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Introduction

Argumentation is a form of common-sense reasoning consisting of the justification of claims by arguments. An argument is made of a set of premises (called reason), a conclusion (the justified claim), and the two are related with a link. An argument has also generally a basic strength which may represent different issues like the certainty degree of its premises [START_REF] Benferhat | Argumentative inference in uncertain and inconsistent knowledge bases[END_REF], the strength of its link [START_REF] Amgoud | A reasoning model based on the production of acceptable arguments[END_REF], the importance of values supported by the argument [START_REF] Bench-Capon | Persuasion in practical argument using value-based argumentation frameworks[END_REF], or the trustworthiness of the source providing the argument [START_REF] Da Costa Pereira | Changing one's mind: Erase or rewind?[END_REF].

Despite its explanatory power, an argument does not guarantee the validity of its conclusion. Indeed, its premises may be wrong, its link may be flawed, and in some cases the premises may be irrelevant to the conclusion. These flaws of an argument may themselves be supported by arguments, which are seen as attackers of the original one. An argument may also be supported by other arguments, which endorse either its premises, its conclusion, or its link. This leads to weighted bipolar argumentation graphs, i.e., graphs whose nodes represent arguments with numerical basic strengths, and edges represent attack and support relationships between pairs of arguments.

An evaluation of the overall strength of each argument is crucial for deciding whether or not one may rely on the argument's conclusion. Phan Ming Dung was the first to investigate in [START_REF] Dung | On the Acceptability of Arguments and its Fundamental Role in Non-Monotonic Reasoning, Logic Programming and n-Person Games[END_REF] this evaluation issue. He focused on a simple input: a set of arguments, having all the same basic strength, and an attack relation between pairs of arguments. Leaving the origin and the nature of arguments/attacks unspecified, Dung proposed several semantics specifying which sets of arguments (called extensions) are acceptable. Such graphs may have zero, one, or several extensions. A single qualitative status is then assigned to each argument as follows: an argument is accepted if it belongs to all extensions, and rejected otherwise. This status represents the overall strength of the argument. This seminal paper has led to substantial work either on proposing new alternative semantics dealing with the same input (eg., [START_REF] Baroni | Scc-recursiveness: a general schema for argumentation semantics[END_REF][START_REF] Dung | Computing ideal skeptical argumentation[END_REF]), or on extending Dung's semantics for dealing with richer input, i.e., previous flat graphs with one of the following features: preferences between arguments (or basic strengths of arguments) [START_REF] Amgoud | A reasoning model based on the production of acceptable arguments[END_REF][START_REF] Bench-Capon | Persuasion in practical argument using value-based argumentation frameworks[END_REF][START_REF] Modgil | Reasoning about preferences in argumentation frameworks[END_REF], weights on attacks [START_REF] Cayrol | Acceptability semantics accounting for strength of attacks in argumentation[END_REF][START_REF] Dunne | Weighted argument systems: Basic definitions, algorithms, and complexity results[END_REF][START_REF] Dunne | Computation with variedstrength attacks in abstract argumentation frameworks[END_REF], or support relation between arguments [START_REF] Budán | Bipolarity in temporal argumentation frameworks[END_REF][START_REF] Cayrol | On the acceptability of arguments in bipolar argumentation frameworks[END_REF][START_REF] Oren | Semantics for evidence-based argumentation[END_REF][START_REF] Brewka | Abstract dialectical frameworks[END_REF][START_REF] Boella | Support in abstract argumentation[END_REF][START_REF] Nouioua | Bipolar argumentation frameworks with specialized supports[END_REF]. To the best of our knowledge there is no extension semantics dealing with weighted bipolar argumentation graphs.

More recently, another family of semantics, called weighted semantics, is gaining interest (e.g., [START_REF] Da Costa Pereira | Changing one's mind: Erase or rewind?[END_REF][START_REF] Amgoud | Ranking-based semantics for argumentation frameworks[END_REF][START_REF] Amgoud | Acceptability semantics for weighted argumentation frameworks[END_REF][START_REF] Besnard | A logic-based theory of deductive arguments[END_REF]). These semantics focus on the evaluation of individual arguments rather than sets of arguments. Furthermore, unlike extensionbased semantics which assign a qualitative overall strength (accepted, rejected) to each argument, they assign a numerical value to each argument. Finally, instead of a coarse classification of arguments as accepted/rejected, weighted semantics allow fine-grained classifications. Most existing semantics deal only with unipolar graphs (i.e., graphs that consider either attack relation or support one but not both). Two notable exceptions are QuAD semantics [START_REF] Baroni | Automatic evaluation of design alternatives with quantitative argumentation[END_REF] and DF-QuAD [START_REF] Rago | Discontinuity-free decision support with quantitative argumentation debate[END_REF]. In [START_REF] Cayrol | Gradual valuation for bipolar argumentation frameworks[END_REF] the authors discussed advantages of weighted semantics in case of bipolar argumentation graphs, but they did not propose concrete semantics.

While there is a consensus in the argumentation community on the role of attackers and how they should be taken into account in the evaluation of individual arguments, the situation is less clear for supporters. Indeed, different interpretations are given to support relation (deductive [START_REF] Boella | Support in abstract argumentation[END_REF], evidence [START_REF] Oren | Semantics for evidence-based argumentation[END_REF], necessary [START_REF] Nouioua | Bipolar argumentation frameworks with specialized supports[END_REF]), leading to semantics which may return completely different evaluations of arguments of the same graph. This complicates the comparison of existing semantics for weighted bipolar graphs. Another source of difficulty is the absence of formal principles that guide the well-definition and formal comparisons of semantics.

This paper focuses on the evaluation of arguments in weighted bipolar argu-mentation graphs. It extends our previous works on axiomatic foundations of semantics for unipolar graphs (support graphs [START_REF] Amgoud | Evaluation of arguments from support relations: Axioms and semantics[END_REF] and attack graphs [START_REF] Amgoud | Axiomatic foundations of acceptability semantics[END_REF]). It defines principles that a semantics would satisfy in a bipolar setting. Such principles are very useful for judging and understanding the underpinnings of semantics, and also for comparing semantics of the same family, and those of different families. Some of the proposed principles are simple combinations of those proposed in [START_REF] Amgoud | Evaluation of arguments from support relations: Axioms and semantics[END_REF][START_REF] Amgoud | Axiomatic foundations of acceptability semantics[END_REF].

Others are new and show how support and attack might be aggregated. The second contribution of the paper consists of analyzing existing semantics against the principles. The main conclusion is that extension semantics do not harness the potential of support relation. Indeed, when the attack relation is empty, the existing semantics declare all (supported, non-supported) arguments of a graph as equally accepted. Weighted semantics take into account supporters in this particular case, however they violate some key principles. The third contribution of the paper is the definition of a novel weighted semantics for the sub-class of acyclic bipolar graphs. We show that it satisfies all the proposed principles. Furthermore, it avoids the big jump problem that may impede the relevance of existing weighted semantics for practical applications, like dialogue.

The paper is structured as follows: Section 2 introduces basic notions, Section 3 presents our list of principles, Section 4 analyses existing semantics, and Section 5 introduces our new semantics and discusses its properties.

Main concepts

This section introduces the main concepts of the paper. Let us begin with the useful notion of weightings.

Definition 1 (Weighting).

A weighting on a set X is a function from X to [0, 1].

