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Abstract

Deep kernel learning aims at designing nonlinear combinations of multiple stan-

dard elementary kernels by training deep networks. This scheme has proven to

be effective, but intractable when handling large-scale datasets especially when

the depth of the trained networks increases; indeed, the complexity of evaluating

these networks scales quadratically w.r.t. the size of training data and linearly

w.r.t. the depth of the trained networks.

In this paper, we address the issue of efficient computation in Deep Kernel

Networks (DKNs) by designing effective maps in the underlying Reproducing

Kernel Hilbert Spaces (RKHS). Given a pretrained DKN, our method builds

its associated Deep Map Network (DMN) whose inner product approximates

the original network while being far more efficient. The design principle of

our method is greedy and achieved layer-wise, by finding maps that approx-

imate DKNs at different (input, intermediate and output) layers. This de-

sign also considers an extra fine-tuning step based on unsupervised learning,

that further enhances the generalization ability of the trained DMNs. When

plugged into SVMs, these DMNs turn out to be as accurate as the under-

lying DKNs while being at least an order of magnitude faster on large-scale

datasets, as shown through extensive experiments on the challenging Image-

CLEF, COREL5k benchmarks and the Banana dataset.
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1. Introduction1

Kernel design has been an active field of machine learning during the last two2

decades with many innovative kernel-based algorithms successfully applied to3

various tasks, including support vector machines (SVMs) for pattern classifica-4

tion and support vector regression for multivariate estimation [1, 2, 3, 4] as well5

as kernel-PCA for dimensionality reduction [5]. The success of these kernel-6

based algorithms is highly dependent on the choice of kernels; the latter are7

defined as symmetric and positive semi-definite functions that return similarity8

between data [6, 7]. Various kernels have been introduced in the literature [7]9

including standard elementary kernels (linear, polynomial, Gaussian, histogram10

intersection, etc.) as well as sophistical ones that model more complex relation-11

ships between data [3]. However, in practice, knowing a priori which (elementary12

or sophisticated) kernel is suitable for a given task is not obvious and research13

has recently been undertaken in order to train suitable kernels for different14

classification tasks (see for instance [8, 9, 10, 11, 12]).15

Among existing solutions, Multiple Kernel Learning (MKL) [8, 13, 14] has16

been popular; its principle consists in learning (sparse or convex) linear combina-17

tions of elementary kernels that maximize performances for a given classification18

task. Different MKL algorithms have been proposed in the literature, includ-19

ing constrained quadratic programming [8], second-order cone and semi-infinite20

linear programming [13, 15] as well as “simpleMKL” based on mixed-norm reg-21

ularization [14]. Wang et al. [16] also propose an alternative algorithm with22

hybrid kernel alignment maximization to obtain the multiple kernel coefficients.23

In spite of their relative success these solutions hit two major limitations: on the24

one hand, the convexity of these simple linear MKL models may limit the space25

of possible (and also relevant) solutions. On the other hand, MKL solutions, re-26

lying on shallow kernel combinations, are less powerful (compared to their deep27
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variants) in order to capture different levels of abstractions in the learned kernel28

similarity. Considering these two issues, nonlinear and deep architectures have29

been recently proposed and turned out to be more effective: for instance, hi-30

erarchical multiple kernel learning is proposed in [17] where elementary kernels31

are embedded into acyclic directed graphs while in [18], nonlinear combination32

of polynomial kernels are used. Following the spirit of deep convolutional neural33

networks [19, 20, 21], authors in [9] adopt kernel functions as a prior knowledge34

for regularization. In [22], Cho and Saul propose Arc-cosine kernels that mimic35

the computation of large neural nets which can be used in shallow as well as deep36

networks. In [23], a multi-layer nonlinear MKL framework is proposed, but it is37

restricted to only two layers; in this solution, an exponential activation function38

is applied to each intermediate and output kernel combination. In [24], Jiu and39

Sahbi extend this method to a deeper network of more than two layers, referred40

to as Deep Kernel Network (DKN), using a semi-supervised setting that takes41

into account the topology of training and test data. In all the aforementioned42

MKL algorithms, the computational complexity of kernel (gram-matrix) eval-43

uation is a major issue that limits the applicability of these methods; indeed,44

considering a dataset with N samples, this complexity reaches O(LN2) with L45

being the depth of the deep kernel networks; this evaluation process is clearly46

intractable even on reasonable size datasets. Following the proposed DKNs47

in [24], we introduce explicit Deep Map Network (DMN) representations which48

substantially improve efficiency while maintaining high discrimination power49

of the original DKNs. The design principle of these DMNs is not only super-50

vised (as in [24]), but also unsupervised and this provides better approximation51

accuracy.52

Existing solutions that reduce the computational complexity of evaluating53

kernels consider explicit maps. In this respect, different solutions have been pro-54

posed in the literature including: the Nyström expansion [25] which generates55

low-rank kernel map approximations of original gram-matrices from uniformly56
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sampled data without replacement1, and the random Fourier sampling (pro-57

posed by Rahimi an Recht [28] and extended to group-invariant kernel method58

in [29]) which builds explicit features for stationary kernels using random sam-59

pling of the Fourier spectrum. Nyström-based approximation is also studied60

in [30] for kernel subspace learning and employed for nonlinear (kernelized) up-61

date of the Ho-Kashyap algorithm using squared misclassification losses [31].62

In [32], explicit feature maps for additive homogeneous kernels are given and63

finite approximations are derived based on spectral analysis, while in [33] data-64

independent random projections are studied for homogeneous polynomial ker-65

nels. Other works have been undertaken including random features [34] and66

convolutional kernel networks [35], which approximate maps of Gaussians using67

convolutional neural networks.68

In this paper, we propose a novel method that reduces the computational69

complexity of DKN evaluation (and therefore SVM learning) on large datasets.70

We address the issue of kernel map approximation for any deep nonlinear combi-71

nation of elementary kernels rather than one specific type of kernels as achieved72

in the aforementioned related work. Our solution relies on the positive semi-73

definiteness (p.s.d) of existing elementary kernels (linear, polynomial, etc.) and74

the closure properties of p.s.d with respect to different operations (including75

product, addition and exponentiation) in order to express DKN with DMN.76

In these closure properties, linear combinations of kernels correspond to con-77

catenations of their respective maps, while products correspond to Kronecker78

tensor operations, etc. As some elementary kernels2 used to feed the inputs of79

DKNs may have infinite dimensional or undefined maps, we consider new ex-80

plicit maps that accurately approximate these elementary kernels. Considering81

these maps as inputs, this greedy process continues layer-wise in order to find82

all the maps of the subsequent (intermediate and output) layers. Note that the83

contribution presented in this paper is an extension of our preliminary work84

1Bounds, on Nyström approximation and sampling, are given in [26, 27]
2such as Gaussian and Histogram Intersection.
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in [36], but it differs at least in three aspects: first, we consider an unsuper-85

vised training criterion that benefits from abundant unlabeled data in order to86

