N

N
N

HAL

open science

Evaluation of Arguments in Weighted Bipolar Graphs 1

Leila Amgoud, Jonathan Ben-Naim

» To cite this version:

Leila Amgoud, Jonathan Ben-Naim. FEvaluation of Arguments in Weighted Bipolar Graphs 1. In-
ternational Journal of Approximate Reasoning, 2018, 99, pp.39-55. 10.1016/j.ijar.2018.05.004 . hal-

02325836

HAL Id: hal-02325836
https://hal.science/hal-02325836
Submitted on 22 Oct 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-02325836
https://hal.archives-ouvertes.fr

Evaluation of Arguments in Weighted Bipolar Graphs

Leila Amgoud Jonathan Ben-Naim
CNRS - IRIT
118, route de Narbonne, 31062, Toulouse — France
amgoud@irit.fr bennaim@irit.fr

Abstract

The paper tackled the issue of arguments evaluatioveighted bipolar argumen-
tation graphg(i.e., graphs whose arguments have basic strengths, antiertath

supported and attacked). We introduce principles that atuation method (or
semantics) could satisfy. Such principles are very usefuluhderstanding the
foundations of semantics, judging them, and comparing séosa We then an-
alyze existing semantics on the basis of our principles,fenradly propose a new
semantics for the class of acyclic graphs. We show thati#ifees all the principles.

Keywords: Argumentation, Weighted Bipolar Graphs, Semantics.

1. Introduction

Argumentationis a form of common-sense reasoning consisting of the justifi
cation of claims by arguments. An argument is made of a sptavhiseqcalled
reason), aonclusion(the justified claim), and the two are related with a link. An
argument has also generally a basic strength which mayseprelifferent issues
like the certainty degree of its premises [2], the strendtitsdink [3], the impor-
tance of values supported by the argument [4], or the trusiiweess of the source
providing the argument [5].

Despite its explanatory power, an argument does not guedhe validity of
its conclusion. Indeed, its premises may be wrong, its liry ine flawed, and in
some cases the premises may be irrelevant to the concluSioese flaws of an
argument may themselves be supported by arguments, whickean as attack-
ers of the original one. An argument may also be supportedtgr @rguments,
which endorse either its premises, its conclusion, orrits [T his leads taveighted

This paper extends the content of the conference paper [1].
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bipolar argumentation graphs.e., graphs whose nodes represent arguments with
numerical basic strengths, and edges represent attackippdrsrelationships be-
tween pairs of arguments.

An evaluation of the overall strength of each argument isiaffor deciding

whether or not one may rely on the argument’s conclusionn®fiag Dung was
the first to investigate in [6] this evaluation issue. He foadi on a simple input; a
set of arguments, having all the same basic strength, anideak aelation between
pairs of arguments. Leaving the origin and the nature ofragnts/attacks unspec-
ified, Dung proposed several semantics specifying whichafeirguments (called
extensions) are acceptable. Such graphs may have zermrasveral extensions.
A single qualitative statuss then assigned to each argument as follows: an argu-
ment isacceptedf it belongs to all extensions, andjectedotherwise. This status
represents theverall strengthof the argument.
This seminal paper has led to substantial work either ongsiog new alternative
semantics dealing with the same input (eg., [7, 8]), or oerding Dung’s se-
mantics for dealing with richer input, i.e., previous flahghs with one of the fol-
lowing features: preferences between arguments (or bisiogshs of arguments)
[3, 4, 9], weights on attacks [10, 11, 12], or support relatietween arguments
[13, 14, 15, 16, 17, 18]. To the best of our knowledge ther@®isxtension seman-
tics dealing with weighted bipolar argumentation graphs.

More recently, another family of semantics, called weidgtgemantics, is gain-
ing interest (e.g., [5, 19, 20, 21]). These semantics focuthe evaluation of in-
dividual arguments rather than sets of arguments. Furibrernunlike extension-
based semantics which assign a qualitative overall stnefagicepted, rejected) to
each argument, they assign a numerical value to each argufAerlly, instead
of a coarse classification of arguments as accepted/rdjeateighted semantics
allow fine-grained classifications. Most existing semantieal only withunipolar
graphs (i.e., graphs that consider either attack relatigupport one but not both).
Two notable exceptions are QUAD semantics [22] and DF-Qu23).[In [24] the
authors discussed advantages of weighted semantics imfchgmlar argumenta-
tion graphs, but they did not propose concrete semantics.

While there is a consensus in the argumentation communith@mole of at-
tackers and how they should be taken into account in the a&tiatuof individual
arguments, the situation is less clear for supporters. eleiddifferent interpreta-
tions are given to support relation (deductive [17], eviokefiL5], necessary [18]),
leading to semantics which may return completely differdluations of argu-
ments of the same graph. This complicates the comparisorisifrey semantics
for weighted bipolar graphs. Another source of difficultythe absence of formal
principles that guide the well-definition and formal compans of semantics.

This paper focuses on the evaluation of arguments in weighitgolar argu-
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mentation graphs. It extends our previous works on axianfatindations of se-
mantics for unipolar graphs (support graphs [25] and attgakhs [26]). It defines
principles that a semantics would satisfy in a bipolar sgttiSuch principles are
very useful for judging and understanding the underpinsioigsemantics, and also
for comparing semantics of the same family, and those ofwdfft families. Some
of the proposed principles are simple combinations of thweposed in [25, 26].
Others are new and show how support and attack might be aggregThe sec-
ond contribution of the paper consists of analyzing exjsamantics against the
principles. The main conclusion is that extension semautticnot harness the po-
tential of support relation. Indeed, when the attack retats empty, the existing
semantics declare all (supported, non-supported) argisnoém graph as equally
accepted. Weighted semantics take into account suppantdhis particular case,
however they violate some key principles. The third contitin of the paper is the
definition of a novel weighted semantics for the sub-clagggtlic bipolar graphs.
We show that it satisfies all the proposed principles. Funtloee, it avoids théig
jump problem that may impede the relevance of existing weighédasitics for
practical applications, like dialogue.

The paper is structured as follows: Section 2 introducek lmations, Section
3 presents our list of principles, Section 4 analyses exjstemantics, and Section
5 introduces our new semantics and discusses its properties

2. Main concepts

This section introduces the main concepts of the paper. $&egin with the
useful notion of weightings.

Definition 1 (Weighting). A weightingon a setX is a function fromX to [0, 1].

Next, we introduce the argumentation graphs (called fraonkesvin the litera-
ture) we are interested in, namely weighted bipolar arguatiem graphs (WBAGS).

Definition 2 (WBAG). Aweighted bipolar argumentation grapBAG) is a quadru-
ple A = (A, w,R,S), where A is a finite set of arguments; a weighting on4,
RCAx A andS C A x A. LetwBAG denote the set of all possible wBAGs.

Given two arguments andb, aRb (resp. aSb) meansa attacks(resp. sup-
ports) b, andw(a) is the basic strengthof a. The latter may represent various
issues like the certainty degree of the argument’s premisestworthiness of the
argument’s source,, ..



We turn to the core concept of the paper. A semantics is aiumttinsforming
any weighted bipolar argumentation graph into a weightm¢ghe set of arguments.
The weight of an argument given by a semantics represerusetsil strength It
is obtained from the aggregation of its basic strength aadtterall strengths of
its attackers and supporters. Arguments that get value éxtiemely strongvhilst
those that get value 0 aveorthless

Definition 3 (Semantics). A semanticss a functionS transforming anyA =
(A,w,R,S) € wBAG into a weightingDeg3 on A. Leta € A, Deg (a) denotes
theoverall strengttof a.

Let us recall the notion dsomorphismbetween graphs.

Definition 4 (Isomorphism). Let A = (4, w,R,S), A’ = (A, v/, R",S) €
wBAG. Anisomorphismfrom A to A’ is a bijective functionf from A to A’ such
that the following hold:

e Vae A w)=w'(f(a)),

o Va,be A, aRbiff f(a)R'f(b),

e Va,be A aSbiff f(a)S'f(D).

