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Abstract

The paper tackled the issue of arguments evaluation inweighted bipolar argumen-
tation graphs(i.e., graphs whose arguments have basic strengths, and maybe both
supported and attacked). We introduce principles that an evaluation method (or
semantics) could satisfy. Such principles are very useful for understanding the
foundations of semantics, judging them, and comparing semantics. We then an-
alyze existing semantics on the basis of our principles, andfinally propose a new
semantics for the class of acyclic graphs. We show that it satisfies all the principles.

Keywords: Argumentation, Weighted Bipolar Graphs, Semantics.

1. Introduction

Argumentationis a form of common-sense reasoning consisting of the justifi-
cation of claims by arguments. An argument is made of a set ofpremises(called
reason), aconclusion(the justified claim), and the two are related with a link. An
argument has also generally a basic strength which may represent different issues
like the certainty degree of its premises [2], the strength of its link [3], the impor-
tance of values supported by the argument [4], or the trustworthiness of the source
providing the argument [5].

Despite its explanatory power, an argument does not guarantee the validity of
its conclusion. Indeed, its premises may be wrong, its link may be flawed, and in
some cases the premises may be irrelevant to the conclusion.These flaws of an
argument may themselves be supported by arguments, which are seen as attack-
ers of the original one. An argument may also be supported by other arguments,
which endorse either its premises, its conclusion, or its link. This leads toweighted

1This paper extends the content of the conference paper [1].
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bipolar argumentation graphs, i.e., graphs whose nodes represent arguments with
numerical basic strengths, and edges represent attack and support relationships be-
tween pairs of arguments.

An evaluation of the overall strength of each argument is crucial for deciding
whether or not one may rely on the argument’s conclusion. Phan Ming Dung was
the first to investigate in [6] this evaluation issue. He focused on a simple input: a
set of arguments, having all the same basic strength, and an attack relation between
pairs of arguments. Leaving the origin and the nature of arguments/attacks unspec-
ified, Dung proposed several semantics specifying which sets of arguments (called
extensions) are acceptable. Such graphs may have zero, one,or several extensions.
A single qualitative statusis then assigned to each argument as follows: an argu-
ment isacceptedif it belongs to all extensions, andrejectedotherwise. This status
represents theoverall strengthof the argument.
This seminal paper has led to substantial work either on proposing new alternative
semantics dealing with the same input (eg., [7, 8]), or on extending Dung’s se-
mantics for dealing with richer input, i.e., previous flat graphs with one of the fol-
lowing features: preferences between arguments (or basic strengths of arguments)
[3, 4, 9], weights on attacks [10, 11, 12], or support relation between arguments
[13, 14, 15, 16, 17, 18]. To the best of our knowledge there is no extension seman-
tics dealing with weighted bipolar argumentation graphs.

More recently, another family of semantics, called weighted semantics, is gain-
ing interest (e.g., [5, 19, 20, 21]). These semantics focus on the evaluation of in-
dividual arguments rather than sets of arguments. Furthermore, unlike extension-
based semantics which assign a qualitative overall strength (accepted, rejected) to
each argument, they assign a numerical value to each argument. Finally, instead
of a coarse classification of arguments as accepted/rejected, weighted semantics
allow fine-grained classifications. Most existing semantics deal only withunipolar
graphs (i.e., graphs that consider either attack relation or support one but not both).
Two notable exceptions are QuAD semantics [22] and DF-QuAD [23]. In [24] the
authors discussed advantages of weighted semantics in caseof bipolar argumenta-
tion graphs, but they did not propose concrete semantics.

While there is a consensus in the argumentation community onthe role of at-
tackers and how they should be taken into account in the evaluation of individual
arguments, the situation is less clear for supporters. Indeed, different interpreta-
tions are given to support relation (deductive [17], evidence [15], necessary [18]),
leading to semantics which may return completely differentevaluations of argu-
ments of the same graph. This complicates the comparison of existing semantics
for weighted bipolar graphs. Another source of difficulty isthe absence of formal
principles that guide the well-definition and formal comparisons of semantics.

This paper focuses on the evaluation of arguments in weighted bipolar argu-

2



mentation graphs. It extends our previous works on axiomatic foundations of se-
mantics for unipolar graphs (support graphs [25] and attackgraphs [26]). It defines
principles that a semantics would satisfy in a bipolar setting. Such principles are
very useful for judging and understanding the underpinnings of semantics, and also
for comparing semantics of the same family, and those of different families. Some
of the proposed principles are simple combinations of thoseproposed in [25, 26].
Others are new and show how support and attack might be aggregated. The sec-
ond contribution of the paper consists of analyzing existing semantics against the
principles. The main conclusion is that extension semantics do not harness the po-
tential of support relation. Indeed, when the attack relation is empty, the existing
semantics declare all (supported, non-supported) arguments of a graph as equally
accepted. Weighted semantics take into account supportersin this particular case,
however they violate some key principles. The third contribution of the paper is the
definition of a novel weighted semantics for the sub-class ofacyclic bipolar graphs.
We show that it satisfies all the proposed principles. Furthermore, it avoids thebig
jump problem that may impede the relevance of existing weighted semantics for
practical applications, like dialogue.

The paper is structured as follows: Section 2 introduces basic notions, Section
3 presents our list of principles, Section 4 analyses existing semantics, and Section
5 introduces our new semantics and discusses its properties.

2. Main concepts

This section introduces the main concepts of the paper. Let us begin with the
useful notion of weightings.

Definition 1 (Weighting). A weightingon a setX is a function fromX to [0, 1].

Next, we introduce the argumentation graphs (called frameworks in the litera-
ture) we are interested in, namely weighted bipolar argumentation graphs (wBAGs).

Definition 2 (wBAG). Aweighted bipolar argumentation graph(wBAG) is a quadru-
pleA = 〈A, w,R,S〉, whereA is a finite set of arguments,w a weighting onA,
R ⊆ A×A, andS ⊆ A×A. LetwBAG denote the set of all possible wBAGs.

Given two argumentsa andb, aRb (resp. aSb) meansa attacks(resp. sup-
ports) b, andw(a) is the basic strengthof a. The latter may represent various
issues like the certainty degree of the argument’s premises, trustworthiness of the
argument’s source,. . ..
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We turn to the core concept of the paper. A semantics is a function transforming
any weighted bipolar argumentation graph into a weighting on the set of arguments.
The weight of an argument given by a semantics represents itsoverall strength. It
is obtained from the aggregation of its basic strength and the overall strengths of
its attackers and supporters. Arguments that get value 1 areextremely strongwhilst
those that get value 0 areworthless.

Definition 3 (Semantics). A semanticsis a functionS transforming anyA =
〈A, w,R,S〉 ∈ wBAG into a weightingDegS

A
onA. Leta ∈ A, DegS

A
(a) denotes

theoverall strengthof a.

Let us recall the notion ofisomorphismbetween graphs.

Definition 4 (Isomorphism). Let A = 〈A, w,R,S〉, A′ = 〈A′, w′,R′,S ′〉 ∈
wBAG. An isomorphismfrom A to A

′ is a bijective functionf fromA to A′ such
that the following hold:

• ∀ a ∈ A, w(a) = w′(f(a)),

• ∀ a, b ∈ A, aRb iff f(a)R′f(b),

• ∀ a, b ∈ A, aSb iff f(a)S ′f(b).

Let us recall the notion of path between two nodes in a graph.

Definition 5 (Path). LetA = 〈A, w,R,S〉 ∈ wBAG, anda, b ∈ A. A path from
b to a is a finite non-empty sequence〈x1, . . . , xn〉 such thatx1 = b, xn = a, and
∀i < n, xiRxi+1 or xiSxi+1.

Below is the list of all notations used in the paper.