Next, we introduce the argumentation graphs (called frameworks in the literature) we are interested in, namely weighted bipolar argumentation graphs (wBAGs). Given two arguments a and b, aRb (resp. aSb) means a attacks (resp. supports) b, and w(a) is the basic strength of a. The latter may represent various issues like the certainty degree of the argument's premises, trustworthiness of the argument's source, . . .. We turn to the core concept of the paper. A semantics is a function transforming any weighted bipolar argumentation graph into a weighting on the set of arguments. The weight of an argument given by a semantics represents its overall strength. It is obtained from the aggregation of its basic strength and the overall strengths of its attackers and supporters. Arguments that get value 1 are extremely strong whilst those that get value 0 are worthless.

Definition 2 (wBAG). A weighted bipolar argumentation graph (wBAG) is a quadruple

A = A, w, R, S ,

Definition 3 (Semantics). A semantics is a function S transforming any

A = A, w, R, S ∈ wBAG into a weighting Deg S A on A. Let a ∈ A, Deg S A (a) denotes the overall strength of a.
Let us recall the notion of isomorphism between graphs.

Definition 4 (Isomorphism). Let

A = A, w, R, S , A ′ = A ′ , w ′ , R ′ , S ′ ∈ wBAG. An isomorphism from A to A ′ is a bijective function f from A to A ′ such that the following hold: • ∀ a ∈ A, w(a) = w ′ (f (a)), • ∀ a, b ∈ A, aRb iff f (a)R ′ f (b), • ∀ a, b ∈ A, aSb iff f (a)S ′ f (b).
Let us recall the notion of path between two nodes in a graph.

Definition 5 (Path).

Let A = A, w, R, S ∈ wBAG, and a, b ∈ A. A path from b to a is a finite non-empty sequence x 1 , . . . , x n such that x 1 = b, x n = a, and ∀i < n, x i Rx i+1 or x i Sx i+1 .

Below is the list of all notations used in the paper.

Notations: Let A = A, w, R, S ∈ wBAG and a ∈ A. We denote by Att A (a) the set of all attackers of a in A (i.e., Att A (a) = {b ∈ A | bRa}), and by sAtt A (a) the set of all significant attackers of a, i.e., attackers x of a such that Deg S A (x) = 0. Similarly, we denote by Supp A (a) the set of all supporters of a (i.e., Supp A (a) = {b ∈ A | bSa}) and by sSupp A (a) the significant supporters of a, i.e., supporters

x such that Deg S A (x) = 0. Let now A ′ = A ′ , w ′ , R ′ , S ′ ∈ wBAG be such that A ∩ A ′ = ∅. We denote by A ⊕ A ′ the element A ′′ , w ′′ , R ′′ , S ′′ of wBAG such that A ′′ = A ∪ A ′ , R ′′ = R ∪ R ′ , S ′′ = S ∪ S ′ ,
and ∀x ∈ A ′′ , the following holds:

w ′′ (x) = w(x), if x ∈ A; w ′′ (x) = w ′ (x), if x ∈ A ′ .

Principles for semantics

In what follows, we propose principles that shed light on foundational choices made by semantics. In other words, properties that help us to better understand the underpinnings of semantics, and that facilitate their comparisons. The first nine principles are simple combinations of axioms proposed for graphs with only one type of interactions (support in [START_REF] Amgoud | Evaluation of arguments from support relations: Axioms and semantics[END_REF], attack in [START_REF] Amgoud | Axiomatic foundations of acceptability semantics[END_REF]). The three next principles are new and show how the overall strengths of supporters and attackers of an argument might be aggregated, and the last one shows how to regulate the intensity of support in case of weighted bipolar argumentation graphs.

The first very basic principle, Anonymity, states that the strength of an argument is independent of its identity. It combines the two Anonymity axioms from [START_REF] Amgoud | Evaluation of arguments from support relations: Axioms and semantics[END_REF][START_REF] Amgoud | Axiomatic foundations of acceptability semantics[END_REF].

Principle 1 (Anonymity). A semantics S satisfies anonymity iff, for any

A = A, w, R, S , A ′ = A ′ , w ′ , R ′ , S ′ ∈ wBAG, for any isomorphism f from A to A ′ , the following property holds: ∀ a ∈ A, Deg S A (a) = Deg S A ′ (f (a)).
Bi-variate independence principle states the following: the overall strength of an argument a should be independent of any argument b that is not connected to it (i.e., there is no path from b to a, ignoring the direction of the edges). This principle combines the two independence axioms from [START_REF] Amgoud | Evaluation of arguments from support relations: Axioms and semantics[END_REF][START_REF] Amgoud | Axiomatic foundations of acceptability semantics[END_REF].

Principle 2 (Bi-variate Independence).

A semantics S satisfies bi-variate independence iff, for all A = A, w, R, S , A ′ = A ′ , w ′ , R ′ , S ′ ∈ wBAG such that A ∩ A ′ = ∅, the following property holds: ∀ a ∈ A, Deg S A (a) = Deg S A⊕A ′ (a).

Bi-variate directionality principle combines Non-Dilution from [START_REF] Amgoud | Evaluation of arguments from support relations: Axioms and semantics[END_REF] and Circumscription from [START_REF] Amgoud | Axiomatic foundations of acceptability semantics[END_REF]. It states that the overall strength of an argument should depend only on its incoming arrows, and thus not on the arguments it itself attacks or supports.

Principle 3 (Bi-variate Directionality). A semantics S satisfies bi-variate directionality iff, for all

A = A, w, R, S , A ′ = A ′ , w ′ , R ′ , S ′ ∈ wBAG such that A = A ′ , R ⊆ R ′ ,
and S ⊆ S ′ , the following holds: for all a, b,

x ∈ A, if R ′ ∪ S ′ = R ∪ S ∪ {(a, b)} and there is no path from b to x, then Deg S A (x) = Deg S A ′ (x).
Bi-variate Equivalence principle ensures that the overall strength of an argument depends only on its basic strength and on the overall strengths of its direct attackers and supporters. It combines the two equivalence axioms from [START_REF] Amgoud | Evaluation of arguments from support relations: Axioms and semantics[END_REF][START_REF] Amgoud | Axiomatic foundations of acceptability semantics[END_REF].

Principle 4 (Bi-variate Equivalence).

A semantics S satisfies bi-variate equivalence iff, for any A = A, w, R, S ∈ wBAG, for all a, b ∈ A, if:

• w(a) = w(b),
• there exists a bijective function f from Att A (a) to Att A (b) such that ∀x ∈ Att A (a), Deg S A (x) = Deg S A (f (x)), and

• there exists a bijective function

f ′ from Supp A (a) to Supp A (b) such that ∀x ∈ Supp A (a), Deg S A (x) = Deg S A (f ′ (x)), then Deg S A (a) = Deg S A (b).
Stability axiom combines Minimality [START_REF] Amgoud | Evaluation of arguments from support relations: Axioms and semantics[END_REF] and Maximality [START_REF] Amgoud | Axiomatic foundations of acceptability semantics[END_REF] axioms. It states the following: if an argument is neither attacked nor supported, its overall strength should be equal to its basic strength.

Principle 5 (Stability). A semantics S satisfies stability iff, for any

A = A, w, R, S ∈ wBAG, for any a ∈ A, if Att A (a) = Supp A (a) = ∅, then Deg S A (a) = w(a).
Neutrality axiom generalizes Dummy axiom [START_REF] Amgoud | Evaluation of arguments from support relations: Axioms and semantics[END_REF] and Neutrality one from [START_REF] Amgoud | Axiomatic foundations of acceptability semantics[END_REF]. It states that worthless attackers or supporters have no effect.

Principle 6 (Neutrality).

