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1 Introduction.

Chemotaxis is the directed movement of a living system in response to a chemical stimulus. The first mathematical model for chemotaxis has been proposed by Keller and Segel [20] to describe the aggregation of the slime mold amoebae Dictyostelium discoideum (see also Patlak [25] for an earlier model and [START_REF] Keller | Assessing the Keller-Segel model : how has it fared ? Biological growth and spread[END_REF], [START_REF] Keller | Model for chemotaxis[END_REF] for various assessments). Since then, the mathematical description and analysis of the biological phenomenon has attracted a lot of attention. Indeed, this biochemical process has been involved in so many medical and biological applications. Moreover, from a mathematical point of view, the model has a rich structure and remains very challenging. See Horstmann [START_REF] Horstmann | From 1970 until present: the Keller-Segel model in chemotaxis and its consequences[END_REF] and [START_REF] Horstmann | From 1970 until present: the Keller-Segel model in chemotaxis and its consequences[END_REF] for a review on the subject. This paper is concerned with a simplified version of the Keller-Segel model but however rather general, namely

               ∂ t n = ∇ • [κ∇n -n χ (c)∇c], t > 0, x ∈ Ω,
ε∂ t c = η∆c + g(n, c), t > 0, x ∈ Ω, n(0, x) = n 0 (x), c(0, x) = c 0 (x),

where Ω is R d , n(x, t) is the density of the population moving under chemotaxis and c(x, t) is the density of the chemical substance. The function χ is the chemotactic sensitivity of the species that 1 plays a crucial role in the chemotaxis process. Indeed, χ (c) > 0 leads to positive chemotaxis (the population is attracted by the chemical), while χ (c) < 0 leads to negative chemotaxis (the population is repelled by the chemical). Moreover, in a mathematical language, χ measures the balance between the diffusion effect of the Laplace term and the hyperbolic effect of the drift term and we tried to understand its impact on the dynamics. The function g(n, c) contains the production and decay rate terms of the chemical and is generally taken of the form

g(n, c) = β(n, c)n -γ(n, c)c . (2) 
Finally, we take the diffusion coefficient κ of the population n(x, t) constant with respect to n and c.

The diffusion coefficient of the chemical η is non-negative and the parameter ε ∈ {0, 1}. Obviously, η and ε are not equal to zero at the same time. This means that system (1) contains the extreme case of a parabolic-elliptic system (ε = 0 and η > 0) and a parabolic-degenerate system (ε = 1 and η = 0). The goal of this paper is to summarize some ideas previously used by the authors to obtain global existence results for these two extreme cases of system (1) (see [START_REF] Corrias | A chemotaxis model motivated by angiogenesis[END_REF], [START_REF] Corrias | Global solutions of some chemotaxis and angiogenesis systems in high space dimensions[END_REF]) and to give some hint to apply these ideas to the more general system (1) together with new results.

The parabolic-elliptic system has been extensively studied by many authors and a huge quantity of mathematical results on the existence of global in time solutions and on the blow-up of local in time solutions, have been produced. We refer to [START_REF] Horstmann | From 1970 until present: the Keller-Segel model in chemotaxis and its consequences[END_REF] and [START_REF] Horstmann | From 1970 until present: the Keller-Segel model in chemotaxis and its consequences[END_REF] for a quite complete bibliography. The parabolic-degenerate system has been much less studied than the previous one, except in one space dimension. One reason to be interested in this kind of system is that it arises in modelling the initiation of angiogenesis, a kind of chemotaxis process that occurs in the development of a new capillary network from a primary vascular network ( [START_REF] Chaplain | Avascular growth, angiogenesis and vascular growth in solid tumors : the mathematical modelling of the stages of tumor development[END_REF], [START_REF] Chaplain | Macroscopic modelling of the growth and development of tumor masses[END_REF], [START_REF] Corrias | A chemotaxis model motivated by angiogenesis[END_REF], [START_REF] Fontelos | Mathematical analysis of a model for the initiation of angiogenesis[END_REF], [START_REF] Levine | Mathematical modelling of the onset of capillary formation initiating angiogenesis[END_REF]). Moreover, it is now clear that the asymptotic behavior of n depends strongly on the coupling effects of the dynamics of c and the chemotactic sensitivity χ (c) and that is the reason why chemotaxis systems of parabolic-degenerate type have been analyzed in [START_REF] Levine | A system of reaction diffusion equations arising in the theory of reinforced random walks[END_REF], [START_REF] Othmer | Aggregation, blowup and collapse : the ABC's of taxis in reinforced random walks[END_REF], [START_REF] Rascle | On a system of non-linear strongly coupled partial differential equations arising in biology[END_REF], [START_REF] Yang | On existence of global solutions and blow-up to a system of reaction-diffusion equations modelling chemotaxis[END_REF].

