual semantics are in-
stances of the family, and extends each of them in various ways for accounting for
weights of attacks. The extended versions of each semantics differ in the way they
deal with weights of attacks. Furthermore, they are all instances of the family. The
paper shows also that the family captures additional semantics, like Euler-Max-
based that is investigated in the paper. The new semantics are analyzed against
properties from the literature and are compared with existing semantics that deal
with weighted attacks.

1 Introduction
Argumentation is a reasoning approach that has been used for solving numerous and
varied Artificial Intelligence problems, like making and explaining decisions (eg. [39]),
nonmonotonic reasoning (eg. [22]), classification (eg. [7]), etc. These works have
identified the potential benefits of using argumentation in multiagent settings, as a way
to implement the capabilities of agents (eg. reasoning, decision making, communica-
tion). Some fully integrated argumentation-based agent architectures have even been
proposed (eg. [30, 19]). The basic idea behind argumentation is the justification of
claims by arguments. An argument is a reason for believing or accepting a claim. It
has generally a basic weight, which may represent different issues like votes of users
[32], certainty degree of the argument’s premises [11], trustworthiness degree of its
source [20]. It may also be attacked by other arguments, and each attack may have a
weight that may represent votes of users [25], or a degree of relevance [24], etc. Argu-
ments and attacks are represented in graphs, called weighted when both arguments and
attacks are weighted, semi-weighted when only arguments are weighted, and flat when
neither arguments nor attacks have weights.

A crucial step in an argumentation process is evaluation of argument strength, i.e.,
how robust is an argument against attacks. The strength of an argument determines
the reliability status of its claim. Indeed, the stronger an argument, the more reliable
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its claim. Consequently, several semantics were proposed in the literature. The first
ones are the extension semantics introduced by Dung in [22], which compute accept-
able sets of arguments. Extensions are then used in [18] for assigning a three-valued
qualitative strength (accepted, rejected, undecided) to each argument. Starting from
the observation that the qualitative scale of argument strength is too coarse, in [18] the
authors introduced gradual semantics that use a richer scale. Another key difference
with extension semantics lies in the fact that gradual semantics do not compute exten-
sions. They rather compute directly the strength of each argument using an evaluation
method, which is a pair of aggregation functions: one for aggregating the values of
all direct attackers of an argument, and the other for computing the effect of “direct
attack” on its strength. In that way, the strength of an argument depends on its attack
structure (direct and indirect attackers and defenders). The authors in [18] introduced
a general setting for defining gradual semantics. Indeed, they proposed a general defi-
nition of gradual semantics, which relates argument strength to an evaluation method,
and specifies some constraints on the latter. Examples of constraints are properties (eg.
continuity, monotony) of the two aggregation functions. Furthermore, each evaluation
method should uniquely characterize a gradual semantics. This general setting deals
with flat graphs, but it was extended to semi-weighted graphs in [32], and to weighted
ones in [25].

These developments have led to the introduction of various gradual semantics.
Some of them like h-Categorizer [12] and Compensation semantics [3] deal only with
flat graphs, while others like Weighted h-Categorizer [4], Weighted Max-Based [4],
Weighted Card-based [4], and Trust-based [20] are devoted to semi-weighted graphs.
Following the approach of [18], the authors in [25] proposed an evaluation method,
called Simple Product (SP), for defining a semantics that deals with weighted graphs.
However, unlike what is conjectured in that paper, it was recently shown in [5] that
(SP) does not characterize a single semantics. Hence, there is no gradual semantics
dealing with weighted graphs that fits within the setting of [18]. The aim of this paper
is to bridge this gap.

The paper proposes five contributions: First, it defines the first family S∗ of grad-
ual semantics that take into account weights of attacks. The family instantiates the
general setting from [18]. Second, it shows that any semantics of the family satisfies
properties identified in [4] for analyzing semantics. Furthermore, it shows how to ef-
fectively calculate the values that a semantics from S∗ assigns to arguments. Third,
it shows that five existing gradual semantics, namely those proposed in [12, 3, 4], are
instances of S∗. Fourth, it generalizes each of them in various ways for accounting for
weights of attacks. The extended versions of each semantics differ in the way they deal
with weights of attacks. Furthermore, they are all instances of the family S∗. Fifth, it
shows that S∗ encompasses additional gradual semantics that have no counterpart in
the literature. It presents one of them, called Euler-Max-based semantics (EMbs), and
shows that it satisfies the same properties and leads to the same ordering of arguments
as Weighted Max-based semantics from [4]. However, an attack is more harmful under
EMbs as strengths of arguments are lower with this semantics. All the above results
show that the family S∗ is very broad and encompasses semantics that may make dif-
ferent design choices like privileging quality of attackers over their quantity or vice
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versa.
The paper is organized as follows: Section 2 recalls the general setting of gradual

semantics. Section 3 introduces the novel family S∗ and Section 4 studies its properties.
Section 5 shows that S∗ is very broad as it encompasses five existing semantics, their
general versions, as well as novel ones. Section 6 compares the new family with other
semantics from the literature.

2 Background
In the paper, we are interested in weighted argumentation graphs. Their nodes are ar-
guments, each of which has a basic weight representing an aggregation of votes given
by users [32], or a certainty degree of the argument’s premises [11], or a trustworthi-
ness degree of its source [20], etc. Edges represent attacks (i.e., conflicts) between
arguments, each attack has a weight expressing an aggregation of votes given by users
[25], or a relevance degree [24], etc. For the sake of simplicity, weights of both ar-
guments and attacks are elements of the unit interval [0, 1]. The greater the value, the
stronger the argument or the attack.

Definition 1 (Weighted Graph) A weighted argumentation graph is a tuple G = 〈A, σ,R, π〉,
where A is a non-empty finite set of arguments, R ⊆ A × A, σ : A → [0, 1], and
π : R → [0, 1]. Let AG denote the set of all weighted graphs.