Let us recall the notion of path between two nodes in a graph.

Definition 5 (Path). Let A = (A, w,R,S) € wBAG, anda,b € A. A pathfrom
b to a is a finite non-empty sequenc¢e,, ..., x,) such thatry = b, z,, = a, and
Vi < n, l’iRl’i+1 or l’iSl’i+1.

Below is the list of all notations used in the paper.

Notations: Let A = (A, w, R, S) € wBAG anda € A. We denote bytt (a) the
set of all attackers of in A (i.e.,Atta(a) = {b € A|bRa}), and bysAtta(a)
the set of alkignificant attackersf q, i.e., attackers of a such thabeg3 (z) # 0.
Similarly, we denote bgupp 4 (a) the set of all supporters af(i.e., Supp, (a) =
{b € A|bSa}) and bysSupp, (a) the significant supportersf «, i.e., supporters
z such thaDeg} (z) # 0. Letnow A’ = (A',w',R',S’) € wBAG be such that
AN A = (. We denote byA ¢ A’ the element A", w", R"”,S") of wBAG such
thatA” = AUA, R" = RUR/,S" = SUS’, andvx € A", the following holds:
w'(z) =w(zx),if x € 4w (z) =w'(x), ifx e A.



3. Principles for semantics

In what follows, we propose principles that shed light onnfdational choices
made by semantics. In other words, properties that help lstter understand the
underpinnings of semantics, and that facilitate their canspns. The first nine
principles are simpleombinationsof axioms proposed for graphs with only one
type of interactions (support in [25], attack in [26]). Thede next principles are
new and show how the overall strengths of supporters anckatsof an argument
might be aggregated, and the last one shows how to regutatetémsity of support
in case of weighted bipolar argumentation graphs.

The first very basic principle, Anonymity, states that themgth of an argu-
ment is independent of its identity. It combines the two Ayraity axioms from
[25, 26].

Principle 1 (Anonymity). A semanticsS satisfiesanonymityiff, for any A =
(A, w,R,S), A" = (A, w',R',S") € wBAG, for any isomorphismy from A to
A/, the following property holds¥ a € A, Deg3 (a) = Deg3,(f(a)).

Bi-variate independence principle states the followirte overall strength of
an argument should be independent of any argumeiiat is not connected to it
(i.e., there is no path fromto a, ignoring the direction of the edges). This principle
combines the two independence axioms from [25, 26].

Principle 2 (Bi-variate Independence). A semanticsS satisfiesbi-variate inde-
pendenceff, for all A = (A, w,R,S), A’ = (A, v, R',S’) € wBAG such that
AN A’ =0, the following property holdsy a € A, Deg} (a) = Degi 5/ (a).

Bi-variate directionality principle combines Non-Dilati from [25] and Cir-
cumscription from [26]. It states that the overall strengfran argument should
depend only on its incoming arrows, and thus not on the argtsrititself attacks
or supports.

Principle 3 (Bi-variate Directionality). A semanticsS satisfieshi-variate direc-
tionality iff, for all A = (A, w,R,S), A’ = (A',w',R',S") € wBAG such that
A=A R C R,andS C &, the following holds: for alla,b,z € A, if
R'US" = RUSU{(a,b)} and there is no path frorh to z, thenDeg3 (z) =

Deg3 ().

Bi-variate Equivalence principle ensures that the ovestaéingth of an argu-
ment dependsnly on its basic strength and on the overall strengths of itsctlire
attackers and supporters. It combines the two equivalexioena from [25, 26].
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Principle 4 (Bi-variate Equivalence). A semanticsS satisfieshi-variate equiva-
lenceiff, forany A = (A, w,R,S) € wBAG, for all a,b € A, if:

e w(a) =w(b),

e there exists a bijective functiofifrom Atta (a) to Atta (b) such thatvx €
Atta(a), Degh (z) = Deg3 (f(z)), and

e there exists a bijective functioff from Supp (@) to Supp, (b) such that
Va € Suppy (a), Degh (z) = Degi (f'(2)),

thenDeg$ (a) = Deg3 (b).

Stability axiom combines Minimality [25] and Maximality §2 axioms. It
states the following: if an argument is neither attacked sugported, its overall
strength should be equal to its basic strength.

Principle 5 (Stability). A semantic$ satisfiesstabilityiff, forany A = (A, w, R,
S) € wBAG, for anya € A, if Atta(a) = Suppy (a) = ), thenDeg3 (a) = w(a).

Neutrality axiom generalizes Dummy axiom [25] and Neutyadine from [26].
It states that worthless attackers or supporters have acteff

Principle 6 (Neutrality). A semanticsSS satisfiesneutralityiff, for any A = (A,
w, R, S) € wBAG, for all a, b,z € A, if:

o w(a) =w(b),

o Atta(a) C Atta(d),

e Suppy (a) C Suppy (b),

o Atta(b) USuppy (b) = Atta(a) USuppy (a) U {z}, andDeg} (z) = 0,
thenDeg$ (a) = Deg3 (b).

Bi-variate Monotony states the following: an argument istred stronger when
it is less attacked and more supported. This means thakattaonot be beneficial
to their targets and supports cannot be harmful. This axieneralizes four axioms
from the literature (Monotony and Counting [25] for supgoand the same axioms
from [26] for attacks).

Principle 7 (Bi-variate Monotony). A semantics$s satisfieshi-variate monotony
iff, forany A = (A, w, R,S) € wBAG, for all a,b € A such that:
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e w(a) =w(b),
o Atta(a) C Attal(h),
e Suppy (b) C Suppy (a),
the following holds:
e DegS (a) > DegS (b); (Monotony)

o if (Degh(a) > 0 and sAtta(a) C sAtta(b)) or (Deg3(h) < 1 and
sSuppy (b) C sSupp, (a)), thenDeg$ (a) > Deg3 (b).  (Strict Monotony)

The next axiom concerns the quality of attackers and supgortt states that
any argument becomes stronger if the quality of its attaciereduced and the
quality of its supporters is increased. It combines the temf®rcement axioms
from [25, 26].

Principle 8 (Bi-variate Reinforcement). A semanticsS satisfiesbi-variate rein-
forcementiff, for any A = (A, w,R,S) € wBAG, for all C,C’" C A, for all
a,be A, forall z,2/,y,y' € A\ (C UC’) such that

e Suppy (a) = C"U{z'},
® Suppy (b) = C'U{y'},
the following holds:
e Deg$ (a) > Deg3 (b); (Reinforcement)

o if (Deg3 (a) > 0 andDeg3 () < Deg3 (v)) or
(Deg® (b) < 1 andDeg3 (') > Deg} (y')),
thenDeg3 (a) > Deg3 (b). (Strict Reinforcement)



We have shown previously that an attacker may weaken (riagplgca sup-
porter may strengthen) a target. However, nothing is saidiaiheintensityof an
attack or support, i.e, to what extent an attack or a suppayt impact a targeted
argument. Can an attack completely kill an argument? Carppastfully reha-
bilitate a weak argument? The answers to these questiomndem the nature of
arguments. For instance, deductive arguments whose prearie information that
may be true or false may be killed by attacks. Consider theangamentsA and
B below.

(A) Tweety is a bird, therefore it flies.

(B) Tweety is a penguin, therefore the rule “birds fly” is not bqgble.

Clearly, B undercutsA ([27]), and A may be fully rejected since the rule “birds
fly” is indeed not applicable in the particular case of penguiConsider now the
two argument&’ and D provided respectively by Paula and Paul:

(C) Senor Taco has the best Mexican food, therefore we go there.

(D) Food is much better at COATL restaurant.

The argumenD denies the premise @f. However, both arguments are based
on personal opinions of Paula and Paul and there is no reaséully rejectingC.

The same reasoning holds for support relations. Indeedprimescases it is
reasonable to fully rehabilitate an argument with suppsrtélowever, irrational
behaviors, like fully accepting fallacious arguments the¢ supported are also
possible and should be avoided. The arguntetielow remains fallacious even if
it is clearly supported by the argumehit

(E) Tweety needs fuel, since it flies like planes.

