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Abstract

Argumentation is a prominent approach for reasoning with (inconsistent) propo-
sitional information. It is based on the justification of formulas by arguments,
which are minimal and consistent logical proofs of the formulas.

The aim of this paper is to evaluate to what extent two such arguments are
similar. For that purpose, we introduce a notion of similarity measure and a set
of principles that such a measure should satisfy. We propose some intuitive exten-
sions of measures from the literature, and show that they fail to satisfy some of the
principles. Then, we come up with a more discriminating measure which satisfies
them all.

1 Introduction
Argumentation is a reasoning process based on the justification of claims by argu-
ments, i.e., reasons for accepting claims. It has been extensively developed in Ar-
tificial Intelligence. Indeed, it was used for different purposes including decision
making (eg. [Amgoud and Prade2009, Bonet and Geffner1996]), defeasible reasoning
(eg. [Governatori et al.2004, Garcı́a and Simari2004]), and negotiation [Sycara1990,
Hadidi et al.2010].

Argumentation is also used as an alternative approach for handling inconsistency
in knowledge bases [Besnard and Hunter2001, Amgoud and Besnard2013]. Starting
from a knowledge base encoded in propositional logic, arguments are built using the
consequence operator of the logic. An argument is a pair made of a set of formulas
(called support) and a single formula (called conclusion). The conclusion follows log-
ically from the support. An example of argument is 〈{p, q}, p ∧ q〉. Its support and
conclusion are respectively {p, q} and p ∧ q. Once arguments are defined, attacks be-
tween them are identified and a semantics is used for evaluating the arguments, finally
formulas supported by strong arguments are inferred from the base.

The number of arguments built from a (finite) knowledge base may be infinite,
which impedes the relevance of the argumentation approach. It was shown in [Amgoud et al.2014]
that infiniteness is partly due to the existence of equivalent or fully similar arguments
like:

〈{p}, p〉 〈{p}, p ∧ p〉 〈{p}, p ∧ p ∧ p〉 . . .
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In the same paper, the authors studied when two arguments are equivalent. Then, they
proposed to keep only one argument per equivalent class in an argumentation graph.
For instance, the argument e below is attacked by four arguments a, b, c, and d. Ac-
cording to [Amgoud et al.2014], b and c are equivalent while a and b (resp. a and c) are
not. Thus, the argumentation graph will contain a, d, and either b or c (but not both).

a : 〈{p ∧ r}, p〉 b : 〈{p}, p〉 c : 〈{p}, p ∧ p〉 d : 〈{q}, q〉

e: 〈{¬p,¬q},¬p ∧ ¬q〉

This approach reduces drastically the number of arguments. Furthermore, it avoids
considering equivalent attackers in the evaluation of arguments by a semantics. This
is particularly important for semantics, like h-Categorizer [Besnard and Hunter2001],
where each attacker of an argument contributes to the decrease of the argument’s
strength. Thus, if an argumentation graph contains the four attackers of e, both b and
c will have negative impact on e. This would lead to an inaccurate acceptability status
of e. The previous approach solves this problem since it removes either b or c (but not
both) from the graph.

While the previous proposal solves the problem of fully similar attackers, it leaves
the issue with partially similar ones open. Indeed, pairs of arguments may share parts
of their supports, parts of their conclusions, or even both. Consider again the attackers
of e, namely a, b and d. According to [Amgoud et al.2014], these arguments are pair-
wise non-equivalent. However, while d is completely different from the two others, a
and b are quite similar since their supports share p and their conclusions are the same.
Thus, for an accurate evaluation of e, one would expect to consider the full strengths
of a and d but only a slight impact of b (since it is quite redundant with a). This means
that for an accurate evaluation of arguments, it is important to assess the degree of sim-
ilarity between pairs of attackers. In the example, the degree of similarity between a
and b is greater than the one between a and d.

This paper investigates similarity between pairs of logical arguments. It defines the
notion of similarity measure as well as a set of principles that a measure should satisfy.
Some principles describe rational behavior of a measure while others are about the ori-
gin of similarity between arguments. As a second contribution, it extends existing mea-
sures from the literature, namely the well-known Jaccard measure [Jaccard1901], Dice
measure [Dice1945], Sorensen one [Sørensen1948], and their other refinements pro-
posed in [Anderberg1973, Sneath et al.1973, Ochiai1957, Kulczynski1927]. It shows
that the extended measures satisfy all the principles, except one of them which deals
with conclusions of arguments. Then, it comes up with another measure which satisfies
all of them.

The paper is organized as follows: It starts by presenting some background on
propositional logic and arguments. Then, it introduces the notion of similarity measure
and principles. In a next section, it discusses properties of measures satisfying some
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principles. Then, it presents extended versions of some existing measures and a novel
one.

2 Background
Throughout the paper, we consider classical propositional logic (L,`), where L is
a propositional language built up from a finite set P of variables, the two Boolean
constants > (true) and ⊥ (false), and the usual connectives (¬, ∨, ∧,→,↔), and ` is
the consequence relation of the logic.

The function Var(φ) returns all the variables occurring in the formula φ (e.g.,
Var(p ∧ ¬q) = {p, q}) and the function CN(φ) is the set of all logical consequences of
φ, i.e. CN(φ) = {ψ ∈ L | φ ` ψ}. Two formulas φ, ψ ∈ L are logically equivalent,
denoted by φ ≡ ψ, iff φ ` ψ and ψ ` φ; they are isomorphic if and only if there
exists a permutation – a bijective renaming function – π : P → P \ Var(φ) of the
variables of φ such that ψ and π(φ)1 become logically equivalent. We say that φ and
ψ are isomorphic wrt π. For instance, the formulas p ∧ ¬q and t ∧ ¬v are isomorphic
wrt the renaming function π, where π(t) = p, π(v) = q, hence π(t ∧ ¬v) = p ∧ ¬q.

A finite subset Φ ofL, denoted by Φ ⊆f L, is consistent iff Φ 0 ⊥, it is inconsistent
otherwise.

Let us now define when two finite sets Φ and Ψ of formulas are equivalent. A
natural definition is when the two sets have the same logical consequences, i.e., {φ ∈
L |Φ ` φ} = {ψ ∈ L |Ψ ` ψ}. Thus, the three sets {p, q}, {p ∧ p,¬¬q}, and {p ∧ q}
are pairwise equivalent. This definition is strong since it considers any inconsistent sets
as equivalent. For instance, {p,¬p} and {q,¬q} are equivalent even if the contents (i.e.
meaning of variables and formulas) of the two sets are unrelated (assume that p and q
stand respectively for “the weather is nice” and “the laptop is heavy”). Furthermore,
it considers the two sets {p, p → q} and {q, q → p} as equivalent while their con-
tents are different as well. Indeed, “birds generally fly” is different from “Everything
which flies is generally a bird”. Moreover, the two arguments 〈{p, p → q}, q〉 and
〈{q, q → p}, p〉 may have different attackers, especially using the assumption-attack
relation [Elvang-Gøransson et al.1993]. Hence, for identifying similarities between ar-
guments, the content is crucial. The idea is to spot commonalities between supports
(respectively conclusions) of arguments. This is not much related to the semantics of
propositional logic. Thus, in what follows we consider the following definition bor-
rowed from [Amgoud et al.2014]. It compares formulas contained in sets instead of
logical consequences of the sets.