A semantics S satisfies neutrality iff, for any A = A, w, R, S ∈ wBAG, for all a, b, x ∈ A, if: Bi-variate Monotony states the following: an argument is all the stronger when it is less attacked and more supported. This means that attacks cannot be beneficial to their targets and supports cannot be harmful. This axiom generalizes four axioms from the literature (Monotony and Counting [START_REF] Amgoud | Evaluation of arguments from support relations: Axioms and semantics[END_REF] for supports, and the same axioms from [START_REF] Amgoud | Axiomatic foundations of acceptability semantics[END_REF] for attacks).

• w(a) = w(b), • Att A (a) ⊆ Att A (b), • Supp A (a) ⊆ Supp A (b), • Att A (b) ∪ Supp A (b) = Att A (a) ∪ Supp A (a)

Principle 7 (Bi-variate Monotony). A semantics S satisfies bi-variate monotony iff, for any

A = A, w, R, S ∈ wBAG, for all a, b ∈ A such that: • w(a) = w(b), • Att A (a) ⊆ Att A (b), • Supp A (b) ⊆ Supp A (a),
the following holds:

• Deg S A (a) ≥ Deg S A (b); (Monotony) • if (Deg S A (a) > 0 and sAtt A (a) ⊂ sAtt A (b)) or (Deg S A (b) < 1 and sSupp A (b) ⊂ sSupp A (a)), then Deg S A (a) > Deg S A (

b). (Strict Monotony)

The next axiom concerns the quality of attackers and supporters. It states that any argument becomes stronger if the quality of its attackers is reduced and the quality of its supporters is increased. It combines the two Reinforcement axioms from [START_REF] Amgoud | Evaluation of arguments from support relations: Axioms and semantics[END_REF][START_REF] Amgoud | Axiomatic foundations of acceptability semantics[END_REF].

Principle 8 (Bi-variate Reinforcement). A semantics S satisfies bi-variate reinforcement iff, for any

A = A, w, R, S ∈ wBAG, for all C, C ′ ⊆ A, for all a, b ∈ A, for all x, x ′ , y, y ′ ∈ A \ (C ∪ C ′ ) such that • w(a) = w(b) > 0, • Deg S A (x) ≤ Deg S A (y), • Deg S A (x ′ ) ≥ Deg S A (y ′ ), • Att A (a) = C ∪ {x}, • Att A (b) = C ∪ {y}, • Supp A (a) = C ′ ∪ {x ′ }, • Supp A (b) = C ′ ∪ {y ′ },
the following holds:

• Deg S A (a) ≥ Deg S A (b); (Reinforcement) • if (Deg S A (a) > 0 and Deg S A (x) < Deg S A (y)) or (Deg S A (b) < 1 and Deg S A (x ′ ) > Deg S A (y ′ )), then Deg S A (a) > Deg S A (b). (Strict Reinforcement)
We have shown previously that an attacker may weaken (respectively a supporter may strengthen) a target. However, nothing is said about the intensity of an attack or support, i.e, to what extent an attack or a support may impact a targeted argument. Can an attack completely kill an argument? Can a support fully rehabilitate a weak argument? The answers to these questions depend on the nature of arguments. For instance, deductive arguments whose premises are information that may be true or false may be killed by attacks. Consider the two arguments A and B below.

(A) Tweety is a bird, therefore it flies.

(B) Tweety is a penguin, therefore the rule "birds fly" is not applicable.

Clearly, B undercuts A ( [START_REF] Pollock | How to reason defeasibly[END_REF]), and A may be fully rejected since the rule "birds fly" is indeed not applicable in the particular case of penguins. Consider now the two arguments C and D provided respectively by Paula and Paul:

(C) Senor Taco has the best Mexican food, therefore we go there.

(D) Food is much better at COATL restaurant.

The argument D denies the premise of C. However, both arguments are based on personal opinions of Paula and Paul and there is no reason for fully rejecting C.

The same reasoning holds for support relations. Indeed, in some cases it is reasonable to fully rehabilitate an argument with supporters. However, irrational behaviors, like fully accepting fallacious arguments that are supported are also possible and should be avoided. The argument E below remains fallacious even if it is clearly supported by the argument F .

(E) Tweety needs fuel, since it flies like planes.

(F ) Indeed, Tweety flies. It is a bird.

In this paper, arguments are abstract entities and thus their internal structure, content, and nature are unspecified. Thus, it is not possible to distinguish between cases where killing is suitable for attacks and cases where it is not. Similarly, cases of full rehabilitation of support cannot be identified. Thus, in this paper we follow a cautious approach by avoiding both forms (killing, full rehabilitation). For that purpose, we combine Imperfection axiom from [START_REF] Amgoud | Evaluation of arguments from support relations: Axioms and semantics[END_REF] with Resilience axiom from [START_REF] Amgoud | Axiomatic foundations of acceptability semantics[END_REF]. Imperfection states that an argument whose basic strength is less than 1 cannot be fully rehabilitated by supports. In other words, it cannot get an overall strength 1 due to supports. Resilience in [START_REF] Amgoud | Axiomatic foundations of acceptability semantics[END_REF] states that an argument whose basic strength is positive cannot be completely destroyed by attacks. Unlike the previous principles, the next one is not mandatory since its suitability depends on the nature of arguments being evaluated.

Principle 9 (Resilience). A semantics S satisfies resilience iff, for any

A = A, w, R, S ∈ wBAG, for all a ∈ A, if 0 < w(a) < 1, then 0 < Deg S A (a) < 1.
Resilience forbids an argument from getting an overall strength equal to 1 due simply to supporters. However, it allows an argument whose basic weight is, for instance, 0.1 to get an overall strength 0.9 if it is supported by one strong argument. This phenomenon, called big jump, may be undesirable. Consider the analogical arguments G and H below: (G) Both restaurants X and Y are Italian, X serves good food, therefore Y serves good food as well.

(H) The two restaurants X and Y use the same products.

The link between the conclusion and the premises in G is clearly very weak. Strengthening this analogical argument amounts to finding important additional similarities between the compared objects (namely X and Y ). However, pointing out one very important similarity may not be sufficient for making G very strong. The argument H supports G since it points out one additional similarity between the two restaurants. However, even if H is very strong (its premises are true, and it is not attacked), the link in G is still weak since the two restaurants may not have the same chef de cuisine. Thus, if the basic weight of G was initially 0.1 (due to its weak link), its overall strength cannot become for instance 0.9 simply due to H.

As for Resilience, there are cases where a weak argument may become very strong due to a single supporter. However, since arguments are abstract entities in our setting, we follow a cautious approach by forbidding big jumps between the basic weight of an argument and its overall strength. The next principle is also about the intensity of support. It aims at preventing supporters from having an exaggerated impact on their targets. More precisely, the idea is the following: if we add a new supporter (of any strength) to an argument A, then the distance between the strength of A and 1 cannot be reduced more than the half. This halfway philosophy seems to well-balance freedom of movement and prevention of exaggerated movements. It is worth mentioning that this principle concerns the impact of a single supporter, and does not prevent a weak argument from becoming very strong due to the combined effect of several supporters.

Principle 10 (Inertia). A semantics S satisfies inertia iff, for any

A = A, w, R, S ∈ wBAG, for all a, b, x ∈ A, if • w(a) = w(b), • Supp A (b) = Supp A (a) ∪ {x}, • Att A (b) = Att A (a), then Deg S A (b) ≤ Deg S A (a) + [1 -Deg S A (a)]/2.
The next three axioms answer the same question: how the overall strengths of attackers and supporters of an argument are aggregated? To answer this question, it is important to specify first which of the two types of interactions is more important. There are three options:

• Attacks are as important as supports,

• Attacks are more important than supports,

• Supports are more important than attacks.