further decrease the approximation error of the trained DMN and thereby mak-87

ing its generalization power as high as the underlying DKN (and also better88

than existing elementary and shallow kernel combinations; as shown through89

experiments). Furthermore, with DMNs, one may employ efficient SVM learn-90

ing algorithms based on stochastic gradient descent [37] on large-scale datasets,91

rather than usual training algorithms that rely on heavy gram-matrices and92

intractable quadratic programming problems. All these statements are cor-93

roborated through extensive experiments measuring approximation accuracy94

and discrimination power as well as efficiency using different image annotation95

benchmarks (namely ImageCLEF Photo Annotation [38] and COREL5k [39])96

as well as another classification task using the Banana dataset.97

The rest of this paper is organized as follows: in Section 2 we first briefly98

remind DKNs, and then in Section 3 we introduce a novel method that builds99

their equivalent DMNs. In Section 4, we describe an unsupervised setting of100

our DMN design while in Section 5, we present the experimental validation101

of our method on image annotation tasks using ImageCLEF and COREL5k102

benchmarks. Finally, we conclude the paper while providing possible extensions103

for a future work.104

2. Deep kernel networks at a glance105

A deep kernel network [23, 24] is a multi-layered architecture that recursively

defines nonlinear combinations of elementary kernels (linear, Gaussian, etc.).

Let κ
(l)
p (·, ·) denote a kernel function assigned to unit p and layer l; κ

(l)
p is

recursively defined as the output of a nonlinear activation function3 (denoted g)

applied to a weighted combination of (input or intermediate) kernels from the

3For instance, exponential function [23].
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Figure 1: Left: a three-layer deep kernel network (DKN). Right: a sub-module of deep

map network (DMN). The blue dash in the left figure denotes a sub-module of DKN

where each node stands for a kernel. The input in the right figures are kernel maps

and each unit stands for a feature.

preceding layer (l − 1) as

κ(l)p (·, ·) = g
(∑

q

w(l−1)
p,q κ(l−1)q (·, ·)

)
, (1)

with {w(l−1)
p,q } being weights connecting units at layers l and l − 1; see the106

blue dashed area in Fig. 1(left). This feed-forward kernel evaluation is achieved107

layer-wise till reaching the final output kernel. In this recursive definition, other108

activation functions g can be chosen (particularly for the intermediate layers)109

including the hyperbolic making the learning numerically more stable while also110

preserving the p.s.d of the final output kernel.111

For a given classification task, the weights {w(l−1)
p,q } are trained discrimina-112

tively [23, 24] using a max margin SVM criterion which aims at minimizing a113

regularized hinge loss on top of the learned DKN. This results into an SVM114

optimization problem which is solved in its dual form by backpropagating the115

gradient of that form w.r.t. the output kernel using the chain rule [19]. Then,116

the weights connecting layers in the DKN are updated using gradient descent.117

Variants of this optimization criterion, leveraging both labeled and unlabeled118

data (following a semi-supervised and laplacian setting) makes it possible to119

train better DKN as detailed in [24].120
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3. Deep map networks121

In this section, we introduce a novel method that finds for any given DKN,122

its associated DMN; the proposed method proceeds layer-wise by finding ex-123

plicit maps that best fit the original kernels in the DKN. As shown later in124

experiments, this process delivers highly efficient DMNs, while being compara-125

bly accurate w.r.t. their underlying DKNs. Later in Section 4, we introduce an126

extension that further enhances the approximation quality of our DMN; starting127

from the initial weights of the DMN, we update these weights by minimizing128

the difference between inner products of the maps in the DMN and the original129

kernels in the DKN. The strength of this extension also resides in its unsuper-130

vised setting which makes it possible to learn from abundant unlabeled sets.131

Considering all the elementary (input) kernels in the DKN as positive semi-132

definite and resulting from the closure of the p.s.d w.r.t. different operations (in-133

cluding sum, product, exponential and hyperbolic activation functions), all the134

intermediate and output kernels {κ(l)p }l,p will also be p.s.d. Each κ
(l)
p (x,x′) can135

therefore be written as an inner product of kernel maps as 〈φlp(x), φlp(x
′)〉, with136

φlp : X → H being a mapping from the input space X to a high dimensional space137

H. As the explicit form of φlp is not necessarily explicit (known), our goal is to de-138

sign an approximated mapping φ̂lp that guarantees κ
(l)
p (x,x′) ' 〈φ̂lp(x), φ̂lp(x

′)〉.139

When these approximated mappings through different layers are known, the140

resulting DMN provides deep kernel representations from the input data.141

3.1. Input layer maps142

In order to fully benefit from DMNs, the maps of the elementary kernels,143

that feed these DMNs, should be explicitly known. As discussed earlier, dif-144

ferent kernels have different maps; for linear and polynomial, their maps are145

straightforward and can be easily defined. However, for other more powerful146

and discriminating kernels, such as the Gaussian and the histogram intersection147

(HI), their maps are either infinite dimensional or unknown. In this subsection,148

the definitions of exact and approximate explicit maps are shown for different149

kernels (including polynomial and HI).150
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Exact polynomial kernel map. A polynomial kernel defined as κ
(1)
p (x,x′) =

〈x,x′〉n+1 can be expressed as κ
(1)
p (x,x′) = 〈x⊗nx,x′⊗nx′〉, with ⊗n standing

for the Kronecker tensor product applied n times; this tensor product on two

matrices A (of size m× n) and B (of size p× q) results into a block matrix (of

size mp× nq) as:

A⊗B =


a11B . . . a1nB

...
. . .

...

am1B . . . amnB

. (2)

Hence, it is easy to see that the exact explicit map for a polynomial kernel is151

φ
(1)
p (x) = x⊗n x.152

Approximate HI kernel map. The approximate explicit maps of HI can be

obtained using vector quantization. Given two vectors x and x′ of dimension

s, the HI on x, x′ is defined as κ
(1)
p (x,x′) =

∑s
d=1 min(xd,x′d) (with xd being

the value of dth dimension of x). Considering x = (x1, . . . ,xs)> ∈ X , each

dimension xd of x is mapped to

ψ(xd) = 20 + 21 + · · ·+ 2k(x
d), (3)

where k(xd) =

⌊
Q

xd − `d
ud − `d

⌋
and bzc stands for the largest integer not greater153

than z ∈ R, Q ∈ N+ is a predefined quantization, `d = minx{xd : x ∈ X} and154

ud = maxx{xd : x ∈ X}. In the above definition, ψ(.) is a “decimal-to-unary”155

map; for instance, 1 is mapped to 1, 2 is mapped to 11, 3 to 111, and so on. In156

the following, ψ(xd) is rewritten as a vector of Q dimensions, and its first k(xd)157

dimensions are set to 1 and the remaining are set to 0 [40].158

Proposition 1. Given any x, x′ in X , for sufficiently large Q, the inner prod-

uct 〈φ̂(1)p (x), φ̂
(1)
p (x′)〉 approximates the histogram intersection kernel κ

(1)
p (x,x′),

where

φ̂(1)
p (x) =

(
ψ(x1)>

√
u1 − `1
Q

,
√
`1, . . . , ψ(xs)>

√
us − `s
Q

,
√
`s

)>
(4)

is the approximate kernel map and ψ(xd)> stands for the transpose of ψ(xd).159

Proof. The proof is given in the Appendix A.160
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Approximate Gaussian kernel map. As the explicit map of the Gaussian161

kernel is infinite dimensional, we consider instead an approximate explicit map162

of that kernel using eigen decomposition (ED) as shown in Eqs. (6), (5) with163

l = 1 (see Section 3.2). This ED is not restricted to the Gaussian kernel and164

can also be extended to other kernels whose exact explicit maps are difficult to165

obtain.166

3.2. Intermediate/output layer maps167

Given the explicit map of each elementary kernel at the input layer, our goal is168

to design the maps of the subsequent layers. Since the map of each layer depends169

on its preceding layers, this goal is achieved layer-wise using a greedy process.170