Most of the analysis presented in [START_REF] Corrias | Global solutions of some chemotaxis and angiogenesis systems in high space dimensions[END_REF] about the parabolic-elliptic system was known before, unlike our analysis for the parabolic-degenerate system which we would like to put forward. The parabolicdegenerate system we are interested in is :

               ∂ ∂t n = κ∆n -∇ • [n χ (c)∇c], t > 0, x ∈ R d , ∂ ∂t c = -nc m , t > 0, x ∈ R d , n(0, x) = n 0 (x), c(0, x) = c 0 (x), x ∈ R d (3) 
where m ≥ 1 and the sensitivity function χ (c) is a given positive function on R + . Our main result for this system is the following:

Theorem 1 (Existence for the angiogenesis system (3)). Assume d ≥ 2, m ≥ 1 and χ (c) a positive say continuous function on [0, ∞). Consider some

n 0 ∈ L 1 (R d ) and c 0 ∈ L ∞ (R d ) such that n 0 ≥ 0 and c 0 ≥ 0. There exists a constant K 0 (κ, χ , d, c 0 L ∞ (R d ) ) such that if n 0 L d 2 (R d ) ≤ K 0 , then system (3) has a global (in time) weak solution (n, c) such that n ∈ L ∞ (R + , L 1 ∩ L d 2 (R d )), c ∈ L ∞ (R + × R d ) and for any fixed max{1; d 2 -1} ≤ p * < ∞, n(t) L p (R d ) ≤ C(t, K 0 , p * , n 0 L p (R d ) ), ∀ max{1; d 2 -1} ≤ p ≤ p * . Moreover, if n 0 L d 2 (R d ) ≤ K 0 2 and n 0 ∈ L ∞ (R d ), then n(t) L ∞ ≤ C κ, χ , n 0 L d (R d ) max { n 0 L ∞ , n 0 L 1 } .
The same conclusion holds with less regular χ (c) at c = 0 (see [START_REF] Corrias | Global solutions of some chemotaxis and angiogenesis systems in high space dimensions[END_REF]). Moreover, since the goal of this note is to give a general idea of the method we use to obtain the global existence of the solution of (1), we consider the system on the whole space R d together with ad hoc decay condition at infinity on the densities n and c. In this way, the conservation of the initial mass is assured,

R d n(t) = R d n 0 =: M, ∀t ≥ 0.
In the case of a bounded domain Ω, the boundary conditions for n and c can be homogeneous Neumann boundary conditions or the no-flux boundary condition, so that the conservation of the initial mass is again assured and the results given here can be applied.

All the results will be dimension dependent with d ≥ 2, since in one space dimension global existence of smooth solutions can be obtained by the classical methods of parabolic equations (see for example [START_REF] Fontelos | Mathematical analysis of a model for the initiation of angiogenesis[END_REF], [START_REF] Rascle | On a system of non-linear strongly coupled partial differential equations arising in biology[END_REF]).

The paper is organized as follows. In section 2, we present a priori estimate in weighted L p spaces for the general system (1). These estimates are valid for a large class of sub-systems, including the extreme cases mentioned before and analyzed in [START_REF] Corrias | Global solutions of some chemotaxis and angiogenesis systems in high space dimensions[END_REF]. In sections 3 and 4, we recall results from [START_REF] Corrias | Global solutions of some chemotaxis and angiogenesis systems in high space dimensions[END_REF] in order to show how the a priori estimates of section 2 allow to get the global existence result for the parabolic-elliptic and the parabolic-degenerate cases respectively. Moreover, for both systems, we give also the L ∞ bound not mentioned in [START_REF] Corrias | Global solutions of some chemotaxis and angiogenesis systems in high space dimensions[END_REF] and, as a consequence, the uniqueness of the solution of the parabolic-elliptic system.
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2 Differential inequalities in weighted L p spaces.

In this section, we give general differential inequalities for the weighted or not L p norm of the solution n of (1). These inequalities include all the differential inequalities used in [START_REF] Corrias | Global solutions of some chemotaxis and angiogenesis systems in high space dimensions[END_REF] and most of the known in the literature for system [START_REF] Alikakos | L p bounds of solutions of reaction-diffusion equations[END_REF].