Notations: LetA = 〈A, w,R,S〉 ∈ wBAG anda ∈ A. We denote byAttA(a) the
set of all attackers ofa in A (i.e.,AttA(a) = {b ∈ A | bRa}), and bysAttA(a)
the set of allsignificant attackersof a, i.e., attackersx of a such thatDegS

A
(x) 6= 0.

Similarly, we denote bySupp
A
(a) the set of all supporters ofa (i.e.,Supp

A
(a) =

{b ∈ A | bSa}) and bysSupp
A
(a) thesignificant supportersof a, i.e., supporters

x such thatDegS
A
(x) 6= 0. Let nowA

′ = 〈A′, w′,R′,S ′〉 ∈ wBAG be such that
A ∩ A′ = ∅. We denote byA ⊕ A

′ the element〈A′′, w′′,R′′,S ′′〉 of wBAG such
thatA′′ = A∪A′, R′′ = R∪R′, S ′′ = S ∪S ′, and∀x ∈ A′′, the following holds:
w′′(x) = w(x), if x ∈ A; w′′(x) = w′(x), if x ∈ A′.
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3. Principles for semantics

In what follows, we propose principles that shed light on foundational choices
made by semantics. In other words, properties that help us tobetter understand the
underpinnings of semantics, and that facilitate their comparisons. The first nine
principles are simplecombinationsof axioms proposed for graphs with only one
type of interactions (support in [25], attack in [26]). The three next principles are
new and show how the overall strengths of supporters and attackers of an argument
might be aggregated, and the last one shows how to regulate the intensity of support
in case of weighted bipolar argumentation graphs.

The first very basic principle, Anonymity, states that the strength of an argu-
ment is independent of its identity. It combines the two Anonymity axioms from
[25, 26].

Principle 1 (Anonymity). A semanticsS satisfiesanonymity iff, for any A =
〈A, w,R,S〉,A′ = 〈A′, w′,R′,S ′〉 ∈ wBAG, for any isomorphismf from A to
A

′, the following property holds:∀ a ∈ A, DegS
A
(a) = DegS

A′(f(a)).

Bi-variate independence principle states the following: the overall strength of
an argumenta should be independent of any argumentb that is not connected to it
(i.e., there is no path fromb toa, ignoring the direction of the edges). This principle
combines the two independence axioms from [25, 26].

Principle 2 (Bi-variate Independence).A semanticsS satisfiesbi-variate inde-
pendenceiff, for all A = 〈A, w,R,S〉, A′ = 〈A′, w′,R′,S ′〉 ∈ wBAG such that
A ∩A′ = ∅, the following property holds:∀ a ∈ A, DegS

A
(a) = DegS

A⊕A′(a).

Bi-variate directionality principle combines Non-Dilution from [25] and Cir-
cumscription from [26]. It states that the overall strengthof an argument should
depend only on its incoming arrows, and thus not on the arguments it itself attacks
or supports.

Principle 3 (Bi-variate Directionality). A semanticsS satisfiesbi-variate direc-
tionality iff, for all A = 〈A, w,R,S〉, A′ = 〈A′, w′,R′,S ′〉 ∈ wBAG such that
A = A′, R ⊆ R′, and S ⊆ S ′, the following holds: for alla, b, x ∈ A, if
R′ ∪ S ′ = R ∪ S ∪ {(a, b)} and there is no path fromb to x, thenDegS

A
(x) =

DegS
A′(x).

Bi-variate Equivalence principle ensures that the overallstrength of an argu-
ment dependsonly on its basic strength and on the overall strengths of its direct
attackers and supporters. It combines the two equivalence axioms from [25, 26].
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Principle 4 (Bi-variate Equivalence). A semanticsS satisfiesbi-variate equiva-
lenceiff, for anyA = 〈A, w,R,S〉 ∈ wBAG, for all a, b ∈ A, if:

• w(a) = w(b),

• there exists a bijective functionf from AttA(a) to AttA(b) such that∀x ∈
AttA(a), DegSA(x) = DegS

A
(f(x)), and

• there exists a bijective functionf ′ from Supp
A
(a) to Supp

A
(b) such that

∀x ∈ Supp
A
(a), DegS

A
(x) = DegS

A
(f ′(x)),

thenDegS
A
(a) = DegS

A
(b).

Stability axiom combines Minimality [25] and Maximality [26] axioms. It
states the following: if an argument is neither attacked norsupported, its overall
strength should be equal to its basic strength.

Principle 5 (Stability). A semanticsS satisfiesstability iff, for anyA = 〈A,w,R,
S〉 ∈ wBAG, for anya ∈ A, if AttA(a) = Supp

A
(a) = ∅, thenDegS

A
(a) = w(a).

Neutrality axiom generalizes Dummy axiom [25] and Neutrality one from [26].
It states that worthless attackers or supporters have no effect.

Principle 6 (Neutrality). A semanticsS satisfiesneutrality iff, for anyA = 〈A,
w, R, S〉 ∈ wBAG, for all a, b, x ∈ A, if:

• w(a) = w(b),

• AttA(a) ⊆ AttA(b),

• Supp
A
(a) ⊆ Supp

A
(b),

• AttA(b) ∪ Supp
A
(b) = AttA(a) ∪ Supp

A
(a) ∪ {x}, andDegS

A
(x) = 0,

thenDegS
A
(a) = DegS

A
(b).

Bi-variate Monotony states the following: an argument is all the stronger when
it is less attacked and more supported. This means that attacks cannot be beneficial
to their targets and supports cannot be harmful. This axiom generalizes four axioms
from the literature (Monotony and Counting [25] for supports, and the same axioms
from [26] for attacks).

Principle 7 (Bi-variate Monotony). A semanticsS satisfiesbi-variate monotony
iff, for anyA = 〈A, w,R,S〉 ∈ wBAG, for all a, b ∈ A such that:
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• w(a) = w(b),

• AttA(a) ⊆ AttA(b),

• Supp
A
(b) ⊆ Supp

A
(a),

the following holds:

• DegS
A
(a) ≥ DegS

A
(b); (Monotony)

• if (DegS
A
(a) > 0 and sAttA(a) ⊂ sAttA(b)) or (DegS

A
(b) < 1 and

sSupp
A
(b) ⊂ sSupp

A
(a)), thenDegS

A
(a) > DegS

A
(b). (Strict Monotony)

The next axiom concerns the quality of attackers and supporters. It states that
any argument becomes stronger if the quality of its attackers is reduced and the
quality of its supporters is increased. It combines the two Reinforcement axioms
from [25, 26].

Principle 8 (Bi-variate Reinforcement). A semanticsS satisfiesbi-variate rein-
forcementiff, for any A = 〈A, w,R,S〉 ∈ wBAG, for all C,C ′ ⊆ A, for all
a, b ∈ A, for all x, x′, y, y′ ∈ A \ (C ∪ C ′) such that

• w(a) = w(b) > 0,

• DegS
A
(x) ≤ DegS

A
(y),

• DegS
A
(x′) ≥ DegS

A
(y′),

• AttA(a) = C ∪ {x},

• AttA(b) = C ∪ {y},

• Supp
A
(a) = C ′ ∪ {x′},

• Supp
A
(b) = C ′ ∪ {y′},

the following holds:

• DegS
A
(a) ≥ DegS

A
(b); (Reinforcement)

• if (DegS
A
(a) > 0 andDegS

A
(x) < DegS

A
(y)) or

(DegS
A
(b) < 1 andDegS

A
(x′) > DegS

A
(y′)),

thenDegS
A
(a) > DegS

A
(b). (Strict Reinforcement)
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We have shown previously that an attacker may weaken (respectively a sup-
porter may strengthen) a target. However, nothing is said about theintensityof an
attack or support, i.e, to what extent an attack or a support may impact a targeted
argument. Can an attack completely kill an argument? Can a support fully reha-
bilitate a weak argument? The answers to these questions depend on the nature of
arguments. For instance, deductive arguments whose premises are information that
may be true or false may be killed by attacks. Consider the twoargumentsA and
B below.

