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Summary 19 

The transcriptional coactivator p300 is a histone lysine acetyltransferase that is typically recruited to 20 
transcriptional enhancers and regulates gene expression by acetylating chromatin. Here we show that 21 
p300 activation directly depends on the activation and oligomerisation status of transcription factor (TF) 22 
ligands. Using two model TFs, IRF3 and STAT1, we demonstrate that TF dimerization enables trans-23 
autoacetylation of p300 in a highly conserved and intrinsically disordered autoinhibitory lysine-rich loop 24 
(AIL) resulting in HAT activation. We describe a p300 crystal structure in which the AIL invades the 25 
active site of a neighboring HAT domain thus revealing a snap-shot of a trans-autoacetylation reaction 26 
intermediate. Substrate access to the active site involves rearrangement of an autoinhibitory RING 27 
domain. Our data explain how cellular signaling, TF activation and dimerization controls p300 activation 28 
thus explaining why gene transcription is associated with chromatin acetylation. 29 
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 33 

Introduction 34 

Signals that emanate from cellular receptors ultimately lead to changes in gene expression programs that 35 

drive cellular change and organismal development. Gene expression is typically controlled through the 36 

coordinated activity of DNA-binding transcription factors (TFs), chromatin regulators, and the general 37 

transcription machinery. For instance, in the innate immune system, a number of pattern recognition 38 

receptors (PRRs) recognize various pathogen-associated molecular patterns (PAMPs)1. Once engaged by 39 

PAMPs, PRRs bind to adaptor proteins such as STING (stimulator of IFN genes). These adaptor proteins 40 

engage the latent DNA binding TF interferon (IFN) regulatory factor 3 (IRF3) and enable recruitment and 41 

activation of the non-canonical IKK kinase TBK11. TBK1 then phosphorylates IRF3 in a C-terminal 42 

motif, which results in removal of autoinhibition, dimerization and adaptor displacement2,3. Activated 43 

IRF3 dimers bind to p300/CBP (also known as KAT3B and KAT3A) to stimulate chromatin acetylation 44 

and gene expression of antiviral type I IFNs IFN-α and IFN-β3-5. Type I IFNs cytokines are secreted and 45 

bind to specific cell surface IFN receptors (IFNARs), which results in activation of Janus kinase/signal 46 

transducers and activators of transcription (JAK/STAT) signaling6. Activated, tyrosine phosphorylated 47 

STATs dimerize, translocate to the nucleus and bind to p300/CBP to stimulate transcription of IFN-48 

stimulated genes (ISGs)7. 49 

p300/CBP are known to interact with more than 400 binding partners including the basal transcription 50 

machinery8. The large protein interactome of p300/CBP results in near universal recruitment of these 51 

histone lysine acetyltransferases (HATs) to enhancers and p300 occupancy has been used to identify 52 

enhancers genome-wide9-11. CBP/p300 catalyze acetylation of histone H3K27, a modification that is 53 

considered an ‘activation’ mark12. However, recruitment of CBP/p300 does not always correlate with 54 

gene activation and is occasionally associated with repression13-17. A large number of chromatin regions 55 

that bind CBP/p300 therefore do not contain this canonical H3K27ac modification, indicating that HAT 56 

activity at such sites is blocked16,18. Thus a major challenge is to understand the mechanism that allows 57 
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switching between inactive and active states of CBP/p300 on enhancers, and to causally link cellular 58 

signaling to the recruitment of CBP/p300, regulation of HAT activity and to the establishment of 59 

repressed, poised and active chromatin. 60 

Here we have investigated how the activation and oligomerization status of p300 TF ligands such as IRF3 61 

and STAT1 impacts the catalytic activity of p300. We found that the kinase-activated, dimeric and DNA-62 

binding competent form, but not inactive or monomeric variants of these TFs, support robust p300 HAT 63 

activation. We demonstrate that IRF3 or STAT1 activation and dimerization enables p300 trans-64 

autoacetylation in a lysine-rich, intrinsically disordered autoinhibitory loop (AIL) in the HAT domain that 65 

serves as a ‘pseudo-substrate’ and is important for the regulation of p300 HAT activity19. A crystal 66 

structure of the core domain of p300 provides a snapshot of a potential trans- autoacetylation reaction 67 

intermediate in which the AIL projects into the active site of a neighboring p300 molecule. Substrate 68 

access requires a conformational rearrangement of the autoinhibitory RING domain into a position that 69 

results in a more accessible HAT active site. All-atom simulations and biochemical experiments indicate 70 

that AIL acetylation and RING domain repositioning regulates dynamic interactions with the HAT 71 

substrate binding pocket to regulate HAT substrate access. As HAT activation is intimately linked to TF 72 

activation, these results causally relate cellular signaling to the activation and DNA targeting of a 73 

chromatin modifier and provide mechanistic insights into the long-standing and general correlation 74 

between an active, acetylated chromatin structure and gene transcription. 75 

 76 

Results 77 

Transcription factor dimerization enables activation of p300 78 

To explore if p300 is activated by signal-dependent IRF3 dimerization, we produced three recombinant 79 

IRF3 species: inactive monomers (IRF3), active IRF3 dimers by TBK1 phosphorylation (pIRF3) and a 80 
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truncation mutant lacking the C-terminal autoinhibitory element (IRF3ΔC) (Extended Data Fig. 1a, b). 81 

Truncation of the C-terminal autoinhibitory element allows CBP/p300 binding but abolishes IRF3 82 

dimerization20. We confirmed the oligomerization state by gel filtration chromatography (Extended Data 83 

Fig. 1b), and investigated the impact of IRF3 activation and oligomerization status on p300s 84 

autoacetylation in the presence of a saturating concentration of 14C-labelled acetyl-CoA. p300s spans 85 

from the TAZ1 to the NCBD/IBiD domain and contains a deletion of the flexible N- and C-terminal 86 

regions (Fig. 1a). We found that p300s autoacetylated slowly in the absence of IRF3 (Extended Data Fig. 87 

1c). Inclusion of inactive, monomeric IRF3 or IRF3ΔC did not significantly modify HAT activity (Fig. 1b 88 

and Extended Data Fig. 1c). In contrast, inclusion of active, TBK1-phosphorylated IRF3 dimers (pIRF3) 89 

resulted in a rapid burst of autoacetylation followed by a gradual increase of acetylated p300 (Fig. 1b). As 90 

IRF3ΔC did not support p300 HAT activation, we conclude that IRF3 dimerization and not merely p300 91 

binding are essential for HAT activation. 92 

p300 HAT activation was directly dependent on TBK1-mediated phosphorylation of IRF3 on Ser 396, a 93 

critical residue for IRF3 activation and dimerization2,3. Only when both TBK1 and IRF3 were included in 94 

the reaction did we observe phosphorylation of IRF3 on Ser 396 and p300 activation (Fig. 1d, Lane 4). 95 

We only observed a modest stimulatory effect of the adaptor protein STING (Fig. 1d, Lanes 7-12), likely 96 

due to the relatively high amounts of TBK1, which is already active and phosphorylates IRF3 even in the 97 

absence of STING21. Together, we conclude that IRF3 phosphorylation by TBK1 and its subsequent 98 

dimerization is required for p300 HAT activation. 99 

To analyze the impact of pIRF3 on p300 activation and histone substrate acetylation, we established a 100 

scintillation proximity HAT assay (SPA), similar to that described previously22. We incubated saturating 101 

amounts of a biotinylated Histone H4 substrate peptide with p300s in the presence or absence of 102 

equimolar pIRF3 and increasing concentrations of [3H] acetyl-CoA (Fig. 1e). As predicted, pIRF3 103 

stimulated p300 histone substrate acetylation as determined by the increased rate of H4 acetylation 104 

obtained in the presence of pIRF3 (Vmax = 43.8 ± 5.3 cpm/min as compared to Vmax = 22.5 ± 2.8 cpm/min 105 
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in the absence of pIRF3). These data indicate that pIRF3 not only stimulates p300 autoacetylation and 106 

activation, but also more efficient histone substrate acetylation. 107 

We also investigated the effect of another well-known CBP/p300 ligand, STAT1, on p300 activation. 108 