The first option makes perfect sense in a decision making context. Indeed, in multiple criteria decision making, each argument promotes a criterion (see e.g., [START_REF] Amgoud | Using arguments for making and explaining decisions[END_REF][START_REF] Dubois | On the qualitative comparison of decisions having positive and negative features[END_REF]). A supporter is an argument showing that a criterion is satisfied while an attacker shows a criterion that is violated. In this context, if an attacker and a supporter of the same argument have equal strength, they counter-balance each other. This principle is used in [START_REF] Amgoud | Using arguments for making and explaining decisions[END_REF] for aggregating arguments of options/alternatives in decision making context. In another context like reasoning with inconsistent/defeasible information, supporters (respectively attackers) aim at confirming (respectively denying) parts of an argument. Thus, the exact part that is confirmed/denied plays a role. However, even if a supporter and an attacker target the same part, they do not necessarily counter-balance each other. Consider again the previous analogical argument G. Assume that it is supported by H and attacked by the following argument I:

(I) The two restaurants X and Y have different chef de cuisine.

Even if we assume that I is as strong as H (because for instance they both use certain information and are not attacked), the analogy used in G is weakened since there is one important feature on which the two compared restaurants X and Y differ. Please recall that an analogy is all the stronger when the number of important properties shared between X and Y is high and the number of different important properties is low. This example suggests that attacks take precedence over supports.

The third option (supports take precedence over attack) is not reasonable. An argument can be seen as a chain made of different components (premises, conclusion, link). Attacking one of the components is sufficient for weakening or destroying the whole chain. However, supporting one element of the chain does not necessarily make an argument strong. Thus, an attack cannot be ignored even in presence of (several) supporters.

The next principle captures the two first options. Franklin principle states that a supporter may never be more important than an attacker of equal strength while Strict Franklin states that an attacker and a supporter of equal strength counterbalance each other.

Principle 11 (Franklin). A semantics S satisfies franklin iff, for any

A = A, w, R, S ∈ wBAG, for all a, b, x, y ∈ A, if • w(b) = w(a), • Deg S A (x) = Deg S A (y) • Att A (a) = Att A (b) ∪ {x}, • Supp A (a) = Supp A (b) ∪ {y},
then the following hold:

• Deg S A (a) ≤ Deg S A (b), (Franklin) 
• Deg S A (a) = Deg S A (b).

(Strict Franklin)

We show that attacks and supports of equal strengths eliminate each others when a semantics satisfies Strict Franklin. Proposition 1. Let S be a semantics that satisfies Bi-variate Independence, Bivariate Directionality, Stability and Strict Franklin. For any A = A, w, R, S ∈ wBAG, for any a ∈ A, if there exists a bijective function

f from Att A (a) to Supp A (a) such that ∀x ∈ Att(a), Deg S A (x) = Deg S A (f (x)), then Deg S A (a) = w(a).
Weakening states that if attackers overcome supporters, the argument should lose weight. The idea is that supports are not sufficient for counter-balancing attacks. Please note that this does not mean that supports will not have an impact on the overall strength of an argument. They may mitigate the global loss due to attacks.

Principle 12 (Weakening).

A semantics S satisfies weakening iff, for any A = A, w, R, S ∈ wBAG, for all a ∈ A, if w(a) > 0 and there exists an injective function f from Supp A (a) to Att A (a) such that:

• ∀x ∈ Supp A (a), Deg S A (x) ≤ Deg S A (f (x)); and • sAtt A (a)\{f (x) | x ∈ Supp A (a)} = ∅ or ∃x ∈ Supp A (a) s.t Deg S A (x) < Deg S A (f (x)), then Deg S
A (a) < w(a). Strengthening states that if supporters overcome attackers, the argument should gain weight. Indeed, attacks are not sufficient for counter-balancing supports, however, they may mitigate the global gain due to supports.

Principle 13 (Strengthening).

A semantics S satisfies strengthening iff, for any A = A, w, R, S ∈ wBAG, for all a ∈ A, if w(a) < 1 and there exists an injective function f from Att A (a) to Supp A (a) such that:

• ∀x ∈ Att A (a), Deg S A (x) ≤ Deg S A (f (x)); and • sSupp A (a) \ {f (x) | x ∈ Att A (a)} = ∅ or ∃x ∈ Att A (a) s.t. Deg S A (x) < Deg S A (f (x)), then Deg S A (a) > w(a)
. It is worth mentioning that weakening and strengthening generalize their corresponding axioms in [START_REF] Amgoud | Evaluation of arguments from support relations: Axioms and semantics[END_REF][START_REF] Amgoud | Axiomatic foundations of acceptability semantics[END_REF]. Indeed, when the support relation is empty, bipolar version of weakening coincides with weakening axiom in [START_REF] Amgoud | Axiomatic foundations of acceptability semantics[END_REF]. However, it handles additional cases when supports exist. Similarly, when the attack relation is empty, the principle coincides with strengthening axiom in [START_REF] Amgoud | Evaluation of arguments from support relations: Axioms and semantics[END_REF].

Almost all axioms are independent, i.e., they do not follow from others. No- 

Formal analysis of existing semantics

There are several proposals in the literature for the evaluation of arguments in bipolar argumentation graphs. They can be partitioned into two families: extension semantics [START_REF] Cayrol | On the acceptability of arguments in bipolar argumentation frameworks[END_REF][START_REF] Oren | Semantics for evidence-based argumentation[END_REF][START_REF] Brewka | Abstract dialectical frameworks[END_REF][START_REF] Boella | Support in abstract argumentation[END_REF][START_REF] Nouioua | Bipolar argumentation frameworks with specialized supports[END_REF][START_REF] Cayrol | Bipolarity in argumentation graphs: Towards a better understanding[END_REF][START_REF] Nouioua | Argumentation frameworks with necessities[END_REF] and weighted semantics [START_REF] Baroni | Automatic evaluation of design alternatives with quantitative argumentation[END_REF][START_REF] Rago | Discontinuity-free decision support with quantitative argumentation debate[END_REF][START_REF] Cayrol | Gradual valuation for bipolar argumentation frameworks[END_REF][START_REF] Evripidou | Quaestio-it.com: a social intelligent debating platform[END_REF][START_REF] Mossakowski | Bipolar weighted argumentation graphs[END_REF].

Extension semantics extend Dung's ones [START_REF] Dung | On the Acceptability of Arguments and its Fundamental Role in Non-Monotonic Reasoning, Logic Programming and n-Person Games[END_REF] for accounting for supports between arguments. They take as input flat bipolar argumentation graphs, i.e., graphs where arguments have all the same basic strength.

Definition 6 (Flat Bipolar Graphs). A flat bipolar argumentation graph is an element

A, w, R, S ∈ wBAG such that for any a ∈ A, w(a) = 1.

The first work on extension semantics in the bipolar context was done by Cayrol and Lagasquie in [START_REF] Cayrol | On the acceptability of arguments in bipolar argumentation frameworks[END_REF]. The authors argued that two kinds of attacks may emerge from a bipolar graph: supported attacks and secondary ones.

Definition 7 (Complex Attacks). Let A, w, R, S ∈ wBAG be a flat bipolar argumentation graph, and a, b ∈ A.