(A) Tweety is a bird, therefore it flies.

(B) Tweety is a penguin, therefore the rule “birds fly” is not applicable.

Clearly,B undercutsA ([27]), andA may be fully rejected since the rule “birds
fly” is indeed not applicable in the particular case of penguins. Consider now the
two argumentsC andD provided respectively by Paula and Paul:

(C) Senor Taco has the best Mexican food, therefore we go there.

(D) Food is much better at COATL restaurant.

The argumentD denies the premise ofC. However, both arguments are based
on personal opinions of Paula and Paul and there is no reason for fully rejectingC.

The same reasoning holds for support relations. Indeed, in some cases it is
reasonable to fully rehabilitate an argument with supporters. However, irrational
behaviors, like fully accepting fallacious arguments thatare supported are also
possible and should be avoided. The argumentE below remains fallacious even if
it is clearly supported by the argumentF .

(E) Tweety needs fuel, since it flies like planes.

(F ) Indeed, Tweety flies. It is a bird.

In this paper, arguments are abstract entities and thus their internal structure,
content, and nature are unspecified. Thus, it is not possibleto distinguish between
cases where killing is suitable for attacks and cases where it is not. Similarly, cases
of full rehabilitation of support cannot be identified. Thus, in this paper we follow
a cautious approach by avoiding both forms (killing, full rehabilitation). For that
purpose, we combine Imperfection axiom from [25] with Resilience axiom from
[26]. Imperfection states that an argument whose basic strength is less than 1
cannot be fully rehabilitated by supports. In other words, it cannot get an overall
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strength 1 due to supports. Resilience in [26] states that anargument whose basic
strength is positive cannot be completely destroyed by attacks. Unlike the previous
principles, the next one is not mandatory since its suitability depends on the nature
of arguments being evaluated.

Principle 9 (Resilience). A semanticsS satisfiesresilienceiff, for anyA = 〈A, w,
R, S〉 ∈ wBAG, for all a ∈ A, if 0 < w(a) < 1, then0 < DegS

A
(a) < 1.

Resilience forbids an argument from getting an overall strength equal to 1 due
simply to supporters. However, it allows an argument whose basic weight is, for
instance, 0.1 to get an overall strength 0.9 if it is supported by one strong argument.
This phenomenon, calledbig jump, may be undesirable. Consider the analogical
argumentsG andH below:

(G) Both restaurantsX andY are Italian,X serves good food, thereforeY serves
good food as well.

(H) The two restaurantsX andY use the same products.

The link between the conclusion and the premises inG is clearly very weak.
Strengthening this analogical argument amounts to finding important additional
similarities between the compared objects (namelyX andY ). However, pointing
out one very important similarity may not be sufficient for making G very strong.
The argumentH supportsG since it points out one additional similarity between
the two restaurants. However, even ifH is very strong (its premises are true, and it
is not attacked), the link inG is still weak since the two restaurants may not have
the samechef de cuisine. Thus, if the basic weight ofG was initially 0.1 (due to its
weak link), its overall strength cannot become for instance0.9 simply due toH.

As for Resilience, there are cases where a weak argument may become very
strong due to a single supporter. However, since arguments are abstract entities in
our setting, we follow a cautious approach by forbidding bigjumps between the
basic weight of an argument and its overall strength. The next principle is also
about the intensity of support. It aims at preventing supporters from having an ex-
aggerated impact on their targets. More precisely, the ideais the following: if we
add a new supporter (of any strength) to an argumentA, then the distance between
the strength ofA and1 cannot be reduced more than the half. This halfway philos-
ophy seems to well-balance freedom of movement and prevention of exaggerated
movements. It is worth mentioning that this principle concerns the impact of a sin-
gle supporter, and does not prevent a weak argument from becoming very strong
due to the combined effect of several supporters.
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Principle 10 (Inertia). A semanticsS satisfiesinertiaiff, for anyA = 〈A, w,R,S〉 ∈
wBAG, for all a, b, x ∈ A, if

• w(a) = w(b),

• Supp
A
(b) = Supp

A
(a) ∪ {x},

• AttA(b) = AttA(a),

thenDegS
A
(b) ≤ DegS

A
(a) + [1− DegS

A
(a)]/2.

The next three axioms answer the same question: how the overall strengths
of attackers and supporters of an argument are aggregated? To answer this ques-
tion, it is important to specify first which of the two types ofinteractions is more
important. There are three options:

• Attacks are as important as supports,

• Attacks are more important than supports,

• Supports are more important than attacks.

The first option makes perfect sense in a decision making context. Indeed, in
multiple criteria decision making, each argument promotesa criterion (see e.g.,
[28, 29]). A supporter is an argument showing that a criterion is satisfied while an
attacker shows a criterion that is violated. In this context, if an attacker and a sup-
porter of the same argument have equal strength, they counter-balance each other.
This principle is used in [28] for aggregating arguments of options/alternatives in
decision making context. In another context like reasoningwith inconsistent/defeasible
information, supporters (respectively attackers) aim at confirming (respectively
denying) parts of an argument. Thus, the exact part that is confirmed/denied plays
a role. However, even if a supporter and an attacker target the same part, they do
not necessarily counter-balance each other. Consider again the previous analogi-
cal argumentG. Assume that it is supported byH and attacked by the following
argumentI:

(I) The two restaurantsX andY have different chef de cuisine.

Even if we assume thatI is as strong asH (because for instance they both
use certain information and are not attacked), the analogy used inG is weakened
since there is one important feature on which the two compared restaurantsX
andY differ. Please recall that an analogy is all the stronger when the number of
important properties shared betweenX andY is high and the number of different
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important properties is low. This example suggests that attacks take precedence
over supports.

The third option (supports take precedence over attack) is not reasonable. An
argument can be seen as a chain made of different components (premises, con-
clusion, link). Attacking one of the components is sufficient for weakening or
destroying the whole chain. However, supporting one element of the chain does
not necessarily make an argument strong. Thus, an attack cannot be ignored even
in presence of (several) supporters.

The next principle captures the two first options. Franklin principle states that
a supporter may never be more important than an attacker of equal strength while
Strict Franklin states that an attacker and a supporter of equal strength counter-
balance each other.

Principle 11 (Franklin). A semanticsS satisfiesfranklin iff, for anyA = 〈A, w,
R, S〉 ∈ wBAG, for all a, b, x, y ∈ A, if

• w(b) = w(a),

• DegS
A
(x) = DegS

A
(y)

• AttA(a) = AttA(b) ∪ {x},

• Supp
A
(a) = Supp

A
(b) ∪ {y},

then the following hold:

• DegS
A
(a) ≤ DegS

A
(b), (Franklin)

• DegS
A
(a) = DegS

A
(b). (Strict Franklin)

We show that attacks and supports of equal strengths eliminate each others
when a semantics satisfies Strict Franklin.

Proposition 1. Let S be a semantics that satisfies Bi-variate Independence, Bi-
variate Directionality, Stability and Strict Franklin. For anyA = 〈A, w,R,S〉 ∈
wBAG, for any a ∈ A, if there exists a bijective functionf from AttA(a) to
Supp

A
(a) such that∀x ∈ Att(a), DegS

A
(x) = DegS

A
(f(x)), thenDegS

A
(a) =

w(a).