As intermediate/output kernels in the DKN are defined as linear combinations171

of kernels in the preceding (input or intermediate) layers followed by nonlinear172

activations, we mainly focus on how to approximate the maps of these activation173

functions in the DMN; in this section, we assume that weights {w(l)
p,q} connecting174

different layers are already known resulting from the initial setting of the DKN175

(see again Section 2).176

Proposition 2. Let S = {xi}Ni=1 be a subset of N samples of X , and let Kl
p

be a gram-matrix whose entries are defined on S. Let U
(l)
p = αΛ−1/2 with α,

Λ being respectively the matrices of eigenvectors and eigenvalues obtained by

solving

Kl
pα = αΛ. (5)

Considering ‖.‖2 as the `2 (matrix) norm and K̂l
p as the gram-matrix associated

to {〈φ̂(l)p (x), φ̂
(l)
p (x′)〉}x,x′∈S with

φ̂(l)
p (x)> =

(
g(〈φ̂l,cp (x), φ̂l,cp (x1)〉) . . . g(〈φ̂l,cp (x), φ̂l,cp (xN )〉)

)
U(l)
p (6)

and

φ̂l,cp (x) =

(√
w

(l−1)
p,1 φ̂

(l−1)
1 (x)> · · ·

√
w

(l−1)
p,nl−1 φ̂

(l−1)
nl−1

(x)>
)>

, (7)

then the following property is satisfied

∥∥K̂l
p −Kl

p

∥∥
2

= 0. (8)
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Figure 2: The flowchart of DMN for a three-layer DKN, as shown in Fig. 1(left).

Proof. The proof is given in the Appendix B.177

Note that for any samples x, x′ taken out of S (but with similar distribution178

as S), it is clear (as also observed in our experiments) that |〈φ̂(l)p (x), φ̂
(l)
p (x′)〉 −179

κ
(l)
p (x,x′)| 0 as N and the number of eigenvectors used in {U(l)

p } increase.180

3.3. Network design181

We incrementally expand each layer l in the DKN into three sub-layers in the182

underlying DMN in order to design the map φ̂
(l)
p . The first sub-layer provides the183

products between weights {(w(l−1)
p,q )1/2}q and the preceding maps {φ̂(l−1)q (x)}q184

resulting into the intermediate map φ̂l,cp (x) as shown in Eq. (7). Afterwards, we185

feed this map φ̂l,cp (x) to Eq. (6) in two steps: (i) in the second sub-layer, inner186

products are achieved between φ̂l,cp (x) and parameters {φ̂l,cp (xi)}Ni=1 followed by187

the activations {g(.)}Ni=1 (with g being the hyperbolic excepting the final layer188

in the DKN which uses the exponential); (ii) in the third sub-layer, the explicit189

map φ̂
(l)
p is obtained as the product of {g(.)}Ni=1 and weights U

(l)
p . Fig. 1(right)190

shows a sub-module of DMN with sub-layers and Fig. 2 provides the flowchart191

of DMN for a three-layer DKN. Similarly, all the subsequent layers in the DMN192
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are designed by processing the DKN layer-wise.4193

4. Enhancing DMN Parameters194

So far the design principle of our method (shown in Section 3.3 and Fig. 1)195

seeks to find explicit maps whose inner products approximate the original ker-196

nel values. This is achieved by expanding each layer in the DKN into three197

sub-layers in the DMN with parameters fixed to {φ̂l,cp (xi)}i and U
(l)
p . In spite198

of being efficient and also effective w.r.t. the DKN (see experiments), the re-199

sulting DMN can be further improved when re-training and fine-tuning these200

parameters as shown subsequently.201

The purpose of the proposed unsupervised algorithm is to further reduce

the approximation error between the kernel values from DKN and the inner

product of kernel maps from DMN. Let S ′ ⊂ X be a subset drawn from the

same distribution as S and define P as a subset of pairs taken from S ′×S ′. Our

goal is to optimize maps of DMN using the following unsupervised criterion

E =
∑

(x,x′)∈P

1

2

∥∥φ̂(L)1 (x)>φ̂
(L)
1 (x′)− κ(L)1 (x,x′)

∥∥2, (9)

where κ
(L)
1 (x,x′) corresponds to the kernel value obtained using the DKN and202

φ̂
(L)
1 (x), φ̂

(L)
1 (x′) are the underlying (unknown) kernel maps; initially, only203

{φ̂(1)p (x), φ̂
(1)
p (x′)}(x,x′)∈P are known according to the procedure shown in Sec-204

tion 3.1.205

Considering the initial setting of DMN parameters (i.e., {φ̂l,cp (xi)}i and U
(l)
p ),206

the learning process of this DMN relies on backpropagation [19]. The latter finds207

the best parameters by minimizing the objective function (E) following an “end-208

to-end” framework where the gradients of E are given using the chain rule; we209

firstly compute the gradients of the loss function E w.r.t. final kernel maps,210

4As the goal, in this paper, is to build approximate deep kernel maps for a given (fixed)

deep kernel network, the weights w between different layers remain fixed (as shown in Eq. (7)).

However, they can also be jointly learned using gradient descent, but this is out of the main

scope of this paper.
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then we backpropagate them through the DMN in order to obtain the gradients211

w.r.t. the parameters of DMN, finally we average them over training pairs to212

obtain the descent direction and update DMN parameters.213

Starting from the derivative of E w.r.t. φ̂
(L)
1 (x)

∂E

φ̂
(L)
1 (x)

=
(
φ̂
(L)
1 (x)>φ̂

(L)
1 (x′)− κ(L)1 (x,x′)

)
φ̂
(L)
1 (x′), (10)

we obtain the gradients w.r.t. different layers l = L, . . . , 1 and units p =

1, . . . , nl. As the construction of DMN is achieved layer-wise (see again Sec-

tion 3.3), we show below the backpropagation procedure for a module (shown

in Fig. 1, right). Given the derivatives of E w.r.t. φ̂
(l)
p (x) in layer l, we evaluate

the derivatives w.r.t. φ̂
(l−1)
q (x) in layer (l − 1). The derivative w.r.t. φ̂

(l)
p (x) is

backpropagated to κ
(l)
p in Eq. (6) by

∂E

∂κ
(l)
p (x,xi)