For a, b ∈ A, σ(a) is the basic weight of a, (a, b) ∈ R means a attacks b, and
π((a, b)) is the weight of the attack.
Notations: Let G = 〈A, σ,R, π〉 ∈ AG and a ∈ A. We denote by σ ≡ 1 (resp. π ≡ 1)
the case where all arguments (resp. all attacks) have a weight equal to 1. AttG(a)
denotes the set {b ∈ A | (b, a) ∈ R} of direct attackers of a in G. When G is clear
from the context, we write Att(a) for short. Let G′ = 〈A′, σ′,R′, π′〉 ∈ AG such
that A ∩ A′ = ∅. G ⊕ G′ = 〈A ∪ A′, σ′′,R ∪ R′, π′′〉 ∈ AG such that ∀x ∈ A
(resp. x ∈ A′), σ′′(x) = σ(x) (resp. σ′′(x) = σ′(x)), and ∀x ∈ R (resp. x ∈ R′),
π′′(x) = π(x) (resp. π′′(x) = π′(x)).

Cayrol and Lagasquie introduced in [18] an abstract setting for defining gradual
semantics in case of flat graphs. The setting was later extended by Leite and Martins
in [32] for semi-weighted graphs, by Egilmez, Martins and Leite in [25] for weighted
ones, where weights of arguments and attacks are aggregations of votes of users, and
by Cayrol and Lagasquie in [17] for bipolar graphs. The idea is to define a gradual
semantics by an evaluation method, which is a tuple of aggregation functions, each of
which should satisfy some properties (like continuity, monotony). Such approach of-
fers at least four advantages: First, it makes transparent the different operations made
by a semantics (eg., accruing strengths of attackers, adjusting weights, . . .) and formal-
izes them through aggregation functions. Second, it shows the main parameters to be
tuned for defining different semantics. Third, it facilitates the study of combinations of
functions that lead to reasonable semantics. Fourth, we have shown recently in [6] that
properties of aggregation functions are closely related to principles defined in [4].
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fcomp(x1, x2) = x1(1− x2) gsum(x1, . . . , xn) =
n∑
i=1

xi hprod(x1, x2) = x1x2

fexp(x1, x2) = x1e
−x2 gsum,α(x1, . . . , xn) = (

n∑
i=1

(xi)
α)

1
α hprod,α(x1, x2) = xα1x2, α > 0

ffrac(x1, x2) =
x1

1+x2
gmax(x1, . . . , xn) = max{x1, . . . , xn} hmin(x1, x2) = min{x1, x2}

fmin(x1, x2) = min{x1, 1− x2}
gpsum(x1, . . . , xn) = x1 ⊕ · · · ⊕ xn,
where x1 ⊕ x2 = x1 + x2 − x1x2

hHam(x1, x2) =
x1x2

x1+x2−x1x2
;

hHam(x1, x2) = 0 if x1 = x2 = 0

Table 1: Examples of functions f , g and h.

In what follows, we present a simplified version of this general setting. Indeed, we
consider the unit interval [0, 1] for all functions. Furthermore, we do not use the exact
definitions as given in the original papers. We rather present its main ideas using two
novel concepts: determinative and well-behaved evaluation methods.

Definition 2 (Evaluation Method) An evaluation method (EM) is a triple M = 〈f, g, h〉
such that:

• h : [0, 1]× [0, 1]→ [0, 1]

• g :
⋃+∞
n=0[0, 1]

n → [0,+∞) such that g is symmetric

• f : [0, 1]× Range(g)→ [0, 1]1

The function h calculates the strength of an attack by aggregating its weight with
the strength of the attacker. The function g evaluates how strongly an argument is
attacked. It aggregates the strengths of all attacks (obtained by h) received by the argu-
ment. Since the ordering of attackers should not be important, we posed the symmetry
condition, i.e.,

g(x1, . . . , xn) = g(xρ(1), . . . , xρ(n)),

for any permutation ρ of the set {1, . . . , n}. The function f returns the strength of an
argument by combining its basic weight with the value returned by g. Table 1 presents
some possibilities for the functions f , g and h, including well known T-norms [31]
for h and aggregation functions for g. We will see later that most of them are already
(implicitly) used in the literature.2

Let us now define a gradual semantics. It is a function that assigns a value from a
given ordered scale to each argument. The greater the value, the stronger the argument.
Different scales can be used, but for simplicity we use the unit interval of reals [0, 1].

Definition 3 (Gradual Semantics) A gradual semantics is a function S assigning to
any G = 〈A, σ,R, π〉 ∈ AG a weighting DegSG on A, i.e., DegSG : A → [0, 1]. For any
a ∈ A, DegSG(a) represents the strength of a.

1Range(g) denotes the co-domain of g.
2In subscripts of the functions in Table 1, Ham stands for Hamacher product, psum for probabilistic

sum, comp for complement and frac for fractions. The other subscripts are self-explanatory.
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A gradual semantics, as defined in [18, 32], should be based on an evaluation
method as shown next.

Definition 4 A gradual semantics S is based on an evaluation method M = 〈f, g, h〉
iff ∀G = 〈A, σ,R, π〉 ∈ AG, ∀a ∈ A,

DegSG(a) = f(σ(a), g(h(π((b1, a)), Deg
S
G(b1)), . . . , h(π((bn, a)), Deg

S
G(bn)))),

(1)
where {b1, . . . , bn} = AttG(a).

Let us illustrate the definitions with the Trust-based (TB) semantics proposed by
da Costa et al. in [20]. This semantics deals with semi-weighted graphs (i.e., π ≡ 1),
where the basic weight of an argument represents a degree of trust in the argument’s
source.