Weakening states that if attackers overcome supporters, the argument should
lose weight. The idea is that supports are not sufficient for counter-balancing at-
tacks. Please note that this does not mean that supports willnot have an impact
on the overall strength of an argument. They may mitigate theglobal loss due to
attacks.
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Principle 12 (Weakening). A semanticsS satisfiesweakeningiff, for any A =
〈A, w, R, S〉 ∈ wBAG, for all a ∈ A, if w(a) > 0 and there exists an injective
functionf fromSupp

A
(a) to AttA(a) such that:

• ∀x ∈ Supp
A
(a), DegS

A
(x) ≤ DegS

A
(f(x)); and

• sAttA(a)\{f(x) | x ∈ Supp
A
(a)} 6= ∅ or ∃x ∈ Supp

A
(a) s.tDegS

A
(x) <

DegS
A
(f(x)),

thenDegS
A
(a) < w(a).

Strengthening states that if supporters overcome attackers, the argument should
gain weight. Indeed, attacks are not sufficient for counter-balancing supports, how-
ever, they may mitigate the global gain due to supports.

Principle 13 (Strengthening). A semanticsS satisfiesstrengtheningiff, for any
A = 〈A, w,R,S〉 ∈ wBAG, for all a ∈ A, if w(a) < 1 and there exists an injective
functionf fromAttA(a) to Supp

A
(a) such that:

• ∀x ∈ AttA(a), DegS
A
(x) ≤ DegS

A
(f(x)); and

• sSupp
A
(a) \ {f(x) | x ∈ AttA(a)} 6= ∅ or ∃x ∈ AttA(a) s.t.DegS

A
(x) <

DegS
A
(f(x)),

thenDegS
A
(a) > w(a).

It is worth mentioning that weakening and strengthening generalize their cor-
responding axioms in [25, 26]. Indeed, when the support relation is empty, bipolar
version of weakening coincides with weakening axiom in [26]. However, it han-
dles additional cases when supports exist. Similarly, whenthe attack relation is
empty, the principle coincides with strengthening axiom in[25].

Almost all axioms are independent, i.e., they do not follow from others. No-
table exceptions are Bivariate Monotony which follows fromfive other principles
(namely Bi-variate Independence, Bi-variate Directionality, Stability, Neutrality
and Bi-variate Reinforcement) and Franklin which follows from Strict Franklin.

Proposition 2. LetS be a semantics.

• If S satisfies Bi-variate Independence, Bi-variate Directionality, Stability,
Neutrality and Bi-variate Reinforcement, thenS satisfies Bivariate Monotony.

• If S satisfies Strict Franklin, thenS satisfies Franklin.

All axioms are compatible, i.e., they can be satisfied all together by a semantics.

Proposition 3. All the axioms are compatible.
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4. Formal analysis of existing semantics

There are several proposals in the literature for the evaluation of arguments in
bipolar argumentation graphs. They can be partitioned intotwo families:extension
semantics [14, 15, 16, 17, 18, 30, 31] andweightedsemantics [22, 23, 24, 32, 33].

Extension semantics extend Dung’s ones [6] for accounting for supports be-
tween arguments. They take as inputflat bipolar argumentation graphs, i.e., graphs
where arguments have all thesamebasic strength.

Definition 6 (Flat Bipolar Graphs). A flat bipolar argumentation graph is an el-
ement〈A, w,R,S〉 ∈ wBAG such that for anya ∈ A, w(a) = 1.

The first work on extension semantics in the bipolar context was done by Cay-
rol and Lagasquie in [14]. The authors argued that two kinds of attacks may emerge
from a bipolar graph: supported attacks and secondary ones.

Definition 7 (Complex Attacks). Let 〈A, w,R,S〉 ∈ wBAG be a flat bipolar ar-
gumentation graph, anda, b ∈ A.

• There is asupported attackfroma to b iff there is a sequencea1R1 . . .Rn−1an,
n ≥ 3, with a1 = a, an = b, for any i = 2, . . . , n − 2, Ri = S and
Rn−1 = R.

• There is asecondary attackfroma to b iff there is a sequencea1R1 . . .Rn−1an,
n ≥ 3, witha1 = a, an = b, R1 = R, and for anyi = 2, . . . , n−2, Ri = S.

Let Rc denote the set of all attacks ofR and the supported/secondary ones; i.e.,
Rc = R ∪ {(a, b) | there exists a supported or secondary attack froma to b}.

Example 1. Consider the flat bipolar argumentation graph depicted in Figure 1.
Dashed lines represent support relations and plain lines represent attack ones.

e:1 c:1 a:1

f :1 d:1 b:1

Figure 1: Bipolar graphA1

There is a supported attack from argumente to a (e S cR a) and a secondary
attack fromf to b (f R d S b).
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Extension semantics look for acceptable sets of arguments,called extensions
in [6]. Each extension represents a coherent position, thusit should satisfy acoher-
enceproperty, calledconflict-freeness, and adefenceone. The former ensures that
an extension does not contain conflicting arguments, while the latter requires that
an extension defends its elements against any attack. Thesetwo properties were
extended in [14] for accounting for complex attacks that mayemerge in flat bipolar
argumentation graphs.

Definition 8 (Conflict-freeness – Safety – Defence).Let〈A, w,R,S〉 ∈ wBAG be
a flat bipolar argumentation graph, andE ⊆ A.

• E is conflict-freeiff ∄a, b ∈ E such thataRcb.

• E is safeiff ∄a, b, c ∈ A such that:

– a, b ∈ E ,

– bSc or c ∈ E , and

– aRcc.

• E defends an argumenta ∈ A iff for any b ∈ A, if bRca, then∃c ∈ E such
that cRcb.

Example 1 (Cont) In the graphA1, the set{e, c} is safe while the set{e, c, f} is
not since it both supports and attacks the argumentb.

Definition 9 (Extensions). LetA = 〈A, w,R,S〉 ∈ wBAG be a flat bipolar argu-
mentation graph, andE ⊆ A.

• E is a stable extensioniff E is conflict-free and for anya /∈ E , there exists
c ∈ E such thatcRca.

• E is a d-preferred extensioniff E is maximal (for set inclusion) among the
sets that are conflict-free and defend all their elements.

• E is a s-preferred extensioniff E is maximal (for set inclusion) among the
sets that are safe and defend all their elements.

Let Extx(A) denote the set of all extensions ofA under semanticsx (x being
stable, or d-preferred, or s-preferred).

Throughout this section, we refer to the three above semantics by reviewed
semantic.
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Example 1 (Cont)The graphA1 has one stable and d-preferred extension:{e, c, f}.
It has however two s-preferred extensions:{e, c} and{f}.

Once extensions are computed, in [7, 34, 35, 36, 37], a three-valued qualitative
overall strength is assigned to every argument as follows: an argument isaccepted
if it belongs to all extensions,undecided(or credulously accepted) if it belongs to
some but not all extensions, andrejectedif it does not belong to any extension.
For the purpose of analyzing these semantics against the principles, we replace the
three qualitative values with numerical ones as follows.

Definition 10 (Argument’s overall strength). LetA = 〈A, w,R,S〉 ∈ wBAG be
a flat bipolar argumentation graph,a ∈ A, andx is one of the reviewed semantics.

• Degx
A
(a) = 1 iff a ∈

⋂

E∈Extx(A)

E . (Accepted argument)

• Degx
A
(a) = 0.5 iff ∃E , E ′ ∈ Extx(A) such thata ∈ E anda /∈ E ′. (Unde-

cided argument)

• Degx
A
(a) = 0 iff a /∈

⋃

E∈Extx(A)

E . (Rejected argument)

When the attack relation is empty, any flat bipolar argumentation graph has a
single extension, which contains all the arguments. Thus, all arguments have the
same overall strength.

Proposition 4. Let A = 〈A, w,R,S〉 ∈ wBAG be a flat bipolar argumentation
graph. IfR = ∅, then for anyx ∈ {stable, d-preferred, s-preferred},

• Extx(A) = {A}.