(F) Indeed, Tweety flies. It is a bird.

In this paper, arguments are abstract entities and thusittternal structure,
content, and nature are unspecified. Thus, it is not posildéstinguish between
cases where killing is suitable for attacks and cases whiradt. Similarly, cases
of full rehabilitation of support cannot be identified. Thirsthis paper we follow
a cautious approach by avoiding both forms (killing, fulhabilitation). For that
purpose, we combine Imperfection axiom from [25] with Resite axiom from
[26]. Imperfection states that an argument whose basiagthneis less than 1
cannot be fully rehabilitated by supports. In other wortlsannot get an overall



strength 1 due to supports. Resilience in [26] states thargument whose basic
strength is positive cannot be completely destroyed byledtaJnlike the previous
principles, the next one is not mandatory since its suitghidepends on the nature
of arguments being evaluated.

Principle 9 (Resilience). A semantic$ satisfiegesilienceff, forany A = (A, w,
R, S) € wBAG, forall a € A, if 0 < w(a) < 1, then0 < Deg3 (a) < 1.

Resilience forbids an argument from getting an overalhgfite equal to 1 due
simply to supporters. However, it allows an argument whassdoweight is, for
instance, 0.1 to get an overall strength 0.9 if it is supgblgone strong argument.
This phenomenon, calldoig jump may be undesirable. Consider the analogical
argumentss and H below:

(G) Both restaurantX’ andY are Italian, X serves good food, therefokéserves
good food as well.

(H) The two restaurantX’ andY use the same products.

The link between the conclusion and the premise§iis clearly very weak.
Strengthening this analogical argument amounts to findimgortant additional
similarities between the compared objects (hamélgndY’). However, pointing
out one very important similarity may not be sufficient forkimg G very strong.
The argument supportsG since it points out one additional similarity between
the two restaurants. However, evertfis very strong (its premises are true, and it
is not attacked), the link i is still weak since the two restaurants may not have
the sameshef de cuisineThus, if the basic weight a& was initially 0.1 (due to its
weak link), its overall strength cannot become for instabi@simply due tad .

As for Resilience, there are cases where a weak argument etaynie very
strong due to a single supporter. However, since argumesatghstract entities in
our setting, we follow a cautious approach by forbidding joigps between the
basic weight of an argument and its overall strength. The perciple is also
about the intensity of support. It aims at preventing sufgserfrom having an ex-
aggerated impact on their targets. More precisely, theig#ze following: if we
add a new supporter (of any strength) to an argunaertihen the distance between
the strength oA and1 cannot be reduced more than the half. This halfway philos-
ophy seems to well-balance freedom of movement and prevenfiexaggerated
movements. It is worth mentioning that this principle camsethe impact of a sin-
gle supporter, and does not prevent a weak argument fronmhiegovery strong
due to the combined effect of several supporters.



Principle 10 (Inertia). A semantic$ satisfiesnertiaiff, forany A = (A, w,R,S) €
wBAG, for all a, b, x € A, if

o w(a) = w(b),
® Suppy (b) = Suppy (a) U {z},
o Atta(b) = Atta(a),
thenDeg$ (b) < Deg3 (a) + [1 — Deg3 (a)]/2.

The next three axioms answer the same question: how thellosgengths
of attackers and supporters of an argument are aggregateddsWwer this ques-
tion, it is important to specify first which of the two typesioferactions is more
important. There are three options:

e Attacks are as important as supports,
e Attacks are more important than supports,

e Supports are more important than attacks.

The first option makes perfect sense in a decision makingegbnindeed, in
multiple criteria decision making, each argument promeatasiterion (see e.g.,
[28, 29]). A supporter is an argument showing that a critersosatisfied while an
attacker shows a criterion that is violated. In this contiéxn attacker and a sup-
porter of the same argument have equal strength, they gelgigance each other.
This principle is used in [28] for aggregating arguments miians/alternatives in
decision making context. In another context like reasomirily inconsistent/defeasible
information, supporters (respectively attackers) aim atfieming (respectively
denying) parts of an argument. Thus, the exact part thatnBrozed/denied plays
a role. However, even if a supporter and an attacker targesdime part, they do
not necessarily counter-balance each other. Considen Humiprevious analogi-
cal arguments. Assume that it is supported by and attacked by the following
argument’:

(1) The two restaurantX andY have different chef de cuisine.

Even if we assume that is as strong ag{ (because for instance they both
use certain information and are not attacked), the analegy inG is weakened
since there is one important feature on which the two contbagstaurantsX
andY differ. Please recall that an analogy is all the strongerrathe number of
important properties shared betwe¥randY is high and the number of different

10



important properties is low. This example suggests thackst take precedence
over supports.

The third option (supports take precedence over attacl)tiseasonable. An
argument can be seen as a chain made of different compomm@etsiges, con-
clusion, link). Attacking one of the components is suffitiéor weakening or
destroying the whole chain. However, supporting one eléroEthe chain does
not necessarily make an argument strong. Thus, an attaclotha ignored even
in presence of (several) supporters.

The next principle captures the two first options. Franklimgiple states that
a supporter may never be more important than an attackeral strength while
Strict Franklin states that an attacker and a supporter wélesirength counter-
balance each other.

Principle 11 (Franklin). A semanticsS satisfiesfranklin iff, for any A = (A, w,
R,S) € wBAG, forall a,b,z,y € A, if

* Suppy (a) = Supp, (b) U {y},

then the following hold:
e Deg3 (a) < Deg3 (b), (Franklin)
e Deg3 (a) = Deg3 (b). (Strict Franklin)

We show that attacks and supports of equal strengths elienieach others
when a semantics satisfies Strict Franklin.

Proposition 1. Let S be a semantics that satisfies Bi-variate Independence, Bi-
variate Directionality, Stability and Strict Franklin. Fany A = (A, w,R,S) €
wBAG, for anya € A, if there exists a bijective functioli from Atta(a) to
Supp (a) such thatvx € Att(a), Degh(z) = Degh (f(z)), thenDeg} (a) =
w(a).

Weakening states that if attackers overcome supportezsargument should
lose weight. The idea is that supports are not sufficient éanter-balancing at-
tacks. Please note that this does not mean that supportaatiiave an impact
on the overall strength of an argument. They may mitigategtbbal loss due to
attacks.
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Principle 12 (Weakening). A semanticsS satisfiesweakeningiff, for any A =
(A, w, R, S) € wBAG, for all a € A, if w(a) > 0 and there exists an injective
function f from Supp 4 (a) to Atta (a) such that:

o Va € Supp, (a), Deg () < Degf (f(x)); and
o sAtta(a)\{f(x) |z € Suppa(a)} # 0 or 3z € Suppy (a) S.tDeg (z) <
Dega (f()),
thenDeg$ (a) < w(a).
Strengthening states that if supporters overcome attacker argument should

gain weight. Indeed, attacks are not sufficient for couhtdancing supports, how-
ever, they may mitigate the global gain due to supports.

Principle 13 (Strengthening). A semanticsS satisfiesstrengtheningff, for any
A = (A w,R,S) € wBAG, forall a € A, if w(a) < 1 and there exists an injective
function f from Att a (a) to Supp4 (a) such that:

e Vx € Atta(a), Degh (z) < Degh (f(x)); and

e sSuppa(a) \ {f(z) | v € Atta(a)} # 0 or 3z € Atta(a) S.t.Degh (z) <
Dega (f()),
thenDeg$ (a) > w(a).
It is worth mentioning that weakening and strengtheningegalize their cor-
responding axioms in [25, 26]. Indeed, when the supportioglas empty, bipolar
version of weakening coincides with weakening axiom in [28pwever, it han-

dles additional cases when supports exist. Similarly, wihenattack relation is
empty, the principle coincides with strengthening axiornfis.

Almost all axioms are independent, i.e., they do not folloant others. No-
table exceptions are Bivariate Monotony which follows fréiae other principles
(namely Bi-variate Independence, Bi-variate DirectidgalStability, Neutrality
and Bi-variate Reinforcement) and Franklin which followsnh Strict Franklin.