Example 1 The TB semantics, that we will denote by fuzzy, assigns to every argu-
ment a ∈ A in a graph G = 〈A, σ,R, π ≡ 1〉 the limit of the sequence {αn(a)}+∞n=0,
i.e.,

Deg
fuzzy
G (a) = lim

n→+∞
αn(a),

where α0(a) = σ(a) and

αn+1(a) =
1

2
αn(a) +

1

2
min{σ(a), 1− max

(b,a)∈R
αn(b)}. (2)

Consider the graph G depicted below and whose weights of arguments and attacks are
all equal to 1.

a b

It is easy to check that DegfuzzyG (a) = Deg
fuzzy
G (b) = 1

2 .
Trust-based semantics is guided by two principles. First, the strength α(a) of an ar-
gument a should not be greater than the degree to which the arguments attacking it
are unacceptable, second, its strength cannot be greater than its basic weight. These
intuitions lead to the equation below:

α(a) = min{σ(a), 1− max
(b,a)∈R

α(b)}. (3)

It was shown in [20] that Trust-based semantics satisfies equation (3), i.e., DegfuzzyG is
an instance of α. Equation (3) can be decomposed into an evaluation method, called
fuzzy evaluation method: 3

MF = 〈fmin, gmax, hprod〉.

So, the semantics DegfuzzyG is based on the evaluation method MF .

3Note that we may consider another function h since Trust-based semantics does not deal with weighted
attacks.
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Definition 4 shows that evaluating arguments with a semantics amounts to solving
a system of equations (one equation per argument). Indeed, the solutions va = v∗a of
the system of equations

va = f(σ(a), g(h(π((b1, a)), vb1), . . . , h(π((bn, a)), vbn))), (4)

for each argument a ∈ A with {b1, . . . , bn} = AttG(a), correspond to semantics S
based on M with DegSG(a) = v∗a. The following result ensures that the above system
has at least one solution when the functions of the evaluation method are continuous.
This result simplifies a similar one from [25] that considered additional conditions
including monotonicity of the functions.

Theorem 1 If M = 〈f, g, h〉 is an evaluation method such that g is continuous, and
f and h are continuous on the second variable, then there exists a semantics based on
M.

The system of equations (4) may thus have one or several solutions. Consider the
case of the fuzzy evaluation method MF .

Example 1 (Cont) Consider the fuzzy evaluation method MF = 〈fmin, gmax, hprod〉
and the argumentation graph of Example 1. Recall that DegfuzzyG (a) = Deg

fuzzy
G (b) =

1
2 . This is a solution of the system of equations (5) below.

va = 1− vb, vb = 1− va. (5)

However, this system has infinitely many solutions including (va, vb) = (0, 1). Then,
the semantics S′ defined by:

• DegS
′

G(a) = 0, DegS
′

G(b) = 1,

• DegS
′

G′ ≡ Deg
fuzzy
G′ for all graphs G′ 6= G,

is also based on MF . This means that MF does not characterize Trust-based seman-
tics.

In [18], a gradual semantics should be based on an evaluation method which char-
acterizes it. In what follows, we extend the existing general setting by integrating this
characterization condition. For that purpose, we introduce the concept of determinative
evaluation methods, i.e., methods that characterize semantics.

Definition 5 (Determinative EM) An evaluation method M = 〈f, g, h〉 is determina-
tive iff there is a unique semantics S which is based on M. We denote by S(M) the
semantics characterized by a determinative evaluation method M.

Clearly, the fuzzy evaluation method is not determinative. However, any evalu-
ation method is determinative on the class of acyclic graphs, i.e., produces a unique
semantics for such graphs.

So far, no constraints are imposed on the functions of an evaluation method, except
symmetry of g. In the following definition, we introduce the notion of well-behaved
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evaluation methods, i.e., methods whose functions satisfy some specific properties. We
consider a subset of properties from [18, 25], broadening thus the setting. For instance,
the parametrized function hprod,α, which allows users to give different importance to
degrees of attackers and weights of attacks,4 is excluded from the previous proposals,
while it is allowed in our general setting.

Definition 6 (Well-Behaved EM) An evaluation method M = 〈f, g, h〉 is well-behaved
iff the following holds:

1. f is increasing in the first variable, decreasing in the second variable whenever
the first variable is not equal to 0, f(x, 0) = x, and f(0, x) = 0.

2. g() = 0, g(x) = x, g(x1, . . . , xn) = g(x1, . . . , xn, 0), and g(x1, . . . , xn, y) ≤
g(x1, . . . , xn, z) if y ≤ z.

3. h(0, x) = 0, h(1, x) = x, h(x, y) > 0 whenever xy > 0, and h is non-
decreasing in both components.

In [18, 32, 25], a gradual semantics should be based on a well-behaved evaluation
method.

3 Novel Family of Gradual Semantics
In the literature, there are several works on semantics that deal with weighted attacks
[28, 24, 16, 23, 29, 25]. All of them are extension-based and extend the semantics
proposed by Dung in [22]. A notable exception is the gradual semantics proposed in
[25], a generalization of the semantics that deals with semi-weighted graphs in [32]. It
is based on the evaluation method Mp = 〈fcomp, gpsum, hprod〉. However, unlike what
is conjectured in [25], Mp does not characterize the semantics since the corresponding
system of equations may have several solutions. Hence, Mp is not determinative. Thus,
there is no specific gradual semantics in the literature that deals with weighted graphs.
In what follows, we propose the first broad family of such semantics. It instantiates
the general setting recalled in Section 2. For that purpose, we define a large family
of determinative and well-behaved evaluation methods. The latter satisfy additional
constraints, namely continuity of their functions.

Definition 7 (M∗) We define M∗ as the set of all well-behaved evaluation methods
M = 〈f, g, h〉 such that:

• lim
x2→x0

f(x1, x2) = f(x1, x0), ∀x0 6= 0.