= (
∂E

∂φ̂
(l)
p (x)

)>[U(l)
p ]>i , (11)

here [.]i stands for the i -th row of a matrix. Considering κ
(l)
p (x,xi) = g

(
f
(l)
p (x,xi)

)
,

with f
(l)
p (x,xi) = 〈φ̂l,cp (x), φ̂l,cp (xi)〉, we obtain

∂E

∂f
(l)
p (x,xi)

= g′(f (l)p (x,xi))
∂E

∂κ
(l)
p (x,xi)

, (12)

where g′(·) is the derivative of the nonlinear activation function; for instance,

g′(·) = 1 − tanh(·)2 for the tangent hyperbolic and g′(·) = g(·) for the expo-

nential. By accumulating the derivatives from each term f
(l)
p (x,xi), we obtain

∂E

φ̂l,cp (x)
=

N∑
i=1

φ̂l,cp (xi)
∂E

∂f
(l)
p (x,xi)

, (13)

Finally, we get the derivatives w.r.t. φ̂
(l−1)
q (x) for layer (l − 1) in Eq. (7) by

∂E

∂φ̂
(l−1)
q (x)

=

√
w

(l−1)
p,q Frag(

∂E

φ̂l,cp (x)
)q, (14)

where Frag( ∂E

φ̂l,c
p (x)

)q stands for the fragment of derivatives corresponding to the214

kernel maps of the unit q at layer (l − 1) in the DKN.215
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The gradients of the loss function E w.r.t. U
(l)
p and φ̂l,cp (xi) are then given

as

∆U(l)
p = (κ(l)p (x,x1) . . . κ(l)p (x,xN ))> (

∂E

∂φ̂
(l)
p (x)

)> (15)

∆φ̂l,cp (xi) =
∂E

∂f
(l)
p (x,xi)

φ̂l,cp (x). (16)

Error backpropagation is achieved layer-wise from the final to the input layer;216

the increments of {φ̂l,cp (xi)}Ni=1 and U
(l)
p are obtained by Eq. (16) and Eq. (15).217

Gradient descent with a step η (see experiments) is performed to update the218

parameters of DMN. The whole learning procedure is shown in Algorithm 1.219

As described earlier, an initial DMN is firstly set using the training set S,220

then sample pairs in P are randomly selected from S ′ to further enhance the221

parameters of the new (fine-tuned) DMN. As a result, the fine-tuned DMN en-222

ables us to obtain a better approximation of the original DKN on large datasets223

while being highly efficient as shown through the following experiments in image224

annotation.225

5. Experiments226

In this section, we compare the performance of the proposed DMN w.r.t. its227

underlying DKN in three aspects: i) discrimination power, ii) relative approxi-228

mation error between DMN and DKN and iii) also efficiency. The targeted task229

is image annotation; given a picture, the goal is to predict a list of keywords that230

best describes the visual content of that image. We consider two challenging231

and widely used annotation benchmarks: ImageCLEF [38], COREL5k [39], and232

also Banana (see details below). For three sets, we learn – highly competitive –233

3-layer DKNs using the setting in [24] and we plug these DKNs into SVMs in234

order to achieve classification and annotation.235

The discrimination power of the learned DMN and DKN networks is mea-

sured following the protocol defined by challenge organizers and data providers

(see [38] for ImageCLEF and [39] for COREL5k; see also extra details below).
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Input: Fixed {w(l−1)
p,q } (l = 2, . . . , L),

A set of sample pairs P,

Kernel maps {φ̂(1)
p (x)}x∈S′ at the input layer,

Output kernel values {κ(L)
1 (x,x′)}(x,x′)∈P .

Initialization: {φ̂l,cp (xi)}Ni=1 and {U(l)
p }, p = {1, . . . , nl}, learning rate η.

Output: Optimal (updated) {φ̂l,cp (xi)}Ni=1 and {U(l)
p }.

repeat

for each pair (x,x′) ∈ P do

Forward (φ̂
(1)
p (x), φ̂

(1)
p (x′)) through DMN to obtain

(φ̂
(L)
1 (x), φ̂

(L)
1 (x′))by Eqs. (7), (6);

Compute the loss by Eq. (9);

Compute the gradients ∂E

φ̂
(L)
1 (x)

by Eq. (10);

for l = L : 2 do

Backward the gradients ∂E

φ̂
(L)
1 (x)

by Eqs. (11)-(14);

Compute (∆U
(l)
p )x and (∆φ̂l,cp (xi))x by Eq. (15) and (16);

Compute the gradients from φ̂
(L)
p (x′): (∆U

(l)
p )x′ and

(∆φ̂l,cp (xi))x′ ;

Average both gradients: ∆U
(l)
p ← 1

2

(
(∆U

(l)
p )x + (∆U

(l)
p )x′

)
;

∆φ̂l,cp (xi)← 1
2

(
(∆φ̂l,cp (xi))x + (∆φ̂l,cp (xi))x′

)
;

Update these parameters by gradient descents;

U
(l)
p ← U

(l)
p − η∆U

(l)
p ;

φ̂l,cp (xi)← φ̂l,cp (xi)− η∆φ̂l,cp (xi);

end

end

until Convergence;

Algorithm 1: Unsupervised DMN learning algorithm
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The relative approximation error (RE) of a given DMN w.r.t. its underlying

DKN is measured (on a given set T ⊂ X ) as

RE =
1

|T |2
∑

x,x′∈T

|〈φ̂(3)
1 (x), φ̂

(3)
1 (x′)〉 − κ(3)

1 (x,x′)|
|〈φ̂(3)

1 (x), φ̂
(3)
1 (x′)〉|+ |κ(3)

1 (x,x′)|
× 100%, (17)

In the remainder of this section, we show different evaluation measures (discrim-236

ination power, RE and efficiency) on ImageCLEF and COREL5k benchmarks;237

note that efficiency was measured on a Mac OS with Intel Core i5 processors.238

5.1. ImageCLEF benchmark239

The ImageCLEF Photo Annotation benchmark [38] includes more than 250k240

(training, dev and test) images belonging to 95 different concepts. As ground241

truth is available (released) only on the dev set (with 1,000 images), we learn242