Definition 1 (Equivalent Sets of Formulas) Two sets of formulas Φ,Ψ ⊆f L2 are
equivalent, denoted by Φ ∼= Ψ, iff ∀φ ∈ Φ, ∃ψ ∈ Ψ such that φ ≡ ψ and ∀ψ′ ∈ Ψ,
∃φ′ ∈ Φ such that φ′ ≡ ψ′. We write Φ 6∼= Ψ otherwise.

Note that {p, p → q} 6∼= {q, q → p}, {p,¬p} 6∼= {q,¬q}, and {p, q} 6∼= {p ∧ q}
while {p, q} ∼= {p ∧ p,¬¬q}.

1π(φ) denotes the formula obtained by replacing in φ each variable v ∈ Var(φ) by π(v).
2The notation Ψ ⊆f L means Ψ is a finite subset of L.
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Notation: For Φ,Ψ ⊆f L, Co(Φ,Ψ) = {φ ∈ Φ | ∃ψ ∈ Ψ such that φ ≡ ψ}.

Property 1 For all Φ,Ψ ⊆f L, Φ ∼= Ψ iff Co(Φ,Ψ) = Φ and Co(Ψ,Φ) = Ψ.

Proof Assume that Co(Φ,Ψ) = Φ and Co(Ψ,Φ) = Ψ. We can deduce that:

• Co(Φ,Ψ) = Φ implies ∀φ ∈ Φ, ∃ψ ∈ Ψ such that φ ≡ ψ,

• Co(Ψ,Φ) = Ψ implies ∀ψ ∈ Ψ, ∃φ ∈ Φ such that ψ ≡ φ.

Therefore, Φ ∼= Ψ according to the definition 1. The other way follows also trivially
from Definition 1.

3 Logical Arguments
Let us define the main concept of the paper, that of argument. We follow the classical
definition from the literature, namely [Besnard and Hunter2001].

Definition 2 (Argument) An argument built in logic (L,`) is a pair a = 〈Φ, φ〉 such
that:

• Φ ⊆f L, φ ∈ L,

• Φ is consistent,

• Φ ` φ,

• @Φ′ ⊂ Φ such that Φ′ ` φ.

An argument a = 〈Φ, φ〉 is trivial iff Φ = ∅ and φ ≡ >.

Example 1 The following are examples of arguments: 〈{p ∧ q}, p〉, 〈{p, q}, p ∧ q〉,
〈{p}, p〉, 〈{p}, p ∨ q〉, 〈∅, p ∨ ¬p〉.

Notations: We denote by Arg(L) the set of all arguments that can be built in (L,`) in
the sense of Definition 2. For any a = 〈Φ, φ〉 ∈ Arg(L), the functions Supp and Conc

return respectively the support (Supp(a) = Φ) and the conclusion (Conc(a) = φ) of a.

Let us now introduce the useful notion of sub-argument.

Definition 3 (Sub-argument) Let a = 〈Φ, φ〉, b = 〈Ψ, ψ〉 ∈ Arg(L). a is a sub-
argument of b, denoted by a @ b, iff Supp(a) ⊂ Supp(b).

Note that an argument is not a sub-argument of itself according to Definition 3.

Example 1 (Cont) The two arguments 〈{p}, p〉 and 〈{p}, p ∨ q〉 are sub-arguments of
〈{p, q}, p ∧ q〉.

We now define the notion of isomorphic arguments.
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Definition 4 (Isomorphic Arguments) Two arguments a, b ∈ Arg(L) are isomorphic
with respect to a renaming function π iff the two following conditions hold:

• there exists a bijective function f : Supp(a) → Supp(b) such that for any φ ∈
Supp(a), φ and f(φ) are isomorphic wrt π,

• Conc(a) and Conc(b) are isomorphic wrt π.

Example 2 Let π be a renaming function such that π(r) = p, π(v) = q. The argu-
ments 〈{p∧ q}, p∧ q〉 and 〈{r∧ v}, r∧ v〉 are isomorphic wrt π while 〈{p∧ q}, p∧ q〉
and 〈{p→ q}, p→ q〉 are not.

In [Amgoud et al.2014], the authors studied when two arguments are equivalent.
We recall below their most general definition according to which two arguments are
equivalent if their supports (respectively their conclusions) are equivalent.

Definition 5 (Equivalent Arguments) Two arguments a, b ∈ Arg(L) are equivalent,
denoted by a ≈ b, iff

(Supp(a) ∼= Supp(b)) and (Conc(a) ≡ Conc(b)).

Isomorphic arguments are not necessarily equivalent. For instance, 〈{p ∧ q}, p ∧
q〉 and 〈{r ∧ v}, r ∧ v〉 are isomorphic but not equivalent. All trivial arguments are
equivalent.

Property 2 All trivial arguments are pairwise equivalent.

We next present a useful property of the function Co. It holds in case of arguments
but not in general.

Property 3 For all a, b ∈ Arg(L),

|Co(Supp(a), Supp(b))| = |Co(Supp(b), Supp(a))|.

Proof Let a, b ∈ Arg(L). We distinguish two cases: i) Supp(a) = ∅ or Supp(b) = ∅.
By definition, Co(Supp(a), Supp(b)) = Co(Supp(b), Supp(a)) = ∅. Hence, |Co(Supp(a), Supp(b))| =
|Co(Supp(b), Supp(a))| = 0. ii) Supp(a) 6= ∅ and Supp(b) 6= ∅. If Co(Supp(a), Supp(b)) =
∅, then Co(Supp(b), Supp(a)) = ∅. Assume now that Co(Supp(a), Supp(b)) 6= ∅. As-
sume that |Co(Supp(a), Supp(b))| < |Co(Supp(b), Supp(a))|. Thus, there exists at
least two formulas φ, ψ ∈ Co(Supp(b), Supp(a)) such that φ ≡ λ and ψ ≡ λ, with
λ ∈ Supp(a). This means that φ ≡ ψ. This contradicts the fact that Supp(b) is minimal
for set inclusion.

Property 4 For all a, b ∈ Arg(L),

Supp(a) ∼= Supp(b) ⇒ |Supp(a)| = |Supp(b)|.