• lim
x→x0

g(x1, . . . , xn, x) = g(x1, . . . , xn, x0), ∀x0 6= 0.

• h is continuous on the second variable

• λf(x1, λx2) < f(x1, x2), ∀λ < 1, x1 6= 0.

4If α < β, then hα gives more importance to weights than hβ .
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• g(h(y1, λx1), . . . , h(yn, λxn)) ≥
λg(h(y1, x1), . . . , h(yn, xn)), ∀λ ∈ [0, 1].

Note that the first two conditions of M∗ relax the continuity conditions from The-
orem 1 by excluding the value 0; we weaken them in order to capture semantics that
are sensitive to the number of attackers (like Weighted Card-based [4]), where even a
weak attacker can have a significant impact. The last two conditions of M∗ are spe-
cific contraction conditions. It turned out that the fifth condition is satisfied for most
combinations of aggregation functions (for g) and T−norms (for h).

We show that any evaluation method M ∈M∗ characterizes a semantics, ensuring
thus a single solution for each weighted graph.

Theorem 2 Any evaluation method M ∈M∗ is determinative.

We are now ready to introduce the novel family of gradual semantics. It contains
semantics based on evaluation methods in M∗.

Definition 8 (S∗) We define by S∗ the set of all semantics which are based on an eval-
uation method in M∗, i.e.,

S∗ = {S(M) |M ∈M∗}.

Now we turn to the practical question: how to effectively calculate the values that
a semantics S ∈ S∗ assigns to arguments in a given graph? In the case of acyclic
graphs, they can be calculated directly, starting from non-attacked arguments. In the
general case, one needs to calculate the solution of the system of equations (4), which
is typically obtained by employing an iterative method. In the following result, we
propose an uniform iterative way of calculating strengths of arguments, which can be
applied to any semantics from S∗. The idea is that at each step, a value is assigned to
each argument. In the initial step, the value of an argument is its basic weight. Then, in
each step, the value is recomputed on the basis of the weights of arguments and attacks
as well as the values of the attackers of the argument at the previous step.

Theorem 3 Let M = 〈f, g, h〉 ∈ M∗, S = S(M), and G = 〈A, σ,R, π〉 ∈ AG. For
every a ∈ A, we define the sequence {s(a)(n)}+∞n=1 in the following way:

• s(a)(1) = σ(a),

• s(a)(n+1) = f(σ(a), g(h(π((a1, a)), s(a1)
(n)), . . . , h(π((ak, a)), s(ak)(n)))),

where {a1, . . . ak} = Att(a).

Then, for every a ∈ A:

1. {s(a)(n)}+∞n=1 converges, and

2. lim
n→+∞

s(a)(n) = DegSG(a).

This result can be implemented for an arbitrary semantics from S∗, as an algorithm
that computes the approximations of strengths.
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4 Properties of the novel semantics
Recently, there is great interest in defining formal properties that can be used for ana-
lyzing individual semantics, and comparing distinct ones. Some properties were pro-
posed for semantics that evaluate arguments of flat graphs (eg. [2]) while others (eg.
[4, 9]) were proposed for semantics that deal with semi-weighted graphs. However,
there are no such properties for analyzing semantics that deal with weighted graphs. In
what follows, we bridge this gap.

We consider some properties proposed in [4], and extend them for accounting for
weights of attacks. Those properties state that the strength of an argument does not de-
pend on its identity (Anonymity); it depends only on arguments that are related to it with
a path (Independence); it does not depend on argument’s outgoing arrows (Directional-
ity ); it depends only on the argument’s basic strength, the weights of its direct attacks
and the strengths of its direct attackers (Equivalence); it is equal to the argument’s ba-
sic weight if the argument is not attacked (Maximality); it does not take into account
neither worthless attackers (those whose strength is equal to 0) nor worthless attacks
(Neutrality); it is less than the argument’s basic weight if the argument has at least
one serious attack from a serious attacker (Weakening); it is sensitive to the argument’s
basic weight (Proportionality), to the quality of attackers (Reinforcement) and to the
number of non-worthless attacks and attackers (Counting). The formal definitions are
below. Let S be a gradual semantics.
Anonymity: S satisfies anonymity iff ∀G = 〈A, σ,R, π〉, G′ = 〈A′, σ′,R′, π′〉 ∈ AG,
for any isomorphism f from G to G′, the following holds: ∀ a ∈ A, DegSG(a) =
DegSG′(f(a)).

Independence: S satisfies independence iff ∀G = 〈A, σ,R, π〉,G′ = 〈A′, σ′,R′, π′〉 ∈
AG s.t A ∩A′ = ∅, the following holds: ∀ a ∈ A, DegSG(a) = DegSG⊕G′(a).
Directionality: S satisfies directionality iff ∀G = 〈A, σ,R, π〉 ∈ AG, ∀a, b ∈ A,
∀G′ = 〈A′, σ′,R′, π′〉 ∈ AG, s.t. A′ = A, σ′ = σ, R′ = R ∪ {(a, b)}, ∀x ∈
R, π′(x) = π(x), it holds that: ∀x ∈ A, if there is no path from b to x, then DegSG(x) =
DegSG′(x).