DKNs and SVMs [24] using only the dev set; the latter is split into two sub-243

sets: the first one used for DKN+SVM training while the other one for SVM244

testing. Given a concept and a test image, the decision about whether that245

concept is present in that test image depends on the score of a classifier; the246

latter corresponds to a “one-versus-all” SVM that returns a positive score if247

the concept is present in the test image and a negative score otherwise. We248

employ the LIBSVM library [41] in order to train each SVM independently, and249

we obtain the optimal trade-off parameter Ck (∈ [2−10, . . . , 210]) using 3-fold250

cross-validation on the training set. The discrimination power of DKN and251

DMN (when combined with SVMs) is evaluated using the F-measure (defined252

as harmonic means of recalls and precisions) both at the concept and the image253

levels (resp. denoted MF-C and MF-S) as well as the Mean Average Precision254

(MAP) [38]; high values of these measures imply better performances.255

In order to feed the inputs of DKN, we consider a combination of 10 visual256

features (provided by the ImageCLEF challenge organizers) and 4 elementary257

kernels (i.e. linear, polynomial with 2 orders, Gaussian5 and histogram inter-258

section) and we train a three-layer DKN with 40 input and 80 hidden units in259

5with a scale hyper-parameter set to be average Euclidean distance between data samples

and their neighbors.
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a supervised way following the scheme in [24]; the only difference w.r.t. [24]260

resides in the hyperbolic tangent activation function which is used to provide a261

better numerical stability and convergence when training DKN.262

Initial DMNs. Assuming the weights {w(l−1)
p,q } of three-layer DKN known, we263

build its equivalent DMN (referred to as initial DMN) as shown in Section 3.264

In these experiments, we consider two random samplings of the subset S – from265

the dev set with |S| = 500 and |S| = 1000 – in order to build the initial DMN266

(see Section 3 and Eqs. (7), (6)). According to Table 1, we observe that the267

performance of the initial DMN – with |S| = 500 – slightly degrades compared268

to its underlying DKN; indeed, MF-S and MF-C decrease by 1.3 and 2.6 pts269

respectively while MAP decreases by 6.0 pts. With |S| = 1000 performances of270

the initial DMN is clearly improved compared to the one with |S| = 500; we271

obtain a slight gain in MF-S and comparable performance in MF-C. We also272

provide a comparison of the discrimination power of inital DMN against shallow273

DKN (i.e two-layer DKN) using a supervised setting; Table 1 clearly shows the274

superiority of initial DMN (when |S| = 1000). The relative approximation275

error (RE) of the two initial DMNs (i.e., with |S| = 500 and |S| = 1000) are276

also shown in Table 2; we evaluate these REs on T with a cardinality ranging277

from 2,000 to 10,000 samples. From these results, we observe that REs are278

comparably low on small sets; indeed, with |T | = 2, 000, the obtained REs are279

equal to 0.94% when |S| = 500 and 0.95% when |S| = 1000. Higher REs are280

obtained on larger T and this clearly motivates the importance of fine-tuning281

in order to make REs (and thereby performances) of the learned DMN stable282

(and close to the underlying DKN).283

Fine-tuned DMNs. In order to fine-tune the parameters of DMN, we use284

the learning procedure presented in Section 4. We consider an unlabeled set285

S ′ (with |S ′| ranging from 1,000 to 4,000) and we randomly sample 100,000286

pairs from S ′ ×S ′ to minimize criterion (9) using gradient descent with a step-287

size empirically set to 10−6, a mini-batch size equal to 200 and a max number288

of iterations set to 5,000. Fig. 3 shows the evolution of the approximation289

loss (9) as the learning process iterates; we clearly observe that 100,000 pairs290
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Framework MF-S MF-C MAP

2-layer DKN 44.96 25.77 53.95

3-layer DKN 46.23 30.00 55.73

Initial DMN (|S| = 500) 44.92 27.39 49.75

Fine-tuned DMN (|S ′| = 2000) 45.05 27.51 49.80

Fine-tuned DMN (|S ′| = 3000) 44.94 27.40 49.80

Fine-tuned DMN (|S ′| = 4000) 45.06 27.44 49.79

Initial DMN (|S| = 1000) 47.73 29.40 53.15

Fine-tuned DMN (|S ′| = 2000) 47.79 29.68 52.89

Fine-tuned DMN (|S ′| = 3000) 47.95 29.80 53.32

Fine-tuned DMN (|S ′| = 4000) 47.70 29.30 53.33

Table 1: The discrimination power (in %) of different DMNs w.r.t. the underlying DKN; in

these experiments, two initial DMNs are designed using 500 and 1000 samples.

Configuration |S ′| 2K 3K 4K 5K 6K 7K 8K 9K 10K

Initial DMN (|S| = 500) - 0.94 1.25 1.41 1.51 1.58 1.62 1.66 1.69 1.71

Fine-tuned DMN

500 0.89 1.19 1.35 1.45 1.52 1.57 1.60 1.63 1.65

1000 0.89 1.20 1.36 1.46 1.53 1.58 1.61 1.64 1.66

2000 0.42 0.46 0.50 0.52 0.54 0.56 0.57 0.58 0.59

3000 0.52 0.47 0.47 0.47 0.47 0.47 0.48 0.48 0.48

4000 0.60 0.51 0.49 0.47 0.47 0.46 0.46 0.46 0.46

Initial DMN (|S| = 1000) - 0.95 1.27 1.44 1.54 1.62 1.67 1.70 1.74 1.76

Fine-tuned DMN

1000 0.89 1.21 1.38 1.48 1.55 1.60 1.64 1.67 1.69

2000 0.37 0.41 0.44 0.46 0.48 0.49 0.50 0.51 0.52

3000 0.46 0.43 0.43 0.43 0.44 0.44 0.44 0.45 0.45

4000 0.54 0.48 0.46 0.45 0.45 0.44 0.44 0.44 0.44

Table 2: Relative errors of initial and fine-tuned DMNs w.r.t. the DKN for different dataset

cardinalities |T | (ranging from 2K to 10K) and when two different initializations are employed.
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Figure 3: This figure shows the loss criterion in Eq. (9) as the learning iterates when |S| = 500

and |S′| = 2000.

Figure 4: This figure shows a comparison of processing time between two different DMNs

and their underlying DKN as |T | increases (with |S| = 500 and |S| = 1000) on ImageCLEF

dataset.
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|T | 50K 100K

3-layer DKN Time 40.4 hrs 160.3 hrs

Fine-tuned DMN Time 1.1 hrs 2.4 hrs

|S| = 500, |S ′| = 4000 RE 0.46% 0.46%

Fine-tuned DMN Time 1.3 hrs 2.8 hrs

|S| = 1000, |S ′| = 4000 RE 0.45% 0.45%

Table 3: This table shows a comparison of processing time and relative errors between the

DKN and the fine-tuned DMN on 50K and 100K images of ImageCLEF.“hrs” stands for

“hours”.

are already sufficient to train accurate DMNs. With an extra fine tuning step291

(shown subsequently), the accuracy of these DMNs is further improved.292

As shown in Table 1, we observe that the discrimination power of different293

DMNs remains stable (with a slight gain in MF-S when |S ′| = 3000) w.r.t. their294

underlying DKNs, and this naturally follows the noticeably small REs of the295

fine-tuned DMNs (see Table 2). The latter are further positively impacted when296

|S ′| becomes larger; for instance, when increasing |S ′| from 1,000 to 4,000, the297