Let us define u = n φ(c) where the function φ is such that

for all c > 0, φ (c) = 1 κ φ(c) χ (c) and φ(0) = 1, (4) 
This means that the sensitivity function χ (c) is necessarily taken to be integrable at c = 0. Then, the change of variable n → u puts the equation on n in the following divergence form

∂ t u = κ 1 φ(c) ∇ • [φ(c)∇u] -u 1 φ(c) ∂ t φ(c). (5) 
The equation on u suggests naturally to consider the evolution of the quantity

R d G(φ)F (u) dx where
G is a differentiable function on R + and F is a twice differentiable function on R + . Therefore, using (5), we write

d dt R d G(φ)F (u) dx = -κ R d G(φ)F (u)|∇u| 2 dx -κ R d 1 φ G(φ) F (u)φ∇φ • ∇u dx + R d [G (φ)F (u) -G(φ)F (u) u φ ]∂ t φ dx = -κ R d G(φ)F (u)|∇u| 2 dx + κ R d F (u)∆ψ(φ) dx + R d [G (φ)F (u) -G(φ)F (u) u φ ]∂ t φ dx (6) 
where ψ is such that ψ (φ) = φ 1 φ G(φ) . The main differential identity [START_REF] Brenner | Physical mechanisms for chemotactic pattern formation by bacteria[END_REF] shows how the evolution of the chemical of density c influences the evolution of the population of density n. In order to obtain useful estimates from ( 6), one has to handle carefully every term in [START_REF] Brenner | Physical mechanisms for chemotactic pattern formation by bacteria[END_REF].

For ε = 1 and η > 0, one has to balance the second term in the right hand side of ( 6) with the third term. For example, for G(φ) = φ q and F (u) = u p we have

R d F (u)∆ψ(φ) dx = q -1 q R d u p ∆φ q dx = (q -1) 2 R d u p φ q-2 |∇φ| 2 + (q -1) R d u p φ q-1 ∆φ dx (7)
and

R d [G (φ)F (u) -G(φ)F (u) u φ ]∂ t φ dx = (q -p) R d u p φ q-1 [η(∆φ -φ |∇c| 2 ) + φ g(n, c)] dx . (8)
Then, using ( 7) and ( 8) in ( 6) we obtain

d dt R d φ q u p dx = -κp(p -1) R d φ q u p-2 |∇u| 2 dx +[κ(q -1) + η(q -p)] R d u p φ q-1 ∆φ dx + R d u p φ q-2 [κ(q -1) 2 φ 2 -η(q -p)φφ ]|∇c| 2 dx +(q -p) R d u p φ q-1 φ g(n, c) dx. (9) 
In order to eliminate the second term in the right-hand side of ( 9), we choose p and q such that κ(q -1) + η(q -p) = 0, i.e. q = p+γ γ+1 with γ = κ η , and (9) becomes

d dt R d φ p+γ γ+1 u p dx = -4κ (p-1) p R d |∇u p/2 | 2 dx + 1 γ+1 (p -1) R d u p φ p+γ γ+1 [ χ (c) + 1 κ p + γ γ + 1 χ 2 (c)]|∇c| 2 dx -1 κ γ γ+1 (p -1) R d u p φ p+γ γ+1 χ (c) g(n, c) dx. (10) 
Next, let us suppose that for the initial density c 0 non-negative and bounded, the density c stays non-negative and bounded. Let us suppose also that there exists p ≥ 1 such that

χ (c) + 1 κ p + γ γ + 1 χ 2 (c) ≤ 0 for all p ∈ [1, p] and c ∈ [0, c L ∞ ]. (11) 
Then, for any p ∈ [1, p], the following differential inequality for the weighted

L p norm of u d dt R d φ p+γ γ+1 u p dx ≤ -4κ (p -1) p R d |∇u p/2 | 2 dx - 1 κ γ γ + 1 (p -1) R d u p φ p+γ γ+1 χ (c) g(n, c) dx (12)
holds true. Finally, if the range [1, p] of p is sufficiently large with respect to to the dimension d, [START_REF] Evans | Partial Differential Equations[END_REF] gives us the estimate of some L p norms of n under a smallness condition on the initial density n 0 (see subsection 3.1). The dependence of g on n is obviously crucial.

Please note that [START_REF] Corrias | Global solutions of some chemotaxis and angiogenesis systems in high space dimensions[END_REF] implies that χ (c) must be decreasing and in particular that χ (c) cannot be identically constant.