Equivalence: S satisfies equivalence iff ∀G = 〈A, σ,R, π〉 ∈ AG, ∀a, b ∈ A, if i)
σ(a) = σ(b), and ii) there exists a bijective function f from Att(a) to Att(b) s.t. ∀x ∈
Att(a), DegSG(x) = DegSG(f(x)) and π((x, a)) = π((f(x), b)), then DegSG(a) =
DegSG(b).
Maximality: S satisfies maximality iff ∀G = 〈A, σ,R, π〉 ∈ AG, ∀a ∈ A, if Att(a) =
∅, then DegSG(a) = σ(a).
Neutrality: S satisfies neutrality iff ∀G = 〈A, σ,R, π〉 ∈ AG, ∀a, b ∈ A, if i) σ(a) =
σ(b), and ii) Att(b) = Att(a) ∪ {x} s.t. x ∈ A \ Att(a) and (DegSG(x) = 0 or
π((x, b)) = 0), then DegSG(a) = DegSG(b).
Weakening: S satisfies weakening iff ∀G = 〈A, σ,R, π〉 ∈ AG, ∀a ∈ A, if σ(a) > 0,
and ∃b ∈ Att(a) s.t. σ(b) > 0 and π((a, b)) > 0, then DegSG(a) < σ(a).
Proportionality: S satisfies proportionality iff ∀G = 〈A, σ,R, π〉 ∈ AG, ∀a, b ∈ A, if

• Att(a) = Att(b),
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• ∀x ∈ Att(a), π((x, a)) = π((x, b)),

• σ(a) > σ(b),

• DegSG(a) > 0,

then DegSG(a) > DegSG(b).
Resilience: S satisfies resilience iff ∀G = 〈A, σ,R, π〉 ∈ AG, ∀a ∈ A, DegSG(a) = 0
iff σ(a) = 0.
Reinforcement: S satisfies reinforcement iff ∀G = 〈A, σ,R, π〉 ∈ AG, ∀a, b ∈ A, if

• σ(a) = σ(b),

• DegSG(a) > 0,

• Att(a) \ Att(b) = {x}, Att(b) \ Att(a) = {y},

• DegSG(y) > DegSG(x),

• π((x, a)) = π((y, b)),

then DegSG(a) > DegSG(b).
Counting: S satisfies counting iff ∀G = 〈A, σ,R, π〉 ∈ AG, ∀a, b ∈ A, if σ(a) = σ(b),
Att(b) = Att(a) ∪ {x} with π((x, b)) > 0, and DegSG(a) > 0, then DegSG(a) >
DegSG(b).

Since graphs are semi-weighted in [4], there is no property that deals with weights
of attacks. We propose next Attack-Sensitivity, which states that the stronger the weight
of an attack, the greater its impact on the targeted argument.
Attack-sensitivity: S is attack sensitive iff ∀G = 〈A, σ,R, π〉 ∈ AG, ∀a, b ∈ A, if

• σ(a) = σ(b),

• Att(a) \ Att(b) = {x}, Att(b) \ Att(a) = {y},

• DegSG(x) = DegSG(y), and

• π((y, b)) > π((x, a)),

• DegSG(a) > 0,

then DegSG(a) > DegSG(b).
The above properties are compatible, i.e., they can be satisfied all together by a

semantics.

Theorem 4 The twelve properties are compatible.

Let us now analyze semantics of S∗ with respect to the above twelve properties.
The next result shows that any semantics in S∗ satisfies all the first nine properties.
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Theorem 5 For any gradual semantics S ∈ S∗, S satisfies Anonymity, Independence,
Directionality, Equivalence, Maximality, Neutrality, Weakening, Proportionality, and
Resilience.

Note that Reinforcement, Counting and Attack-sensitivity are not guaranteed for
the whole family of semantics (S∗). However, we show that when the functions (g
and h) of the evaluations methods in M∗ satisfy monotony, then the semantics they
characterize satisfy the three properties.

Definition 9 (M∗e) We define M∗e (e stands for extended) as the set of all evaluation
methods M = 〈f, g, h〉 such that:

• M ∈M∗,

• g(x1, . . . , xn, y) < g(x1, . . . , xn, z) whenever y < z,

• h(x1, y) > h(x2, y) whenever x1 > x2, y 6= 0.

Definition 10 (S∗e) We define by S∗e the set of all semantics which are based on an
evaluation method in M∗e , i.e.,

S∗e = {S(M) |M ∈M∗e}.

Proposition 1 The inclusions M∗e ⊆M∗ and S∗e ⊂ S∗ hold.

Any semantics in S∗e satisfies all the twelve properties.

Theorem 6 For any gradual semantics S ∈ S∗e , S satisfies all the 12 properties.

Theorems 5 and 6 can be seen as big steps towards the ultimate goals of fully char-
acterizing the whole family of all gradual semantics that satisfy the first nine properties
and the whole family of semantics that satisfy the twelve properties. By saying that,
we claim that S∗ is very broad and encompasses many semantics, however we also
recognize that S∗ does not cover all the possible gradual semantics that can be defined
for evaluating arguments in weighted graphs.

5 Some instances of the family S∗

The novel family of semantics is general in that it only specifies constraints on the eval-
uation methods underlying its semantics. The aim of this section is to provide examples
of specific semantics covered by S∗. We provide three groups of such semantics. The
first one contains five semantics that were proposed in the literature and that deal with
flat/semi-weighted argumentation graphs. The second group contains generalizations
of the five previous semantics for accounting for weights of attacks. Indeed, we gen-
eralize each of the five semantics in various ways, by considering different possible
functions h. The last group contains one semantics, which has no counterpart in the
literature.

11



Semantics Formal definition Type of graphs
h-Categorizer [12] DeghG(a) = 1

1+
∑
bRa

DeghG(b)
Flat

Compensation-based [3] sα−BBSG (a) = 1 +

(∑
bRa

1
(s(b))α

)1/α

, α ∈ (0,+∞) Flat

Weighted h-Categorizer [4] DegHbsG (a) = σ(a)
1+

∑
bRa

DegHbsG (b)
Semi-weighted

Weighted Max-based [4] DegMbsG (a) = σ(a)
1+max

bRa
DegMbsG (b)

Semi-weighted

Weighted Card-based [4] DegCbsG (a) = σ(a)

1+|AttFG(a)|+

∑
b∈AttFG(a)

DegCbs
G

(b)

|AttFG(a)|

Semi-weighted

Table 2: Existing Gradual Semantics.