• There is a supported attack from a to b iff there is a sequence a

1 R 1 . . . R n-1 a n , n ≥ 3, with a 1 = a, a n = b, for any i = 2, . . . , n -2, R i = S and R n-1 = R.
• There is a secondary attack from a to b iff there is a sequence Extension semantics look for acceptable sets of arguments, called extensions in [START_REF] Dung | On the Acceptability of Arguments and its Fundamental Role in Non-Monotonic Reasoning, Logic Programming and n-Person Games[END_REF]. Each extension represents a coherent position, thus it should satisfy a coherence property, called conflict-freeness, and a defence one. The former ensures that an extension does not contain conflicting arguments, while the latter requires that an extension defends its elements against any attack. These two properties were extended in [START_REF] Cayrol | On the acceptability of arguments in bipolar argumentation frameworks[END_REF] for accounting for complex attacks that may emerge in flat bipolar argumentation graphs.

a 1 R 1 . . . R n-1 a n , n ≥ 

Definition 8 (Conflict-freeness -Safety -Defence). Let A, w, R, S ∈ wBAG be a flat bipolar argumentation graph, and

E ⊆ A. • E is conflict-free iff ∄a, b ∈ E such that aR c b. • E is safe iff ∄a, b, c ∈ A such that: -a, b ∈ E,
-bSc or c ∈ E, and -aR c c.

• E defends an argument a ∈ A iff for any

b ∈ A, if bR c a, then ∃c ∈ E such that cR c b.
Example 1 (Cont) In the graph A 1 , the set {e, c} is safe while the set {e, c, f } is not since it both supports and attacks the argument b.

Definition 9 (Extensions).

Let A = A, w, R, S ∈ wBAG be a flat bipolar argumentation graph, and E ⊆ A.

• E is a stable extension iff E is conflict-free and for any a / ∈ E, there exists c ∈ E such that cR c a.

• E is a d-preferred extension iff E is maximal (for set inclusion) among the sets that are conflict-free and defend all their elements.

• E is a s-preferred extension iff E is maximal (for set inclusion) among the sets that are safe and defend all their elements.

Let Ext x (A) denote the set of all extensions of A under semantics x (x being stable, or d-preferred, or s-preferred).

Throughout this section, we refer to the three above semantics by reviewed semantic.

Example 1 (Cont)

The graph A 1 has one stable and d-preferred extension: {e, c, f }. It has however two s-preferred extensions: {e, c} and {f }.

Once extensions are computed, in [START_REF] Baroni | Scc-recursiveness: a general schema for argumentation semantics[END_REF][START_REF] Cayrol | Graduality in Argumentation[END_REF][START_REF] Grossi | On the graded acceptability of arguments[END_REF][START_REF] Modgil | A general account of argumentation with preferences[END_REF][START_REF] Prakken | Argument-based extended logic programming with defeasible priorities[END_REF], a three-valued qualitative overall strength is assigned to every argument as follows: an argument is accepted if it belongs to all extensions, undecided (or credulously accepted) if it belongs to some but not all extensions, and rejected if it does not belong to any extension. For the purpose of analyzing these semantics against the principles, we replace the three qualitative values with numerical ones as follows.

Definition 10 (Argument's overall strength). Let A = A, w, R, S ∈ wBAG be a flat bipolar argumentation graph, a ∈ A, and x is one of the reviewed semantics.

• Deg x A (a) = 1 iff a ∈ E∈Extx(A) E. (Accepted argument) • Deg x A (a) = 0.5 iff ∃E, E ′ ∈ Ext x (A) such that a ∈ E and a / ∈ E ′ . (Unde- cided argument) • Deg x A (a) = 0 iff a / ∈ E∈Extx(A)

E. (Rejected argument)

When the attack relation is empty, any flat bipolar argumentation graph has a single extension, which contains all the arguments. Thus, all arguments have the same overall strength. This means that when the attack relation is empty, the support relation does not play any role, and a supported argument is as acceptable as a non-supported one. It was shown in [START_REF] Cayrol | On the acceptability of arguments in bipolar argumentation frameworks[END_REF] that when the support relation is empty, the three semantics of Definition 9 coincide with Dung's ones. Consequently, each semantics violates the same axioms as its basic version in [START_REF] Dung | On the Acceptability of Arguments and its Fundamental Role in Non-Monotonic Reasoning, Logic Programming and n-Person Games[END_REF]. Note that in [START_REF] Amgoud | Axiomatic foundations of acceptability semantics[END_REF], a formal analysis of Dung's semantics is done for flat attack graphs. The following result summarizes the axioms that are violated. It is worth mentioning that Inertia axiom does not apply to extension semantics since they allow only three values as possible overall strengths of arguments.

Example 2. Let us consider the flat bipolar argumentation graph depicted in

The approaches developed in [START_REF] Oren | Semantics for evidence-based argumentation[END_REF][START_REF] Brewka | Abstract dialectical frameworks[END_REF][START_REF] Boella | Support in abstract argumentation[END_REF][START_REF] Nouioua | Bipolar argumentation frameworks with specialized supports[END_REF] are similar to the one by Cayrol and Lagasquie. They also coincide with Dung's framework in case the support relation is empty. Furthermore, when the attack relation is empty, the approaches in [START_REF] Brewka | Abstract dialectical frameworks[END_REF][START_REF] Nouioua | Bipolar argumentation frameworks with specialized supports[END_REF] return a single extension. The latter contains the arguments that do not belong to any cycle. Thus, they also violate strengthening and the support relation may not be fully exploited in the evaluation of arguments. They also violate the same set of axioms as the approach of Cayrol and Lagasquie.

The second family of weighted semantics was introduced for the first time in [START_REF] Cayrol | Gradual valuation for bipolar argumentation frameworks[END_REF]. In their paper, the authors presented some properties that such semantics should satisfy (like a particular case of strengthening). However, they did not define concrete semantics. To the best of our knowledge, the first weighted semantics was introduced in [START_REF] Evripidou | Quaestio-it.com: a social intelligent debating platform[END_REF]. Basic weights of arguments represent positive and negative votes on arguments. The semantics evaluates in the same way but separately the attackers and supporters of an argument before aggregating them. Later in [START_REF] Baroni | Automatic evaluation of design alternatives with quantitative argumentation[END_REF], QuAD semantics was introduced for evaluating arguments in acyclic weighted argumentation graphs.

Definition 11. Let

A = A, w, R, S ∈ wBAG and a ∈ A. Let Att A (a) = {b 1 , . . . , b n } and Supp A (a) = {s 1 , . . . , s k }. Deg S A (a) =        w(a) if Supp A (a) = Att A (a) = ∅ f a (a) if Supp A (a) = ∅ and Att A (a) = ∅ f s (a) if Supp A (a)

Definition 12 (Acyclic Graphs). A weighted bipolar argumentation graph

A = A, w, R, S ∈ wBAG is acyclic iff the following holds: for any non-empty fi- nite sequence a = a 1 , a 2 , . . . , a n of elements of A, if ∀i ∈ {1, 2, . . . , n -1}, a i , a i+1 ∈ R ∪ S, then a n , a 1 ∈ R ∪ S.
Since a semantics takes as input any graph, we need to introduce the notion of restricted semantics. All notations and principles for semantics are straightforwardly adapted to restricted semantics.

Definition 13 (Restricted semantics). A restricted semantics is a function S transforming any acyclic

A = A, w, R, S ∈ wBAG into a weighting on A.
QuAD is then a restricted semantics which assigns a numerical value to every argument on the basis of its basic strength, and the overall strengths of its attackers and supporters. It evaluates separately the supporters (by a function f s ) and the attackers (by a function f a ) before aggregating them. Definition 14 (QuAD). Let A = A, w, R, S be an acyclic weighted bipolar argumentation graph. For any a ∈ A,

Deg QuAD A (a) =        f a (a) if Supp A (a) = ∅ and Att A (a) = ∅ f s (a) if Supp A (a) = ∅ and Att A (a) = ∅ w(a) if Supp A (a) = ∅ and Att A (a) = ∅ fa(a)+fs(a) 2 otherwise where f a (a) = w(a) × b i Ra (1 -Deg QuAD A (b i )) and f s (a) = 1 -(1 -w(a)) × c i Sa (1 -Deg QuAD A (c i ))
Example 3. Consider the acyclic bipolar argumentation graph depicted in Figure 3 below. It can be checked that

Deg QuAD A 3 (a) = 0.422, Deg QuAD A 3 (b 1 ) = Deg QuAD A 3 (b 2 ) = 0.