STATs are activated in response to cytokine receptor engagement and JAK kinase activation23. JAK-109 

mediated STAT1 phosphorylation on tyrosine 701 induces dimerization and translocation to the nucleus 110 

where STAT1 binds to DNA elements to regulate gene expression. STAT1 contains a C-terminal 111 

transactivation domain (TAD) through which it interacts with CBP/p3007. A naturally occurring splice 112 

variant, STAT1β, lacks the TAD and acts in a dominant negative manner24. Structures of the active, 113 

STAT1 Tyr701-phosphorylated dimer bound to DNA as well as the STAT1 TAD bound to the TAZ2 114 

domain of CBP have been determined previously25,26. 115 

To understand the impact of STAT1 activation and oligomerisation status on p300 activity, we produced 116 

STAT1ΔN lacking the N-domain (ND) and STAT1ΔNC lacking the ND and TAD as non-phosphorylated 117 

monomers or as Tyr701-phosphorylated dimers (Extended Data Fig. 1e-h). We found that p300s 118 

autoacetylated slowly in the absence of STAT1, and that addition of non-phosphorylated, monomeric 119 

STAT1ΔN did not stimulate p300 autoacetylation beyond background levels (Fig. 1f, g). In contrast, 120 

addition of Tyr701-phosphorylated STAT1ΔN (pSTAT1ΔN) dimers to p300s resulted in a rapid increase 121 

of p300 autoacetylation. Activation required the C-terminal TAD of STAT1 as addition of a Tyr701-122 

phosphorylated STAT1 dimer (pSTAT1ΔNC), lacking the TAD, did not stimulate p300 autoacetylation 123 

(Fig. 1f, g). 124 

STAT1 dimerization, and not merely interaction with the TAZ2 domain, is required for activation of 125 

p300. Unphosphorylated, monomeric STAT1ΔN, which contains the TAD and is able to interact with the 126 

TAZ2 domain of CBP, did not stimulate p300 activity. Stimulation with STAT1 was however not as 127 

potent as compared to that of IRF3, possibly because our STAT1 preparation is unphosphorylated on 128 

Ser727, which is required for maximal gene activation27,28. Taken together, our data are in agreement with 129 
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a model in which the AIL peptide serves as an intramolecular ‘pseudosubstrate’ and competitive HAT 130 

inhibitor19. Dimeric ligands such as pIRF3 and pSTAT1 allow p300 activation by bringing two molecules 131 

together to enable trans-autoacetylation of the AIL, which in turn relieves autoinhibition and enables 132 

more efficient entry of histone substrates into the HAT active site. 133 

 134 

Structure of p300 adopts a AIL swap conformation 135 

To further understand the role of the AIL in regulation of these structural transitions, we crystallized the 136 

hypoacetylated form of BRP-HAT containing the AIL. Crystals were obtained using a similar protocol to 137 

that published previously29. Crystals diffracted to a minimal Bragg spacing of 3.1 A� and we determined 138 

the structure by molecular replacement. The crystal form contained four p300 molecules in the 139 

asymmetric unit (Extended Data Table 1; Extended Data Fig. 2). Structural comparison with our previous 140 

structure (PDB; 4BHW) showed that the bromo-PHD-HAT domains overlay well on each other with a 141 

root–mean–square–deviation (RMSD) of ~ 1 A�. However the RING domains were not visible in the 142 

initial electron density map. Anomalous difference density maps showed a density peak for the zinc atom 143 

of the RING domain but not at the expected location. Manual repositioning allowed correct placement of 144 

the RING domains into the new position and refinement of the structure (Fig. 2a, Extended Data Fig. 3). 145 

The p300 molecules show an antiparallel arrangement of the BRP-HAT domains (Extended Data Fig. 2a). 146 

In this configuration, the HAT domains from two neighboring molecules are closely apposed (Fig. 2a). In 147 

all protomers, AIL residues 1520–1532 adopt a helical extension of α6 which packs against the outwardly 148 

rotated RING domain of the neighboring protomer (Fig. 2a). In monomer II, residues 1566–1581 extend 149 

away from the HAT domain and associate with the substrate binding pocket of the HAT domain in 150 

monomer I, ~17 A� away from the lysine substrate binding tunnel (Fig. 2B). The remainder of the AIL 151 

(residues 1532–1561) is disordered. In this conformation, positively charged residues K1568, K1569, 152 

K1570 project towards the highly electronegative substrate binding pocket of the HAT domain in 153 
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monomer I (Fig. 2c). As our SEC-MALLS shows that p300 is monomeric at low micromolar 154 

concentrations (see Extended Data Fig. 6), the AIL loop-swapped interactions do not appear to mediate 155 

formation of stable dimers, but may instead constitute more transient self-associations. Although the loop 156 

is clearly flexible and the electron density over the exchanged region not visible in all protomers (Fig. 2b, 157 

c, Extended Data Fig. 2b,c), this arrangement supports the interpretation that at high concentrations and 158 

when in close proximity to each other, two p300 monomers can engage each other by a AIL loop–swap. 159 

 160 

Structural rearrangement of the RING domain 161 

We previously proposed that active-site restriction by the RING domain is a negative regulatory 162 

mechanism for HAT activity29. A restricted active site is predicted to reduce the probability of substrates 163 

engaging with the active site by random diffusion and could thus be important in allowing for the 164 

regulation of acetylation by substrate recruitment. In agreement with this model, mutations that map to 165 

the structural framework that holds the RING domain in place result in HAT activation in cells29. In our 166 

current structure, the RING domain rotates by ~39° away from the HAT active site resulting in an overall 167 

displacement by ~22 Å as compared to the previously determined structure lacking the AIL (Fig. 3a). The 168 

axis of rotation is located perpendicular to the flexible loops L1 and L2 that connect the RING to the PHD 169 

domain. 170 

The inward rotated conformation (magenta in Fig. 3a) is stabilized by interactions between Glu1242 of 171 

the RING domain and Arg1645 and Arg1646 of helix α9 of the HAT domain. In addition, Gln1173, 172 

Thr1174 and Thr1184 of the RING domain pack against the unusually long loop, L1 in the HAT domain 173 

that covers the CoA portion of the Lys-CoA inhibitor. As a result, Leu1182 resides within 5.5 Å of the 174 

lysine moiety of Lys–CoA (Fig. 3b). This inward conformation of the RING domain thus restricts 175 

substrate access to the HAT domain: The incoming AIL loop from the neighboring p300 monomer II 176 

would clash with the RING domain in the inward conformation (Fig. 3c).  177 
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In the outward rotated conformation, the interactions that attach the RING to the HAT domain are mostly 178 

disrupted (Fig. 3b). Leu1182 is positioned 15 Å away from the substrate-binding site and the RING 179 

domain is cradled by the AIL extension of helix α6 of the neighboring p300 molecule (monomer II 180 

residues 1524-1533; Fig. 3d). Despite shape complementarity, with a small buried surface area of ~320 181 

Å2 , the interface is predominantly polar, uncharacteristic of a typical protein-protein interface. However, 182 

the interaction could help to stabilize an outward rotated conformation of the RING domain and a more 183 

open HAT active site, apparently to enable AIL access and trans-acetylation. 184 

 185 

Regulation of HAT activity by flanking domains 186 

To systematically analyze the flanking domains, we generated a series of p300 constructs (Extended Data 187 

Fig. 4a) and analyzed the impact on HAT activity in vitro and in cells. Overexpression of p300 generally 188 

resulted in hyperacetylated, active p300 variants (Extended Data Fig. 4b,c) which likely masks the 189 

functional role of structural elements potentially involved in autoinhibition of deacetylated p300. Deletion 190 

of the RING domain did not drastically alter auto- or histone acetylation (Extended Data Fig. 5a). This 191 

deletion did not adversely affect structural integrity of p300, as shown by a crystal structure of the BRP 192 

module containing this deletion (Extended Data Fig. 5c). 193 

Deletion of the AIL in all constructs resulted in decreased histone acetylation but bromodomain deletion 194 