5.1 Five existing semantics as instances of S∗

There are several gradual semantics in the literature. Some of them like h-Categorizer
(defined for acyclic graphs in [12] and for graphs with cycles in [36]) and compensation-
based semantics [3] deal with flat graphs, while others like weighted h-Categorizer,
Weighted Max-based, Weighted Card-based [4], Trust-based [20] deal with semi-weighted
graphs (only arguments are weighted). Table 2 recalls the formal definitions of the first
five semantics. In what follows, we show that those five semantics are instances of
the new family (S∗) while Trust-based (TB) is not. Indeed, we have seen previously
that (TB) is based on an evaluation method, the fuzzy method MF , which is neither
determinative nor well-behaved in the sense of definitions 5 and 6.

Theorem 7 The Trust-based semantics is based on the evaluation method MF =
〈fmin, gmax, hprod〉. However, MF is neither determinative nor well-behaved.

Weighted Max-based, denoted by Mbs in [4], is a semantics that favors the quality
of attackers over their quantity. The next result shows that it is based on an evaluation
method, which is both determinative and well-behaved. This means that Mbs is an
instance of the general setting. Since Mbs does not deal with weighted attacks, we use
hprod for h in its evaluation method, however it may be any function of those recalled
in Table 1. This holds for the evaluation methods that define the other semantics.

Theorem 8 Let MM = 〈ffrac, gmax, hprod〉. For any G = 〈A, σ,R, π〉 ∈ AG such
that π ≡ 1, the following properties hold.

• DegMbsG ≡ Deg
S(MM )
G .

• MM is both determinative and well-behaved.

Let us switch to the compensation-based semantics (α−BBS) from [3], where α ∈
(0,+∞) is a parameter allowing compensation between quality and quantity of attack-
ers. With this semantics, the stronger the argument, the smaller its value. Thus, the

12



general setting discussed in the paper cannot capture α−BBS in a direct way. How-
ever, we define an evaluation method that defines a class of semantics that is equiv-
alent to α−BBS. Interestingly, the same evaluation method defines also Weighted
h−Categorizer [4] which is denoted Hbs, and h−Categorizer [12], denoted by h−Cat.
We show that the evaluation method is determinative and well-behaved, meaning that
the three semantics are also instances of S∗.

Theorem 9 Let Mα = 〈ffrac, gsum,α, hprod〉. For any G = 〈A, σ,R, π〉 ∈ AG, the
following properties hold:

1. If σ ≡ 1 and π ≡ 1, then sα−BBSG ≡ 1

Deg
S(Mα)
G

.

2. If σ ≡ 1, π ≡ 1, and α = 1, then Degh−CatG ≡ Deg
S(Mα)
G .

3. If π ≡ 1, and α = 1, then DegHbsG ≡ Deg
S(Mα)
G .

4. Mα is both determinative and well-behaved.

Weighted Card-Based semantics [4], denoted by Cbs, is a semantics which favors
the quantity of attackers over their quality. In its formal definition in Table 2, AttFG(a)
is the set of attackers of a whose basic weight is strictly positive. We show that it is
another instance of the new family. Indeed, it is based on a determinative and well-
behaved evaluation method.

Definition 11 (MC) The Card-based evaluation method is the tuple MC = 〈ffrac2, gcard, hprod〉
such that

• ffrac2(x1, 0) = 0,

• ffrac2(x1, x2) = x1

2+x2
for x2 > 0,

• gcard(0, . . . , 0) = 0,

• if there is xi 6= 0 for some i ≤ n,

gcard(x1, . . . , xn) = |{i |xi 6= 0}| − 1 +

∑
1≤i≤n

xi

|{i |xi 6=0}| .

Theorem 10 The following properties hold:

• For all G = 〈A, σ,R, π〉 ∈ AG such that π ≡ 1,

DegCbsG ≡ Deg
S(MC)
G .

• MC is both determinative and well-behaved.

We have seen that the three evaluation methods Mα,MC ,MM are both determi-
native and well-behaved. In what follows, we show that they are also instances of M∗,
and the semantics they characterize are instances of S∗.

Theorem 11 The following inclusions hold:

• {Mα,MC} ⊂M∗e and MM ∈M∗.

• {S(Mα),S(MC)} ⊂ S∗e and S(MM ) ∈ S∗.
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5.2 Generalizations of existing semantics
We have seen in the previous section that the five gradual semantics recalled in Table
2 are instances of the new family. However, those semantics deal only with flat or
semi-weighted argumentation graphs. In what follows, we show that S∗ encompasses
several instances that generalize the five semantics for accounting for weights of at-
tacks. Indeed, we generalize each of them in various ways by considering different
functions aggregating the weights of attacks and degrees of attackers. For that purpose,
we consider the following broad class H of functions h.

Definition 12 (H) We define H as the set of all functions h : [0, 1] × [0, 1] → [0, 1]
such that:

• h(0, x) = 0, h(1, x) = x,

• ∀λ ∈ [0, 1], h(x, λy) ≥ λh(x, y), and

• h is non-decreasing in both variables and continuous on the second variable.

It is worth mentioning that the class H includes the functions presented in Table 1
except hmin.

Let us now start by generalizing Weighted Max-based semantics Mbs for dealing
with weighted graphs. Recall that this semantics is based on the evaluation method
MM = 〈ffrac, gmax, hprod〉, where the choice of hprod was arbitrary as the semantics
does not consider weights of attacks. The idea of generalizing Mbs is to allow in its
evaluation method MM any h ∈ H. We show that each Mh

M = 〈ffrac, gmax, h〉 is an
element of M∗, hence it characterizes a semantics of the set S∗. We provide thus as
many semantics that extend Mbs as elements in the H.

Theorem 12 For any h ∈ H, the following hold:

• Mh
M = 〈ffrac, gmax, h〉 ∈M∗.