• For anya ∈ A, Degx
A
(a) = 1.

This means that when the attack relation is empty, the support relation does not
play any role, and a supported argument is as acceptable as a non-supported one.

Example 2. Let us consider the flat bipolar argumentation graph depicted in Fig-
ure 2. This graph has one stable, d-preferred, s-preferred extension:{a, b, c, d, e, f}.
Hence, all the six arguments get value 1. Note thatb which has 2 supporters is as
strong asd, e, f which are not supported at all.

It was shown in [14] that when the support relation is empty, the three semantics
of Definition 9 coincide with Dung’s ones. Consequently, each semantics violates
the same axioms as its basic version in [6]. Note that in [26],a formal analysis of
Dung’s semantics is done for flat attack graphs. The following result summarizes
the axioms that are violated.
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e:1 c:1 a:1

f :1 d:1 b:1

Figure 2: Bipolar graphA2

Proposition 5. Stable semantics violates Stability, Bi-variate Independence, and
Bi-variate Directionality. The three semantics violate Bi-variate Equivalence, Neu-
trality, Resilience, Strict Monotony, Strict Reinforcement, Franklin and Strength-
ening.

It is worth mentioning that Inertia axiom does not apply to extension semantics
since they allow only three values as possible overall strengths of arguments.

The approaches developed in [15, 16, 17, 18] are similar to the one by Cayrol
and Lagasquie. They also coincide with Dung’s framework in case the support
relation is empty. Furthermore, when the attack relation isempty, the approaches
in [16, 18] return a single extension. The latter contains the arguments that do not
belong to any cycle. Thus, they also violate strengthening and the support relation
may not be fully exploited in the evaluation of arguments. They also violate the
same set of axioms as the approach of Cayrol and Lagasquie.

The second family of weighted semantics was introduced for the first time in
[24]. In their paper, the authors presented some propertiesthat such semantics
should satisfy (like a particular case of strengthening). However, they did not define
concrete semantics. To the best of our knowledge, the first weighted semantics was
introduced in [32]. Basic weights of arguments represent positive and negative
votes on arguments. The semantics evaluates in the same way but separately the
attackers and supporters of an argument before aggregatingthem.

Definition 11. Let A = 〈A, w,R,S〉 ∈ wBAG and a ∈ A. Let AttA(a) =
{b1, . . . , bn} andSupp

A
(a) = {s1, . . . , sk}.

DegS
A
(a) =















w(a) if Supp
A
(a) = AttA(a) = ∅

fa(a) if Supp
A
(a) = ∅ andAttA(a) 6= ∅

fs(a) if Supp
A
(a) 6= ∅ andAttA(a) = ∅

fa(a)+fs(a)
2 otherwise

where
fa(a) = w(a)× (1−m(b1, . . . , bn))
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and
fs(a) = w(a) + (w(a) −w(a) × (1−m(s1, . . . , sk)))

and

m(x1, . . . , xj) =







0 if j = 0
DegS

A
(x1) +m(x2, . . . , xj)− DegS

A
(x1)×m(x2, . . . , xj)

otherwise

This semantics was proposed for any typology of graphs. However, it is easy
to see that it does not handle correctly cycles. Assume a simple graph with two
argumentsa andb such thata attacksb andb attacksa. Assume also thatw(a) =
w(b) = 1. It is easy to check that this semantics assigns to each argument any
solution of the equationDegS

A
(a) + DegS

A
(b) = 1, hence an infinite number of

values. This shows that the semantics is not well-defined.

Later in [22], QuAD semantics was introduced for evaluatingarguments in
acyclic weighted argumentation graphs.

Definition 12 (Acyclic Graphs). A weighted bipolar argumentation graphA =
〈A, w,R,S〉 ∈ wBAG is acyclic iff the following holds: for any non-empty fi-
nite sequencea = 〈a1, a2, . . . , an〉 of elements ofA, if ∀i ∈ {1, 2, . . . , n − 1},
〈ai, ai+1〉 ∈ R ∪ S, then〈an, a1〉 6∈ R ∪ S.

Since a semantics takes as input any graph, we need to introduce the notion
of restricted semantics. All notations and principles for semantics are straightfor-
wardly adapted to restricted semantics.

Definition 13 (Restricted semantics).A restricted semanticsis a functionS trans-
forming any acyclicA = 〈A, w,R,S〉 ∈ wBAG into a weighting onA.

QuAD is then a restricted semantics which assigns a numerical value to every
argument on the basis of its basic strength, and the overall strengths of its attackers
and supporters. It evaluates separately the supporters (bya functionfs) and the
attackers (by a functionfa) before aggregating them.

Definition 14 (QuAD). LetA = 〈A, w,R,S〉 be an acyclic weighted bipolar ar-
gumentation graph. For anya ∈ A,

Deg
QuAD
A

(a) =















fa(a) if Supp
A
(a) = ∅ andAttA(a) 6= ∅

fs(a) if Supp
A
(a) 6= ∅ andAttA(a) = ∅

w(a) if Supp
A
(a) = ∅ andAttA(a) = ∅

fa(a)+fs(a)
2 otherwise
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where
fa(a) = w(a) ×

∏

biRa

(1− Deg
QuAD
A

(bi))

and
fs(a) = 1− (1− w(a)) ×

∏

ciSa

(1− Deg
QuAD
A

(ci))

Example 3. Consider the acyclic bipolar argumentation graph depictedin Figure
3 below.

b1:0.8 b2:0.8 b3:0.9

a:0.2

Figure 3: Bipolar graphA3

It can be checked thatDegQuAD
A3

(a) = 0.422, DegQuAD
A3

(b1) = Deg
QuAD
A3

(b2) = 0.8,

andDegQuAD
A3

(b3) = 0.9.

The following result summarizes the principles that are satisfied (respectively
violated) by QuAD.

Proposition 6. The following properties hold.

• QuAD satisfies Anonymity, Bi-variate Independence, Bi-variate Directional-
ity, Bi-variate Equivalence, Stability, Neutrality, Monotony, Reinforcement.

• QuAD violates Strict Monotony, Strict Reinforcement, Resilience, Franklin,
Weakening, Strengthening, and Inertia.

As a consequence of violating Weakening and Strengthening,QuAD may be-
have irrationally. Indeed, choosing which of support and attack should take prece-
dence depends on the intrinsic strength of an argument.

Example 3 (Cont) Consider the weighted bipolar argumentationA3 depicted in
Figure 3. The argumenta has an attacker and a supporter of equal strengths, and

18



an additional attackerb3. Note that ifw(a) = 0.2, thenDegQuAD
A3

(a) = 0.422
meaning that the single supporter is privileged to the two attackers. However, if
w(a) = 0.7, DegQuAD

A3
(a) = 0.477 meaning that attacks are privileged to support.

More generally, we can show that ifw(a) ≥ 0.5, thenDegQuAD
A3

(a) < w(a), else

Deg
QuAD
A3

(a) > w(a).

As a consequence of violating Inertia, QuAD may allowbig jumpsin gains
from supports, and thus a fallacious argument may become very strong if it is sup-
ported by a strong argument. Let us illustrate the issue withthe following example.

Example 4. Consider the weighted bipolar argumentation graph depicted in Fig-
ure 4 below.

b:1 a:0.1

Figure 4: Bipolar graphA4

Note that the initial strength ofa is extremely weak. It can be checked that
Deg

QuAD
A4

(a) = 1. Indeed, a strong supporter makes a very weak argument very
strong.