(ΔBd) did not impact HAT function (Extended Data Fig. 5a, b). Together, we agree with previous 195 

observations made for CBP that at least in the active, hyperacetylated state of the enzyme, RING deletion 196 

does not substantially impact HAT activity and that the p300 AIL positively contributes to substrate 197 

acetylation30. We next introduced mutations into full-length p300 and monitored their effect on p300 198 

auto- and p53 acetylation upon transient co-overexpression in cells. Deletion of the RING and CH3 199 

domains resulted in significantly increased p300 and p53 acetylation but deletion of the Bd or AIL had no 200 

major impact (Extended Data Fig. 5e). As expected, introduction of the catalytic mutants D1399Y or 201 
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Y1467F abolished p300 or p53 acetylation (Extended Data Fig. 5e). Immunofluorescence analysis 202 

showed that wild-type p300 as well as a ΔBd and ΔAIL deletion were uniformly distributed in the nucleus 203 

but that the HAT activating p300 variants ΔRING and ΔCH3, formed nuclear foci that co-localized with 204 

p53 (Extended Data Fig. 5d). To validate these results, we analyzed and confirmed the phenotype of p300 205 

mutants and p53 acetylation in another cell line (Fig. 4a, b). In addition, we analyzed p300 variants in 206 

which eleven lysine amino acids of the AIL segment K1546-1570 were mutated to arginine or glutamate 207 

and found reduced or slightly increased p300 autoacetylation or p53 levels, respectively (Fig. 4a, b). 208 

As we observed formation of nuclear foci only with HAT activating variants, we hypothesized that 209 

hyperacetylation drives p300 to form biomolecular condensates in cells. Accordingly, introduction of a 210 

HAT inactivating D1399Y mutation into p300 ΔRING, treatment with the p300 HAT inhibitor A-48522 or 211 

with the CBP/p300 Bd inhibitor CBP30 greatly reduced foci formation (Fig. 4c). We therefore conclude 212 

that HAT activation drives biomolecular condensation of p300 in cells apparently through Bd substrate 213 

engagement. 214 

 215 

AIL acetylation and RING domain repositioning regulate a dynamic interaction with the p300 216 

substrate binding pocket 217 

We next sought to understand how the highly conserved and intrinsically disordered AIL segment 218 

contributes to regulation of the catalytic function of p300. The AIL spanning amino acid residues 1532-219 

1567 is positively charged in the deacetylated state, with an estimated isoelectric point (pI) of 10.9, and 220 

net charge of 7 at neutral pH. In contrast, upon autoacetylation of residues spanning Lys1542-156031, we 221 

estimate a pI of 3.5 and a net charge of –2. As the proximal substrate binding groove of p300 is largely 222 

acidic (Fig. 3c), we hypothesized, in agreement with earlier predictions32, that a deacetylated AIL would 223 

engage the substrate binding site through electrostatic interactions, presumably to prevent access of 224 
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positively charged lysine-containing substrates. Given the disordered nature of the AIL, this proposed 225 

interaction is expected to be highly dynamic30. 226 

We tested this postulate through all-atom Monte Carlo simulations33. To make this approach tractable, our 227 

simulations held the backbone dihedral angles associated with the folded domains fixed, but all other 228 

degrees of freedom, including all backbone and sidechain dihedral angles in the AIL were fully sampled. 229 

As a result, these simulations should be seen as assessing how the AIL interacts with the remainder of 230 

p300 given the observed crystal structure. Simulations were performed on the AIL in the deacetylated and 231 

acetylated state in the context of the p300 monomer. These simulations allowed us to interrogate how 232 

acetylation influenced the conformation and intra-molecular interactions of the AIL. 233 

Simulations of the deacetylated AIL revealed the presence of extensive yet highly degenerate electrostatic 234 

interactions between the AIL and the RING domain and HAT substrate binding site. These interactions 235 

were quantifiable in terms of the normalized distances between pairs of amino acid residues (Fig. 5a and 236 

movie Extended Data Fig. 5). Lysine residues in the AIL dynamically associate through long-range 237 

electrostatic interactions with acidic residues (E1334, E1442, E1505, D1622, D1625 and D1628) in the 238 

p300 HAT substrate binding pocket (Fig. 5c). The importance of these residues for substrate acetylation 239 

has been shown previously34, and NMR data for CBP confirm that the AIL is intrinsically disordered in 240 

the deacetylated state30. 241 

In contrast, in the acetylated state, we found no interactions between the AIL and the substrate binding 242 

site (Fig. 5b and movie Extended Data Fig. 5). The acetylated AIL essentially behaved like a self-243 

avoiding random coil without any strong biases for interaction with itself or with the surrounding folded 244 

domains, including the Bd. It has been proposed that the AIL of CBP, when acetylated on K1596 (K1558 245 

in p300), engages the Bd intramolecularly thus competing with histone binding and negatively regulating 246 

substrate acetylation 30. Isothermal calorimetry experiments showed highest binding affinity for 247 

multiacetylated peptides including diacetylated histone H3 K14acK18ac or H4 K12acK16ac peptides, 248 
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generally following the pattern KacNNNKac (Extended Data Table 2). Monoacetylated peptides typically 249 

had weaker binding affinity. A crystal structure of the H4 K12acK16ac peptide bound to BPΔR (Extended 250 

Data Fig. 5c) confirmed the acetyllysine-specific binding mode. However, a AIL peptide acetylated on 251 

three lysines K1549, K1558, K1560, corresponding to some of the most highly acetylated residues in the 252 

AIL31, failed to bind to the BRP module. Thus our model is that the multiacetylated AIL is not a substrate 253 

for the Bd, presumably because of suboptimal spacing or sequence environment of the AIL Kac sites. 254 

To understand how the RING domain influences the ability of substrates, including the AIL, to enter the 255 

active site of an adjacent p300 molecule, we performed simulations of the AIL in context of the loop-256 

swapped dimer with a harmonic potential to maintain the AIL in the active site to assess potential inter-257 

molecular interactions (Fig. 5d, e). In the active RING conformation, the AIL is able to engage the 258 

substrate binding site. However, in the inactive conformation, the frequency of contacts between the AIL 259 

and the acidic active site residues E1442 and D1444, residues proximal to the lysine substrate binding 260 

tunnel, was reduced by 70-75% (Fig. 5d). These results suggest that in the inactive conformation the 261 

RING domain at least partially reduces catalytic activity by limiting accessibility of the active site to the 262 

AIL and other substrates. 263 

One prediction from our models is that the deacetylated form of p300 adopts a more compact 264 

conformation, due to dynamic engagement of the AIL with the HAT substrate-binding site, while the 265 

acetylated form adopts a more ‘open’ conformation (Fig. 5d). To test this possibility, we produced 266 

deacetylated p300 variants by treatment with SIRT2 as shown previously29, and hyperacetylated forms by 267 

acetylation with the p300 HAT domain. Mass spectroscopy showed that this procedure allowed us to 268 

obtain hypo- or hyperacetylated p300 variants (Extended Data Fig. 6d-f). 269 

We analyzed these preparations by multi-angle laser light scattering coupled to size exclusion 270 

chromatography (SEC-MALLS). All preparations, irrespective of the acetylation status, were monomeric 271 

at the concentration tested (2 mg·ml-1) (Extended Data Fig. 6a-c, Table 1). Comparison of hypo- and 272 
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hyperacetylated p300 BRP-HAT showed a small decrease in the elution volume indicative of a larger 273 

hydrodynamic radius upon hyperacetylation (Extended Data Fig. 6a). A similar result was obtained upon 274 

comparison of hyper- and hypoacetylated BRP-HAT-CH3 (Extended Data Fig. 6b). In contrast, a variant 275 

lacking the AIL showed no shift in the elution volume upon hyperacetylation (Extended Data Fig. 6b). 276 

Thus our data agree with the model that the catalytic p300 ‘core’ spanning the BRP-HAT-CH3 domains, 277 

adopts a compact conformation in the hypoacetylated state and that autoacetylation results in a more 278 

extended conformation. 279 

 280 

Discussion 281 

Our findings represent, to our knowledge, the first detailed mechanistic insights into how cellular 282 

signaling controls activity of a chromatin regulator. We propose a multi-step process for p300 HAT 283 

activation and signal transmission to chromatin (Fig. 6). First, in the basal state, the deacetylated AIL is 284 

expected to maintain an overall positively charged environment in close proximity to the enzyme’s active 285 

site, which prevents access of positively charged lysine-rich substrates. Direct access to the CoA binding 286 

tunnel and autoacetylation of the AIL in cis appears to be prohibited, in part due to positioning of the 287 