Let us also observe that, without any hypothesis on χ (c), letting η → 0 + so that γ → +∞ in [START_REF] Corrias | A chemotaxis model motivated by angiogenesis[END_REF], we obtain the differential identity below for the parabolic-degenerate case already used in [START_REF] Corrias | Global solutions of some chemotaxis and angiogenesis systems in high space dimensions[END_REF] 

d dt R d φ(c)u p dx = -4κ (p -1) p R d |∇u p/2 | 2 dx - 1 κ (p -1) R d u p φ(c) χ (c)g(n, c) dx. (13) 
For ε = 0, the third term in the right hand side of (6) has to be eliminated. This is possible for example taking G(φ) = φ p and F (u) = u p . With this choice and after some computation, (6) becomes nothing else than the evolution equation for the

L p norm of n d dt R d n p dx = -κp(p -1) R d φ p u p-2 |∇u| 2 dx -κp(p -1) R d n p-1 ∇φ • ∇u dx = -4κ (p-1) p R d |∇n p/2 | 2 dx + (p -1) R d χ (c)∇n p • ∇c dx. (14) 
In the case of constant sensitivity, from [START_REF] Gajewski | Global behaviour of a reaction-diffusion system modelling chemotaxis[END_REF], one obtains an estimate on the L p norm of n. See Section 3 below.

Remark. Following [START_REF] Horstmann | Lyapunov functions and L p estimates for a class of reaction-diffusion systems[END_REF], one can also obtain Lyapunov functions for the system (1) with η > 0. Indeed, for G(φ) = φ and if [F (u) -uF (u)]φ = -g(n, c), then the function

H(n(t), c(t)) = R d φ(c)F n φ(c) dx + η 2 R d |∇c| 2 dx
is a Lyapunov function since from ( 6) we have

d dt H(n(t), c(t)) = -κ R d φF (u)|∇u| 2 dx - R d g(n, c)∂ t c dx -η R d ∆c ∂ t c dx = -κ R d φF ( n φ(c) )| ∇n φ - n φ 2 ∇φ| 2 dx -ε R d (∂ t c) 2 dx ≤ 0. ( 15 
)
3 The parabolic-elliptic system.

In this paragraph, we consider the parabolic-elliptic system given by (1) when ε = 0, i.e.

               ∂ ∂t n = κ∆n -χ ∇ • [n∇c], t > 0, x ∈ Ω, -∆c = n -cf (c), t > 0, x ∈ Ω, n(0, x) = n 0 (x), x ∈ Ω. ( 16 
)
where f is a non-negative function, χ (c) is constant with respect to c and for simplicity in the notations, we take η = 1. When f (c) ≡ 0, the validity of ( 16) in the framework of chemotaxis is supported by some experiments on the Escherichia Coli bacterium (see [START_REF] Brenner | Physical mechanisms for chemotactic pattern formation by bacteria[END_REF] and the references therein), even if this model does not seem to reproduce some of the observed chemotactic movement. Moreover, in this case (f ≡ 0), system [START_REF] Horstmann | From 1970 until present: the Keller-Segel model in chemotaxis and its consequences[END_REF] has other interesting physical interpretations. For example, it arises in astrophysics and in statistical mechanics (see [START_REF] Biler | Global solutions to some parabolic-elliptic systems of chemotaxis[END_REF], [START_REF] Biler | A class of nonlocal parabolic problems occurring in statistical mechanics[END_REF], [START_REF] Biler | Global and exploding solutions in a model of self-gravitating systems[END_REF] and the references therein).

Concerning the chemotaxis system ( 16), the situation is well established and we recall the following results.

Theorem 2 (Existence and uniqueness for the chemotaxis system ( 16)) Assume d ≥ 2 and consider some

n 0 ∈ L 1 (R d ) such that n 0 ≥ 0. There exists a constant K 0 (κ, χ , d) such that if n 0 L d 2 (R d ) ≤ K 0 ,
then system (16) has a global (in time) weak solution (n, c) such that for all t > 0

n(t) L 1 (R d ) = n 0 L 1 (R d ) , n(t) L p (R d ) ≤ n 0 L p (R d ) , max{1; d 2 -1} ≤ p ≤ d 2 ,
and

n(t) L p (R d ) ≤ C(t, K 0 , n 0 L p (R d ) ) d 2 < p < ∞. Moreover, if n 0 L d 2 (R d ) ≤ K 0 2 and if n 0 ∈ L ∞ (R d )
, then the solution is unique with

n(t) L p (R d ) ≤ n 0 L p (R d ) , max{1; d 2 -1} ≤ p ≤ d, and 
n(t) L ∞ ≤ C κ, χ , n 0 L d (R d ) max { n 0 L 1 , n 0 L ∞ } .
The results of this theorem were known before the authors' paper [START_REF] Corrias | Global solutions of some chemotaxis and angiogenesis systems in high space dimensions[END_REF], except for three facts : (i) the smallness condition for the global existence is needed only in the critical norm

n 0 L d 2 (R d ) , (ii) the L ∞ bound of n, (iii) 
the uniqueness of the solution in the case of bounded initial data n 0 .