Proof Let a, b ∈ Arg(L) be such that Supp(a) ∼= Supp(b). Property 1 implies
Co(Supp(a), Supp(b)) = Supp(a) and Co(Supp(b), Supp(a)) = Supp(b). Property 3
implies that |Co(Supp(a), Supp(b))| = |Co(Supp(b), Supp(a))|. Hence, |Supp(a)| =
|Supp(b)|.
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4 Similarity Measures
Our aim is to evaluate at what extent pairs of logical arguments are similar. For that
purpose, we define similarity measure, that is a function that assigns a value from the
unit interval [0, 1] to every pair of arguments. The greater the value, the more similar
the arguments.

Definition 6 (Similarity Measure) A similarity measure is a function S : Arg(L) ×
Arg(L)→ [0, 1].

This definition is very general in that it accepts any function. In what follows, we
restrict the possible candidate functions by proposing a set of principles that any rea-
sonable similarity measure should satisfy. Principles are basic and desirable properties
of a measure S . The first property states that similarity between arguments should be
independent from the syntax (i.e., names of variables).

Principle 1 (Syntax Independence) A similarity measure S satisfies Syntax Indepen-
dence iff for any renaming function π, for all a, b, a′, b′ ∈ Arg(L) such that:

• a and a′ are isomorphic wrt π,

• b and b′ are isomorphic wrt π,

it holds that S(a, b) = S(a′, b′).

The second principle, called Maximality, is about the case of full similarity. It states
that each argument is fully similar to itself. It is worth mentioning that despite the wide
range of similarity measures in the literature (see [Lesot et al.2009, Choi et al.2010]
for surveys of existing measures), there are only two formal properties that have been
identified in the literature: maximality and symmetry which is presented next.

Principle 2 (Maximality) A similarity measure S satisfies Maximality iff for any a ∈
Arg(L), S(a, a) = 1.

Symmetry states that similarity is a symmetric notion.

Principle 3 (Symmetry) A similarity measure S satisfies Symmetry iff for all a, b ∈
Arg(L), S(a, b) = S(b, a).

The next principle states that two fully similar arguments are equally similar to any
third argument.

Principle 4 (Substitution) A similarity measure S satisfies Substitution iff for all a, b, c ∈
Arg(L), if S(a, b) = 1 then S(a, c) = S(b, c).

The next principle states that similarity between two arguments is all the greater
when the supports of the arguments share more formulas. That is, similarity increases
with addition of common logically equivalent formulas in supports or deletion of dis-
tinctive formulas.
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Principle 5 (Monotony – Strict Monotony) A similarity measure S satisfies Monotony
iff for all a, b, c ∈ Arg(L), if

1. Conc(a) ≡ Conc(b) or
Var(Conc(a)) ∩ Var(Conc(c)) = ∅,

2. Co(Supp(a), Supp(c)) ⊆ Co(Supp(a), Supp(b)),

3. Supp(b) \ Co(Supp(b), Supp(a)) ⊆ Supp(c) \ Co(Supp(c), Supp(a)),

then the following hold:

• S(a, b) ≥ S(a, c) (Monotony)

• If the inclusion in condition 2 is strict, then S(a, b) > S(a, c). (Strict
Monotony)

The first condition ensures that the conclusions of a and b are not different and
those of a and c are not similar. Strict Monotony compares the common elements in
the supports of arguments. It cannot be defined with distinct formulas (strict version of
condition 3) since that would allow undesirable cases as shown in the example below.

Example 3 Consider the arguments below.

• a = 〈{p, p→ q}, q〉,

• b = 〈{p}, p〉,

• c = 〈{t}, t〉,

• d = 〈∅, t ∨ ¬t〉.

Monotony ensures that S(a, b) ≥ S(a, c) and S(d, b) ≥ S(d, a) while Strict Monotony
states that S(a, b) > S(a, c). Note that if we extend the definition of Strict Monotony
by allowing strict inclusion in condition 3, then we get S(d, b) > S(d, a) ≥ 0. Hence,
S(d, b) > 0 which is counter-intuitive.

The last principle, called Dominance, ensures that similarity between two logical
arguments depends also on the conclusions of the arguments. The more consequences
the conclusions have in common, the greater the similarity.

Principle 6 (Dominance – Strict Dominance) A similarity measure S satisfies Dom-
inance iff for all a, b, c ∈ Arg(L), if

1. Supp(b) ∼= Supp(c),

2. CN({Conc(a)}) ∩ CN({Conc(c)}) ⊆ CN({Conc(a)}) ∩ CN({Conc(b)}),

3. CN({Conc(b)}) \ CN({Conc(a)}) ⊆ CN({Conc(c)}) \ CN({Conc(a)})

then the following hold:

7



• S(a, b) ≥ S(a, c). (Dominance)

• If the inclusion in condition 2 is strict and Co(Supp(a), Supp(b)) 6= ∅, then
S(a, b) > S(a, c). (Strict Dominance)

Note that the definition of Monotony uses Co for supports while Dominance uses
CN for conclusions. We have seen in the background section that CN is not suitable for
comparing sets of formulas, thus supports, especially for the purpose of assessing simi-
larity between arguments. However, the conclusion of an argument is a single formula,
and Co would only check whether the conclusions of two arguments are equivalent
or not. This is not sufficient for capturing the fact that some conclusions are logical
consequences of others.

Example 4 Consider the three arguments below.

• a = 〈{p ∧ q ∧ t}, p〉,

• b = 〈{p ∧ q ∧ t}, p ∧ q〉,

• c = 〈{p ∧ q ∧ t}, p ∧ q ∧ t〉,

Dominance ensures that S(a, b) ≥ S(a, c) and S(c, b) ≥ S(c, a). Strict Dominance
ensures S(c, b) > S(c, a).

The principles are independent, i.e., none of them follows from the others. A no-
table exception is Substitution, which follows from a subset of principles.

Proposition 1 If a similarity measure S satisfies Symmetry, Maximality, Strict Monotony,
Dominance, and Strict Dominance, then S satisfies Substitution.

Proof Let S be a similarity measure which satisfies Maximality, Symmetry, Strict
Monotony, Dominance, and Strict Dominance. Let a, b, c ∈ Arg(L) such that S(a, b) =
1. From Theorem 2, it holds that Supp(a) ∼= Supp(b) and Conc(a) ≡ Conc(b). By
applying Dominance twice, we get S(c, a) ≥ S(c, b) and S(c, b) ≥ S(c, a). Hence,
S(c, a) = S(c, b). Symmetry implies S(c, a) = S(a, c) = S(c, b) = S(b, c).

The principles are compatible, in that they can be satisfied all together by a simi-
larity measure.

Proposition 2 All the principles are compatible.

Proof The measures Sσm satisfy all the principles.

5 Properties
Let us investigate some consequences of satisfying the proposed principles. We provide
a characterization of all cases where similarity between two arguments is maximal
(equal to 1). Let us present the result progressively. We first show that any measure
satisfying Maximality and Monotony declares equivalent arguments as fully similar.
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Theorem 1 Let S be a similarity measure that satisfies Maximality and Monotony. For
all a, b ∈ Arg(L),

if a ≈ b, then S(a, b) = 1.