RING domain (Fig. 5d). The interaction between the AIL and the HAT substrate binding pocket is 288 

reminiscent of polyelectrostatic binding, in which specificity and affinity are achieved without the 289 

acquisition of structure35. Electrostatically-mediated interactions driven by high densities of lysine 290 

residues have recently been shown to engender extremely high affinity binding36. Our results are at least 291 

consistent with a model in which the AIL strongly interacts with the active site in an inhibitory fashion 292 

through a combination of lysine multivalency coupled with a high local concentration mediated by the 293 

position of the AIL. However, this model does not rule out the possibility that certain lysine residues may 294 

be more important for inhibition than others. 295 
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Cellular signaling initiates phosphorylation of TFs, such as IRF3 or STAT1, which results in their 296 

activation and dimerization. The activated dimeric TFs are in their DNA-binding competent conformation 297 

and can engage two copies of p300 in the nucleus. The likelihood of AIL disengagement from its 298 

inhibitory position in cis and capture in trans by a second p300 copy is increased when p300 is bound to 299 

activated dimeric TFs. Transient association of two p300 copies does not necessarily require precise 300 

stereospecific interactions between the structured domains as acetylation at multiple lysines in the AIL  301 

indicates a series of possible conformations in such associating dimers. We predict that regulated 302 

oligomerisation uncouples recruitment from HAT activation which could explain why not all CBP/p300 303 

recruitment events result in chromatin acetylation and gene activation13-18,37. 304 

It has been recently proposed that enhancer RNA (eRNA) interacts with the AIL to regulate CBP HAT 305 

activity38. We have attempted to reproduce these results using Klf6, one of the most potent eRNAs 306 

reported38. We could not detect p300 HAT activation using up to equimolar amounts of Klf6 (Extended 307 

Data Fig. 7a). We note that Bose et al. purify CBP in buffer containing EDTA, which is detrimental to the 308 

structure of CBP/p300 due to the presence of multiple zinc-binding domains39. Unfolded CBP/p300 have 309 

a high tendency to aggregate, and to form non-specific interactions39. Paradoxically, as the HAT domain 310 

is not affected, inclusion of EDTA can have an ‘activating’ effect in biochemical assays, apparently due 311 

to such non-specific aggregation (Extended Data Fig. 7b). The detrimental effects of EDTA on the 312 

structure and function of CBP/p300 need to be taken into account in the interpretation of such data. 313 

The ability of certain histone-modifying enzymes to bind to the PTM they generate has led to models 314 

where such enzymes might propagate modified chromatin domains by a positive-feedback loop40. 315 

According to this view histone PTMs and other chromatin modifications form an additional, DNA 316 

sequence-independent layer of the genome which is read out by enzymes that recognize these 317 

modifications to ‘epigenetically’ regulate genomic function40. An alternative view posits that histone 318 

PTMs ultimately depend on DNA sequence-dependent recruitment of chromatin modifiers and so do not 319 

necessarily form an independent ‘epigenetic’ layer of the genome8,41-43. The controversy has arisen 320 
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because it has been difficult to disentangle, for most chromatin regulators, the relative contributions of 321 

DNA targeting and histone PTM substrate engagement to the overall chromatin modification reaction. 322 

We show here that regulation of the p300 HAT activity is intricately linked to the activation and 323 

oligomerisation status of TF ligands and we therefore conclude that specificity for p300-mediated 324 

chromatin targeting and acetylation arises mainly through TF-mediated and DNA sequence-dependent 325 

genome targeting. How then does the BRP ‘PTM reader’ module contribute to p300 function? So far it 326 

has been difficult to determine its precise contribution: While it is clear that the Bd can engage acetylated 327 

histone peptides and bind to hyperacetylated chromatin29,44,45, deletion or mutation of the Bd has no 328 

apparent effect on substrate acetylation29,46, has only minimal effects in a hematopoiesis model system47, 329 

and Bd inhibition does not adversely affect genome targeting of CBP48. 330 

We favor the view that DNA binding provides the lead anchoring mechanism and that Bd substrate 331 

engagement contributes to signal maintenance: Local hyperacetylation increases the binding valency by 332 

allowing Bd substrate engagement, which further helps to compartmentalize the biochemical reaction and 333 

to contribute to signal maintenance through positive feedback45. Accordingly, p300 HAT activating 334 

mutants form biomolecular condensates in cells when transiently overexpressed (Fig. 4c, Extended Data 335 

Fig. 5d). Treatment with a HAT or Bd inhibitor greatly reduces condensate formation, indicating that 336 

hyperacetylation is critical in driving assembly, apparently due to increased binding valency involving 337 

Bd-substrate engagement. The formation of condensates, possibly through phase-separation, may provide 338 

a mechanism to enable signal integration on enhancers and transcriptional control as suggested 339 

previously49. We note that establishment and long-term maintenance of silenced chromatin by 340 

methyltransferases such as Suv39/Clr4 and PRC2 requires DNA sequence-specific recruitment and also 341 

does not seem to occur independently of DNA targeting50-52. It will be critical to disentangle cause-effect 342 

relationships of DNA targeting, chromatin modification and histone PTM substrate engagement of other 343 

chromatin regulators. 344 
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Data availability. Coordinates for the p300 core structure and BPΔR bound to a diacetylated histone H4 345 
peptide are available from the Protein Data Bank under accession number XXX and XXX, respectively. 346 
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 515 

Figure 1. Transcription factor dimerization enables activation of p300. (a) Domain structure of p300. 516 
Sequence conservation of the AIL is shown using WebLogo53. Constructs used are shown. (b) p300s was 517 
incubated for the indicated times in the presence or absence of inactive, monomeric IRF3 or TBK1-518 
phosphorylated, dimeric pIRF3. Samples were analyzed by SDS-PAGE followed by Coomassie staining 519 
and autoradiography. (c) Quantification of autoacetylation of p300s. (d) p300 is activated by TBK1-520 
mediated IRF3 phosphorylation. p300s was incubated with recombinant GST-STING, TBK1 and IRF3 in 521 
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the presence of ATP and [14C] acetyl-CoA. Top panel: Coomassie-stained SDS-PAGE gel. Middle panel: 522 
Analysis of IRF3 phosphorylation on S396 using immunoblotting. Bottom panel: autoradiography. (e) 523 
HAT scintillation proximity assay. 12.5 µM Histone H4 substrate peptide was incubated with 50 nM 524 
p300s in the presence (green) or absence (black) of 50 nM pIRF3 and varying concentrations of [3H] 525 
acetyl-CoA. The degree of Histone H4 substrate acetylation was quantified using scintillation counting. 526 
(f) As in panel B but using inactive, monomeric STAT1ΔN or activated, dimeric pSTAT1ΔN. Activated, 527 
dimeric pSTAT1ΔNC lacking the C-terminal TAD did not stimulate p300s autoacetylation. Samples were 528 
analyzed as in panel (B). (g) Quantification of autoacetylation of p300s. Intensity values were normalized 529 
by dividing by the maximum autoacetylation signal obtained after 60 minutes. Error bars shown in panels 530 
(c), (e) and (g): Three independent experiments were performed and the mean value and error bars 531 
representing the standard deviation are shown. Data analysis and plotting was done with Graphpad Prism 532 
7.0. 533 
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 535 

Figure 2: The structure of p300 adopts a AIL swap conformation. (a) Monomer I is surface rendered 536 
and monomer II is shown as a cartoon. The AIL loop from monomer II is shown in yellow. The AIL lies 537 
near the HAT substrate binding groove of monomer I. A disordered segment of the AIL is shown as a 538 
dotted line. (b) Close up view of the residues of the AIL loop from monomer II and residues of monomer 539 
I in the substrate binding pocket. (c) Binding of the positively charged AIL is mediated by interactions 540 
with negatively charged residues in the HAT binding pocket. 541 