We established (i) in the proof of Theorem 2 given in [START_REF] Corrias | Global solutions of some chemotaxis and angiogenesis systems in high space dimensions[END_REF]. Therefore, we will give only some comments about the existence issue (for the whole proof, please see [START_REF] Corrias | Global solutions of some chemotaxis and angiogenesis systems in high space dimensions[END_REF]). Let us just remark that a smallness assumption is nevertheless necessary in the above theorem. Indeed, it is known since [START_REF] Jäger | On explosions of solutions to a system of partial differential equations modelling chemotaxis[END_REF] that blow-up may occur in two space dimensions for large initial data. The L ∞ bound and the uniqueness result were not mentioned in [START_REF] Corrias | Global solutions of some chemotaxis and angiogenesis systems in high space dimensions[END_REF], hence we will give the proof later in this section.

Finally, let us remark that in the case of the whole space R d under consideration and with the ad hoc decay conditions at infinity on n and c, the chemical density can be represented exactly

c(t, x) = R d E d (x -y)n(t, y)dy (17) 
when f is constant, say f ≡ α, and where E d is the fundamental solution of (-∆ + αI). However, we prove Theorem 2 without using [START_REF] Horstmann | From 1970 until present: the Keller-Segel model in chemotaxis and its consequences[END_REF]. That is the reason why our proof extends naturally to the case of a non constant f . Remark. System ( 16) has the well known conserved energy (see for example [START_REF] Brenner | Diffusion, attraction and collapse[END_REF], [START_REF] Gajewski | Global behaviour of a reaction-diffusion system modelling chemotaxis[END_REF] and [START_REF] Horstmann | Lyapunov functions and L p estimates for a class of reaction-diffusion systems[END_REF]) given by d dt κn(ln n -1) -χ

2 αc 2 + |∇c| 2 dx = -n|∇(κ ln n -χ c)| 2 dx ( 18 
)
when f is constant, say f (c) = α. Let us just mention that this energy follows from (6) when we take G(φ) = φ, F (u) = u ln u and χ constant. Indeed, in this case φ defined in (4) is given by φ(c) = exp χ κ c . Therefore, (6) becomes

d dt n ln n - χ κ nc dx = -κ n|∇(ln n - χ κ c)| 2 dx - χ κ n ∂ t c dx. ( 19 
)
Using the fact that n = -∆c + cf (c) (see ( 16)) in the second term of both the right and left hand side of ( 19), we obtain

d dt n ln n - χ 2κ |∇c| 2 + αc 2 + χ κ [ψ(c) -c 2 f (c)] dx = -κ n|∇(ln n - χ κ c)| 2 dx,
which is precisely [START_REF] Jäger | On explosions of solutions to a system of partial differential equations modelling chemotaxis[END_REF].

The existence issue in Theorem 2.

First of all, let us observe that by the maximum principle n > 0 and c ≥ 0 if n 0 ≥ 0, while with the decay at infinity condition on n and c, the initial mass M = R d n 0 (x) dx is conserved. Next, for constant χ the identity ( 14) becomes

d dt R d n p + 4κ p -1 p R d |∇n p/2 | 2 ≤ χ (p -1) R d n p+1 . ( 20 
)
Using the Gagliardo-Nirenberg-Sobolev inequality (see [START_REF] Brezis | Analyse fonctionnelle. Théorie et applications[END_REF], [START_REF] Evans | Partial Differential Equations[END_REF]) in space dimension d > 2, we get for any p ≥ d 2 -1 (so that :

d 2 ≤ p + 1 ≤ dp d-2 ) R d n p+1 ≤ n p L pd d-2 (R d ) n L d 2 (R d ) = n p/2 2 L 2d d-2 (R d ) n L d 2 (R d ) ≤ C(d) ∇n p/2 2 L 2 (R d ) n L d 2 (R d )
.

(21) In dimension d = 2, following [START_REF] Jäger | On explosions of solutions to a system of partial differential equations modelling chemotaxis[END_REF] (see also [START_REF] Brezis | Analyse fonctionnelle. Théorie et applications[END_REF]), we have in a similar way for any p > 0

R 2 n p+1 ≤ C p + 1 p 2 ∇n p/2 2 L 2 (R 2 ) n L 1 (R 2 ) . (22) 
Inequalities ( 21) and ( 22), together with [START_REF] Keller | Initiation of slime mold aggregation viewed as an instability[END_REF], lead to the main differential inequality in any dimension d ≥ 2

d dt R d n p ≤ (p -1) ∇n p/2 2 L 2 (R d ) χ C(d) n L d 2 (R d ) - 4κ p , ∀ max{1; d 2 -1} ≤ p < ∞ . ( 23 
)
In dimension d = 2, ( 23) means that if the initial mass M is sufficiently small, in terms of p ≥ 1, then the n(t) L p (R 2 ) norm (for the same p) decreases for all times t ≥ 0.