Proposition 2. LetS be a semantics.

e If S satisfies Bi-variate Independence, Bi-variate Directiitya Stability,
Neutrality and Bi-variate Reinforcement, th®satisfies Bivariate Monotony.

e If S satisfies Strict Franklin, thef§ satisfies Franklin.
All axioms are compatible, i.e., they can be satisfied aktbgr by a semantics.

Proposition 3. All the axioms are compatible.
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4. Formal analysis of existing semantics

There are several proposals in the literature for the etialuaf arguments in
bipolar argumentation graphs. They can be partitionedtimtofamilies: extension
semantics [14, 15, 16, 17, 18, 30, 31] ameightedsemantics [22, 23, 24, 32, 33].

Extension semantics extend Dung’s ones [6] for accountmgsfipports be-
tween arguments. They take as inflat bipolar argumentation graphs, i.e., graphs
where arguments have all tsamebasic strength.

Definition 6 (Flat Bipolar Graphs). A flat bipolar argumentation graph is an el-
ement{(A,w, R,S) € wBAG such that for any; € A, w(a) = 1.

The first work on extension semantics in the bipolar conteag done by Cay-
rol and Lagasquie in [14]. The authors argued that two kiridétacks may emerge
from a bipolar graph: supported attacks and secondary ones.

Definition 7 (Complex Attacks). Let (A, w,R,S) € wBAG be a flat bipolar ar-
gumentation graph, and, b € A.

e There is asupported attackoma to b iff there is a sequenae R . .. Ry_1an,
n > 3,witha, = a,a, = 0b, forany:i = 2,....,.n — 2, R; = S and
Rn-1=TR.

e There is asecondary attadkoma to b iff there is a sequence R . .. Ry_1an,
n > 3,witha; = a,a, =b,R; =R,andforanyi =2,... . n—2,R; =S.

Let R. denote the set of all attacks @& and the supported/secondary ones; i.e.,
R. =R U{(a,b) | there exists a supported or secondary attack frota b}.

Example 1. Consider the flat bipolar argumentation graph depicted igu¥e 1.
Dashed lines represent support relations and plain lingsesent attack ones.

Figure 1: Bipolar grapt

There is a supported attack from argumerio a (¢ S ¢ R a) and a secondary
attack fromf tob (f R d S b).



Extension semantics look for acceptable sets of argumealied extensions
in [6]. Each extension represents a coherent position,itisheuld satisfy aoher-
enceproperty, callecconflict-freenessand adefenceone. The former ensures that
an extension does not contain conflicting arguments, whédatter requires that
an extension defends its elements against any attack. Tiesgroperties were
extended in [14] for accounting for complex attacks that xanerge in flat bipolar
argumentation graphs.

Definition 8 (Conflict-freeness — Safety — Defence)let(A, w,R,S) € wBAGbe
a flat bipolar argumentation graph, ar€l C A.

e & is conflict-freeiff Ja, b € £ such thataR .b.
o ¢ is safeiff fa,b, ¢ € A such that:

—a,beg,
— bScorce &, and
— aR.c.

e & defends an argument e A iff for any b € A, if bR.a, thende € £ such
that cR.b.

Example 1 (Cont)In the graphA, the set{e, ¢} is safe while the sefe, ¢, f} is
not since it both supports and attacks the argurhent

Definition 9 (Extensions). Let A = (A, w,R,S) € wBAG be a flat bipolar argu-
mentation graph, and C A.

e £ is astable extensioiff £ is conflict-free and for any ¢ &, there exists
c € &£ such thatcR .a.

e £ is ad-preferred extensioiif £ is maximal (for set inclusion) among the
sets that are conflict-free and defend all their elements.

e £ is as-preferred extensioiff £ is maximal (for set inclusion) among the
sets that are safe and defend all their elements.

Let Ext(A) denote the set of all extensions Af under semantics (x being
stable, or d-preferred, or s-preferred).

Throughout this section, we refer to the three above sepsabi reviewed
semantic
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Example 1 (Cont)The graphA ; has one stable and d-preferred extensienc, f}.
It has however two s-preferred extensiofis; c} and{f}.

Once extensions are computed, in [7, 34, 35, 36, 37], a traked qualitative
overall strength is assigned to every argument as followsirgument isccepted
if it belongs to all extensiongyndecidedor credulously accepted) if it belongs to
some but not all extensions, angjectedif it does not belong to any extension.
For the purpose of analyzing these semantics against theigdgs, we replace the
three gualitative values with numerical ones as follows.

Definition 10 (Argument’s overall strength). Let A = (A, w, R,S) € wBAG be
a flat bipolar argumentation graply, € A, andx is one of the reviewed semantics.
e Degh(a)=1iffac [ £ (Accepted argument)
E€Exty(A)
e Deg} (a) = 0.5iff 3E, £’ € Exty(A) suchthats € £ anda ¢ €. (Unde-
cided argument)
e Degh(a)=0iffa¢ | €& (Rejected argument)
EEExty(A)
When the attack relation is empty, any flat bipolar argumemtegraph has a

single extension, which contains all the arguments. Thilsrguments have the
same overall strength.

Proposition 4. Let A = (4, w,R,S) € wBAG be a flat bipolar argumentation
graph. If R = (), then for anyz € {stable, d-preferred, s-preferrgd

e Ext (A) = {A}.
e Foranya € A, Degi (a) = 1.

This means that when the attack relation is empty, the stipplation does not
play any role, and a supported argument is as acceptableassupported one.

Example 2. Let us consider the flat bipolar argumentation graph depidteFig-
ure 2. This graph has one stable, d-preferred, s-preferreresion:{a, b, c,d, e, f}.
Hence, all the six arguments get value 1. Note thahich has 2 supporters is as
strong asd, e, f which are not supported at all.

It was shown in [14] that when the support relation is embiy,three semantics
of Definition 9 coincide with Dung’s ones. Consequently,tesemantics violates
the same axioms as its basic version in [6]. Note that in [26%rmal analysis of
Dung’s semantics is done for flat attack graphs. The follgwesult summarizes
the axioms that are violated.
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Figure 2: Bipolar grap ;

Proposition 5. Stable semantics violates Stability, Bi-variate Indepard, and
Bi-variate Directionality. The three semantics violatevBiriate Equivalence, Neu-
trality, Resilience, Strict Monotony, Strict Reinforcamd-ranklin and Strength-
ening.

It is worth mentioning that Inertia axiom does not apply tteesion semantics
since they allow only three values as possible overall gtrenof arguments.

The approaches developed in [15, 16, 17, 18] are similardmtie by Cayrol
and Lagasquie. They also coincide with Dung’s frameworkasecthe support
relation is empty. Furthermore, when the attack relatioenipty, the approaches
in [16, 18] return a single extension. The latter contairsaiguments that do not
belong to any cycle. Thus, they also violate strengthenimbthe support relation
may not be fully exploited in the evaluation of arguments.eyrlalso violate the
same set of axioms as the approach of Cayrol and Lagasquie.

The second family of weighted semantics was introducedheffitst time in
[24]. In their paper, the authors presented some propettgssuch semantics
should satisfy (like a particular case of strengthening)wklver, they did not define
concrete semantics. To the best of our knowledge, the firigthtexl semantics was
introduced in [32]. Basic weights of arguments represesitpe and negative
votes on arguments. The semantics evaluates in the sameutvaggarately the
attackers and supporters of an argument before aggredatny

Definition 11. Let A = (4,w,R,S) € wBAG anda € A. LetAtta(a) =
{bl, R ,bn} andSuppA(CL) = {81, - ,Sk}.

w(a) if Suppy (a) = Atta(a) =0

DegS () — fala) ?f Suppa (a) = 0 andAtta(a) # 0
fs(a) if Suppy (@) # 0 andAtta(a) =0
fale)t/e(0)  otherwise

where

fala) =w(a) x (L —m(by,...,by))
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and
fs(a) = w(a) + (w(a) —w(a) x (1 —m(s1,...,sk)))
and

0ifj=0
m(x,...,T5) = { Degi (71) + m(za,...,7;) — Degh (z1) x m(za, ..., ;)
otherwise

This semantics was proposed for any typology of graphs. Mewd is easy
to see that it does not handle correctly cycles. Assume alsigraph with two
arguments: andb such that attacksb andb attacksa. Assume also thab(a) =
w(b) = 1. It is easy to check that this semantics assigns to each arguamy
solution of the equatiodeg? (a) + Deg (b) = 1, hence an infinite number of
values. This shows that the semantics is not well-defined.