8, and Deg QuAD

A 3 (b 3 ) = 0.9.

The following result summarizes the principles that are satisfied (respectively violated) by QuAD. Proposition 6. The following properties hold.

• QuAD satisfies Anonymity, Bi-variate Independence, Bi-variate Directionality, Bi-variate Equivalence, Stability, Neutrality, Monotony, Reinforcement.

• QuAD violates Strict Monotony, Strict Reinforcement, Resilience, Franklin, Weakening, Strengthening, and Inertia.

As a consequence of violating Weakening and Strengthening, QuAD may behave irrationally. Indeed, choosing which of support and attack should take precedence depends on the intrinsic strength of an argument.

Example 3 (Cont)

Consider the weighted bipolar argumentation A 3 depicted in Figure 3. The argument a has an attacker and a supporter of equal strengths, and an additional attacker b 3 . Note that if w(a) = 0.2, then Deg QuAD A 3 (a) = 0.422 meaning that the single supporter is privileged to the two attackers. However, if w(a) = 0.7, Deg QuAD A 3 (a) = 0.477 meaning that attacks are privileged to support. More generally, we can show that if w(a) ≥ 0.5, then Deg QuAD A 3 (a) < w(a), else

Deg QuAD A 3 (a) > w(a).
As a consequence of violating Inertia, QuAD may allow big jumps in gains from supports, and thus a fallacious argument may become very strong if it is supported by a strong argument. Let us illustrate the issue with the following example. Note that the initial strength of a is extremely weak. It can be checked that Deg QuAD A 4 (a) = 1. Indeed, a strong supporter makes a very weak argument very strong.

There are two issues with such big jump: First, the gain is enormous and not reasonable. Assume that a is the argument "Tweety needs fuel, since it flies like planes". It is hard to accept a even when supported. The supporter may increase slightly the strength of the argument but does not correct the wrong premises of the argument. Second, such jump impedes the discrimination between different cases where w(a) > 0.001 since whatever the value of w(a), the overall strength is almost 1.

QuAD was recently extended to DF-QuAD in [START_REF] Rago | Discontinuity-free decision support with quantitative argumentation debate[END_REF]. The new semantics is restrictive since it focuses also on acyclic graphs. Unlike QuAD, it uses the same function for aggregating supporters and attackers separately. It satisfies Strict Franklin axiom, thus it treats equally attacks and supports. It violates Strengthening and Weakening in presence of attackers/supporters of degree 1. However, the semantics avoids the irrational behavior of QuAD. 

Definition 15 (DF-QuAD). Let

Deg DF A (a) =    w(a) -w(a) × |F(x) -F(y)| if F(y) ≥ F(x) w(a) + (1 -w(a)) × |F(x) -F(y)| if F(y) < F(x) where x = F(Deg DF A (c 1 ), . . . , Deg DF A (c n )) y = F(Deg DF A (b 1 ), . . . , Deg DF A (b m )) F(v 1 , . . . , v k ) = 0 if k = 0 1 -k i=1 (1 -v i ) otherwise Proposition 7.
The following properties hold. Like QuAD, the restricted semantics DF-QuAD suffers from the big jump problem. Consider the graph depicted in Figure 4. Note that the argument a has a very low basic strength (w(a) = 0.1). This argument is supported by the very strong argument b. According to DF-QuAD, Deg DF A 4 (a) = 0.991. Thus, the value of a makes a big jump from 0.1 to 0.991.

In [START_REF] Mossakowski | Bipolar weighted argumentation graphs[END_REF] the authors investigated weighted bipolar argumentation graphs and how arguments can be evaluated in such graphs. They defined principles which are similar to ours since they also generalized the ones proposed in [START_REF] Amgoud | Evaluation of arguments from support relations: Axioms and semantics[END_REF][START_REF] Amgoud | Axiomatic foundations of acceptability semantics[END_REF]. They also provided six novel ones (neutralization, continuity, interchangeability, linearity, reverse impact, boundedness). The authors proposed also semantics that satisfy all or some principles. The first semantics, called Direct Aggregation Semantics, is a function that is based on a damping factor and that computes the values of arguments in an iterative way. The sequence of values converges in case the damping factor is greater than the in-degree of the argumentation graph. Direct Aggregation Semantics is thus graph-dependent; it changes from one graph to another since it should check the in-degree of the latter. This semantics does not thus evaluate arguments in a uniform way. In our paper, we argue that a semantics should be applied in a uniform way to any family of graphs and should not change from one graph to another. The second semantics, called Sigmoid directed aggregation semantics, is an adaptation of the first one in a way that the final values of arguments are in the interval (0,1) rather than in the set of real numbers. It is thus well-defined in 

Family of semantics

Extension semantics Gradual semantics Cyclic + Acyclic Graphs Acyclic Graphs Acyclic Non-Maximal Graphs

Stable s-Preferred d-preferred QuAD DF-QuAD DF-QuAD Ebs Anonymity • • • • • • • Bi-variate Independence × • • • • • • Bi-variate Directionality × • • • • • • Bi-variate Equivalence × × × • • • • Stability × • • • • • • Neutrality × × × • • • • Monotony • • • • • • • Strict Monotony × × × × × × • Reinforcement • • • • • • • Strict Reinforcement × × × × × × • Resilience × × × × × × • Inertia ! ! ! × × × • Franklin • • • × • • • Strict Franklin × × × × • • • Weakening • • • × × • • Strengthening × × × × × • •

Exponent-based semantics

As shown in the previous sections, no existing semantics satisfies all our principles together. The goal of the present section is to handle this issue. More precisely, we construct a new semantics satisfying all principles, but at the cost of a certain degree of coverage. Indeed, we only consider non-maximal and acyclic weighted argumentation graphs.

Definition 16 (Non-maximality). A weighted bipolar argumentation graph

A = A, w, R, S ∈ wBAG is non-maximal iff ∀a ∈ A, w(a) < 1.
Without loss of generality, the basic strengths of arguments are less than 1. Note that few arguments are intrinsically perfect. The probability of false information, exceptions, etc., is rarely 0. In contrast, the loss of cyclic graphs is important. But, we consider that the class of all acyclic non-maximal weighted bipolar graphs is expressive enough to deserve attention.

Definition 17 (Restricted semantics). A restricted semantics is a function S transforming any acyclic non-maximal weighted bipolar argumentation graph A =

A, w, R, S ∈ wBAG into a weighting on A.

Before presenting our semantics, we need to introduce a relation between arguments based on the longest paths to reach them (mixing support and attack arrows).

Definition 18 (Well-founded relation).

Let A = A, w, R, S ∈ wBAG be an acyclic weighted bipolar argumentation graph and a ∈ A. A path to a in A is a non-empty finite sequence a = a 1 , a 2 , . . . , a n of elements of A such that a n = a and ∀i ∈ {1, 2, . . . , n -1}, a i , a i+1 ∈ R ∪ S. We denote by Rel(A) the well-founded binary relation ≺ on A such that ∀x, y ∈ A, x ≺ y iff max{n | there exists a path to x of length n} < max{n | there exists a path to y of length n}. Since A is acyclic, those maximum lengths are well-defined, so is Rel(A).