Proof Let S be a similarity measure which satisfies Maximality and Monotony. Let
a, b ∈ Arg(L) be such that a ≈ b. Let us show that S(a, b) = 1. From Defini-
tion 5, Supp(a) ∼= Supp(b) and Conc(a) ≡ Conc(b). From Monotony, it follows
that S(a, a) ≥ S(a, b) and S(a, b) ≥ S(a, a). Therefore, S(a, a) = S(a, b). From
Maximality, S(a, a) = 1, so S(a, b) = 1.

We show next that if, in addition to Maximality, a similarity measure satisfies Strict
Monotony and Strict Dominance, then two fully similar arguments are necessarily
equivalent.

Theorem 2 Let S be a similarity measure that satisfies Maximality, Strict Monotony,
and Strict Dominance. For all a, b ∈ Arg(L) the following holds:

if S(a, b) = 1 then a ≈ b.

Proof Let S be a similarity measure which satisfies Maximality, Strict Monotony and
Strict Dominance. Let a, b ∈ Arg(L) be such that S(a, b) = 1. Let us show that a ≈ b.
There are two cases:

i) a and b are trivial: From Property 2, it holds that a ≈ b.

ii) a is non-trivial: Assume that a 6≈ b. By definition, Supp(a) 6∼= Supp(b) or
Conc(a) 6≡ Conc(b).

Consider the case where Supp(a) 6∼= Supp(b). Clearly, i) Conc(a) ≡ Conc(a),
ii) Co(Supp(a), Supp(b)) ⊂ Co(Supp(a), Supp(a)) = Supp(a) (this inclusion is
strict since Supp(a) 6= ∅ and Supp(a) 6∼= Supp(b)), iii) Supp(a)\Co(Supp(a), Supp(a)) ⊂
Supp(b)\Co(Supp(a), Supp(b)). By applying Strict Monotony, we get S(a, a) >
S(a, b). From Maximality S(a, a) = 1, so S(a, b) < 1. This shows that
Supp(a) ∼= Supp(b).

Consider now the case where Supp(a) ∼= Supp(b) and Conc(a) 6≡ Conc(b). The
conditions of Strict Dominance are verified, indeed:

• Supp(a) ∼= Supp(b),

• CN(Conc(a))∩CN(Conc(b)) ⊂ CN(Conc(a))∩CN(Conc(a)) = CN(Conc(a)).
The implication is strict since Conc(a) 6≡ Conc(b).

• CN(Conc(a)) \ CN(Conc(a)) ⊂ CN(Conc(b)) \ CN(Conc(a)).

• Co(Supp(a), Supp(a)) = Supp(a). Since a is non trivial, then Supp(a) 6=
∅.

Strict Dominance ensures S(a, a) > S(a, b) while Maximality ensures S(a, a) =
1, so S(a, b) < 1.

Note that the case where b is non-trivial is similar to the previous case.
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From the two previous results, it follows that any similarity measure that satisfies
Maximality, Monotony, Strict Monotony, Strict Dominance assigns the maximal value
1 to equivalent pairs of arguments and only to equivalent ones.

Corollary 1 Let S be a similarity measure that satisfies Maximality, Monotony, Strict
Monotony, and Strict Dominance. For all a, b ∈ Arg(L) the following holds:

S(a, b) = 1 iff a ≈ b.

The next result shows that an argument is neither fully similar nor completely dif-
ferent from its sub-arguments. This is the case when the similarity measure satisfies
Maximality, Strict Monotony, and Strict Dominance. Recall that an argument is not a
sub-argument of itself.

Proposition 3 Let S be a similarity measure which satisfies Maximality, Strict Monotony,
and Strict Dominance. For all a, b ∈ Arg(L),

if b @ a, then 0 < S(a, b) < 1.

Proof Let S be a similarity measure which satisfies Maximality, Strict Monotony,
and Strict Dominance. Let a, b ∈ Arg(L) be such that b @ a. From the definitions
of argument and sub-argument, Supp(b) ⊂ Supp(a) and Conc(b) 6≡ Conc(a). Thus,
a 6≈ b. From Theorem 2, it holds that S(a, b) < 1.

Let us now show that S(a, b) > 0. Consider an arbitrary non-trivial argument
c ∈ Arg(L) such that Vars(a) ∩ Vars(c) = ∅. The conditions of Strict Monotony are
satisfied, and thus the principle leads to S(a, b) > S(a, c). Furthermore, by definition
of a similarity measure S(a, c) ≥ 0. Hence, S(a, b) > 0.

Similarity measures satisfying Strict Monotony satisfy some monotony property
regarding the sub-argument relationship between arguments.

Proposition 4 Let S be a similarity measure that satisfies Strict Monotony. For all
a, b, c ∈ Arg(L), if

• Var(Conc(a)) ∩ Var(Conc(c)) = ∅, and

• c @ b @ a,

then S(a, b) > S(a, c).

Proof Let S be a similarity measure which satisfies Strict Monotony. Let a, b, c ∈
Arg(L) be such that:

• Var(Conc(a)) ∩ Var(Conc(c)) = ∅, and

• c @ b @ a.

It can be checked below that the conditions of Strict Monotony are guaranteed.
Indeed,
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• Var(Conc(a)) ∩ Var(Conc(c)) = ∅,

• Co(Supp(a), Supp(c)) = Supp(c) ⊂ Co(Supp(a), Supp(b)) = Supp(b), (note
that inclusion is strict since c @ b and thus by definition Supp(c) ⊂ Supp(b)),

• Supp(b) \ Co(Supp(a), Supp(b)) = Supp(c) \ Co(Supp(a), Supp(c)) = ∅.

Strict Monotony ensures S(a, b) > S(a, c).

Strict Dominance ensures that the more consequences are shared by the conclusions
of two arguments, the more similar the arguments.

Proposition 5 Let S be a similarity measure which satisfies Strict Dominance. For all
a, b, c ∈ Arg(L), if

• a, b, c are non trivial,

• Supp(a) ∼= Supp(b) ∼= Supp(c),

• Conc(a) ` Conc(b) ` Conc(c),

• Conc(c) 6` Conc(b), Conc(b) 6` Conc(a),

then S(a, b) > S(a, c).

Proof Let S be a similarity measure which satisfies Strict Dominance. Let a, b, c ∈
Arg(L) be such that:

1. a, b, c are non trivial,

2. Supp(a) ∼= Supp(b) ∼= Supp(c),

3. Conc(a) ` Conc(b) ` Conc(c),

4. Conc(c) 6` Conc(b), Conc(b) 6` Conc(a),

The conditions of Strict Dominance are guaranteed, indeed:

• Co(Supp(a), Supp(b)) 6= ∅ (from condition 1),

• Supp(b) ∼= Supp(c) (from condition 2),

• CN(Conc(a))∩ CN(Conc(c)) ⊂ CN(Conc(a))∩ CN(Conc(b)) (from conditions 3,
4),

• CN(Conc(b))\CN(Conc(a)) = CN(Conc(c))\CN(Conc(a)) = ∅ (from condition
3).