Later in [22], QUAD semantics was introduced for evaluatixguments in
acyclic weighted argumentation graphs

Definition 12 (Acyclic Graphs). A weighted bipolar argumentation graph =
(A,w,R,S) € wBAG is acyclic iff the following holds: for any non-empty fi-
nite sequenca = (aj,as,...,a,) of elements of4, if Vi € {1,2,...,n — 1},
<ai, ai+1> € RUS, then(an, a1> §Z RUS.

Since a semantics takes as input any graph, we need to ingdtle notion
of restricted semantics. All notations and principles fmantics are straightfor-
wardly adapted to restricted semantics.

Definition 13 (Restricted semantics).Arestricted semantigs a functionS trans-
forming any acyclicA = (A, w, R,S) € wBAG into a weighting onA.

QUAD is then a restricted semantics which assigns a hunherdbase to every
argument on the basis of its basic strength, and the ovématigths of its attackers
and supporters. It evaluates separately the supportera fbgction f,) and the
attackers (by a functioif,) before aggregating them.

Definition 14 (QUAD). LetA = (A4,w,R,S) be an acyclic weighted bipolar ar-
gumentation graph. Forany € A,

fala) if Supp, (a) = 0 andAtta(a) # 0
QuAD, \ fs(a) if Supp, (a) # 0 andAtta(a) =0
Dega™ (4) = 4 W(a) if Supp x (a) = 0 andAtta(a) = 0

M otherwise
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where

fala ) x J] (1 — Degi* (b:))
b;iRa
and
fs(a) =1— (1 —w(a)) x J] (1 —Degh*(c))
c;Sa

Example 3. Consider the acyclic bipolar argumentation graph depidtreéfigure
3 below.

Figure 3: Bipolar grapti s

It can be checked thﬁegQuAD( ) = 0.422, DegQuAD(b ) = DegQHAD(bg) = 0.8,
andDegQuAD(b ) =0.9.

The following result summarizes the principles that arésBat (respectively
violated) by QUAD.

Proposition 6. The following properties hold.

e QUAD satisfies Anonymity, Bi-variate Independence, Biat@Directional-
ity, Bi-variate Equivalence, Stability, Neutrality, Mdieoy, Reinforcement.

e QUAD violates Strict Monotony, Strict Reinforcement, Ragie, Franklin,
Weakening, Strengthening, and Inertia.

As a consequence of violating Weakening and Strengthe@og\D may be-
have irrationally. Indeed, choosing which of support aridckt should take prece-
dence depends on the intrinsic strength of an argument.

Example 3 (Cont) Consider the weighted bipolar argumentatidg depicted in
Figure 3. The argument has an attacker and a supporter of equal strengths, and
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an additional attackebs. Note that ifw(a) = 0.2, thenDeg}'’(a) = 0.422
meaning that the single supporter is privileged to the twachkers. However, if

w(a) = 0.7, Deg?,f:D(a) = 0.477 meaning that attacks are privileged to support.

More generally, we can show thatif(a) > 0.5, thenDeg}**(a) < w(a), else

Degg‘j:D(a) > w(a).

As a consequence of violating Inertia, QUAD may allbig jumpsin gains
from supports, and thus a fallacious argument may beconyestramg if it is sup-
ported by a strong argument. Let us illustrate the issue théHollowing example.

Example 4. Consider the weighted bipolar argumentation graph depidteFig-

ure 4 below.

Figure 4: Bipolar graph 4

Note that the initial strength of is extremely weak. It can be checked that
Deggff]’(a) = 1. Indeed, a strong supporter makes a very weak argument very

strong.

There are two issues with such big jump: First, the gain isr@oas and not
reasonable. Assume thatis the argument “Tweety needs fuel, since it flies like
planes”. Itis hard to accept even when supported. The supporter may increase
slightly the strength of the argument but does not correetwhong premises of
the argument. Second, such jump impedes the discriminaigtween different
cases wherev(a) > 0.001 since whatever the value af(a), the overall strength
is almost 1.

QUAD was recently extended to DF-QUAD in [23]. The new sencaris re-
strictive since it focuses also @tyclic graphs Unlike QUAD, it uses the same
function for aggregating supporters and attackers seggratt satisfies Strict
Franklin axiom, thus it treats equally attacks and suppdittviolates Strength-
ening and Weakening in presence of attackers/supportetdegree 1. However,
the semantics avoids the irrational behavior of QUAD.

Definition 15 (DF-QUAD). LetA = (A4,w,R,S) € wBAGbe an acyclic weighted
bipolar argumentation graph and € A. LetSuppy(a) = {c1,...,c,} and
Atta(a) = {b1,...,bn}.
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w(a) —w(a) x [F(z) — F(y)| if F(y) > F(x)
DegQX (a) =
w(a) + (1 —w(a)) x |F(z) = Fy)| if Fy) < F(z)
where
x = F(Deg (c1),--.,Deg (cn))

y = F(Degy (b1), . ..,Degy (b))
0 ifk=0
F(vi,...,v) = { 1—-J1%,(1 —v;) otherwise

Proposition 7. The following properties hold.

e DF-QUAD satisfies Anonymity, Bi-variate IndependenceyaBiate Direc-
tionality, Bi-variate Equivalence, Stability, NeutrglitMonotony, Reinforce-
ment, and Franklin.

e DF-QUAD violates Strict Monotony, Strict ReinforcemergsiRence, Weak-
ening, Strengthening, and Inertia,.

Like QUAD, the restricted semantics DF-QUAD suffers fromtiig jumpprob-
lem. Consider the graph depicted in Figure 4. Note that theraenta has a very
low basic strengthu((a) = 0.1). This argument is supported by the very strong
argumenth. According to DF-QuAD,Deg%l(a) = 0.991. Thus, the value of
makes a big jump from 0.1 to 0.991.

In [33] the authors investigated weighted bipolar arguragon graphs and
how arguments can be evaluated in such graphs. They defimeipfgs which are
similar to ours since they also generalized the ones propiod@5, 26]. They also
provided six novel ones (neutralization, continuity, neteangeability, linearity, re-
verse impact, boundedness). The authors proposed alsmtsesrthat satisfy all
or some principles. The first semantics, called Direct Aggti®n Semantics, Is a
function that is based on a damping factor and that compbtesdlues of argu-
ments in an iterative way. The sequence of values convergease the damping
factor is greater than the in-degree of the argumentatiaptgrDirect Aggregation
Semantics is thus graph-dependent; it changes from oné ¢pagnother since it
should check the in-degree of the latter. This semantics dogthus evaluate argu-
ments in a uniform way. In our paper, we argue that a semasttizsid be applied
in a uniform way to any family of graphs and should not chamgenfone graph
to another. The second semantics, called Sigmoid diregjgegation semantics,
is an adaptation of the first one in a way that the final valuesrgfiments are in
the interval (0,1) rather than in the set of real numberss thus well-defined in
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| Family of semantics

Extension semantics

Gradual semantics

Cyclic + Acyclic Graphs

Acyclic Graphs | Acyclic Non-Maximal Graphs |

\ Stable| s-Preferred| d-preferred| QUAD | DF-QUAD | DF-QUAD | Ebs \
Anonymity ° ° ° ° ° ° °
Bi-variate Independence x ° ° ° ° ° °
Bi-variate Directionality| x ° ° ° ° ° °
Bi-variate Equivalence X X X ° ° ° °
Stability X ° ° ° ° ° °
Neutrality X X X ° ° ° °
Monotony ° ° ° ° ° ° °
Strict Monotony X X X X X X °
Reinforcement ° ° ° ° ° ° °
Strict Reinforcement X X X X X X °
Resilience X X X X X X °
Inertia ! ! ! X X X °
Franklin ° ° ° X ° ° °
Strict Franklin X X X X ° ° °
Weakening ° ° ° X X ° °
Strengthening X X X X X ° °

Table 1: The symboé (resp. x, !) stands for satisfied (resp. violated, not applicable).



a particular case. The third semantics uses a functiorecc&ecursive Sigmoid
Aggregation Function, it is based on the previous one fotwrapy two semantics
from [0,1]. This function does not converge in general. Twe bther semantics
(recursive damped aggregation and Damped dogged) aresséxtuery briefly and
their convergences are not shown yet.