We are ready to define the Exponent-based restricted semantics. The general idea is to take into account supporters and attackers in an exponent E of 2 (the smallest natural number that can be effectively exponentiated). More precisely, the stronger or more-numerous the supporters, the greater and more-likely-positive that exponent. Obviously, the inverse is true with the attackers. Then, the overall strength of an argument a is naturally defined as w(a)2 E . Finally, we need certain tweakings (including a double polarity reversal) to make our function a restricted semantics in the first place, and to have it satisfy all our axioms. More formally: Definition 19 (Exponent-based restricted semantics). We denote by Ebs the restricted semantics such that for any acyclic non-maximal weighted bipolar argumentation graph A = A, w, R, S ∈ wBAG, Ebs(A) is the weighting f on A recursively defined with Rel(A) as follows: ∀a ∈ A,

f (a) = 1 - 1 -w(a) 2 1 + w(a)2 E where E = x∈Supp(a) f (x) - x∈Att(a) f (x).
As an immediate corollary, we have:

Corollary 1. Let A = A, w, R, S be an acyclic non-maximal weighted bipolar argumentation graph and a ∈ A. The following holds:

Deg Ebs A (a) = 1- 1 -w(a) 2 1 + w(a)2 E where E = x∈Supp(a) Deg Ebs A (x)- x∈Att(a)
Deg Ebs A (x). Note that being supported by an extremely strong argument does not cause a weak argument to become extremely strong as well, which shows that Ebs does not suffer from the big jump problem (indeed, it satisfies inertia). Note that Deg Ebs A 5 (i) = 0.17 and thus the jump is not big. Note also that by satisfying Weakening and Strengthening, the semantics avoids the irrational behavior of QuAD. that ∀x ∈ A, Deg S A ′′ (x) = Deg S A ′ (x), thus Deg S A ′′ (x) = Deg S A (x). From stability, for any i ∈ {1, . . . , n}, Deg S A ′′ (y i ) = 0, and similarly, for any i ∈ {1, . . . , m}, Deg S A ′′ (x i ) = 0. Thus, from Neutrality, Deg S A ′′ (a ′ ) = Deg S A ′′ (a) = Deg S A (a), and

Deg S A ′′ (b ′ ) = Deg S A ′′ (b) = Deg S A (b). From Reinforcement, Deg S A ′′ (a ′ ) ≥ Deg S A ′′ (b ′ ), hence Deg S A (a) ≥ Deg S A (b).
Let S satisfies Strict Franklin. Let A = A, w, R, S ∈ wBAG and let a, b, x, y ∈ A be such that: Proof of Proposition 6. The satisfied axioms were proved in [START_REF] Baroni | Automatic evaluation of design alternatives with quantitative argumentation[END_REF]. In order to show that QuAD violates Inertia, it is sufficient to consider Example 4.

• w(b) = w(a), • Deg S A (x) = Deg S A (y) • Att A (a) = Att A (b) ∪ {x}, • Supp A (a) = Supp A (b) ∪ {y},
To show that QuAD violates Resilience, consider the argumentation graph depicted in Figure 7. It can be checked that Deg QuAD Bi-variate directionality comes from the fact that the strength of an argument only depends on its attackers, the attackers of its attackers, an so on.

Stability is satisfied, because Deg The proof of strengthening is similar to that of weakening. 

  where A is a finite set of arguments, w a weighting on A, R ⊆ A × A, and S ⊆ A × A. Let wBAG denote the set of all possible wBAGs.

  ∪ {x}, and Deg S A (x) = 0, then Deg S A (a) = Deg S A (b).

3 ,Example 1 .

 31 with a 1 = a, a n = b, R 1 = R, and for any i = 2, . . . , n-2, R i = S. Let R c denote the set of all attacks of R and the supported/secondary ones; i.e., R c = R ∪ {(a, b) | there exists a supported or secondary attack from a to b}. Consider the flat bipolar argumentation graph depicted in Figure 1. Dashed lines represent support relations and plain lines represent attack ones.

Figure 1 :

 1 Figure 1: Bipolar graph A1 There is a supported attack from argument e to a (e S c R a) and a secondary attack from f to b (f R d S b).

Proposition 4 .

 4 Let A = A, w, R, S ∈ wBAG be a flat bipolar argumentation graph. If R = ∅, then for any x ∈ {stable, d-preferred, s-preferred}, • Ext x (A) = {A}. • For any a ∈ A, Deg x A (a) = 1.

  Figure 2. This graph has one stable, d-preferred, s-preferred extension: {a, b, c, d, e, f }. Hence, all the six arguments get value 1. Note that b which has 2 supporters is as strong as d, e, f which are not supported at all.

Figure 2 :Proposition 5 .

 25 Figure 2: Bipolar graph A2

  = ∅ and Att A (a) = ∅ fa(a)+fs(a) 2 otherwise where f a (a) = w(a) × (1m(b 1 , . . . , b n )) and f s (a) = w(a) + (w(a)w(a) × (1m(s 1 , . . . , s k )))andm(x 1 , . . . , x j ) =    0 if j = 0 Deg S A (x 1 ) + m(x 2 , . . . , x j ) -Deg S A (x 1 ) × m(x 2 , . . . , x j ) otherwiseThis semantics was proposed for any typology of graphs. However, it is easy to see that it does not handle correctly cycles. Assume a simple graph with two arguments a and b such that a attacks b and b attacks a. Assume also that w(a) = w(b) = 1. It is easy to check that this semantics assigns to each argument any solution of the equation Deg S A (a) + Deg S A (b) = 1, hence an infinite number of values. This shows that the semantics is not well-defined.

b 1 :

 1 

Figure 3 :

 3 Figure 3: Bipolar graph A3

Example 4 .

 4 Consider the weighted bipolar argumentation graph depicted in Figure 4 below. b:1 a:0.1

Figure 4 :

 4 Figure 4: Bipolar graph A4

  A = A, w, R, S ∈ wBAG be an acyclic weighted bipolar argumentation graph and a ∈ A. Let Supp A (a) = {c 1 , . . . , c n } and Att A (a) = {b 1 , . . . , b m }.

Example 5 .Proposition 8 .

 58 Below is an example where most principles are exemplified. Every circle contains [argument name]:[intrinsic strength] and below [overall strength]. The neutrality principle can be checked with g and e, stability with e.g. d, bivariate monotony with a and b, bivariate reinforcement with b and c, Imperfection with i, Strict Franklin with a, weakening with e.g. b, and strengthening with i. Ebs satisfies all the 13 principles.

1 .of Proposition 5 .

 15 Since S satisfies Strict Franklin, then Deg S A (a) = Deg S A (b). Thus, S satisfies Franklin. Proof of Proposition 3. Euler-based semantics satisfies all the axioms. Proof of Proposition 4. Let A = A, w, R, S be a flat bipolar argumentation graph such that R = ∅. It follows straightforwardly from Definition 8 that for any set E ⊆ A, E is both conflict-free and safe. From Maximality of extensions, A is the only stable (resp. d-preferred and s-preferred) extension. Finally, it follows that any a ∈ A, Deg x G (a) = Proof Since the three semantics generalize Dung's ones with a support relation, then any axiom violated by Dung's semantics is also violated by their extended versions. Consider then the counter-examples given in [26]. From graph A 2 (Figure 2), it is also clear that Strengthening is violated by the three semantics. Let us consider the following simple graph A 6 (depicted in Figure 6 below) to show that the 3 semantics violate Franklin. This graph has one stable (respectively d-preferred, s-preferred) extension {a, c, d}. Thus, Deg x G (a) = 1 while Deg x G (b) = 0.

A 7 (

 7 b) = 0 while w(b) > 0. To show that QuAD violates Strict Franklin principle, consider the bipolar argumentation graph depicted in Figure 8. Note that Deg QuAD A 8 (a) = 0.55 < w(a).