• S(Mh
M ) ∈ S∗.

• For any G = 〈A, σ,R, π〉 ∈ AG such that π ≡ 1,

DegMbsG ≡ Deg
S(Mh

M )
G .

From Theorem 5, it follows that any semantics generalizing Mbs satisfies all the
principles except Reinforcement, Counting and Attack-Sensitivity. While the violation
of Reinforcement and Counting is due to the fact that these semantics use only one at-
tacker, Attack-Sensitivity can be ensured if the function h of the underlying evaluation
method is strictly monotonic.

Theorem 13 For any h ∈ H such that

h(x1, y) > h(x2, y) whenever x1 > x2, y 6= 0

it holds that S(Mh
M ) satisfies Attack-Sensitivity.
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Let us illustrate the family of extended Mbs semantics. For that purpose, we con-
sider h = hprod. Hence, the evaluation method of the extended semantics is MM =
〈ffrac, gmax, hprod〉 and the corresponding semantics will be denoted by Mbsprod (Mbsprod
is S(Mhprod

M )). For any G = 〈A, σ,R, π〉 ∈ AG, for any a ∈ A,

Deg
Mbsprod
G (a) =

σ(a)

1 + max
bRa

(π((b, a))Deg
Mbsprod
G (b))

. (6)

Example 2 Consider the weighted graph depicted below.

a

0.5

b

0.8

c

0.5

d

0.3

e

0.2
0.1 0.5 1.00.2

It is easy to check that DegMbsprodG (b) = σ(b) = 0.8 and Deg
Mbsprod
G (e) = σ(e) =

0.2 since b and e are not attacked. Furthermore, DegMbsprodG (a) = 25
58 ≈ 0.431,

Deg
Mbsprod
G (c) = 25

54 ≈ 0.463, and Deg
Mbsprod
G (d) = 0.24.

Let us now generalize h-Categorizer, Weighted h-Categorizer, and compensation-
based semantics for dealing with weighted attacks. For that purpose, we will use the
same broad set of functions h, namely H. As for Mbs, each of the three semantics will
be generalized by several semantics.

Theorem 14 For any h ∈ H, ∀α ∈ (0,+∞), the following hold:

• Mh
α = 〈ffrac, gsum,α, h〉 ∈M∗e .

• S(Mh
α) ∈ S∗e .

• For any G = 〈A, σ,R, π〉 ∈ AG,

– If σ ≡ 1 and π ≡ 1, then sα−BBSG ≡ 1

Deg
S(Mh

α)

G

.

– If π ≡ 1 and α = 1, then DegHbsG ≡ Deg
S(Mh

α)
G .

– If σ ≡ 1, π ≡ 1 and α = 1, then DeghG ≡ Deg
S(Mh

α)
G .

Let us illustrate the family of extended Weighted h−Categorizer semantics. We
consider the S(Mhprod

1 ), denoted by Hbsprod in what follows. For any G = 〈A, σ,R, π〉 ∈
AG, for any a ∈ A,

Deg
Hbsprod
G (a) =

σ(a)

1 +
∑
bRa

π((b, a))Deg
Hbsprod
G (b)

. (7)

Example 2 (Cont) DegHbsprodG (a) ≈ 0.431, DegHbsprodG (b) = 0.8, DegHbsprodG (c) ≈
0.463, DegHbsprodG (d) ≈ 0.207 and Deg

Hbsprod
G (e) = 0.2. Note that the degrees of the

arguments a and c are the same for both semantics, since they have only one attacker.
On the other hand, DegHbsprodG (d) < Deg

Mbsprod
G (d), since gc, unlike gm, also takes into

account the weaker attacker e of d.
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We next extend Card-based semantics for considering weighted attacks. As for the
previous semantics, we consider any function h ∈ H.

Theorem 15 For any h ∈ H, the following hold:

• Mh
C = 〈ffrac2, gcard, h〉 ∈M∗e .

• S(Mh
C) ∈ S∗e .

• ∀G = 〈A, σ,R, π〉 ∈ AG s.t. π ≡ 1, DegCbsG ≡ Deg
S(Mh

c )
G .

5.3 Euler-Max-based semantics
We have seen in the previous section that all the semantics recalled in Table 2 use a
function of the form x1

a+x2
for f . Interestingly enough, our Theorem 2 offers more

alternatives for f . As an illustration, we use the function fexp(x1, x2) = x1e
−x2 .

Definition 13 (Euler-Max-based EM) The Euler-Max-based evaluation method is the
tuple Me = 〈fexp, gmax, hprod〉.

We show that Me is determinative.

Theorem 16 Me ∈M∗. Consequently, S(Me) ∈ S∗.

Let us denote S(Me) by EMbs (for Euler-Max-based semantics).

Definition 14 (Euler-Max-based Semantics) Let G = 〈A, σ,R, π〉 ∈ AG. For any
a ∈ A,

DegEMbsG (a) = σ(a) · e−max
bRa

π((b,a))DegEMbsG (b)

Example 2 (Cont) In graph G of the running example, we obtain DegEMbsG (a) ≈ 0.426,
DegEMbsG (b) = 0.8, DegEMbsG (c) ≈ 0.462, DegEMbsG (d) ≈ 0.234 and DegEMbsG (e)) = 0.2.

EMbs is correctly defined (from Theorem 2) and satisfies all the principles except
Reinforcement and Counting.

Theorem 17 EMbs satisfies all the principles except Reinforcement and Counting.

Note that, like Weighted Max-based semantics (Mbs) and its extended version Mbsprod,
EMbs considers only the strongest attacker. Indeed, it uses the function gmax as those
semantics. We show that for each attacked argument, the value given by EMbs is weaker
than the one assigned by Mbsprod to the same argument. Indeed, the strongest attacker
is more harmful with EMbs than with Mbsprod.