Hence, Strict Dominance leads to S(a, b) > S(a, c).

The last result states that the union of supports of two fully similar arguments is
consistent. This is particularly the case for similarity measures that satisfy Maximality,
Strict Monotony, and Strict Dominance.
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Jaccard [Jaccard1901] sjac(X,Y ) = a
a+b+c

Dice [Dice1945] sdic(X,Y ) = 2a
2a+b+c

Sorensen [Sørensen1948] ssor(X,Y ) = 4a
4a+b+c

Symmetric Anderberg [Anderberg1973] sand(X,Y ) = 8a
8a+b+c

Sokal and Sneath 2 [Sneath et al.1973] sss(X,Y ) = a
a+2(b+c)

Ochiai [Ochiai1957] soch(X,Y ) = a√
a+b
√
a+c

Kulczynski 2 [Kulczynski1927] sku2(X,Y ) = 1
2

(
a
a+b + a

a+c

)
Table 1: Similarity Measures for Sets of Objects

Extended Jaccard sj(Φ,Ψ) = |Co(Φ,Ψ)|
|Φ|+|Ψ|−|Co(Φ,Ψ)|

Extended Dice sd(Φ,Ψ) = 2|Co(Φ,Ψ)|
|Φ|+|Ψ|

Extended Sorensen ss(Φ,Ψ) = 4|Co(Φ,Ψ)|
|Φ|+|Ψ|+2|Co(Φ,Ψ)|

Extended Symmetric Anderberg sa(Φ,Ψ) = 8|Co(Φ,Ψ)|
|Φ|+|Ψ|+6|Co(Φ,Ψ)|

Extended Sokal and Sneath 2 sss(Φ,Ψ) = |Co(Φ,Ψ)|
2(|Φ|+|Ψ|)−3|Co(Φ,Ψ)|

Extended Ochiai so(Φ,Ψ) = |Co(Φ,Ψ)|√
|Φ|
√
|Ψ|

Extended Kulczynski 2 sku(Φ,Ψ) = 1
2

(
|Co(Φ,Ψ)|
|Φ| + |Co(Φ,Ψ)|

|Ψ|

)
Table 2: Similarity Measures for Sets Φ,Ψ ⊆f L.

Proposition 6 Let S be a similarity measure which satisfies Maximality, Strict Monotony,
and Strict Dominance. For all a, b ∈ Arg(L), if S(a, b) = 1, then Supp(a) ∪ Supp(b)
is consistent.

Proof Let S be a similarity measure which satisfies Maximality, Strict Monotony,
and Strict Dominance. From Theorem 2, it follows that Supp(a) ∼= Supp(b). Hence,
Supp(a) ∪ Supp(b) ∼= Supp(a). Furthermore, by definition of an argument, Supp(a)
is consistent. So is for Supp(a) ∪ Supp(b).

6 Syntactic Similarity Measures
There are several similarity measures in the literature (see [Lesot et al.2009, Choi et al.2010]
for some surveys). They were mainly defined for classification, clustering, or recog-
nition problems. Most of them compare pairs of objects, which have the same size.
Others, like the well-known Jaccard measure [Jaccard1901], Dice measure [Dice1945],
Sorensen one [Sørensen1948], and those proposed in [Anderberg1973, Sneath et al.1973,
Ochiai1957, Kulczynski1927] compare arbitrary pairs of non-empty sets (X and Y ) of
objects. Let a = |X ∩Y |, b = |X−Y |, c = |Y −X|, where |.| denotes the cardinality
of a set. Table 1 recalls the formal definition of each of the seven measures.

These measures are suitable in the argumentation context since an argument may
be seen as a pair of two sets: one set containing the formulas of the support and another
one containing the conclusion. In what follows, we use these measures for assessing

12



similarity between supports (respectively conclusions) of pairs of arguments. However,
those measures cannot be applied directly to supports of arguments since supports may
have different but still equivalent formulas. For instance, the two sets {p} and {p ∧ p}
are equivalent while their intersection is empty. Thus, we extend each measure of
Table 1 using the function Co as shown in Table 2 in case of non-empty sets. Note that
the original definitions compare non-empty sets. In the argumentation context, trivial
arguments have an empty support. Thus, the definition of each measure follows the
following schema that we illustrate with the Jaccard-based measure. For all Φ,Ψ ⊆ L,

sj(Φ,Ψ) =


|Co(Φ,Ψ)|

|Φ|+|Ψ|−|Co(Φ,Ψ)| if Φ 6= ∅,Ψ 6= ∅
1 if Φ = Ψ = ∅
0 otherwise.

Let us illustrate the definition of extended Jaccard measure by the following exam-
ple.

Example 5 Consider the following sets of formulas:

• Φ0 = {p, q},

• Φ1 = {r, s, r ∧ s→ t},

• Φ2 = {r, s, z, r ∧ s ∧ z → u},

• Φ3 = {¬¬r, s}, and

• Φ4 = {r,¬¬s}.

It can be checked that sj(Φ0,Φ1) = 0, sj(Φ1,Φ2) = 0.4, sj(Φ1,Φ3) = 0.66,
sj(Φ2,Φ3) = 0.5, and sj(Φ3,Φ4) = 1.

The measures of Table 2 evaluate in the same way pairs of sets containing each
one formula. They assign value 1 if the two formulas of the sets are equivalent and 0
otherwise.

Proposition 7 For any x ∈ {j, d, s, a, ss, o, ku}, for all φ, ψ ∈ L, the following
holds:

sx({φ}, {ψ}) =

{
1 if φ ≡ ψ
0 otherwise.

Proof Follows from the definition of the measures. The size of each of the compared
sets is 1.

We are now ready to introduce our similarity measures between pairs of logical
arguments. They are syntactic in nature, and are based on a parameter σ ∈ ]0, 1[
which allows a user to give different importance degrees to supports and conclusions.
Indeed, one may declare two arguments as similar as soon as they have quite equivalent
supports, or my be more requiring by ensuring that the conclusions also are equivalent.
Due to the previous result, the same measure is used for assessing similarity between
supports an similarity between conclusions of pairs of logical arguments.
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Definition 7 (Extended Measures) Let 0 < σ < 1. We define Sσx , with x ∈ {j, d, s, a, ss, o, ku},
as a function assigning to any pair (a, b) ∈ Arg(L)× Arg(L) a value

Sσx (a, b) = σ.sx(Supp(a), Supp(b)) +

(1− σ)sx({Conc(a)}, {Conc(b)}).