RE decreases significantly (particularly when |T | = 10, 000). Moreover, and in298

contrast to the initial DMNs, the fine-tuned DMNs are less sensitive to |T | as299

shown through the observed REs which remain stable w.r.t. |T |.300

Finally, we measure the gain in efficiency obtained with DMNs against301

DKNs. From Fig. 4, we observe that DMN is (at least) an order of magnitude302

faster compared to its DKN; for instance, with 10,000 samples, DKN requires303

more than 15,000 seconds in order to compute kernel values while DMN requires304

less than 1,000 seconds. Table 3 also provides a comparison of efficiency and305

RE on much larger sets (resp. 50K and 100K) randomly sampled from the (un-306

labeled) training set of ImageCLEF; a significant improvement in efficiency is307

observed. In other words, the complexity of evaluating DMNs is linear while308

for DKN it is quadratic. These results clearly corroborate the fact that the309

proposed DMNs are as effective as DKNs while being highly efficient especially310
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on large scale datasets.311

5.2. COREL5k benchmark312

The COREL5k database introduced in [39] is another benchmark which is313

widely used for image annotation. In this database, 4,999 images are collected314

and a vocabulary of 200 keywords is used for annotation. This set is split into315

two parts; the first one includes 4,500 images for training and the second one316

499 images for testing. As for ImageCLEF, the task is again to assign a list of317

keywords for each image in the test set.318

Each image in COREL5k is described using 15 types of INRIA features319

[42] including: GIST features, 6 color histograms for RGB, HSV, LAB in two320

spatial layouts, 8 bag-of-features based on SIFT and robust hue descriptors321

in two spatial layouts. Following the standard protocol defined on COREL5k322

[39], each test image is annotated with up to 5 keywords and performances323

(discrimination power of image classification/annotation) are measured by the324

mean precision and recall over keywords (referred to as P and R respectively)325

as well as the number of keywords with non-zero recall value (denoted N+);326

again, higher values of these measures imply better performances.327

As in ImageCLEF (see section 5.1), we use 4 elementary kernels for each328

feature: linear, order two polynomial, RBF (with a scale parameter set to the329

average distance between data) and histogram intersection; in total, we use330

60 different elementary kernels as inputs to the 3-layer DKN. We also use the331

same DKN architecture on COREL5k with a slight difference in the number of332

units in the hidden layers (equal to 120 instead of 80 in ImageCLEF). Again,333

the weights of DKN are learned using the semi-supervised learning procedure334

presented in [24] where the similarity between images x and x′ is computed by335

the heat kernel S(x,x′) = exp
−||x−x′||2

4t , where t is the mean distance between336

data samples and their neighbors. An ensemble of “one-versus-all” SVM clas-337

sifiers is trained on top of DKN for each category using LIBSVM [41] and the338

trade-off parameter Ck is also chosen by 3-fold cross-validation on the training339

set. The average decision score from all the classifiers is taken as a final score340
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Framework R P N+

3-layer DKN 37.65 25.49 158

Initial DMN (|S| = 500) 31.30 18.67 155

Fine-tuned DMN (|S ′| = 2000) 31.34 18.54 155

Fine-tuned DMN (|S ′| = 3000) 31.62 18.43 153

Fine-tuned DMN (|S ′| = 4000) 31.18 19.04 155

Fine-tuned DMN (|S ′| = 4999) 31.65 19.13 157

Initial DMN (|S| = 700) 32.31 19.39 155

Fine-tuned DMN (|S ′| = 2000) 32.57 19.82 157

Fine-tuned DMN (|S ′| = 3000) 33.05 20.88 159

Fine-tuned DMN (|S ′| = 4000) 33.08 20.40 158

Fine-tuned DMN (|S ′| = 4999) 33.30 20.18 158

Table 4: The discrimination power of different DMNs w.r.t. the underlying DKN on

COREL5k; in these experiments, two initial DMNs are designed using 500 and 700 samples.

Figure 5: Comparison of processing time between two approximated DMNs (with |S| = 500

and |S| = 700) and their underlying DKN as |T | increases on COREL5k dataset.
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Framework |S ′| 2K 3K 4K 4999

Initial DMN |S| = 500 - 2.45 2.41 2.35 2.26

Fine-tuned DMN

500 1.22 1.28 1.32 1.37

1000 1.23 1.35 1.40 1.42

2000 1.12 1.15 1.19 1.19

3000 1.14 1.12 1.13 1.12

4000 1.18 1.14 1.11 1.10

4999 1.18 1.14 1.12 1.10

Initial DMN |S| = 700 - 2.43 2.39 2.33 2.24

Fine-tuned DMN

700 1.30 1.42 1.48 1.51

1000 1.22 1.35 1.42 1.44

2000 1.09 1.13 1.17 1.18

3000 1.11 1.10 1.11 1.11

4000 1.16 1.12 1.09 1.08

4999 1.16 1.12 1.10 1.08

Table 5: Relative errors of initial and fine-tuned DMNs (w.r.t. the underlying DKN) on

COREL5k as |T | increases (with values ranging from 2K to 4999)
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Method Learned context R P N+

Input feat.

CRM [43] no no 19 16 107

InfNet [44] no no 24 17 112

JEC-15 [45] no yes 33 28 140

TagPop σML [42] no yes 42 33 160

wTKML [46] no yes 42 21 173

LDMKL [47] no yes 44 29 179

CNN-R [48] yes yes 41.3 32.0 166

3-layer DKN+SVM [49] no no 37.7 25.5 158

Init. DMN+SVM (|S| = 700) no no 32.3 19.3 155

FT DMN+SVM (|S| = 700) no no 33.1 20.9 159

Init. DMN+SVM (|S| = 1200) no no 34.0 20.9 162

FT DMN+SVM (|S| = 1200) no no 34.7 21.0 168

ResNet[50] + SVM yes no 34.5 21.8 161

3-layer DKN+SVM [49] yes no 42.6 24.9 180

Init. DMN+SVM (|S| = 700) yes no 36.1 21.7 166

FT DMN+SVM (|S| = 700) yes no 36.8 22.4 165

Init. DMN+SVM (|S| = 1000) yes no 37.4 21.6 162

FT DMN+SVM (|S| = 1000) yes no 37.7 22.3 164

Init. DMN+SVM (|S| = 1200) yes no 37.8 23.2 167

FT DMN+SVM (|S| = 1200) yes no 38.9 23.2 169

Table 6: Extra comparison of the proposed DMN w.r.t different settings as well as the related

work. In these experiments, |S′| = 3000 and different |S| are used. In this table, FT stands

for Fine-Tuned.
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for a given category. In order to avoid the severe imbalanced class distribu-341

tions in SVM training, we adopt a sampling strategy that randomly selects a342

subset of negative samples whose cardinality is equal to the number of positive343

training samples. Hence, each classifier is learned using all the positive data344

and a random subset of negative data. The discrimination power of the learned345

DKNs+SVMs is shown in Table 4.346

Initial and fine-tuned DMNs. Assuming the weights {w(l−1)
p,q } of DKN347

known (learned), we build the initial DMN as shown in Section 3. We consider348

two random samplings of the subset S – from the training set with |S| = 500349

and |S| = 700 – in order to build the initial DMN. We also use the learning350

procedure presented in Section 4 in order to fine-tune the parameter of the351

DMN. We consider an unlabeled set S ′ which includes up to 4,999 samples (i.e.352

the whole COREL5k set); again we randomly sample 100,000 pairs in order353

to minimize the criterion in Eq. (9) using gradient descent with a step-size354

empirically set to 10−6, a mini-batch size equal to 200 and a max number of355

iterations set to 5,000.356

According to Table 4, we observe that the performances of the initial DMNs357

(R, P and N+) again degrade compared to their underlying DKNs as a result of358

the high RE of these DMNs. This degradation in performances is also amplified359

by the scarceness of training data for SVM learning in COREL5k (in contrast to360