5. Exponent-based semantics

As shown in the previous sections, no existing semanticsfigstall our princi-
ples together. The goal of the present section is to handlésue. More precisely,
we construct a new semantics satisfying all principles,dbuhe cost of a certain
degree of coverage. Indeed, we only consider non-maxinthbawclic weighted
argumentation graphs.

Definition 16 (Non-maximality). A weighted bipolar argumentation graph =
(A, w,R,S) € wBAG is non-maximalff Va € A, w(a) < 1.

Without loss of generality, the basic strengths of arguseme less than 1.
Note that few arguments are intrinsically perfect. The phility of false informa-
tion, exceptions, etc., is rarely 0. In contrast, the lossyofic graphs is important.
But, we consider that the class of all acyclic non-maximaied bipolar graphs
is expressive enough to deserve attention.

Definition 17 (Restricted semantics).Arestricted semantids a functionS trans-
forming any acyclic non-maximal weighted bipolar argunagion graph A =
(A, w,R,S) € wBAG into a weighting onA.

Before presenting our semantics, we need to introduce tiorelaetween argu-
ments based on the longest paths to reach them (mixing dugombattack arrows).

Definition 18 (Well-founded relation). Let A = (A4,w,R,S) € wBAG be an
acyclic weighted bipolar argumentation graph ande A. A path toa in A

is a non-empty finite sequenee= (aj,as,...,a,) of elements ofd such that
ap, = aandvi € {1,2,...,n — 1}, (a;,a;+1) € RUS. We denote bRel(A)

the well-founded binary relatior on A such thatvz,y € A, x < y iff max{n |

there exists a path te of lengthn} < max{n | there exists a path tg of length
n}. SinceA is acyclic, those maximum lengths are well-defined, 8eigA ).

We are ready to define texponent-based restricted semantid$he general
idea is to take into account supporters and attackers in ponextZ of 2 (the
smallest natural number that can be effectively exponent)a More precisely,
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the stronger or more-numerous the supporters, the greatenare-likely-positive
that exponent. Obviously, the inverse is true with the &tes= Then, the overall
strength of an argumeatis naturally defined as/(a)2”. Finally, we need certain
tweakings (including a double polarity reversal) to make fonction a restricted
semantics in the first place, and to have it satisfy all ouormsi. More formally:

Definition 19 (Exponent-based restricted semantics)We denote bgbs the re-
stricted semantics such that for any acyclic non-maximagkted bipolar argu-
mentation graphA = (A, w,R,S) € wBAG, Ebs(A) is the weightingf on A
recursively defined witRe1(A) as follows:Va € A,

—wa2
f(a):l—ﬁ where E= > fl@)— Y f(a).

x€Supp(a) x€Att(a)

As an immediate corollary, we have:

Corollary 1. LetA = (4, w,R,S) be an acyclic non-maximal weighted bipolar
argumentation graph and € A. The following holds:

1— 2
Degi®(a) = 1—% where FE = Z Degi®(z)— Z Deg® ().
* ’LU(CL) x€Supp(a) z€Att(a)

Below is an example where most principles are exemplifie@r§wircle con-
tains [argument name]:[intrinsic strength] and belawdrall strength].

Example 5. The neutrality principle can be checked wiftand e, stability with
e.g.d, bivariate monotony witla andb, bivariate reinforcement with and ¢, Im-
perfection withi, Strict Franklin witha, weakening with e.gh, and strengthening
with 4.
Proposition 8. Ebs satisfies all the 13 principles.

Note that being supported by an extremely strong argumesd dot cause a
weak argument to become extremely strong as well, which shioaiEbs does not
suffer from the big jump problem (indeed, it satisfies ir@rtNote thaDegi}’:(z') =

0.17 and thus the jump is not big. Note also that by satisfying Wealg and
Strengthening, the semantics avoids the irrational behafiQuAD.
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Figure 5: Bipolar grapt 5

6. Conclusion

The paper presented for the first time principles that sesvguadelines for
defining semantics in weighted bipolar settings. It alsdyaea existing seman-
tics with regard to the principles. The results revealetléxtension-based seman-
tics like [14, 15, 16, 17, 18] fail to satisfy key propertiékel independence and
directionality. Furthermore, the role of support relatism@ bit ambiguous since in
case the attack relation is empty, the argumentation graphatsingle extension
containing all the arguments. This means that supportechanesupported argu-
ments are all equally acceptable. Weighted semantics deiinR2, 23] for the
subclass of acyclic weighted bipolar graphs satisfy motenbtiall the principles.
We proposed a novel semantics which satisfies all the 13ipkasc However, this
semantics deals only with acyclic graphs.

An urgent future work would be to define a semantics which iclems arbi-
trary graphs. Note that there is no such semantics in thatitee. We also plan to
investigate additional properties where attacks and sgpplo not have the same
importance. Indeed, in some applications like handlingirsistency, it is gener-
ally the case that an attack is more important than a suppbtts, Strict Franklin
is not suitable for such application. Another future workisists of investigating
graphs were supports are weighted. Such graphs allow a leeiteding of rel-
evance of supporters with regard their targets, and coesgiguthe intensity of
supports can be better captured.
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Appendix: Proofs

Proof of Proposition 1. Let S be a semantics that satisfies Bi-variate Indepen-
dence, Bi-variate Directionality, Stability and StriceRklin. LetA = (A, w, R, S)
anda € A such that there exists a bijective functifrirom Att s (a) to Supp, (a)
such thatvz € Att(a), Degh(z) = Degi (f(x)). LetAtta(a) = {a1,...,a,}
andSuppy (a) = {s1,..., 50}

LetA = (A", w', R, 8"y besuchthad’ = AU{y1,...,yn}, With{y1,...,yn} C
Args \ A, Vo € A, vw'(z) = w(z), Vi = 1,...,n, w'(y;) = w(a), R' =R
andS’ = S. From Bi-variate Independence 8f for anyz € A, Degi,(x) =
Degj (7).

Let now A = (A", w",R",S") be such thatd” = A, v" = v/, R" =
R U {(a;,yj) | aiRa,j € {2,...,n},i € {1,...,5 —1}}, andS” = S’ U
{(si,5) | siSa,j € {2,...,n},i € {1,...,j — 1}}. Note that eachy; does not
attack/support any other argument. Thus, from Bi-variatedonality, it follows
thatVz € A, Deg3, (z) = Deg%,(z), thusDeg3 , (z) = Deg$ (z).

SinceDeg$ ,(a1) = Deg3 ., (s1), from Franklin, it follows thaDeg3, (v1) =
Deg3, (y2). From Stability,Deg3, (y1) = w(a). By applying recursively Strict
Franklin, we geDeg3, (y1) = Degl, (a) = Deg (a) = w(a). ]

Proof of Proposition 2. Let S be a semantics, which satisfies Bi-variate Inde-
pendence, Bi-variate Directionality, Stability, Neuivalind Bi-variate Reinforce-
ment. Let us show tha& satisfies also Bi-variate Monotony.

Let A = (A, w,R,S) be a weighted bipolar argumentation graph, and
A such that:

e w(a) =w(b) >0,
o Atta(a) C Atta(d),

e Suppy (b) C Suppy (a).