Note that σ cannot take the value 0 since the corresponding similarity measure
would ignore the supports of arguments, and cannot get value 1 since the measure
would ignore the conclusions. Both cases are undesirable since an argument is a pair
(support, conclusion).

Example 3 (Cont) It can be checked that for σ = 0.5, Sσj (a, b) = 0.25, Sσj (a, c) = 0,
Sσj (a, d) = 0.

Example 4 (Cont) It can be checked that for σ = 0.5, Sσj (a, b) = Sσj (a, c) = 0.5.

Example 5 (Cont) Let σ = 0.5 and x = sj. Consider the following arguments:

• a0 = 〈Φ0, p ∧ q〉,

• a1 = 〈Φ1, t〉,

• a2 = 〈Φ2, u〉,

• a3 = 〈Φ3, r ∧ s〉, and

• a4 = 〈Φ4, r ∧ ¬¬s〉.

It can be checked that we get the following values: S0.5
j (a0, a1) = 0, S0.5

j (a1, a2) =

0.5×0.4 + 0.5×0 = 0.2, S0.5
j (a1, a3) = 0.5×0.66 + 0.5×0 = 0.33, S0.5

j (a2, a3) =

0.5× 0.5 + 0.5× 0 = 0.25, and S0.5
j (a3, a4) = 1.

Due to Proposition 7, the definition of the extended measures can be simplified as
follows:

Proposition 8 For any 0 < σ < 1, for any x ∈ {j, d, s, a, ss, o, ku}, for all (a, b) ∈
Arg(L)× Arg(L), the following property holds:

Sσx (a, b) =

 σ.sx(Supp(a), Supp(b)) + (1− σ)
if Conc(a) ≡ Conc(b)

σ.sx(Supp(a), Supp(b)) otherwise.

Proof Follows from Proposition 7.

We show that any measure Sσx assigns values from the unit interval [0, 1] to any
pair of arguments. Thus, any Sσx is a similarity measure in the sense of Definition 6.

Proposition 9 For any 0 < σ < 1, for any x ∈ {j, d, s, a, ss, o, ku}, for all a, b ∈
Arg(L), Sσx (a, b) ∈ [0, 1]. Hence, Sσx is a similarity measure.
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Proof Let a, b ∈ Arg(L), x ∈ {j, d, s, a, ss, o, ku}, and 0 < σ < 1. sx(Supp(a), Supp(b)) ∈
[0, 1] and sx(Conc(a), Conc(b)) ∈ [0, 1]. Hence, Sσx (a, b) ∈ [0, 1].

Similarity measures Sσx satisfy all the principles except Strict Dominance.

Theorem 3 For any 0 < σ < 1, for any x ∈ {j, d, s, a, ss, o, ku}, Sσx violates Strict
Dominance and satisfies all the remaining principles.

Proof We prove the result for extended Jaccard measures. The same reasoning holds
for the others. Let σ ∈]0, 1[.

Maximality: Let a ∈ Arg(L). There are two cases: i) a is trivial, hence Supp(a) =
∅. By definition of extended Jaccard measure, sj(Supp(a), Supp(a)) = 1. ii) a is non-
trivial. Hence, Co(Supp(a), Supp(a)) = Supp(a). Thus, sj(Supp(a), Supp(a)) = 1.
Furthermore, from Proposition 7, sj(Conc(a), Conc(a)) = 1. Hence, Sσj (a, a) = 1.

Symmetry: Let a, b ∈ Arg(L). We show that sσj (a, b) = sσj (b, a). There are three
cases: i) a and b are both trivial. Then, Supp(a) = Supp(b) = ∅ and Conc(a) ≡
Conc(b). Hence, by definition of extended measure, sj(Supp(a), Supp(b)) = 1 and
from Proposition 7, sj(Conc(a), Conc(b)) = 1. Hence, Sσj (a, b) = Sσj (b, a) = 1.
ii) a is trivial and b is non-trivial. Then, Supp(a) = ∅ and Conc(a) 6≡ Conc(b).
By definition, sj(Supp(a), Supp(b)) = sj(Supp(b), Supp(a)) = 0 and from Propo-
sition 7, sj({Conc(a)}, {Conc(b)}) = 0. So, Sσj (a, b) = Sσj (b, a) = 0. iii) both
a and b are not trivial, i.e., Supp(a) 6= ∅ and Supp(b) 6= ∅. From Property 3,
|Co(Supp(a), Supp(b))| = |Co(Supp(b), Supp(a))|. So, sj(Supp(a), Supp(b)) = sj(Supp(b), Supp(a)).
From Proposition 7, sj({Conc(a)}, {Conc(b)}) = sj({Conc(b)}, {Conc(a)}). Thus,
Sσj (a, b) = Sσj (b, a).

Substitution: Let a, b, c ∈ Arg(L) such that Sσj (a, b) = 1. From Theorem 4,
it holds that a ≈ b. Hence, Supp(a) ∼= Supp(b) and Conc(a) ≡ Conc(b). If
Conc(a) ≡ Conc(c), then Conc(b) ≡ Conc(c). So, sj({Conc(a)}, {Conc(c)}) =
sj({Conc(b)}, {Conc(c)}). It is thus sufficient to check the equality sj(Supp(a), Supp(c)) =
sj(Supp(b), Supp(c)). From Property 1, Co(Supp(a), Supp(b)) = Supp(a) and Co(Supp(b), Supp(a)) =
Supp(b). From Property 3, |Supp(a)| = |Supp(b)|. Furthermore, Co(Supp(a), Supp(c)) =
Co(Supp(b), Supp(c)). Hence, sj(Supp(a), Supp(c)) = sj(Supp(b), Supp(c)). Con-
sequently, Sσj (a, c) = Sσj (b, c).

Monotony - Strict Monotony: Let σ ∈]0, 1[ and a, b, c ∈ Arg(L) be such that:

1. Conc(a) ≡ Conc(b) or
Var(Conc(a)) ∩ Var(Conc(c)) = ∅,

2. Co(Supp(a), Supp(c)) ⊆ Co(Supp(a), Supp(b)),

3. Supp(b) \ Co(Supp(a), Supp(b)) ⊆ Supp(c) \ Co(Supp(a), Supp(c)).

There are two cases:

• c is trivial, i.e., Supp(c) = ∅. Condition 3) implies Supp(b)\Co(Supp(a), Supp(b)) =
∅, hence Supp(b) = Co(Supp(a), Supp(b)) and Supp(a) ∼= Supp(b). Conse-
quently, sj(Supp(a), Supp(b)) = 1. Since σ > 0, then Sσj (a, b) > 0.
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– Assume that a is trivial. Since Supp(b) ∼= Supp(a), then b is also trivial.
From Theorem 4, Sσj (a, b) = Sσj (a, c) = 1.

– Assume that a is not trivial. Then, Conc(a) 6≡ Conc(c) and sj({Conc(a)}, {Conc(c)}) =
0. Furthermore, sj(Supp(a), Supp(c)) = 0. Hence, Sσj (a, c) = 0. So,
Sσj (a, b) > Sσj (a, c).