ImageCLEF) especially when the RE is relatively large (see Table. 5). However,361

the discrimination power is improved when more data are used to design these362

DMNs (i.e., with |S| = 700 and also |S| = 1200 in Table 6). Furthermore,363

fine-tuning DMNs reduces the RE as |S ′| increases, and makes RE stable even364

with a relatively large |T |, so RE (on COREL5k) behaves similarly compared365

to ImageCLEF. Finally, Fig. 5 shows a comparison of processing time between366

DMN and DKN. It is easy to see that when |T | is small, the processing times of367

DKN and DMN are comparable. However, when |T | reaches large values (e.g.,368

|T | = 4999), DMN becomes an order of magnitude faster than its underlying369

DKN while maintaining a comparable accuracy.370

Extra comparisons. We further compare the performance of DMNs against371
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two generative methods (i.e., CRM [43] and infNet [44]) and several discrimina-372

tive methods (i.e., JEC-15 [45], TagPop σML [42], wTKML [46], LDMKL [47],373

CNN-R [48]) for image annotation. CRM [43] and infNet [44] learn optimal joint374

probability distributions between features and semantic labels while JEC-15 [45]375

and TagPop σML [42] (based on KNN) define classification criteria for images376

by weighting labels of their neighbors. wTKML [46] and LDMKL [47] are the377

most closely related (kernel) methods; wTKML learns explicit and transductive378

kernel maps using a priori knowledge taken from the statistical (semantic and ge-379

ometric) dependencies between classes while LDMKL combines Laplacian SVM380

with deep kernel networks using an “end-to-end” learning framework. CNN-381

R [48] adopts convolutional neural networks for annotation, that combines deep382

features from Caffe-Net with word2vec embedding. As introduced in the liter-383

ature, these related methods leverage different sources of contexts and a priori384

knowledge while our method does not.385

In our experiments (see Table 6), we use four elementary kernels (linear,386

polynomial, RBF and HI) combined with different features as inputs to the387

designed DKN and DMN networks: “handcrafted features” including GIST388

and SIFT and “learned features” taken from ResNet [50] (pretrained on the389

ImageNet) which is a very deep architecture consisting of 152 layers; the 2048390

dimensional features of the last pooling layer are used in our annotation task.391

Using all these elementary kernels and features, we first train a DKN in a392

supervised way according to [49], then we design and fine-tune its associated393

DMNs with |S| = 700 and |S ′| = 3000 (as done in Table. 4).394

From the results shown in Table 6, first, we observe that the use of ResNet395

features as inputs to our DMN framework provides a clear gain compared to the396

use of handcrafted features. Second, fine-tuning DMNs bring a clear gain com-397

pared to the initial DMNs as well as ResNet. Our DKN (and its DMN variant)398

can even catch (and sometimes outperform) the aforementioned related work399

which again relies on different contextual clues, in contrast to our method. We400

believe that considering context will further enhance the performance of DKNs401

and their associated DMNs, but this is out of the main scope of this paper and402
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will be investigated as a future work.403

Finally, Fig. 6 shows examples of annotation results, on the test set, ob-404

tained using the learned DMNs and the underlying DKNs on ImageCLEF and405

COREL5k datasets. From these figures, DMNs behave similarly, w.r.t. DKNs,406

with an extra advantage of being computationally more efficient especially on407

COREL5k (as shown in Table 7); whereas the computational complexity of408

DKN evaluation scales linearly w.r.t. the number of support vectors (which is409

an order of magnitude larger on COREL5k w.r.t. ImageCLEF: 4,500 versus410

500), the computational complexity of DMN evaluation grows slowly and re-411

mains globally stable w.r.t. the number of support vectors (which is again an412

order of magnitude larger on COREL5k). These results are also consistent with413

those already shown in Fig. 4 and Fig. 5.414

Dataset Framework time (in sec)

ImageCLEF

DKN 0.68

Fine-tuned DMN (|S| = 500) 0.57

Fine-tuned DMN (|S| = 1000) 0.95

COREL5k

DKN 10.39

Fine-tuned DMN (|S| = 500) 1.22

Fine-tuned DMN (|S| = 700) 1.58

Fine-tuned DMN (|S| = 1000) 2.51

Fine-tuned DMN (|S| = 1200) 3.67

Table 7: Comparison of the average processing time per test image (excluding feature extrac-

tion) on ImageCLEF and COREL5k datasets.

5.3. Banana dataset415

In Sections 5.1 and 5.2, we studied the efficiency and the effectiveness of416

the proposed method in image annotation. In this section, we further inves-417

tigate the applicability of our method to another classification problem using418

the Banana dataset [51]. The latter differs from ImageCLEF and COREL5k419
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Figure 6: Examples of annotation results using DKNs and their ”Fine-tuned” DMN variants

on ImageCLEF (top) and COREL5k (bottom).“GT” stands for ground-truth keywords and

the symbol “*” stands for the presence of a keyword in a given test image.

Method LDKL [51] SDMKL [49] Initial DMNs Fine-tuned DMNs

Accuracy 88.67 91.07 90.21 91.05

Table 8: This table shows the comparison in accuracy of LDKL, kernel-based semi-supervised

learning of 3-layer deep kernel network (SDMKL), inital DMNs and fine-tuned DMNs on

Banana dataset.

in that (i) it corresponds to vectors of measurements6 rather than images, and420

(ii) the labels associated to these measurements are exclusive. The Banana421

dataset corresponds to a binary classification problem, which contains 1,000422

samples for training and 4,300 for testing. Following the standard experimental423

protocol [51], we first evaluate 21 RBF kernels (with scale factors ranging from424

2−10M to 210M ; here M is the average Euclidean distance between samples425

and their neighbors), then we train a three-layer deep kernel network (referred426

6Similar to the spirit of industrial scenarios where data are collected using specific instru-

ments.
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to as SDMKL [49]) using a semi-supervised setting. In these experiments, we427

set the SVM trade-off parameter Ck to 0.25 using cross validation on a random428

subset containing 20% of training data. We also consider another baseline for429

comparison referred to as LDKL (Local Deep Kernel Learning) [51]. The accu-430

racy of LDKL and SDMKL as well as our DMNs (designed and fine-tuned as431

described in Sections 3, 4) are shown in Tab. 8. From this table, we observe that432

the performances of the initial DMNs are close to their original DKNs and the433

fine-tuned DMNs further improve these performances, and this clearly validates434

the applicability of our method to different classification problems.435

6. Conclusion436

In this paper we introduce a novel method that transforms deep kernel net-437

works (DKNs) into highly efficient deep map networks (DMNs). DKNs, as438

nonlinear and multi-layered combinations of standard kernels, are highly effec-439

tive but computationally very demanding especially when handling large-scale440

problems. In order to reduce the computational complexity of DKNs, the pro-441

posed method defines a DMN architecture layer-wise by expressing positive442

semi-definite kernels in different (input, intermediate, and output) layers of443