Figure 6 :

 6 Figure 6: Bipolar graph A6

Figure 7 :

 7 Figure 7: Bipolar graph A7

Figure 8 :Proof of Proposition 7 . 1 : 1 a 2 :1 a 3 :0. 8 a:0. 5 Figure 11 :

 8711238511 Figure 8: Bipolar graph A8

Figure 12 :

 12 Figure 12: Bipolar graph A12

2 1+0= 2 n < 1 .

 221 Ebs A (a) = 1 -1-w(a) 2 1+w(a)2 0 = 1 -1-w(a) 2 1+w(a) = 1+w(a)-1+w(a) 2 1+w(a) = w(a)+w(a) 2 1+w(a) = w(a)(1+w(a)) 1+w(a)= w(a).Neutrality holds, because x∈Supp(a) Deg EbsA (x) -x∈Att(a) Deg Ebs A (x) = x∈Supp(a) Deg Ebs A (x) -x∈Att(a) Deg Ebs A (x) + 0 = x∈Supp(b) Deg Ebs A (x) -x∈Att(b) Deg Ebs A (x). Monotony holds, because x∈Supp(a) Deg Ebs A (x) -x∈Att(a) Deg Ebs A (x) ≥ x∈Supp(b) Deg Ebs A (x) -x∈Att(b) Deg Ebs A (x). Strict monotony holds, because 1w(a) 2 > 0 (recall the graph is nonmaximal) and x∈Supp(a) Deg Ebs A (x)-x∈Att(a) Deg Ebs A (x) > x∈Supp(b) Deg Ebs A (x)-x∈Att(b) Deg Ebs A (x).The proof of reinforcement and strict reinforcement are similar to those of monotony and strict monotony, respectively. Concerning resilience, Deg Ebs A (a) ≥ 1 -1-w(a) w(a) 2 > 0. In addition, there exists a natural number n such that Deg Ebs A (a) ≤ 1-1-w(a) 2 n , but 1-w(a) 2 > 0 (by non-maximality), thus 1-w(a) 2 n > 0, thus 1 -1-w(a) Franklin is satisfied, because x∈Supp(a) Deg Ebs A (x) -x∈Att(a) Deg Ebs A (x) = x∈Supp(b) Deg Ebs A (x) -x∈Att(b) Deg Ebs A (x). Weakening holds, because x∈Supp(a) Deg Ebs A (x) < x∈Att(a) Deg Ebs A (x), thus x∈Supp(a) Deg Ebs A (x)-x∈Att(a) Deg Ebs A (x) < 0, thus Deg Ebs A (a) < 1-1-w(a) 2 1+w(a) = w(a) (recall 1w(a) 2 > 0 by non-maximality).

  Finally, we turn to inertia. We havex∈Supp(b) Deg Ebs A (x) ≤ 1+ x∈Supp(a) Deg Ebs A (x). Thus, E(b) = x∈Supp(b) Deg Ebs A (x)-x∈Att(b) Deg Ebs A (x) ≤ 1+ x∈Supp(a) Deg Ebs A (x)-x∈Att(a) Deg Ebs A (x) = 1 + E(a). So, Deg Ebs A (b) = 1 -1-w(a) 2 1+w(a)2 E(b) ≤ 1 -1-w(a) 2 1+w(a)2 (1+E(a)) = 1-1-w(a) 2 1+w(a)2 E(a) 2 . So, Deg S A (a)+[1-Deg S A (a)]/2 = Deg S A (a)+ 1/2 -Deg S A (a)/2 = 1/2 + Deg S A (a)/2 = 1/2 + 1/2 -1-w(a) 2 2+w(a)2 E(a) 2 = 1 -1-w(a) 2 2+w(a)2 E(a) 2 > 1 -1-w(a) 2 1+w(a)2 E(a) 2 ≥ Deg Ebs A (b).

  table exceptions are Bivariate Monotony which follows from five other principles (namely Bi-variate Independence, Bi-variate Directionality, Stability, Neutrality and Bi-variate Reinforcement) and Franklin which follows from Strict Franklin. Let S be a semantics. • If S satisfies Bi-variate Independence, Bi-variate Directionality, Stability, Neutrality and Bi-variate Reinforcement, then S satisfies Bivariate Monotony. All axioms are compatible, i.e., they can be satisfied all together by a semantics.

	Proposition 2. Proposition 3. All the axioms are compatible.

• If S satisfies Strict Franklin, then S satisfies Franklin.

Table 1 :

 1 The symbol • (resp. ×, !) stands for satisfied (resp. violated, not applicable). a particular case. The third semantics uses a function, called Recursive Sigmoid Aggregation Function, it is based on the previous one for capturing two semantics from [0,1]. This function does not converge in general. The two other semantics (recursive damped aggregation and Damped dogged) are discussed very briefly and their convergences are not shown yet.
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Conclusion

The paper presented for the first time principles that serve as guidelines for defining semantics in weighted bipolar settings. It also analyzed existing semantics with regard to the principles. The results revealed that extension-based semantics like [START_REF] Cayrol | On the acceptability of arguments in bipolar argumentation frameworks[END_REF][START_REF] Oren | Semantics for evidence-based argumentation[END_REF][START_REF] Brewka | Abstract dialectical frameworks[END_REF][START_REF] Boella | Support in abstract argumentation[END_REF][START_REF] Nouioua | Bipolar argumentation frameworks with specialized supports[END_REF] fail to satisfy key properties like independence and directionality. Furthermore, the role of support relation is a bit ambiguous since in case the attack relation is empty, the argumentation graph has a single extension containing all the arguments. This means that supported and non-supported arguments are all equally acceptable. Weighted semantics defined in [START_REF] Baroni | Automatic evaluation of design alternatives with quantitative argumentation[END_REF][START_REF] Rago | Discontinuity-free decision support with quantitative argumentation debate[END_REF] for the subclass of acyclic weighted bipolar graphs satisfy more but not all the principles. We proposed a novel semantics which satisfies all the 13 principles. However, this semantics deals only with acyclic graphs.

An urgent future work would be to define a semantics which considers arbitrary graphs. Note that there is no such semantics in the literature. We also plan to investigate additional properties where attacks and supports do not have the same importance. Indeed, in some applications like handling inconsistency, it is generally the case that an attack is more important than a support. Thus, Strict Franklin is not suitable for such application. Another future work consists of investigating graphs were supports are weighted. Such graphs allow a better encoding of relevance of supporters with regard their targets, and consequently the intensity of supports can be better captured.

Appendix: Proofs

Proof of Proposition 1. Let S be a semantics that satisfies Bi-variate Independence, Bi-variate Directionality, Stability and Strict Franklin. Let A = A, w, R, S and a ∈ A such that there exists a bijective function To show that it violates Strict Monotony, it is sufficient to consider the counterexample given for QuAD (Figure 9). It can be checked that Deg DF A 9 (a) = Deg DF A 9 (b) = 0.45.

To show that DF-QuAD violates Strict Reinforcement, it is sufficient to consider the counter-example given for QuAD (Figure 10). It can be checked that Deg DF A 10 (a) = Deg DF A 10 (b). In order to show that DF-QuAD violates Inertia, it is sufficient to consider the graph of Figure 5. Note that Deg DF A 5 (i) = 0.991 while w(i) = 0.1. Let us show that it violates Strengthening. For that purpose, let us consider the graph depicted in Figure 11. Note that Deg DF A 11 (a) = w(a) = 0.5 while it should be greater than 0.5.

Let us now show that DF-QuAD violates Weakening. For that purpose, consider the graph depicted in Figure 12. Note that Deg DF A 12 (a) = w(a) while it should be less than 0.5.

Proof of Proposition 8. Anonymity, Bi-variate independence, Bi-variate equiva-