 542 

 543 
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 544 

Figure 3: Structural rearrangement of the RING domain. (a) The RING domain (green) rotates ~39° 545 
resulting in a 22 Å displacement away from the active site. The rotation axis is indicated as a grey rod. (b) 546 
In the loop-swap conformation, residues in the RING-HAT interface are disrupted thus resulting in a 547 
more open HAT active site. Leu1182 is positioned 15Å away from the Lys-CoA inhibitor in the loop-548 
swap conformation (green) but within 5.5Å in the absence of the loop swap (magenta). (c) Repositioning 549 
of the RING domain allows the AIL from monomer II to approach the HAT active site of monomer I. (d) 550 
Details of the interaction surface of the AIL from monomer II with the RING domain of monomer I.  551 

 552 
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 554 

 555 

Figure 4: Regulation of HAT activity by flanking domains. (a) Indicated variants of p300 were 556 
transiently co-transfected with p53 in COS cells and samples analyzed by western blotting using the 557 
indicated antibodies. Bottom panel: quantification p300 K1499Ac signal. (b) Analysis of p53 acetylation. 558 
Bottom panel: quantification p53 acetylation signal. (c) H1299 cells were transfected with the indicated 559 
construct and analyzed by immunoflorescence using Anti-HA for p300 (green) and cell nuclei were 560 
stained with Hoechst (blue). Bottom panels: Cells were treated with the A-485 HAT or the CBP30 561 
Bromodomain inhibitor. Percentage of cells showing the indicated phenotype (n=200 cells) is indicated 562 
below each panel. Scale bar, 10 µm. 563 

 564 
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Figure 5. Acetylation of the AIL regulates dynamic interaction with the substrate binding pocket of 568 
p300. (a) Normalized distance between the AIL and residues in the inactive monomer. Inter-residue 569 
distances are normalized by the distances expected if the AIL behaved as a self-avoiding random coil. 570 
Electrostatic interaction mediated by conserved lysine residues between K1542 and K1560 of the AIL and 571 
aspartic/glutamic acid residues around the active site of the HAT domain, as shown by the residues 572 
highlighted (E1334, E1351, E1442, D1444, E1505, D1622, D1625, and D1628). The extensive contacts 573 
between the AIL and the RING domain originates in part from the RING domain’s proximity to the AIL 574 
in its inactive conformation. (b) Normalized distance between the AIL and all residues in the active 575 
(acetylated) monomer. After acetylation, lysine-mediated electrostatic interactions are lost. (c) 576 
Representative conformations with the AIL shown as an ensemble for the inactive deacetylated monomer 577 
(left) and the active acetylated monomer (right). The Cα atoms of residues in the AIL are colored 578 
according to charge: blue (positive), red (negative) and green (non-charged). The HAT substrate-binding 579 
groove is more exposed in the active acetylated state, due to both the relative position of the RING 580 
domain and the lack of preferential interactions by the AIL. (d) Inter-molecular interactions in the loop-581 
swapped dimer between the AIL of one HAT and the adjacent subunit of the other. The adjacent subunit 582 
is either in the active (top) and inactive (bottom) conformation. In the active state, the AIL is able to 583 
directly engage with residues E1442 and E1444 from the adjacent HAT substrate binding groove, 584 
suggesting the position of the RING domain has a steric impact on the accessibility of the AIL. (e) 585 
Simulations of the AIL in context of the loop-swapped dimer. Left panel: Cartoon of the trajectory of the 586 
AIL (dashed line). Right panel: Representative conformations with the AIL Cα backbone atoms are 587 
colored according to charge as in panel (B). 588 

  589 



 29 

 590 

Figure 6: Molecular model for p300 activation and DNA targeting. (a) p300 is maintained in the 591 
inactive state by deacetylases such as SIRT2. IRF3 is autoinhibited by a C-terminal segment in the IAD 592 
domain. (b) TBK1 phosphorylation activates and dimerizes IRF3. The activated IRF3 dimer engages the 593 
IBID domain of p300. (c) Recruitment of two copies of p300 results in trans-autoacetylation in the AIL 594 
loop and HAT activation. (d) Activated p300 can acetylate chromatin and engage acetylated substrates 595 
via the Bd.  596 
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 598 

Table 1: Summary of SEC-MALLS and mass spectrometry experiments 599 

Sample MMMS  

Da 

MMth  

Da 

Acetylation 

level 

MMSLS  

Da (2 mg·ml-1) 

BRP_HAT 73538 73538 ~0 73380 ±1.5% 

BRP_HAT Acetyl 73918 73538 >8 71690 ±1.6% 

BRP_HAT_CH3 92893 92891 ~0 92810 ±2.0% 

BRP_HAT_CH3 Acetyl 93270 92891 >9 90700 ±2.0% 

BRP_HAT_CH3 ΔΑΙL 86363 86362 ~0 84650 ±2.2% 

BRP_HAT_CH3 ΔΑΙL Acetyl 86446 86362 >2 80450 ±1.7% 

Column labeling: Molar masses determined by Mass spectrometry (MMMS), MMth the theoretical molar 600 
mass calculated from the appropriate primary sequences. Acetylation levels were estimated based on the 601 
mass differences as compared to the non-acetylated sample. MMSLS (Molar masses determined by SEC-602 
MALLS) at a concentration of 2 mg·ml-1. All p300 constructs contained the mutation Y1467F. The errors 603 
reported for SEC-MALLS are the residual standard deviations of the observed data from the fitted values 604 
calculated using Astra. 605 

  606 
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Methods 607 

Constructs 608 

For cell-free protein expression, cDNA of p300 (NCBI reference sequence: NM_001429.3) variants were 609 

cloned into the pIVEX2.4d vector (Roche) with a N-terminal 6x His tag and a C-terminal FLAG tag. In 610 

the ΔR constructs, the RING domain encompassing residues 1169–1241 was replaced by Glycine amino 611 

acid residue linker. In the ΔAIL constructs, loop amino acid residues comprising residues 1520–1581 612 

were replaced by the flexible linker sequence SGGSG. For E.coli expression, cDNA encoding residues 613 

1048-1282, for the BRP or BPΔR were cloned into the vector pETM-33 (EMBL) with a TEV cleavable 614 

N-terminal glutathione S-transferase (GST) tag. p300 BRP_HAT variants were cloned into pFASTBAC1 615 

(Thermo Fisher) and expressed in insect cells as shown earlier29. p300s constructs, spanning amino acid 616 

residues 324-2414, were cloned into pFASTBAC1 vector with an N-terminal FLAG tag. HA-tagged full-617 

length p300 variants were cloned into pcDNA3.1 (Thermo Fisher). Point mutations were introduced by 618 

QuikChange mutagenesis (Agilent). Point mutations and nucleotide deletions carried out in p300FL (1-619 

2414) or p300s (324-2094) were done through transfer vectors as described previously29. STAT1ΔN 620 

(136-748), STAT1ΔNC (136-713) and IRF3ΔC (1-382) with a C-terminal intein tag were cloned into the 621 

pTXB1 vector (New England Biolabs) using the restriction enzymes NdeI (STAT1) or NcoI (IRF3) and 622 

SpeI. IRF3 (1-427) with an N-terminal His-tag cleavable by TEV protease was cloned using the 623 

restriction enzymes NcoI and XhoI into the vector pETM-11 (EMBL). All constructs were confirmed by 624 

DNA sequencing. 625 

 626 

Expression and Purification 627 

Expression and purification of FLAG-tagged p300s constructs was done as described previously2. This 628 

method allows purification of p300s variants that are already preacetylated. Expression and purification of 629 

p300 BPR_HAT and SIRT2 were done as described in29. TBK1 was expressed in insect cells and purified 630 
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as described previously21. Cell-free protein synthesis was done in a 50 µL reaction volume. Briefly, 10 µg 631 

mL-1 of His-p300 variants in pIVEX2.4d were added to a reaction mixture containing 1 mM amino acid 632 

mix, 0.8 mM rNTPs (guanosine-, uracil-, and cytidine- 5’ triphosphate ribonucleotides), 1.2 mM 633 

adenosine 5’-triphosphate, 55 mM HEPES, pH 7.5, 68 µM folinic acid, 0.64 mM cyclic adenosine 634 

monophosphate, 3.4 mM dithiothreitol, 27.5 mM ammonium acetate, 2 mM spermidine, 5 µM ZnCl2, 80 635 

mM creatine phosphate, 208 mM potassium glutamate, 16 mM magnesium acetate, 250 µg mL-1 creatine 636 

kinase, 27 µg mL-1 T7 RNA polymerase, 0.175 µg mL-1 tRNA, and 67 µL mL-1 S30 E. coli bacterial 637 

extract. Incubation was carried out at 22 °C with agitation for 16 h. Proteins were purified using Ni-NTA 638 

chromatography (IMAC Sepharose 6 FF, GE healthcare) in buffer 1 (20 mM TRIS, pH 8.0, 300 mM 639 