There are two issues with such big jump: First, the gain is enormous and not
reasonable. Assume thata is the argument “Tweety needs fuel, since it flies like
planes”. It is hard to accepta even when supported. The supporter may increase
slightly the strength of the argument but does not correct the wrong premises of
the argument. Second, such jump impedes the discriminationbetween different
cases wherew(a) > 0.001 since whatever the value ofw(a), the overall strength
is almost 1.

QuAD was recently extended to DF-QuAD in [23]. The new semantics is re-
strictive since it focuses also onacyclic graphs. Unlike QuAD, it uses the same
function for aggregating supporters and attackers separately. It satisfies Strict
Franklin axiom, thus it treats equally attacks and supports. It violates Strength-
ening and Weakening in presence of attackers/supporters ofdegree 1. However,
the semantics avoids the irrational behavior of QuAD.

Definition 15 (DF-QuAD). LetA = 〈A, w,R,S〉 ∈ wBAG be an acyclic weighted
bipolar argumentation graph anda ∈ A. Let Supp

A
(a) = {c1, . . . , cn} and

AttA(a) = {b1, . . . , bm}.
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DegDF
A
(a) =







w(a)− w(a) × |F(x)−F(y)| if F(y) ≥ F(x)

w(a) + (1− w(a)) × |F(x)−F(y)| if F(y) < F(x)
where

x = F(DegDF
A
(c1), . . . , Deg

DF
A
(cn))

y = F(DegDF
A
(b1), . . . , Deg

DF
A
(bm))

F(v1, . . . , vk) =

{

0 if k = 0

1−
∏k

i=1(1− vi) otherwise

Proposition 7. The following properties hold.

• DF-QuAD satisfies Anonymity, Bi-variate Independence, Bi-variate Direc-
tionality, Bi-variate Equivalence, Stability, Neutrality, Monotony, Reinforce-
ment, and Franklin.

• DF-QuAD violates Strict Monotony, Strict Reinforcement, Resilience, Weak-
ening, Strengthening, and Inertia,.

Like QuAD, the restricted semantics DF-QuAD suffers from thebig jumpprob-
lem. Consider the graph depicted in Figure 4. Note that the argumenta has a very
low basic strength (w(a) = 0.1). This argument is supported by the very strong
argumentb. According to DF-QuAD,DegDF

A4
(a) = 0.991. Thus, the value ofa

makes a big jump from 0.1 to 0.991.

In [33] the authors investigated weighted bipolar argumentation graphs and
how arguments can be evaluated in such graphs. They defined principles which are
similar to ours since they also generalized the ones proposed in [25, 26]. They also
provided six novel ones (neutralization, continuity, interchangeability, linearity, re-
verse impact, boundedness). The authors proposed also semantics that satisfy all
or some principles. The first semantics, called Direct Aggregation Semantics, is a
function that is based on a damping factor and that computes the values of argu-
ments in an iterative way. The sequence of values converges in case the damping
factor is greater than the in-degree of the argumentation graph. Direct Aggregation
Semantics is thus graph-dependent; it changes from one graph to another since it
should check the in-degree of the latter. This semantics does not thus evaluate argu-
ments in a uniform way. In our paper, we argue that a semanticsshould be applied
in a uniform way to any family of graphs and should not change from one graph
to another. The second semantics, called Sigmoid directed aggregation semantics,
is an adaptation of the first one in a way that the final values ofarguments are in
the interval (0,1) rather than in the set of real numbers. It is thus well-defined in
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Family of semantics Extension semantics Gradual semantics

Cyclic + Acyclic Graphs Acyclic Graphs Acyclic Non-Maximal Graphs

Stable s-Preferred d-preferred QuAD DF-QuAD DF-QuAD Ebs

Anonymity • • • • • • •

Bi-variate Independence × • • • • • •
Bi-variate Directionality × • • • • • •
Bi-variate Equivalence × × × • • • •
Stability × • • • • • •

Neutrality × × × • • • •
Monotony • • • • • • •
Strict Monotony × × × × × × •
Reinforcement • • • • • • •
Strict Reinforcement × × × × × × •

Resilience × × × × × × •
Inertia ! ! ! × × × •
Franklin • • • × • • •
Strict Franklin × × × × • • •

Weakening • • • × × • •
Strengthening × × × × × • •

Table 1: The symbol• (resp.×, !) stands for satisfied (resp. violated, not applicable).



a particular case. The third semantics uses a function, called Recursive Sigmoid
Aggregation Function, it is based on the previous one for capturing two semantics
from [0,1]. This function does not converge in general. The two other semantics
(recursive damped aggregation and Damped dogged) are discussed very briefly and
their convergences are not shown yet.

5. Exponent-based semantics

As shown in the previous sections, no existing semantics satisfies all our princi-
ples together. The goal of the present section is to handle this issue. More precisely,
we construct a new semantics satisfying all principles, butat the cost of a certain
degree of coverage. Indeed, we only consider non-maximal and acyclic weighted
argumentation graphs.

Definition 16 (Non-maximality). A weighted bipolar argumentation graphA =
〈A, w,R,S〉 ∈ wBAG is non-maximaliff ∀a ∈ A, w(a) < 1.

Without loss of generality, the basic strengths of arguments are less than 1.
Note that few arguments are intrinsically perfect. The probability of false informa-
tion, exceptions, etc., is rarely 0. In contrast, the loss ofcyclic graphs is important.
But, we consider that the class of all acyclic non-maximal weighted bipolar graphs
is expressive enough to deserve attention.

Definition 17 (Restricted semantics).A restricted semanticsis a functionS trans-
forming any acyclic non-maximal weighted bipolar argumentation graphA =
〈A, w,R,S〉 ∈ wBAG into a weighting onA.

Before presenting our semantics, we need to introduce a relation between argu-
ments based on the longest paths to reach them (mixing support and attack arrows).

Definition 18 (Well-founded relation). Let A = 〈A, w,R,S〉 ∈ wBAG be an
acyclic weighted bipolar argumentation graph anda ∈ A. A path toa in A

is a non-empty finite sequencea = 〈a1, a2, . . . , an〉 of elements ofA such that
an = a and∀i ∈ {1, 2, . . . , n − 1}, 〈ai, ai+1〉 ∈ R ∪ S. We denote byRel(A)
the well-founded binary relation≺ onA such that∀x, y ∈ A, x ≺ y iff max{n |
there exists a path tox of lengthn} < max{n | there exists a path toy of length
n}. SinceA is acyclic, those maximum lengths are well-defined, so isRel(A).

We are ready to define theExponent-based restricted semantics. The general
idea is to take into account supporters and attackers in an exponentE of 2 (the
smallest natural number that can be effectively exponentiated). More precisely,

22



the stronger or more-numerous the supporters, the greater and more-likely-positive
that exponent. Obviously, the inverse is true with the attackers. Then, the overall
strength of an argumenta is naturally defined asw(a)2E . Finally, we need certain
tweakings (including a double polarity reversal) to make our function a restricted
semantics in the first place, and to have it satisfy all our axioms. More formally:

Definition 19 (Exponent-based restricted semantics).We denote byEbs the re-
stricted semantics such that for any acyclic non-maximal weighted bipolar argu-
mentation graphA = 〈A, w,R,S〉 ∈ wBAG, Ebs(A) is the weightingf on A
recursively defined withRel(A) as follows:∀a ∈ A,

f(a) = 1−
1− w(a)2

1 + w(a)2E
where E =

∑

x∈Supp(a)

f(x)−
∑

x∈Att(a)

f(x).

As an immediate corollary, we have:

Corollary 1. LetA = 〈A, w,R,S〉 be an acyclic non-maximal weighted bipolar
argumentation graph anda ∈ A. The following holds:

DegEbs
A

(a) = 1−
1− w(a)2

1 + w(a)2E
where E =

∑

x∈Supp(a)

DegEbs
A

(x)−
∑

x∈Att(a)

DegEbs
A

(x).