Assume thatitta (b) = Atta(a)UY, Suppy (@) = Suppy (b)) U X, |Y| =n, and

| X| =m. LetA = (A, w',R',S") be suchthatl’ = AU{a’, V', y1,. ., Yn, T1,. ., T}
with {a’, V', y1,. .., Yn, 21, ., Zm} C Args\A,Vz € A, w'(2) = w(z), w' (d') =
w(a), w'(V) = wb), Vi =1,...,n,w'(y;) =0, Vi = 1,...,m, w'(z;) = 0
R’ = R andS’ = S. From Bi-variate Independence 6&f for anyz € A
Deg3,(z) = Deg3 (7).

Let now A = (A", w”,R"”,S") be such thatd” = A, v’ = v, R" =
R U {(z,d) | zRa} U{(yi,a') | i = 1,n} U{(x,b) | 2Rb}, andS” = S’ U
{(z,d) | z8a} U{(z,V) | 28b} U{(z;,b") | i = 1,m}. Note thata’ andb’ do not
attack/support any other argument. Thus, from Bi-variatedlonality, it follows
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thatVz € A, Degh, (z) = Deg3, (), thusDeg3, (z) = Deg (z). From stability,
for anyi € {1,...,n}, Degi.(y;) = 0, and similarly, for anyi € {1,...,m},
Deg3,(z;) = 0. Thus, from NeutralityDeg3,(a’) = Degh.(a) = Deg} (a),
andDeg3, (b') = Degl,(b) = Deg3 (b). From Reinforcementdeg3, (a’) >
Deg3, (b'), henceDeg? (a) > Deg? (b).

Let S satisfies Strict Franklin. LeA = (A, w, R, §) € wBAG and let
a,b,z,y € A be such that:

o w(b) =w(a),

e Degf () = Deg} (v)

o Atta(a) = Atta(b) U {x},

e Suppy (@) = Suppy (b) U {y},

Since S satisfies Strict Franklin, thebeg$ (a) = Deg3 (b). Thus,S satisfies
Franklin. ]

Proof of Proposition 3. Euler-based semantics satisfies all the axioms. =

Proof of Proposition 4. Let A = (A, w, R,S) be a flat bipolar argumentation
graph such thaR = (. It follows straightforwardly from Definition 8 that for any
set& C A, £ is both conflict-free and safe. From Maximality of extensiod
is the only stable (resp. d-preferred and s-preferrednside. Finally, it follows
that anya € A, Degg(a) = 1. |

Proof of Proposition 5. Since the three semantics generalize Dung’s ones with a
support relation, then any axiom violated by Dung’s senearis also violated by
their extended versions. Consider then the counter-exesrgiven in [26]. From
graph A, (Figure 2), it is also clear that Strengthening is violatgdttie three
semantics. Let us consider the following simple grayh (depicted in Figure 6
below) to show that the 3 semantics violate Franklin.

This graph has one stable (respectively d-preferred, feipeel) extensioda, c, d}.
Thus,Degg,; (a) = 1 while Deg¢, (b) = 0. ]

Proof of Proposition 6. The satisfied axioms were proved in [22]. In order to
show that QUAD violates Inertia, it is sufficient to conside@ample 4.

To show that QUAD violates Resilience, consider the arguatiem graph de-
picted in Figure 7. It can be checked tieig}* (b) = 0 while w(b) > 0.

To show that QUAD violates Strict Franklin principle, catesi the bipolar ar-
gumentation graph depicted in Figure 8. Note theg}*”(a) = 0.55 < w(a).
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Figure 6: Bipolar grapti s

Figure 7: Bipolar graphi 7

Assume now thatv(a) = 0.4. HenceDegX'®(a) = 0.45 > w(a), which shows

that QUAD violates Franklin.
\\ k/

Figure 8: Bipolar grapli s

To show that QUAD violates Strict Monotony, consider thegiéd bipolar
argumentation graph depicted in Figure 9. Note thaf}** (a) = Deg}*(b) =
0.475.

To show that QUAD violates Strict Reinforcement, it is sudfit to consider

the bipolar argumentation graph depicted in Figure 10. it lsa checked that

Deg}, (a) = DegRi"(h)-

Proof of Proposition 7. The satisfied properties were already proved in [23]. Let
us show that DF-QUAD violates Resilience. Consider a sirgph A made of
two arguments: andb such thatw(a) = 1, w(b) = 0.5 andaRb. It follows that
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Figure 9: Bipolar grapli o

OO Q06
= e

Figure 10: Bipolar grapt 1o

Deglx (b) = 0.

To show that it violates Strict Monotony, it is sufficient torssider the counter-
example given for QUAD (Figure 9). It can be checked thgf) (a) = Degy (b) =
0.45.

To show that DF-QUAD violates Strict Reinforcement, it iffisient to con-
sider the counter-example given for QUAD (Figure 10). It tenchecked that
Degy  (a) = Deg (b).

In order to show that DF-QUAD violates Inertia, it is suffiti¢o consider the
graph of Figure 5. Note thaeg}y (i) = 0.991 while w(i) = 0.1.

Let us show that it violates Strengthening. For that purpleteis consider the
graph depicted in Figure 11. Note thaig’\ (a) = w(a) = 0.5 while it should
be greater than 0.5.

Let us now show that DF-QUAD violates Weakening. For thappse, con-
sider the graph depicted in Figure 12. Note ., (@) = w(a) while it should
be less than 0.5.

[ ]

Proof of Proposition 8. Anonymity, Bi-variate independence, Bi-variate equiva-
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Figure 11: Bipolar grapt 11

Figure 12: Bipolar grapt\ 2

lence are obvious.

Bi-variate directionality comes from the fact that the sg#h of an argument
only depends on its attackers, the attackers of its attackerso on.

Stability is satisfied, becaugegEs(a) = 1 — % =1- llj:fu({”a); =
14+w(a)—1+w(a)? _ w(a)+w(a)? _ w(a)(1+w(a))
1+w(a) - 14+w(e) T 14w(a) = w(a).

Neutrality holds, becauszESupp )DegEA (z) — ZmeAtt( )DegEbs( z) =
ZxESupp(a) DegEbs( ) - erAtt(a) Deg ( ) +0 = ZxESupp(b) DegEbs( ) —
Z:{:EAtt(b) Dega® (7).

Monotony holds, becausEmeSupp(a) DegEbs( ) — erm( )DegEbs( z) >
erSupp(b) Degg)s (l’) - ZxEAtt(b) DegEA ( )

Strict monotony holds, because— w(a)? > 0 (recall the graph is non-
maximal) anaz:vGSupp(a) Degx®(x )_ZxEAtt( )DegEbs( ) > Z:EGSuPP(b) Degy®(z)—

Z:{:EAtt( )DegEbs( ).
The proof of reinforcement and strict reinforcement areilainto those of
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monotony and strict monotony, respectively.

Concerning resilienceegis(a) > 1 — 1 fﬁr(g) = w(a)? > 0. In addition,

there exists a natural numbesuch thabegi® (a) < 1_1‘“’7”(“)2, butl—w(a)? >
0 (by non-maximality), thué%(“)2 > 0, thus1 — % <1
Franklin is satisfied, becaugmesllpp(a) Degis(x) — szAtt(a) Degi® (z) =

erSupp(b) DegEbs( ) ZxEAtt(b) Degflkbs( )
Weakening holds, becau$é, g, ) Dega® (%) < 3, cpre() De8A" (2), thus

Z:{:ESnpp(a) DegA ( )_erAtt( )DegEbs( ) <0, thUSDegEbs( ) < 1— 1+’LU(EICB)2 =
w(a) (recalll — w(a)? > 0 by non-maximality).

The proof of strengthening is similar to that of weakening.