NaCl, 1 mM DTT, 5 µM ZnCl2) containing Complete Protease Inhibitors EDTA-Free (Roche). The resin 640 

was washed with 20 CV of buffer 1 and the protein eluted with 5 CV buffer 1 containing 300 mM 641 

Imidazole. The protein was concentrated in a prewashed Amicon Ultra 0.5 ml Ultracel 10K Centrifugal 642 

filter (Molecular weight cut off = 10kDa; EMD Millipore). The protein was buffer exchanged into buffer 643 

1 using 0.5 ml Zeba Spin desalting columns (Molecular weight cut off = 7kDa; Thermo Scientific), flash 644 

frozen in liquid N2 and stored at -80 °C. 645 

For expression of GST-BRP and GST- BPΔR fusion proteins in E. coli BL21 (DE3), LB medium 646 

enriched with 100 µM ZnCl2 was used. Cell pellets were resuspended in buffer 1 containing Complete 647 

Protease Inhibitors EDTA-Free (Roche) and lysed by using a Microfluidizer (Microfluidics Corp., MA, 648 

USA). The lysate was clarified by centrifugation for 30 minutes at 39,000 g in a JA-25.5 rotor (Beckman) 649 

and applied to a Glutathione Sepharose 4 Fast Flow resin according to instructions by the manufacturer 650 

(GE Healthcare). The resin was washed with buffer 1 and incubated with His-tagged TEV protease (1:100 651 

w/w) for 14-16 h at 4°C. Subtractive Ni-NTA chromatography (IMAC Sepharose 6 FF, GE Healthcare) 652 

was then employed to remove the residual His-tag and TEV protease. The untagged protein was further 653 

purified by gel filtration on a High Load 16/60 Superdex 75 column (GE Healthcare) equilibrated in 20 654 

mM HEPES, pH 7.5, 300 mM NaCl, 0.5 mM TCEP and 5 µM ZnCl2. The final protein was concentrated 655 
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to 15 mg/ml in a prewashed Amicon Ultra-15 Centrifugal filter (Molecular weight cut off = 10kDa; EMD 656 

Millipore), flash frozen in liquid N2 and stored at -80 °C. 657 

The expression and purification of non-phosphorylated STAT1 variants (STAT1ΔN, STAT1ΔNC) and 658 

IRF3ΔC (1-382) was done in E.coli using the IMPACT expression system (New England Biolabs). For 659 

the expression of Y701 phosphorylated variants (pSTAT1ΔN, pSTAT1ΔNC), proteins were co-expressed 660 

with Elk receptor tyrosine kinase domain in E.coli BL21(DE3) TKB1 cells (Agilent). Cells were 661 

harvested by centrifugation and resuspended in buffer 2 (20 mM HEPES pH 7.5, 500 mM NaCl). The 662 

cells were lysed in a microfluidiser (Microfluidics Corp., MA, USA) and the soluble fraction was 663 

obtained by centrifugation for 30 minutes at 39,000 g in a JA-25.5 rotor (Beckman). The supernatant was 664 

first passed over chitin beads (New England Biolabs) and washed with buffer 2 for 10 column volumes. 665 

The protein was cleaved at 4°C for 16h in buffer 2 containing 50 mM DTT, eluted and further purified by 666 

gel filtration on a High Load 16/60 Superdex 200 column (GE Healthcare) equilibrated in buffer 2. 667 

GST-STING, comprising the soluble cytoplasmic domain spanning amino acids 138-378, was expressed 668 

in E.coli BL21(DE3) at 37°C for 3 h. The cells were harvested by centrifugation and resuspended in 669 

buffer 3 (20 mM TRIS, pH 8.0, 300 mM NaCl, 1 mM DTT) containing Complete Protease Inhibitors 670 

EDTA-Free (Roche). The cells were lysed in a microfluidiser (Microfluidics Corp., MA, USA) and the 671 

soluble fraction was obtained by centrifugation as above. The supernatant was passed over equilibrated 672 

Glutathione Sepharose 4 Fast Flow resin according to instructions by the manufacturer (GE Healthcare). 673 

The resin was washed with buffer 3 and eluted with 10 mM reduced Glutathion in buffer 3. The protein 674 

was further purified by gel filtration on a High Load 16/60 Superdex 200 column (GE Healthcare) 675 

equilibrated in 20 mM HEPES, pH 7.5, 300 mM NaCl, 0.5 mM TCEP. The final protein was concentrated 676 

to 16 mg/ml in a prewashed Amicon Ultra-15 Centrifugal filter (Molecular weight cut off = 30 kDa; EMD 677 

Millipore), flash frozen in liquid N2 and stored at -80 °C. 678 
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IRF3 was expressed in E.coli BL21(DE3) at 18°C for 16 h. The cells were harvested by centrifugation 679 

and resuspended in buffer 2 containing 10 mM imidazole. The cells were lysed in a microfluidiser 680 

(Microfluidics Corp., MA, USA) and the soluble fraction was obtained by centrifugation as above. The 681 

supernatant was passed over Ni2+–conjugated IMAC sepharose resin (GE Healthcare) and washed with 682 

buffer 2 containing 20 mM imidazole. The protein was eluted in buffer 2 containing 500 mM imidazole 683 

and was further purified by gel filtration on a High Load 16/60 Superdex 200 column in buffer 2 684 

containing 0.5 mM TCEP. IRF3 was phosphorylated in vitro at a 1:10 molar ratio TBK1:IRF3 (1mg/ml) 685 

in presence of 5 mM MgCl2 and 1 mM ATP. The reaction was incubated at 30°C for 1h and then for an 686 

additional 10h at 21°C. Phosphorylated IRF3 was further purified by size exclusion chromatography on a 687 

Superdex S200 16/60 column (GE Healthcare) in 20 mM HEPES, pH 7.5, 300 mM NaCl, 0.5 mM TCEP. 688 

The production of recombinant histones was done following standard procedures54. 689 

 690 

Crystallization and structure determination 691 

The p300 BRP_HAT construct comprising the AIL and the mutation Y1467F was deacetylated as done 692 

previously29. The protein at 4.5 mg ml-1 was incubated with a three-fold molar excess of the bi-substrate 693 

inhibitor Lys-CoA34 prior to crystallization. Crystals in the P21 space group were grown by hanging-drop 694 

vapor diffusion at 4 °C by mixing equal volumes of protein and crystallization solution containing 100 695 

mM HEPES, pH 7.5, 18-22% polyethylene glycol 3350, 0.2 M NaCl. Crystals were cryoprotected in 20-696 

25% ethylene glycol and drop frozen in liquid nitrogen. We collected native diffraction data to a 697 

minimum Bragg spacing of 3.1 Å resolution at the ESRF on beamline ID29 under a nitrogen gas stream at 698 

100 K, at a wavelength of 1.282 Å. We processed the data with XDS (Extended Data Table 1). The 699 

structure of the p300 BRP_HAT was determined by molecular replacement using Phaser. There are four 700 

copies in the asymmetric unit and the RING domains were initially not visible in the electron density map 701 

and are partially disordered. Inspection of an anomalous difference map indicated peak density for the 702 
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zinc ions and allowed positioning of the RING domain in the outward rotated conformation. A final 703 

model was produced by iterative rounds of manual model building in Coot and refinement using 704 

PHENIX. The final model contains residues 1045 -1664 with a deletion of residues 1534-1567 and was 705 

refined to a 3.1 Å resolution with an Rwork and an Rfree of 19% and 26%, respectively (Extended Data 706 