• c is not trivial, i.e., Supp(c) 6= ∅ and Conc(c) 6≡ >.

– Assume that a is trivial. So, sj(Supp(a), Supp(c)) = 0 and sj({Conc(a)}, {Conc(c)}) =
0 leading to Sσj (a, c) = 0. If b is trivial, then Sσj (a, b) = 1 (from Theorem
4). If b is not trivial, then sj(Supp(a), Supp(b)) = 0 and sj({Conc(a)}, {Conc(b)}) =
0 leading to Sσj (a, b) = 0.

– Assume that a is not trivial. Assume that b is trivial, then sj(Supp(a), Supp(b)) =
0 and sj({Conc(a)}, {Conc(b)}) = 0 leading to Sσj (a, b) = 0. Condition
2) implies that Co(Supp(a), Supp(c) = ∅. So, sj(Supp(a), Supp(c)) = 0.
Note that Conc(a) 6≡ Conc(b) (since a is not trivial), then Var(Conc(a))∩
Var(Conc(c)) = ∅. Thus, Conc(a) 6≡ Conc(c) and so sj({Conc(a)}, {Conc(c)}) =
0 leading to Sσj (a, c) = 0. Thus, Sσj (a, b) = Sσj (a, c).
Assume now that b is not trivial (i.e., the 3 arguments are not trivial). From
condition 2) it holds that |Co(Supp(a), Supp(c))| ≤ |Co(Supp(a), Supp(b))|
and from condition 3) |Supp(b) \ Co(Supp(b), Supp(a))| ≤ |Supp(c) \
Co(Supp(c), Supp(a))|. Since

sj(Supp(a), Supp(b)) =

|Co(Supp(a), Supp(b))|
|Supp(a)|+ |Supp(b) \ Co(Supp(a), Supp(b)))|

,

we get sj(Supp(a), Supp(b)) ≥ sj(Supp(a), Supp(c)). Since sj({Conc(a)}, {Conc(b)}) =
1 or sj({Conc(a)}, {Conc(c)}) = 0, then sσj (a, b) ≥ sσj (a, c).

If the condition 2 is strict then |Co(Supp(a), Supp(b))| > |Co(Supp(a), Supp(c))| and
thus Sσj (a, b) > Sσj (a, c).

Dominance: Let a, b, c ∈ Arg(L) such that:

1. Supp(b) ∼= Supp(c),

2. CN({Conc(a)}) ∩ CN({Conc(c)}) ⊆ CN({Conc(a)}) ∩ CN({Conc(b)}),

3. CN({Conc(b)}) \ CN({Conc(a)}) ⊆ CN({Conc(c)}) \ CN({Conc(a)}).

Condition 1 implies that Co(Supp(a), Supp(b)) = Co(Supp(a), Supp(c)). From Prop-
erty 4, |Supp(b)| = |Supp(c)|. Hence, sj(Supp(a), Supp(b)) = sj(Supp(a), Supp(c)).
Assume now that Conc(a) ≡ Conc(b). Thus, sj(Conc(a), Conc(b)) = 1. Furthermore,
from condition 2), we get CN({Conc(a)}) ∩ CN({Conc(c)}) = CN({Conc(a)}). Thus,
CN({Conc(a)}) = CN({Conc(c)}), and Conc(a) ≡ Conc(c). So, sj(Conc(a), Conc(c)) =
1 and finally, Sσj (a, b) = Sσj (a, c). The same holds for the case Conc(a) ≡ Conc(c).
Assume now that Conc(a) 6≡ Conc(b) and Conc(a) 6≡ Conc(c). From Proposition 7,
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sj(Conc(a), Conc(b)) = sj(Conc(a), Conc(c)) = 0. Thus, Sσj (a, b) = Sσj (a, c).

Example 4 shows that Sσj violate Strict Dominance.

Despite the fact of violating Strict Dominance, any measure Sσx assigns the maxi-
mal value 1 only to equivalent arguments, i.e. the result of Corollary 1 still holds. This
result generalizes the binary similarity measure defined in [Amgoud et al.2014], where
arguments are either equivalent (value 1) or completely different (value 0).

Theorem 4 For any σ ∈ (0, 1), for any x ∈ {j, d, s, a, ss, o, ku}, for all a, b ∈
Arg(L),

Sσx (a, b) = 1 iff a ≈ b.

Proof We show the result for extended Jaccard-based measures. The same reasoning
holds for the other measures. Let a, b ∈ Arg(L) and σ ∈ ]0, 1[. Assume that a ≈ b,
then i) Supp(a) ∼= Supp(b) and ii) Conc(a) ≡ Conc(b). From i) and Property 1,
Co(Supp(a), Supp(b)) = Supp(a). From Property 4, |Supp(a)| = |Supp(b)|. Thus,
sj(Supp(a), Supp(b)) = 1. From ii) and Proposition 7, sj(Conc(a), Conc(b)) = 1.
So, Sσj (a, b) = 1.

Assume that Sσj (a, b) = 1. Since σ ∈ ]0, 1[, then sj(Supp(a), Supp(b)) =
1 and sj(Conc(a), Conc(b)) = 1. From Proposition 7, it holds that Conc(a) ≡
Conc(b). Recall that sj(Supp(a), Supp(b)) = |Co(Supp(a),Supp(b))|

|Supp(a)|+|Supp(b)|−|Co(Supp(a),Supp(b))|
= 1. Furthermore, |Supp(a)| + |Supp(b)| − |Co(Supp(a), Supp(b))| = |Supp(a) \
Co(Supp(a), Supp(b))|+ |Supp(b)\Co(Supp(b), Supp(a))|+ |Co(Supp(a), Supp(b))|.
Thus, |Supp(a)\Co(Supp(a), Supp(b))|+ |Supp(b)\Co(Supp(b), Supp(a))| = 0. So,
|Supp(a) \ Co(Supp(a), Supp(b))| = 0 and |Supp(b) \ Co(Supp(b), Supp(a))| = 0.
Then Supp(a) = Co(Supp(a), Supp(b)) and Supp(b) = Co(Supp(b), Supp(a)). Thus,
Supp(a) ∼= Supp(b), and so a ≈ b.

Measures Sσx assign the minimal value 0 to pairs of arguments whose conclusions
are not equivalent and their supports do not share any equivalent formula.

Theorem 5 For any σ ∈ (0, 1), for all x ∈ {j, d, s, a, ss, o, ku}, for all a, b ∈
Arg(L),

Sσx (a, b) = 0 iff
{

Co(Supp(a), Supp(b)) = ∅ and
Conc(a) 6≡ Conc(b).