Below is an example where most principles are exemplified. Every circle con-
tains [argument name]:[intrinsic strength] and below [overall strength].

Example 5. The neutrality principle can be checked withg and e, stability with
e.g.d, bivariate monotony witha andb, bivariate reinforcement withb andc, Im-
perfection withi, Strict Franklin witha, weakening with e.g.b, and strengthening
with i.

Proposition 8. Ebs satisfies all the 13 principles.

Note that being supported by an extremely strong argument does not cause a
weak argument to become extremely strong as well, which shows thatEbs does not
suffer from the big jump problem (indeed, it satisfies inertia). Note thatDegEbs

A5
(i) =

0.17 and thus the jump is not big. Note also that by satisfying Weakening and
Strengthening, the semantics avoids the irrational behavior of QuAD.

23



d:0.17

0.17

a:0.60

0.60

g:0.00

0.00

e:0.40

0.40

b:0.60

0.56

i:0.10

0.17

j:0.99

0.99

h:0.99

0.99

f :0.40

0.30

c:0.60

0.54

Figure 5: Bipolar graphA5

6. Conclusion

The paper presented for the first time principles that serve as guidelines for
defining semantics in weighted bipolar settings. It also analyzed existing seman-
tics with regard to the principles. The results revealed that extension-based seman-
tics like [14, 15, 16, 17, 18] fail to satisfy key properties like independence and
directionality. Furthermore, the role of support relationis a bit ambiguous since in
case the attack relation is empty, the argumentation graph has a single extension
containing all the arguments. This means that supported andnon-supported argu-
ments are all equally acceptable. Weighted semantics defined in [22, 23] for the
subclass of acyclic weighted bipolar graphs satisfy more but not all the principles.
We proposed a novel semantics which satisfies all the 13 principles. However, this
semantics deals only with acyclic graphs.

An urgent future work would be to define a semantics which considers arbi-
trary graphs. Note that there is no such semantics in the literature. We also plan to
investigate additional properties where attacks and supports do not have the same
importance. Indeed, in some applications like handling inconsistency, it is gener-
ally the case that an attack is more important than a support.Thus, Strict Franklin
is not suitable for such application. Another future work consists of investigating
graphs were supports are weighted. Such graphs allow a better encoding of rel-
evance of supporters with regard their targets, and consequently the intensity of
supports can be better captured.
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Appendix: Proofs

Proof of Proposition 1. Let S be a semantics that satisfies Bi-variate Indepen-
dence, Bi-variate Directionality, Stability and Strict Franklin. LetA = 〈A, w,R,S〉
anda ∈ A such that there exists a bijective functionf from AttA(a) to Supp

A
(a)

such that∀x ∈ Att(a), DegS
A
(x) = DegS

A
(f(x)). Let AttA(a) = {a1, . . . , an}

andSupp
A
(a) = {s1, . . . , sn}.

LetA = 〈A′, w′,R′,S ′〉 be such thatA′ = A∪{y1, . . . , yn}, with {y1, . . . , yn} ⊆
Args \ A, ∀x ∈ A, w′(x) = w(x), ∀i = 1, . . . , n, w′(yi) = w(a), R′ = R
andS ′ = S. From Bi-variate Independence ofS, for anyx ∈ A, DegS

A′(x) =
DegS

A
(x).

Let now A = 〈A′′, w′′,R′′,S ′′〉 be such thatA′′ = A′, w′′ = w′, R′′ =
R′ ∪ {(ai, yj) | aiRa, j ∈ {2, . . . , n}, i ∈ {1, . . . , j − 1}}, andS ′′ = S ′ ∪
{(si, yj) | siSa, j ∈ {2, . . . , n}, i ∈ {1, . . . , j − 1}}. Note that eachyi does not
attack/support any other argument. Thus, from Bi-variate Directionality, it follows
that∀x ∈ A, DegS

A′′(x) = DegS
A′(x), thusDegS

A′′(x) = DegS
A
(x).

SinceDegS
A′′(a1) = DegS

A′′(s1), from Franklin, it follows thatDegS
A′′(y1) =

DegS
A′′(y2). From Stability,DegS

A′′(y1) = w(a). By applying recursively Strict
Franklin, we getDegS

A′′(y1) = DegS
A′′(a) = DegS

A
(a) = w(a).

Proof of Proposition 2. Let S be a semantics, which satisfies Bi-variate Inde-
pendence, Bi-variate Directionality, Stability, Neutrality and Bi-variate Reinforce-
ment. Let us show thatS satisfies also Bi-variate Monotony.

Let A = 〈A, w,R,S〉 be a weighted bipolar argumentation graph, anda, b ∈
A such that:

• w(a) = w(b) > 0,

• AttA(a) ⊆ AttA(b),

• Supp
A
(b) ⊆ Supp

A
(a).

Assume thatAttA(b) = AttA(a)∪Y , Supp
A
(a) = Supp

A
(b)∪X, |Y | = n, and

|X| = m. LetA = 〈A′, w′,R′,S ′〉 be such thatA′ = A∪{a′, b′, y1, . . . , yn, x1, . . . , xm}
with {a′, b′, y1, . . . , yn, x1, . . . , xm} ⊆ Args\A, ∀z ∈ A,w′(z) = w(z), w′(a′) =
w(a), w′(b′) = w(b), ∀i = 1, . . . , n, w′(yi) = 0, ∀i = 1, . . . ,m, w′(xi) = 0,
R′ = R and S ′ = S. From Bi-variate Independence ofS, for any x ∈ A,
DegS

A′(x) = DegS
A
(x).

Let now A = 〈A′′, w′′,R′′,S ′′〉 be such thatA′′ = A′, w′′ = w′, R′′ =
R′ ∪ {(x, a′) | xRa} ∪ {(yi, a

′) | i = 1, n} ∪ {(x, b′) | xRb}, andS ′′ = S ′ ∪
{(x, a′) | xSa} ∪ {(x, b′) | xSb} ∪ {(xi, b

′) | i = 1,m}. Note thata′ andb′ do not
attack/support any other argument. Thus, from Bi-variate Directionality, it follows

25



that∀x ∈ A, DegS
A′′(x) = DegS

A′(x), thusDegS
A′′(x) = DegS

A
(x). From stability,

for any i ∈ {1, . . . , n}, DegS
A′′(yi) = 0, and similarly, for anyi ∈ {1, . . . ,m},

DegS
A′′(xi) = 0. Thus, from Neutrality,DegS

A′′(a′) = DegS
A′′(a) = DegS

A
(a),

and DegS
A′′(b′) = DegS

A′′(b) = DegS
A
(b). From Reinforcement,DegS

A′′(a′) ≥
DegS

A′′(b′), henceDegS
A
(a) ≥ DegS

A
(b).

Let S satisfies Strict Franklin. LetA = 〈A, w, R, S〉 ∈ wBAG and let
a, b, x, y ∈ A be such that:

• w(b) = w(a),

• DegS
A
(x) = DegS

A
(y)

• AttA(a) = AttA(b) ∪ {x},

• Supp
A
(a) = Supp

A
(b) ∪ {y},

SinceS satisfies Strict Franklin, thenDegS
A
(a) = DegS

A
(b). Thus,S satisfies

Franklin.

Proof of Proposition 3. Euler-based semantics satisfies all the axioms.

Proof of Proposition 4. Let A = 〈A, w,R,S〉 be a flat bipolar argumentation
graph such thatR = ∅. It follows straightforwardly from Definition 8 that for any
setE ⊆ A, E is both conflict-free and safe. From Maximality of extensions, A
is the only stable (resp. d-preferred and s-preferred) extension. Finally, it follows
that anya ∈ A, Degx

G
(a) = 1.