Table 1). Analysis of the refined structure by MolProbity showed that there are no residues in disallowed 707 

regions of the Ramachandran plot. The MolProbity all atom clash score was 1.91, placing the structure in 708 

the 100th percentile among structures refined at 3.1 Å resolution (N=2108). 709 

The BPΔR construct at 15 mg ml-1 was mixed with 2 mM of a 11-mer histone peptide H4 (10-20) 710 

GLGKacGGAKacRHR (only the underlined amino acid sequence is visible in the electron density map) 711 

containing two acetylated Lysine residues at positions K12 and K16 (H4K12K16). Crystals in the P212121 712 

space group were grown by hanging-drop vapor diffusion at 21°C by mixing equal volumes of protein 713 

and crystallization solution containing 1.6 M Ammonium Sulfate, 100 mM Bicine, pH 9.0. Crystals were 714 

cryoprotected in 20% ethylene glycol and drop frozen in liquid nitrogen. We collected native diffraction 715 

data to a minimum Bragg spacing of 2.5Å resolution at the ESRF on beamline ID29 under a nitrogen gas 716 

stream at 100K, at a wavelength of 1.0Å (Extended Data Table 1). Data processing, molecular 717 

replacement and refinement were done as indicated above. The final model contains two copies of the 718 

BPΔR module corresponding to residues 1049 -1279 of p300 in the asymmetric unit. As expected, 719 

replacement of the RING domain residues 1169-1241 by a single Glycine amino acid linker did not 720 

adversely affect the remainder of the BP module. Analysis of the refined structure by MolProbity showed 721 

that there are no residues in disallowed regions of the Ramachandran plot. The MolProbity all atom clash 722 

score was 0.97 placing the structure in the 100th percentile (N=6960). 723 

 724 

Monte Carlo simulations 725 
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All-atom Monte Carlo simulations were performed using ABSINTH implicit solvent model and version 2 726 

of the CAMPARI Monte Carlo simulation engine (http://campari.sourceforge.net)33. The initial AIL loop 727 

was constructed using MODELLER, and the complete set of backbone and side chain torsional angles 728 

were sampled for the AIL for which electron density was missing. Simulation analysis was performed 729 

with MDTraj and CTraj (http://pappulab.wustl.edu/CTraj.html)55. The backbone degrees of freedom of 730 

the folded domains were not sampled, while all amino acid side chains were fully sampledCAMPARI 731 

simulations explore conformational space through perturbation to the torsional angles (as opposed to 732 

Cartesian positions, as is typical for molecular dynamics). Consequently, a fully closed loop represents a 733 

major sampling challenge. To address this, we severed the covalent backbone bond between the N-734 

terminal part of the AIL loop and the folded domain, and replaced this bond with a strong harmonic 735 

potential that recapitulates the distances constraint associated with the covalent bond. This allows moves 736 

to fully rotate the chain and dramatically improves the efficiency of conformational sampling. 737 

We generated 5000 independent non-overlapping starting configurations and used a clustering approach 738 

to identify the most distinct 200 conformations. These were used as the starting conformations for full 739 

simulations. We ran 200 independent simulations of the deacetylated and acetylated p300 in the 740 

monomeric form, and 200 independent simulations of the loop-swapped p300 dimer in the active and 741 

inactive form (800 simulations total). Analysis was performed after an initial equilibration. Dimer 742 

simulations applied a harmonic potential between residue 1550 from the AIL and residue 1442 from the 743 

other monomer to maintain the AIL in the active site. This allowed us to directly compare active site 744 

accessibility of the AIL. For monomer simulations, no restraints were applied. 745 

Each residue on the folded structure was evaluated for contacts with any residue in the AIL, and these 746 

contacts were summed to give an effective contact score. In this manner, the residues on the folded 747 

structure that most frequently interacted with any residue on the AIL were directly identified. Interaction 748 

was primarily of electrostatic nature, with residues E1334, E1444, E1505, D1622, D1625 and D1628 749 

engaging in direct interactions. There are also extensive interactions between the AIL and the RING 750 
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domain, although we cannot rule out that these interactions are driven by the harmonic applied to pull 751 

E1442 towards the active site. As might be expected, the AIL-RING interactions differed between the 752 

active and inactive conformation. 753 

To assess interactions between the AIL and the folded domains in the monomer simulations scaling map 754 

analysis was performed. In this analysis, a simulation of the AIL as a true self-avoid random coil is 755 

performed to generate a reference state, and then the mean inter-residue distances obtained in the full 756 

simulations are normalized by the distances obtained from this reference. The self-avoiding random coil 757 

simulations are performed using an identical protocol to the full simulations, with the notable exception 758 

that all attractive interactions between atoms or solvation effects, instead using only the repulsive part of 759 

the Lennard-Jones potential. This ensures we generate a sequence and structure-specific self-avoiding 760 

random coil ensemble that provides a true reference state. Extensive details on the technical aspects 761 

associated with the generation of this reference state have been described previously56. The scaling maps 762 

allow us to easily identify local regions that engage in interactions that cause deviations from self-763 

avoiding random coil behavior. 764 

 765 

HAT assays 766 

The standard autoacetylation HAT assay was done using 14C-acetyl-CoA (Perkin-Elmer). Autoacetylation 767 

of p300 was quantified by autoradiography after SDS-PAGE gel analysis. The p300s preparations were 768 

equilibrated in 1x HAT buffer (25 mM TRIS-HCl, pH 7.5, 100 mM NaCl, 1 mM DTT, 10% glycerol and 769 

1x Complete EDTA-free protease inhibitor (Roche)) for 10 min at 30°C prior to initiation of the reaction 770 

by the addition of 200 µM 14C-acetyl-CoA for the indicated time points. For experiments containing IRF3 771 

STAT1 or the eRNA Klf6, autoacetylation assays were performed at a fixed equimolar concentration (2 772 

µM) of p300s and the indicated TF or Klf6. Assays were performed in triplicates with different batches of 773 

proteins and on different days. At the indicated time point, 5 µl of the reaction was quenched by addition 774 
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of 5 µl of 2x SDS gel loading buffer followed by analysis on a 4-20% SDS-PAGE gel. Experiments 775 

shown in Fig. 1d were done in 1x kinase buffer (20 mM HEPES, pH 7.5, 250 mM NaCl, 20 mM β-776 

glycerol phosphate, 1 mM sodium vanadate, 10 mM MgCl2, 1 mM DTT, 1 mM ATP and a mix of 20 µM 777 

[14C] acetyl-CoA and 80 µM cold acetyl-CoA (A2056, Sigma). 1 µM of p300s was incubated in the 778 

presence or absence of 1 µM IRF3, 2 µM TBK1 and 1 µM STING (lanes 1-6) or increasing amounts of 779 

STING as indicated (lanes 7-12). The gels analyzed by western blotting as indicated below or were fixed 780 

for 30 min in a solution containing 3% glycerol, 10% glacial acetic acid, 20% ethanol (v/v/v) in water. 781 

The gels soaked for 5 min in a solution containing 1% glycerol, 5% PEG8000 in water and were dried for 782 

30 min using a Bio-Rad Gel Dryer and the radioactivity quantified on a phosphorimage analyser 783 

(Typhoon, GE Healthcare) followed by analysis using imageJ 1.8.0_11257. 784 

A p300 HAT scintillation proximity assay (SPA) was designed similar to that described previously22. 785 

Briefly, as a substrate we used a synthetic histone H4 peptide containing 15 amino acids derived from the 786 

N-terminus of human H4 that was chemically attached to biotin with an amino hexanoic linker (Biotin-787 

C6- GRGKGGKGLGKGGAK) (from peptid.de). The synthetic peptide was re-suspended in water and 788 

adjusted to pH 7.0 with concentrated NaOH.  789 

A typical reaction contained p300s (50 nM), 12.5 µΜ biotinylated H4 peptide, acetyl-CoA (0.1 µΜ to 10 790 

µΜ set at ~10x apparent Km) in 20 mM Tris-HCl, pH 8.0, 150 mM NaCl, 5 µM ZnCl2, 0.01% Tween-20, 791 