In dimension d > 2 and for p = d 2 , [START_REF] Levine | Mathematical modelling of the onset of capillary formation initiating angiogenesis[END_REF] gives us that whenever we have initially

χ C(d) n 0 L d 2 (R d ) - 8κ d ≤ 0 , (24) 
the n(t)

L d 2 (R d )
norm decreases for all times t ≥ 0. As a consequence, whenever [START_REF] Othmer | Aggregation, blowup and collapse : the ABC's of taxis in reinforced random walks[END_REF] holds true, all the n(t) L p (R d ) norms, with max{1; d 2 -1} ≤ p ≤ d 2 , decrease for all times t ≥ 0. In the same way, if the initial density

n 0 satisfies χ C(d) n 0 L d 2 (R d ) - 4κ p * ≤ 0 , (25) 
for d 2 < p * < ∞, then [START_REF] Othmer | Aggregation, blowup and collapse : the ABC's of taxis in reinforced random walks[END_REF] follows again and all the n(t) L p (R d ) norms with max{1; d 2 -1} ≤ p ≤ p * decrease for all times t ≥ 0.

In conclusion, a smallness condition depending on 1 p with max{1; d 2 -1} ≤ p < ∞ on the initial density n 0 is sufficient to get a decreasing L p norm of n, in any dimension d ≥ 2. However, if one writes [START_REF] Keller | Initiation of slime mold aggregation viewed as an instability[END_REF] for (n -K) + with K > 0 large enough and uses the same techniques, then we get rid of the dependence of the smallness condition on p (see [START_REF] Corrias | Global solutions of some chemotaxis and angiogenesis systems in high space dimensions[END_REF] for details). However, the L p bound we get this way depends also on t.

Finally, using a regularizing method, we derive from the a priori estimates the existence of solutions for system [START_REF] Horstmann | From 1970 until present: the Keller-Segel model in chemotaxis and its consequences[END_REF] and we get the first part of Theorem 2.

3.2

The L ∞ bound in Theorem 2.

Let us prove now that it is sufficient to control the L d norm of n in order to obtain the L ∞ bound of n, whenever n 0 ∈ L ∞ . Indeed, using straightforward interpolation and the Gagliardo-Nirenberg-Sobolev inequality, we have in dimension d = 2

R d n p+1 ≤ n L 2 n p 2 2 L 4 ≤ C n L 2 n p 2 L 2 n p 2 H 1 , (26) 
while in dimension d > 2 it holds true that

R d n p+1 ≤ n p 2 L 2d d-2 n p 2 +1 L 2d d+2 ≤ C ∇n p 2 L 2 n p 2 L p n L d . (27) 
Then, putting ( 26) and ( 27) in [START_REF] Keller | Initiation of slime mold aggregation viewed as an instability[END_REF] and using the Young's inequality in an appropriate way, we obtain in any dimension d ≥ 2

d dt R d n p + 4κ p -1 p R d |∇n p/2 | 2 ≤ 2κ p -1 p R d |∇n p/2 | 2 + p(p -1)C( χ , κ, n 2 L d ) n p L p (28) 
Finally, taking n 0 ∈ (L 1 ∩ L ∞ )(R d ) and the smallness condition [START_REF] Patlak | Random walk with persistence and external bias[END_REF] on

n 0 L d 2 (R d ) so that n(t) L d ≤ n 0 L d , we have the main differential inequality d dt R d n p + 2κ p -1 p R d |∇n p/2 | 2 ≤ Cp(p -1) R d n p (29) 
giving the following

L ∞ bound of n sup t≥0 n(t) L ∞ ≤ C max{ n 0 L 1 ; n 0 L ∞ } (30) 
by the iterative technique of Alikakos [START_REF] Alikakos | L p bounds of solutions of reaction-diffusion equations[END_REF], where the constant C in the estimate (30) depends on κ, χ , n 0 L d (R d ) .