Theorem 18 For any G = 〈A, σ,R, π〉 ∈ AG, for any a ∈ A s.t. there exists b ∈
Att(a) with σ(b) > 0, DegEMbsG (a) < Deg

Mbsprod
G (a).

EMbs compensates the small number of attackers that is considered for the eval-
uation of the strength of an argument. Indeed, since it considers only one attacker
(among maybe several ones), it gives a lot of power to that chosen attacker. Mbs is less
requiring.
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6 Related work
There are several semantics in the literature that deal with weighted attacks, and all of
them are extension-based [28, 24, 16, 23, 29]. They extend Dung’s ([22]) semantics
for accounting for varied-strengths of attacks. When all attacks have the same weight,
they coincide with Dung’s ones in the corresponding flat graph. It was shown in [4]
that Dung’s semantics do not satisfy all the properties discussed in this paper. Any
property that is violated in case of flat/semi-weighted graphs, it is also violated in case
of weighted ones. Thus, the existing semantics that deal with weighted graphs are dif-
ferent from those of the family we proposed. This shows also that those semantics are
not instances of S∗. In what follows, we go further by showing that extension seman-
tics cannot be based on evaluation methods. For that purpose, we consider complete,
grounded, preferred, and stable semantics as proposed in [22]. Those semantics were
defined for flat graphs (i.e., G = 〈A, σ ≡ 1,R, π ≡ 1〉). They start first by identifying
subsets of arguments that are collectively acceptable, called extensions. Let G ∈ AG

be an arbitrary but fixed flat graph, and let Extx(G) denote the set of all extensions of
G under semantics x ∈ {c, p, s, g}, where c, p, s, g stand respectively for complete,
preferred, stable, and grounded semantics.

Once extensions are computed, the second step consists of assigning a single over-
all strength to each argument by checking its membership in extensions. In the argu-
mentation literature (e.g., [18, 27, 8, 35]), three qualitative values are used: skeptically
accepted (the argument belongs to all extensions), credulously accepted (the argument
is in some but not all extensions), and rejected otherwise. In what follows, we refine
this definition by considering more values and numerical ones from the interval [0, 1].
Indeed, the overall strength of an argument is the proportion of extensions containing it.
In case there is no extension, the value of each argument is 0. Obviously, an skeptically
accepted argument gets the maximal value 1 and a rejected argument gets 0.

Definition 15 (Extension Semantics) Let x ∈ {c, p, s, g}, G = 〈A, σ,R, π〉 ∈ AG,
and a ∈ A.

DegxG(a) =

{
0 if Extx(G) = ∅
|E∈Extx(G) | a∈E|

|Extx(G)| otherwise

Example 1 (Cont) The graph G has two stable/preferred extensions (E1 = {a} and
E2 = {b}) and three complete ones (E1, E2, and E3 = ∅). Thus, DegxG(a) = DegxG(b) =
1
2 , for x ∈ {p, s} and DegcG(a) = DegcG(b) = 1

3 . Finally, DeggG(a) = Deg
g
G(b) = 0.

The following result shows that there is no evaluation method that can return the
evaluations of (stable, complete, preferred, grounded) semantics. This means that these
semantics cannot be expressed in the general setting of [18].

Theorem 19 Let S ∈ {s, p, c, g}. There is no evaluation method M such that S is
based on M.

Gabbay and Rodrigues ([26]) developed a method, called Iterative Schema (IS), for
evaluating arguments in semi-weighted graphs. Like Trust-based, IS cannot be based
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on a well-behaved evaluation method. Furthermore, it does not satisfy some properties
including Maximality. It is thus different from semantics of S∗.

The two gradual semantics (QuAD, DF-QuAD) were proposed respectively in [10,
37] for dealing with acyclic bipolar graphs, i.e., graphs where arguments may have
basic weights and may be attacked and supported. Both QuAD and DF-QuAD use
evaluation methods. However, those methods are not determinative (thus are not in the
class M∗) for the class of all possible graphs.

In [38], another gradual semantics was defined for bipolar graphs. It uses an evalu-
ation method, however the authors did not investigate its properties, and more precisely
whether it is determinative.

In [1], the family of ranking semantics was introduced. Unlike gradual semantics,
ranking semantics do not necessarily assign a single value to each argument. They
rather focus on defining a total ordering on arguments. Examples of such semantics are
those defined in [1, 13, 14, 15, 21, 27].

In [33], evaluation of arguments in graphs whose topology is uncertain (probabil-
ities are assigned to arguments and attacks) is studied. In our case, graphs are fixed.
In [34] probabilities are assigned to attacks and express belief in attacks. Both ap-
proaches are different from ours since they derive a probability of each argument from
probability distributions over sets of arguments.

7 Conclusion
The paper investigates semantics for argumentation graphs where both arguments and
attacks may have varied strengths. It proposes a fine grained definition of gradual
semantics using the evaluation method approach. It defines the first family of grad-
ual semantics in the literature that deal with weighted attacks. The proposed family
is broad enough to encompass five semantics that were proposed in the literature for
dealing with flat or semi-weighted graphs. It also generalizes in several ways each of
those semantics for accounting for weights of attacks, and covers a large class of other
semantics including Euler-Max-based. The new semantics are theoretically analysed
against the set of principles that were proposed in [4]. For that purpose, those principles
were first extended for weighted graphs and a novel principle was proposed.

This work can be extended in several ways. First, we plan to characterize the whole
family of gradual semantics that satisfy (the first nine, all the twelve) properties dis-
cussed in Section 4. Such results would give a complete view on all the possible gradual
semantics that can be defined and that have the same behaviour as those we proposed.
As existing gradual and ranking semantics share similar properties, another line of
research would consist of reformulating ranking semantics in terms of determinative
evaluation methods, unifying thus their definitions with those of gradual semantics.
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