0.1% BSA (w/v). For reactions containing pIRF3, 50 nM was added. 20µl of a 2x reaction mixture 792 

containing p300s, H4 peptide with and without pIRF3 was preincubated at 30°C for 5 min. The reaction 793 

was initiated by the addition of 20 µl of 2x acetyl-CoA containing a 1:3 mix of Tritiated [3H] acetyl-CoA 794 

(PerkinElmer; NET290050UC) with cold acetyl-CoA. Eg. for 10 µM final acetyl-CoA concentration, a 795 

mix of 5 µM [3H] acetyl-CoA and 15 µM cold acetyl-CoA (A2056, Sigma) was used. The reaction was 796 

quenched at the indicated time points by delivering 40 µl of the reaction mix into 120µl of 0.5N HCl in a 797 

FlashPlate Plus Streptavidin 96-well scintillant coated microplate (Perkin Elmer, SMP103001PK). The 798 
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plate was incubated for 1h, and light emission was counted in a MicroBeta2 Scintillation Counter (Perkin 799 

Elmer) at 1 minute per well in the top count mode. Counts per minute (cpm) were plotted against acetyl-800 

CoA concentration. Typical progress curves are shown in Extended Data Fig.1d. The initial rate was 801 

estimated by linear regression during the first 10 minutes of the reaction and plotted against acetyl-CoA 802 

concentration. All data were analyzed using GraphPad Prism 7.0.  803 

For results shown in Fig. 4, acetylation reactions, were performed in acetylation reaction buffer HAT (25 804 

mM TRIS-HCl, pH 7.5, 100 mM NaCl, 0.1 mM EDTA, 1 mM DTT, 10 % glycerol and 1× Complete 805 

EDTA-free protease inhibitor (Roche)) with 50 µM Acetyl CoA (Sigma), 100 ng/ml TSA and 2 µg of 806 

purified histone octamer. Reactions were incubated 30 min at 30 °C and stopped by addition of 3x SDS 807 

gel loading buffer, then used for Coomassie staining and Immunoblotting. 808 

 809 

Multi angle laser light scattering-size exclusion chromatography. 810 

Prior to SEC-MALLS runs, p300 variants were acetylated and deacetylated using p300 HAT or SIRT2 as 811 

described previously29. The reactions were analyzed by liquid chromatography-mass spectrometry (LC-812 

MS) as done previously58. Size-exclusion chromatography was performed at a flow rate of 0.5 ml min-1 on 813 

a Superdex 200 Increase 10/300 GL column equilibrated in SEC-MALLS buffer (20 mM HEPES, 814 

300mM NaCl, 5µM ZnCl2, 0.5mM TCEP) at 21 °C. A 50 µl sample of p300 at 2 mg ml-1 was injected 815 

onto the column and multi angle laser light scattering was recorded with a laser emitting at 690 nm using 816 

a DAWN-EOS detector (Wyatt TechnologyCorp. Santa Barbara, CA). The refractive index was measured 817 

using a RI2000 detector (Schambeck SFD). The molecular weight was calculated form differential 818 

refractive index measurements across the center of the elution peaks using the Debye model for protein 819 

using ASTRA software version 6.0.5.3. 820 

 821 
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In vitro eRNA transcription 822 

eKlf6 eRNA corresponding to 496 nucleotides of the sense strand of human chr13:5802100-580259638, 823 

was produced by in vitro transcription from a pMA plasmid containing a eKlf6 insert synthesized by 824 

GeneArt Gene Synthesis (Thermo Fisher). 50 µg of pMA_Klf6 plasmid was linearized with 80 U of 825 

KpnI-HF in a final volume of 100 µl and incubated at 37 °C for 14-16h. The in vitro transcription reaction 826 

was done in a final volume of 1 ml, using 1x T7 buffer , T7 RNA Polymerase and 1 U of RNaseOUT 827 

Recombinant Ribonuclease Inhibitor (Thermo Fisher). After incubation for 2 h at 37°C, 0.5 U of 828 

TURBO™ DNase (2 U/µl) (Thermo Fisher) and 1µM CaCl2 was added to the reaction and incubated for 829 

30 min at 37 °C. Following DNase treatment, 2 µl of a 30 mg/ml stock of proteinase K powder (Thermo 830 

Fisher), dissolved in proteinase K buffer (10 mM TRIS pH 7.5, 1 mM CaCl2, 40% Glycerol), was added 831 

and incubated for 45 min at 37 °C. Buffer was exchanged into 20 mM HEPES, pH 7.5, 300 mM NaCl, 832 

0.5 mM TCEP using Amicon Ultra-0.5ml Centrifugal Filters (Molecular weight cut off = 3kDa; EMD 833 

Millipore). To further purify the RNA, 3 volumes of TRIzol (Thermo Fisher) was added to the RNA 834 

sample, followed by isopropanol precipitation. Purified eKfl6 RNA was resuspended in 20 mM HEPES, 835 

pH 7.5, 300 mM NaCl, 0.5mM TCEP. RNA was quantified using a Nanodrop spectrophotometer 836 

(Thermo Fisher). The quality of Klf6 was assed by agarose gel electrophoresis in 1x TBE buffer or using 837 

denaturing 6M Urea 14% PAGE (Extended Data Fig. 7c). 838 

 839 

Immunoblotting, Immunofluorescence and antibodies 840 

For immunoblotting, proteins were separated on 4–12% Bis-Tris SDS-PAGE gel (NuPAGE precast gel, 841 

Thermo Fisher) and transferred onto a nitrocellulose membrane (Hybond C+, GE Healthcare). 842 

Membranes were blocked with 5% skim milk in PBST buffer (PBS, 0.1% Tween-20) and probed with 843 

anti–p300 K1499ac rabbit polyclonal antibody (1:2,500 dilution; Cell Signaling, 4771), anti-Kac rabbit 844 

polyclonal antibody (1:2,500 dilution; Cell Signaling, 9441), anti-Flag mouse monoclonal antibody 845 
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(1:2,500 dilution; Sigma, F1804), anti-HA rabbit polyclonal antibody (1:2500 dilution, Abcam, ab9110). 846 

For the detection of STAT1 or IRF3 phosphorylation, the membrane was blocked with 5% milk in PBST 847 

followed by overnight incubation at 4 °C with anti-phospho-Stat1 (Tyr701) Rabbit monoclonal antibody 848 

(1:2,500 dilution; Cell Signaling #9171) in PBST buffer containing 5% bovine serum albumin (BSA). For 849 

detection of IRF3 S396 phosphorylation, we used anti-phospho IRF3 S396 Rabbit monoclonal antibody 850 

(1:2.500 dilution; Cell Signaling #4947). Incubations were done as above. Membranes were washed 851 

extensively in PBST buffer before and after incubation with anti-rabbit or anti mouse HRP-conjugated 852 

secondary antibody (1:10,000 dilution; GE Healthcare, NA934 or NA931), and protein bands were 853 

visualized on film after the ECL reaction (ECL Prime, GE Healthcare). Immunofluorescence was done as 854 

described previously29 or as follows: 24h post-transfection, cells were treated with a DMSO control or 855 

with 2.5µM (final concentration) of HAT inhibitor A-485 (Phil Cole, Harvard Medical School) or 856 

CBP/p300 Bromodomain inhibitor (CBP30, Sigma # SML1133) dissolved in DMSO. The final DMSO 857 

concentration in all assays was 0.25%. After 24h, Cells were rinsed once with RNase-free PBS 1X. Next, 858 

cells were permeabilized in freshly made 0.2% Triton (SIGMA) buffer for 5 min and were then fixed in 859 

freshly made 4% formalin solution (SIGMA) for 10 min at room temperature. After three washes in 860 

RNase-free 1x PBS at room temperature, the cells were incubated in 5% skim milk in 1x PBS for 30 min 861 

and then probed with anti-HA high-affinity monoclonal antibody (1:100 dilution; Roche Applied Science, 862 

cat N°:11867423001) overnight at 4°C. Cells were washed extensively with 1x PBS before and after 863 

incubation with Alexa Fluor 488-conjugated secondary antibody (1:500 dilution; Invitrogen, Cat N°:A-864 

11006) for 1h at 37°C. Cells were counterstained with Hoechst (250ng ml-1) and examined under a 865 

confocal laser scanning microscope (LSM510, Zeiss). 866 