Proof Let x ∈ {j, d, s, a, ss, o, ku}, σ ∈ (0, 1), and a, b ∈ Arg(L). Assume that
Sσx (a, b) = 0. Since σ > 0, then i) sx(Supp(a), Supp(b)) = 0 and ii) sx({Conc(a)}, {Conc(b)}) =
0. From Proposition 7, Conc(a) 6≡ Conc(b). This means also that either a or b is not
trivial. There are thus two cases regarding ii): Case 1. Supp(a) = ∅ or Supp(b) = ∅.
Hence, Co(Supp(a), Supp(b)) = ∅. Case 2. Supp(a) 6= ∅ and Supp(b) 6= ∅. Thus,
Co(Supp(a), Supp(b)) = ∅.

Assume now that i) Co(Supp(a), Supp(b)) = ∅ and ii) Conc(a) 6≡ Conc(b). From
Proposition 7, sx({Conc(a)}, {Conc(b)}) = 0. Regarding i) there are two cases: Case
1. Supp(a) 6= ∅ and Supp(b) 6= ∅; and Case 2. Supp(a) = ∅ or Supp(b) 6= ∅ (but
not both since Conc(a) 6≡ Conc(b)). In both cases, sx(Supp(a), Supp(b)) = 0. Hence,
Sσx (a, b) = 0.
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Theorem 3 shows that all the measures Sσx , with x ∈ {j, d, s, a, ss, o, ku}, satisfy
the same set of principles and violate Strict Dominance. An interesting question is
thus: are there links between these measures? do they return the same values? For
answering these questions, we introduce the notion of equivalent measures.

Definition 8 (Equivalent Measures) Two similarity measures S and S ′ are equiva-
lent iff for all a, b, c, d ∈ Arg(L),

S(a, b) < S(c, d)⇐⇒ S ′(a, b) < S ′(c, d).

We show that the measures Sσj , Sσd , Sσs , Sσa , and Sσss are pairwise equivalent for
some arbitrary but fixed σ.

Theorem 6 Let σ ∈ (0, 1). The measures Sσj , Sσd , Sσs , Sσa , and Sσss are pairwise
equivalent.

The following result compares the values assigned by each measure for a given pair
of arguments. It shows that for a fixed σ, Sσa provides the greatest degree of similarity
while Sσss provides the lowest one. Similarly, the values assigned by the measure Sσo
are lower than those of Sσku.

Theorem 7 Let σ ∈ (0, 1). For any a, b ∈ Arg(L),

• Sσss(a, b) ≤ Sσj (a, b) ≤ Sσd (a, b) ≤ Sσa (a, b) ≤ Sσa (a, b).

• Sσo (a, b) ≤ Sσku(a, b).

7 Model-based Similarity Measure
We have seen in the previous section, that the syntactic measures Sσx violate Strict
Dominance. Thus, they do not distinguish between arguments like: a = 〈{p∧q∧t}, p〉,
b = 〈{p ∧ q ∧ t}, p ∧ q〉, and c = 〈{p ∧ q ∧ t}, p ∧ q ∧ t〉. They all return Sσx (a, b) =
Sσx (a, c). They are thus not able to capture the fact that the conclusion of a is closer to
the conclusion of b than that of c.

In what follows, we propose to use a semantic approach for comparing conclu-
sions. The idea is to compare their models. Recall that a model of a formula φ is
an interpretation (a total function from P to {0, 1}) that makes φ true in the usual
truth-functional way. Mod(φ) denotes the set of all models of the formula φ, i.e.
Mod(φ) = {ω ∈ W | ω |= φ}, whereW is the set of all interpretations.

Similarity between conclusions of two arguments will be assessed by the measure
smj below. It applies Jaccard formula on their models as follows:

Definition 9 (Model-based Jaccard Measure) The model-based Jaccard measure is
a function smj assigning for all φ, ψ ∈ L, the value:

smj(φ, ψ) =
|Mod(φ) ∩ Mod(ψ)|
|Mod(φ) ∪ Mod(ψ)|
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We are now ready to introduce the novel similarity measure for logical arguments.
It combines a syntactic measure for comparing the supports and smj for conclusions.
The former can be any measure of Table 2 since they satisfy all Monotony and Strict
Monotony which deal with supports. However, for the sake of simplicity and clarity,
we only focus on Jaccard-based one, sj.

Definition 10 (Model-based Measure) Let 0 < σ < 1. We define Sσm as a function
assigning to any pair (a, b) ∈ Arg(L)× Arg(L) a value

Sσm (a, b) = σ.sj(Supp(a), Supp(b)) +

(1− σ)smj(Conc(a), Conc(b)).

It is worth mentioning that the measure smj is not suitable for supports since it
would assign value 1 to supports that do not express the same information like {p, p→
q} and {q, q → p}.

Example 4 (Cont) Recall again the arguments below.

• a = 〈{p ∧ q ∧ t}, p〉,

• b = 〈{p ∧ q ∧ t}, p ∧ q〉,

• c = 〈{p ∧ q ∧ t}, p ∧ q ∧ t〉.

It can be checked that S0.5
m (a, b) = 0.75, S0.5

m (a, c) = 0.625.

Theorem 8 For any σ ∈ (0, 1), the similarity measure Sσm satisfies all the principles.

8 Related Work
Similarity is studied in different domains (information retrieval, classification, im-
age processing, etc). There are thus several measures in the literature. Some of
them compare numerical objects while others compare arbitrary sets [Lesot et al.2009,
Choi et al.2010]. The numerical ones are not appropriate in the context of arguments
while the others are shown to be efficient, especially in the comparison of supports of
arguments.

In the argumentation literature, similarity has also been investigated either within an
argument [Walton et al.2008, Walton2010, Walton2013] or between pairs of arguments
[Misra et al.2016, Stein2016, Konat et al.2016]. Indeed, Walton discussed different
argument schemes like analogical arguments or similarity arguments. The supports of
such arguments contain premises with compare objects.

Similarity between pairs of arguments was investigated in the context of argument
mining [Misra et al.2016, Stein2016, Konat et al.2016]. The goal is to detect redundant
textual arguments. Budan et al. [Budan et al.2015] defined another measure assessing
similarity between pairs of analogical arguments. It is based on the number of common
features between compared objects. The type of arguments considered is thus different
from the deductive arguments investigated in our paper.
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Finally, [Wooldridge et al.2006, Amgoud et al.2014] investigated equivalence, full
similarity, between logical arguments. We have seen that our approach generalizes
those proposals. Indeed, it assigns the maximal value to each pair of equivalent argu-
ments.

9 Conclusion
The paper investigated the question: to what extent two logical arguments are similar?
It defined thus the notion of similarity measure, and proposed some intuitive principles
that might be satisfied by a measure. Then, it proposed several syntactic measures that
extend very old ones from the literature, and investigated their properties.

This work can be extended in several ways. The first one consists of characterizing
the whole family of measures that satisfy the principles. The second one consists of
using the proposed measures for refining argumentation systems that deal with incon-
sistent information.
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