Finally, we turnto inertia. We haVe’ , cspp(p) De8A " (%) < 1437, csupn(a) DA (7).
Thus,E(b) = ersnpp(b) Degy>®(z)— szAtt(b) Degia®(z) < 1+erSupp )DegEbs( x)—
> seats(a) De8A° () = 1+ E(a). So,Degx®(h) = 1 — _low(@? g

1+w(a)2E®)
—w(a)? w(a
oty = 1 Tresiers SO.Deg (a) + [1 - Deg} (a)]/2 = Deg} () +
—wla 2
1/2 — DegS (a)/2 = 1/2 + Deg (a)/2 = 1/2 +1/2 — W =1-
1—w(a)? 1—w(a)? Ebs
@2 @3 1 T Tre(mzb@s = De8A (b)- =

Acknowledgments

The authors are very grateful to the reviewers for their masightful com-
ments. This work was supported by ANR-13-BS02-0004 and ANR-ABX-
0040-CIMI.

References

[1] L. Amgoud, J. Ben-Naim, Evaluation of arguments in wedgh bipolar
graphs, in: 14th European Conference on Symbolic and Qatwti Ap-
proaches to Reasoning with Uncertainty, ECSQARU, 201725p35.

[2] S. Benferhat, D. Dubois, H. Prade, Argumentative infigeein uncertain and
inconsistent knowledge bases, in: Proceedings of the @amfe on Uncer-
tainty in Artificial Intelligence, UAI, 1993, pp. 411-419.

[3] L. Amgoud, C. Cayrol, A reasoning model based on the petida of accept-
able arguments, Annals of Mathematics and Artificial Ingelhce 34 (1-3)
(2002) 197-215.

30



[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

T. Bench-Capon, Persuasion in practical argument ugaige-based argu-
mentation frameworks, Journal of Logic and Computation3)3Z003) 429—
448.

C. da Costa Pereira, A. Tettamanzi, S. Villata, Changing’s mind: Erase
or rewind?, in: Proceedings of the 22nd International JGiahference on
Artificial Intelligence, IJCAI, 2011, pp. 164-171.

P. M. Dung, On the Acceptability of Arguments and its Fantental Role in
Non-Monotonic Reasoning, Logic Programming and n-Persam&s, Artif.
Intel. 77 (1995) 321-357.

P. Baroni, M. Giacomin, G. Guida, Scc-recursivenessemegal schema for
argumentation semantics, Atrtificial Intelligence 168 (20062—-210.

P. Dung, P. Mancarella, F. Toni, Computing ideal skegdti@rgumentation,
Artificial Intelligence 171 (2007) 642—-674.

S. Modgil, Reasoning about preferences in argumentdt@mmeworks, Arti-
ficial Intelligence 173 (9-10) (2009) 901-934.

C. Cayrol, C. Devred, M. Lagasquie-Schiex, Accepigbisemantics ac-
counting for strength of attacks in argumentation, in: Bestings of the 19th
European Conference on Artificial Intelligence, ECAI, 20ap. 995-996.

P. E. Dunne, A. Hunter, P. McBurney, S. Parsons, M. Wadie, Weighted
argument systems: Basic definitions, algorithms, and cexitglresults, Ar-
tificial Intelligence 175 (2) (2011) 457-486.

P. Dunne, D. Martinez, A. Garcia, G. Simari, Computatiwith varied-
strength attacks in abstract argumentation frameworksSéami-Stable Se-
mantics, 2010, pp. 207-218.

M. C. Budan, M. L. Cobo, D. Marténez, G. Simari, Bipotg in temporal
argumentation frameworks, International Journal of Agprate Reasoning
84 (2017) 1-22.

C. Cayrol, M. Lagasquie-Schiex, On the acceptabilitarguments in bipolar
argumentation frameworks, in: Proceedings of ECSQARUSG2(P. 378—
389.

N. Oren, T. Norman, Semantics for evidence-based aegumtion, in: Pro-
ceedings of the 2nd International Conference on CompuiatiModels of
Argument, COMMA, 2008, pp. 276—284.

31



[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

G. Brewka, S. Woltran, Abstract dialectical framewsrkn: Proceedings of
the International Conference on Principles of Knowledgprsentation and
Reasoning, KR, 2010.

G. Boella, D. M. Gabbay, L. van der Torre, S. Villata, $opt in abstract
argumentation, in: Proceedings of the 1st Internationalf@ence on Com-
putational Models of Argument, COMMA, 2010, pp. 111-122.

F. Nouioua, V. Risch, Bipolar argumentation framewsonkith specialized
supports, in: International Conference on Tools with Aatéfi Intelligence,
ICTAI, 2010, pp. 215-218.

L. Amgoud, J. Ben-Naim, Ranking-based semantics fayuirentation
frameworks, in: Proceedings of the 7th International Craarfee on Scalable
Uncertainty Management, SUM, 2013, pp. 134-147.

L. Amgoud, J. Ben-Naim, D. Doder, S. Vesic, Acceptdapikemantics for
weighted argumentation frameworks, in: Proceedings ofTihenty-Sixth
International Joint Conference on Artificial IntelligenddCAlI, 2017, pp.
56-62.

P. Besnard, A. Hunter, A logic-based theory of dedwcsivguments, Artificial
Intelligence 128 (1-2) (2001) 203-235.

P. Baroni, M. Romano, F. Toni, M. Aurisicchio, G. Berzan Automatic eval-
uation of design alternatives with quantitative argumgotia Argument &
Computation 6 (1) (2015) 24-49.

A. Rago, F. Toni, M. Aurisicchio, P. Baroni, Discontityt+free decision sup-
port with quantitative argumentation debate, in: Proaegsliof the 15th In-
ternational Conference on Principles of Knowledge Reprasi®n and Rea-
soning, KR, 2016, pp. 63-73.

C. Cayrol, M. Lagasquie-Schiex, Gradual valuationtfipolar argumentation
frameworks, in: Proceedings of ECSQARU 2005, 2005, pp. 388—

L. Amgoud, J. Ben-Naim, Evaluation of arguments fronport relations:
Axioms and semantics, in: Proceedings of the 25th IntewnatiJoint Con-
ference on Atrtificial Intelligence, IJCAI, 2016, pp. 900690

L. Amgoud, J. Ben-Naim, Axiomatic foundations of actaplity semantics,
in: Proceedings of the 15th International Conference omdiries of Knowl-
edge Representation and Reasoning, KR, 2016, pp. 2-11.

32



[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

J. Pollock, How to reason defeasibly, Artificial Inigénce Journal 57 (1)
(1992) 1-42.

L. Amgoud, H. Prade, Using arguments for making and &xghg decisions,
Artificial Intelligence 173 (2009) 413-436.

D. Dubois, H. Fargier, J. Bonnefon, On the qualitativenparison of deci-
sions having positive and negative features, Journal dfidial Intelligence
Research 32 (2008) 385-417.

C. Cayrol, M. Lagasquie-Schiex, Bipolarity in arguntetion graphs: To-
wards a better understanding, International Journal ofréximate Reason-
ing 54 (7) (2013) 876—899.

F. Nouioua, V. Risch, Argumentation frameworks wittcassities, in: Inter-
national Conference on Scalable Uncertainty Managemeht),2011, pp.
163-176.

V. Evripidou, F. Toni, Quaestio-it.com: a social idigént debating platform,
Journal of Decision Systems 23 (3) (2014) 333—-349.

T. Mossakowski, F. Neuhaus, Bipolar weighted arguraton graphs, CoRR
abs/1611.08572. arXiv:1611.08572.
URL http://arxiv.org/abs/1611. 08572

C. Cayrol, M.-C. Lagasquie-Schiex, Graduality in Angentation, Journal of
Artificial Intelligence Research (JAIR) 23 (2005) 245-297.

D. Grossi, S. Modgil, On the graded acceptability ofuargnts, in: Pro-
ceedings of the 24th International Joint Conference orfiéidi Intelligence,
IJCAI, 2015, pp. 868-874.

S. Modgil, H. Prakken, A general account of argumentatvith preferences,
Artificial Intelligence 195 (2013) 361-397.

H. Prakken, G. Sartor, Argument-based extended logognamming with
defeasible priorities, Journal of Applied Non-Classicaigics 7 (1) (1997)
25-75.

33