For the sake of completeness, we present the argument of [START_REF] Alikakos | L p bounds of solutions of reaction-diffusion equations[END_REF]. The constants may change from line to line. Let define p k = 2 k , for k ∈ N, and v = n p k-1 . Then, inequality (29) becomes

d dt R d v 2 + 2κ p k -1 p k R d |∇v| 2 ≤ C 1 p 2 k R d v 2 . ( 31 
)
Next, by the Gagliardo-Nirenberg-Sobolev inequality and Young's inequality, we have (without making any difference between d = 2 and d > 2)

v 2 L 2 ≤ C 2 v 2α L 1 v 2(α-1) H 1 ≤ C 2 1 ε 1 α -1 v 2 L 1 + ε v 2 H 1 α ∈ (0, 1) (32) 
and for ε sufficiently small

v 2 L 2 ≤ C 2 1 ε 1 α -1 v 2 L 1 + ε ∇v 2 L 2 . (33) 
Multiplying ( 33) by (C 1 p 2 k + ε) and taking ε small enough so that

C 2 (C 1 p 2 k + ε)ε ≤ 2κ p k -1 p k , (34) 
we obtain from (31)

d dt R d v 2 ≤ -ε R d v 2 + C 2 1 ε 1 α -1 (C 1 p 2 k + ε) R d v 2 . (35) 
i.e. using again the function n,

d dt R d n p k ≤ -ε R d n p k + C 2 1 ε 1 α -1 (C 1 p 2 k + ε) sup t≥0 R d n p k-1 2 (36) 
and by Gronwall lemma

R d n p k ≤ max{ R d n p k 0 ; C 2 ε -1 α (C 1 p 2 k + ε) sup t≥0 R d n p k-1 2 }, ∀ t ≥ 0 . ( 37 
)
The estimate of n L p k follows by (37) using an iterative argument and a careful estimate of the constants in (37). Indeed, (34) gives us that ε = ε k is of order 1 p 2 k . Then, let us define

δ k = C 2 ε -1 α k (C 1 p 2 k + ε k ) and L = max{ n 0 L 1 ; n 0 L ∞ }.
Inequality (37) now reads as

R d n p k ≤ max{L p k ; δ k sup t≥0 R d n p k-1 2 }, ∀ t ≥ 0 . ( 38 
)
Since δ k ≥ 1 for any k ∈ N, from (38) we obtain recursively

R d n p k ≤ δ k δ p 1 k-1 δ p 2 k-2 • • • δ p k-1 1 L p k . ( 39 
)
Finally, let C be a constant such that δ k ≤ Cp

2( 1 α +1) k . We have n L p k ≤ C (1-1 p k ) 2 2( 1 α +1) P k i=1 i 2 i L (40) 
and estimate (30) follows by taking k → +∞.

3.3

The uniqueness issue in Theorem 2.

In the following, we give the proof of the uniqueness of the global solution in the case of bounded data n 0 . This proof follows an idea of [START_REF] Gajewski | Global behaviour of a reaction-diffusion system modelling chemotaxis[END_REF] and was not mentioned in [START_REF] Corrias | Global solutions of some chemotaxis and angiogenesis systems in high space dimensions[END_REF].

Let (n 1 , c 1 ) and (n 2 , c 2 ) be two solutions of ( 16) and let us consider the function

f (n 1 , n 2 ) = n 1 ln n 1 + n 2 ln n 2 -(n 1 + n 2 ) ln( n 1 + n 2 2 ),
which satisfies

f (n 1 , n 2 ) ≥ 1 4 ( √ n 1 - √ n 2 ) 2 .
Then, using the second equation in [START_REF] Horstmann | From 1970 until present: the Keller-Segel model in chemotaxis and its consequences[END_REF] to estimate the L 2 norm of ∇(c 1 -c 2 ), we have

d dt R d f (n 1 , n 2 ) = -κ R d n 1 n 2 n 1 + n 2 |∇ ln( n 1 n 2 )| 2 + R d n 1 n 2 n 1 + n 2 ∇ ln( n 1 n 2 ) • [∇c 1 -∇c 2 ] ≤ -κ 2 R d n 1 n 2 n 1 + n 2 |∇ ln( n 1 n 2 )| 2 + 1 8κ n 1 + n 2 L ∞ R d |∇(c 1 -c 2 )| 2 ≤ χ 2 16ακ n 1 + n 2 L ∞ R d (n 1 -n 2 ) 2 ≤ χ 2 8ακ n 1 + n 2 L ∞ √ n 1 - √ n 2 2 L 2 , (41) 
and the Gronwall lemma gives us that f (n 1 (t), n 2 (t)) = 0 for any t > 0 whenever n 1 and n 2 have the same initial data.

4 The parabolic-degenerate system.

In this section, we deal with the parabolic-degenerate system

               ∂ ∂t n = κ∆n -∇ • [n χ (c)∇c], t > 0, x ∈ Ω, ∂ ∂t c = -nc m , t > 0, x ∈ Ω, n(0, x) = n 0 (x), c(0, x) = c 0 (x), x ∈ Ω. ( 42 
)
with Ω = R d , m ≥ 1 and the sensitivity function χ (c) a given positive function on R + , generally chosen as a decreasing function since sensitivity is lower for higher concentrations of the chemical because of saturation effects.