Proof of Proposition 5. Since the three semantics generalize Dung’s ones with a
support relation, then any axiom violated by Dung’s semantics is also violated by
their extended versions. Consider then the counter-examples given in [26]. From
graphA2 (Figure 2), it is also clear that Strengthening is violated by the three
semantics. Let us consider the following simple graphA6 (depicted in Figure 6
below) to show that the 3 semantics violate Franklin.

This graph has one stable (respectively d-preferred, s-preferred) extension{a, c, d}.
Thus,Degx

G
(a) = 1 while Degx

G
(b) = 0.

Proof of Proposition 6. The satisfied axioms were proved in [22]. In order to
show that QuAD violates Inertia, it is sufficient to considerExample 4.

To show that QuAD violates Resilience, consider the argumentation graph de-
picted in Figure 7. It can be checked thatDeg

QuAD
A7

(b) = 0 while w(b) > 0.
To show that QuAD violates Strict Franklin principle, consider the bipolar ar-

gumentation graph depicted in Figure 8. Note thatDeg
QuAD
A8

(a) = 0.55 < w(a).

26



a:1 b:1 c:1

d:1

Figure 6: Bipolar graphA6

a:1 b:1

Figure 7: Bipolar graphA7

Assume now thatw(a) = 0.4. Hence,DegQuAD
A8

(a) = 0.45 > w(a), which shows
that QuAD violates Franklin.

a1:0.5 a2:0.5

a:0.6

Figure 8: Bipolar graphA8

To show that QuAD violates Strict Monotony, consider the weighted bipolar
argumentation graph depicted in Figure 9. Note thatDeg

QuAD
A9

(a) = Deg
QuAD
A9

(b) =
0.475.

To show that QuAD violates Strict Reinforcement, it is sufficient to consider
the bipolar argumentation graph depicted in Figure 10. It can be checked that
Deg

QuAD
A10

(a) = Deg
QuAD
A10

(b).

Proof of Proposition 7. The satisfied properties were already proved in [23]. Let
us show that DF-QuAD violates Resilience. Consider a simplegraphA made of
two argumentsa andb such thatw(a) = 1, w(b) = 0.5 andaRb. It follows that
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a1:1 a2:0.9 a3:0.8

a:0.5 b:0.5

Figure 9: Bipolar graphA9

a1:1 a2:0.5 a3:1 b1:1 b2:1 b3:1

a:0.5 b:0.5

Figure 10: Bipolar graphA10

DegDF
A
(b) = 0.

To show that it violates Strict Monotony, it is sufficient to consider the counter-
example given for QuAD (Figure 9). It can be checked thatDegDF

A9
(a) = DegDF

A9
(b) =

0.45.
To show that DF-QuAD violates Strict Reinforcement, it is sufficient to con-

sider the counter-example given for QuAD (Figure 10). It canbe checked that
DegDF

A10
(a) = DegDF

A10
(b).

In order to show that DF-QuAD violates Inertia, it is sufficient to consider the
graph of Figure 5. Note thatDegDF

A5
(i) = 0.991 whilew(i) = 0.1.

Let us show that it violates Strengthening. For that purpose, let us consider the
graph depicted in Figure 11. Note thatDegDF

A11
(a) = w(a) = 0.5 while it should

be greater than 0.5.
Let us now show that DF-QuAD violates Weakening. For that purpose, con-

sider the graph depicted in Figure 12. Note thatDegDF
A12

(a) = w(a) while it should
be less than 0.5.

Proof of Proposition 8. Anonymity, Bi-variate independence, Bi-variate equiva-
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a1:1 a2:1 a3:0.8

a:0.5

Figure 11: Bipolar graphA11

a1:1 a2:0.8 a3:1

a:0.5

Figure 12: Bipolar graphA12

lence are obvious.

Bi-variate directionality comes from the fact that the strength of an argument
only depends on its attackers, the attackers of its attackers, an so on.

Stability is satisfied, becauseDegEbs
A

(a) = 1 − 1−w(a)2

1+w(a)20
= 1 − 1−w(a)2

1+w(a) =

1+w(a)−1+w(a)2

1+w(a) = w(a)+w(a)2

1+w(a) = w(a)(1+w(a))
1+w(a) = w(a).

Neutrality holds, because
∑

x∈Supp(a) Deg
Ebs
A

(x) −
∑

x∈Att(a) Deg
Ebs
A

(x) =
∑

x∈Supp(a) Deg
Ebs
A

(x) −
∑

x∈Att(a) Deg
Ebs
A

(x) + 0 =
∑

x∈Supp(b) Deg
Ebs
A

(x) −
∑

x∈Att(b) Deg
Ebs
A

(x).
Monotony holds, because

∑

x∈Supp(a) Deg
Ebs
A

(x) −
∑

x∈Att(a) Deg
Ebs
A

(x) ≥
∑

x∈Supp(b) Deg
Ebs
A

(x)−
∑

x∈Att(b) Deg
Ebs
A

(x).

Strict monotony holds, because1 − w(a)2 > 0 (recall the graph is non-
maximal) and

∑

x∈Supp(a) Deg
Ebs
A

(x)−
∑

x∈Att(a) Deg
Ebs
A

(x) >
∑

x∈Supp(b) Deg
Ebs
A

(x)−
∑

x∈Att(b) Deg
Ebs
A

(x).
The proof of reinforcement and strict reinforcement are similar to those of
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monotony and strict monotony, respectively.

Concerning resilience,DegEbs
A

(a) ≥ 1 − 1−w(a)2

1+0 = w(a)2 > 0. In addition,

there exists a natural numbern such thatDegEbs
A

(a) ≤ 1− 1−w(a)2

n
, but1−w(a)2 >

0 (by non-maximality), thus1−w(a)2

n
> 0, thus1− 1−w(a)2

n
< 1.

Franklin is satisfied, because
∑

x∈Supp(a) Deg
Ebs
A

(x)−
∑

x∈Att(a) Deg
Ebs
A

(x) =
∑

x∈Supp(b) Deg
Ebs
A

(x)−
∑

x∈Att(b) Deg
Ebs
A

(x).
Weakening holds, because

∑

x∈Supp(a) Deg
Ebs
A

(x) <
∑

x∈Att(a) Deg
Ebs
A

(x), thus
∑

x∈Supp(a) Deg
Ebs
A

(x)−
∑

x∈Att(a) Deg
Ebs
A

(x) < 0, thusDegEbs
A

(a) < 1−1−w(a)2

1+w(a) =

w(a) (recall1− w(a)2 > 0 by non-maximality).
The proof of strengthening is similar to that of weakening.
Finally, we turn to inertia. We have

∑

x∈Supp(b) Deg
Ebs
A

(x) ≤ 1+
∑

x∈Supp(a) Deg
Ebs
A

(x).
Thus,E(b) =

∑

x∈Supp(b) Deg
Ebs
A

(x)−
∑

x∈Att(b) Deg
Ebs
A

(x) ≤ 1+
∑

x∈Supp(a) Deg
Ebs
A

(x)−
∑

x∈Att(a) Deg
Ebs
A

(x) = 1 + E(a). So, DegEbs
A

(b) = 1 − 1−w(a)2

1+w(a)2E(b) ≤ 1 −

1−w(a)2

1+w(a)2(1+E(a)) = 1− 1−w(a)2

1+w(a)2E(a)2
. So,DegS

A
(a)+[1−DegS

A
(a)]/2 = DegS

A
(a)+

1/2 − DegS
A
(a)/2 = 1/2 + DegS

A
(a)/2 = 1/2 + 1/2 − 1−w(a)2

2+w(a)2E(a)2
= 1 −

1−w(a)2

2+w(a)2E(a)2
> 1− 1−w(a)2

1+w(a)2E(a)2
≥ DegEbs

A
(b).
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