It is interesting to analyze systems of type (42), where the equation on c is a simple ODE, in order to understand the mechanism of the competition between the chemotactic effects due to the sensitivity function χ (c) and the dynamics of c. In this spirit, system (42) with χ (c) a positive continuous function on [0, ∞) has been analyzed in [START_REF] Corrias | A chemotaxis model motivated by angiogenesis[END_REF] and [START_REF] Corrias | Global solutions of some chemotaxis and angiogenesis systems in high space dimensions[END_REF]. In that paper, we prove Theorem 1, except for the L ∞ bound which is new. Let us note that the analysis is similar to what we did in Theorem 2 for the chemotaxis system [START_REF] Horstmann | From 1970 until present: the Keller-Segel model in chemotaxis and its consequences[END_REF] and founded on the following equivalent of (20) :

d dt R d n φ(c) p φ(c)+4κ p -1 p R d φ(c) ∇ n φ(c) p/2 2 = 1 κ (p-1) R d φ 2 (c) χ (c)c m n φ(c) p+1 . (43)
This is exactly the identity (13) obtained in section 2. In particular, we get the L ∞ bound in Theorem 1 using (43) and the iterative argument of Alikakos [START_REF] Alikakos | L p bounds of solutions of reaction-diffusion equations[END_REF] (see subsection 3.2). However, since the Alikakos [START_REF] Alikakos | L p bounds of solutions of reaction-diffusion equations[END_REF] estimates handle norms with respect to the Lebesgue measure, one should use here the following norm-equivalence : for all p ≥ 1, α ∈ R and v ∈ L p (R d ),

C 1 (p, α, c 0 L ∞ ) v L p (R d ) ≤ v(x) p φ(c(x)) α dx 1 p , ≤ C 2 (p, α, c 0 L ∞ ) v L p (R d )
which comes from the fact that φ(c) = exp 1 κ c 0 χ (c )dc and 0 ≤ c(x, t) ≤ c 0 L ∞ (R d ) . This way, the conclusion of Theorem 1 follows without difficulty.

Finally, let us mention that when χ (c) is such that

µ := 1 2 inf c≥0 { c χ χ + m} > 0, (44) 
it has been proved in [START_REF] Corrias | A chemotaxis model motivated by angiogenesis[END_REF] that system (42) has an energy structure given by d dt E(t) ≤ - Note that E(t) cannot be obtained from the general identity [START_REF] Brenner | Physical mechanisms for chemotactic pattern formation by bacteria[END_REF] with an appropriate choice of G and F .

We obtain E(t) directly from system (42) in the (n, c) variables using the function N (c) := - For initial data with finite energy and d ≥ 2, the energy (45) allows to prove the existence of weak solutions to (42) where the drift term n χ (c)∇c is well defined. This energy also provides equiintegrability for n, therefore solutions cannot exhibit concentrations. But the question of propagation of smoothness of the solutions is largely open. Our result in Theorem 1 is a contribution in this direction.

Note that the relaxation of the smallness condition in dimension d ≥ 3 is an open problem. However, in two space dimensions, we have the following: Theorem 3 (L p bound for the angiogenesis system (42) in two dimensions). Assume d = 2, m ≥ 1, χ a positive say continuous differentiable function on [0, ∞) and µ > 0 in (44). Consider some nonnegative initial data (n 0 , c 0 ) with finite energy i.e. E(0) < ∞, such that ln(1 + |x|)n 0 ∈ L 1 (R d ) and c 0 ∈ L ∞ (R d ). Then, there is a weak solution (n, c) of system (42) such that for any fixed 1 ≤ p * < ∞,

n(t) L p (R 2 ) ≤ C(t, p * , n 0 L p (R 2 ) ), ∀ 1 ≤ p ≤ p * .
See [START_REF] Corrias | Global solutions of some chemotaxis and angiogenesis systems in high space dimensions[END_REF] details on this theorem.

Ω

  n κ|∇ ln(n)| 2 + µc m-1 |∇Φ(c)| 2 ≤ 0 , )| 2 + n ln(n)] and Φ (c) = χ c m .

  n dx = -κ n|∇ ln n| 2 dx + χ (c)∇n • ∇c dx = -κ n|∇ ln n| 2 dx -χ (c)c m ∂ t n + χ (c)c m |∇N | 2 2 ] dx = -κ n|∇ ln n| 2 dx -n( χ (c)c m ) c m |∇N | 2 2 .
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