DKN as inner products involving explicit maps. As also theoritically shown,444

these maps are either exactly designed for input kernels (including linear and445

polynomial) or tightly approximated (for intermediate and output kernels in446

DKN) with at least an order of magnitude gain both in kernel and SVM eval-447

uation while maintaining a comparable classification accuracy. An extra fine-448

tuning step makes it possible to further enhance the accuracy of DMNs; this449

step, totally unsupervised, benefits from large unlabeled sets in order to further450

minimize the difference between the inner products of the designed maps and451

the original DKNs in the associated Reproducing Kernel Hilbert Space. Exten-452

sive experiments on the challenging ImageCLEF and COREL5k benchmarks for453

image annotation as well as the Banana dataset, clearly demonstrate the effec-454

tiveness of DMNs and their high efficiency. As a future work, we are currently455
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studying the memory burden of DMNs that may arise as a function of their456

(high) dimensionality and depth; this issue will be tackled by coupling DMNs457

with auto-encoders.458

Appendix A: Proof of Proposition 1459

Proof. For pair of samples (xi,xj),∀i, j ∈ {1, . . . ,m}, we have:

〈φ̂(1)
p (xi), φ̂

(1)
p (xj)〉 = 〈ψ(x1

i ), ψ(x1
j )〉(u1−`1

Q
) + `1 + . . .

+ 〈ψ(xsi ), ψ(xsj)〉(us−`s
Q

) + `s
(18)

It is easy to see that ∀d ∈ {1, . . . , s}, 〈ψ(xdi ), ψ(xdj )〉 = min(k(xdi ), k(xdj )). By

replacing in Eq. (18)∣∣∣∣〈φ̂(1)
p (xi), φ̂

(1)
p (xj)〉 − κ(1)

p (xi,xj)

∣∣∣∣
=

∣∣∣∣ s∑
d=1

min(k(xdi ), k(xdj ))
ud − `d
Q

+ `d −min(xdi ,x
d
j )

∣∣∣∣
≤

s∑
d=1

∣∣∣∣⌊Qmin(xdi ,x
d
j )− `d

ud − `d

⌋
ud − `d
Q

+ `d −min(xdi ,x
d
j )

∣∣∣∣
=

s∑
d=1

ud − `d
Q

∣∣∣∣⌊Qmin(xdi ,x
d
j )− `d

ud − `d

⌋
−Q

min(xdi ,x
d
j )− `d

ud − `d

∣∣∣∣
≤ 1

Q

s∑
d=1

ud − `d, (as |bzc − z| ≤ 1),

(19)

as Q increases,

∣∣∣∣〈φ̂(1)p (xi), φ̂
(1)
p (xj)〉 − κ(1)p (xi,xj)

∣∣∣∣ 0.460

Appendix B: Proof of Proposition 2461

Proof. Let’s proceed layer-wise by induction; for l = 1 (and following Sec-462

tion 3.1), the initial kernel maps {φ̂(1)p (.)} are designed to satisfy φ̂
(1)
p (x)>φ̂

(1)
p (x′) =463

κ
(1)
p (x,x′).464

Now provided that φ̂
(l−1)
q (x)>φ̂

(l−1)
q (x′) = κ

(l−1)
q (x,x′), the property to

show is φ̂
(l)
p (x)>φ̂

(l)
p (x′) = κ

(l)
p (x,x′), ∀x ∈ S. Following (7) we have

〈φ̂l,cp (x), φ̂l,cp (x′)〉 =

nl−1∑
q=1

w(l−1)
p,q φ̂(l−1)q (x)>φ̂(l−1)q (x′)

=

nl−1∑
q=1

w(l−1)
p,q κ(l−1)q (x,x′),

(20)

29



the second equality results from the hypothesis of induction. By plugging (20)

into (6), we obtain

φ̂(l)p (x)> =
(
κ(l)p (x,x1), . . . , κ(l)p (x,xN )

)
U(l)
p , (21)

and equivalently K̂l
p = Kl

p U
(l)
p U

(l)>
p Kl

p. Hence,

∥∥K̂l
p −Kl

p

∥∥
2

=
∥∥Kl

p αΛ−1/2 Λ−1/2 α> Kl
p −Kl

p

∥∥
2

=
∥∥αΛ Λ−1 α> Kl

p −Kl
p

∥∥
2

=
∥∥α α> Kl

p −Kl
p

∥∥
2

=
∥∥Kl

p −Kl
p

∥∥
2

= 0

(22)

which also results from Eq. (5) and the orthogonality of eigenvectors in α.465

Acknowledgement466

This work was supported by a grant from National Natural Science Founda-467

tion of China (No. 61806180) and in part by a grant from the research agency468

ANR (Agence Nationale de la Recherche) under the MLVIS project (ANR-11-469

BS02-0017).470

References471

References472

[1] B. Caputo, C. Wallraven, M. Nilsback, Object categorization via local473

kernels, in: Proceedings of the 17th International Conference on Pattern474

Recognition (ICPR), Vol. 2, 2004, pp. 132–135.475

[2] S. Lyu, Mercer kernels for object recognition with local features, in: 2005476

IEEE Computer Society Conference on Computer Vision and Pattern477

Recognition (CVPR), Vol. 2, 2005, pp. 223–229.478

[3] K. Grauman, T. Darrell, The pyramid match kernel: Efficient learning with479

sets of features, Journal of Machine Learning Research 8 (2007) 725–760.480

30



[4] X. Qi, Y. Han, Incorporating multiple svms for automatic image annota-481

tion, Pattern Recognition 40 (2) (2007) 728–741.482

[5] K. Q. Weinberger, F. Sha, L. K. Saul, Learning a kernel matrix for non-483

linear dimensionality reduction, in: International Conference on Machine484

Learning (ICML), 2014, pp. 839–846.485

[6] V. Vapnik, Statistical learning theory, Wiley, New York, 1998.486

[7] J. Shawe-Taylor, N. Cristianini, Kernel methods for pattern analysis, Cam-487

briage University Press, 2004.488

[8] G. Lanckriet, N. Cristianini, P. Bartlett, L. E. Ghaoui, M. I. Jordan, Learn-489

ing the kernel matrix with semi-definite programming, Journal of Machine490

Learning Research 5 (2004) 27–72.491

[9] K. Yu, W. Xu, Y. Gong, Deep learning with kernel regularization for vi-492

sual recognition, in: Advances in Neural Information Processing Systems493

(NIPS), 2008, pp. 1889–1896.494

[10] C. Corinna, M. Mehryar, R. Afshin, Two-stage learning kernel algorithms,495

in: International Conference on Machine Learning (ICML), 2010, pp. 239–496

246.497

[11] H. Sahbi, J.-Y. Audibert, R. Keriven, Context-dependent kernels for ob-498

ject classification, IEEE Transactions on Pattern Analysis and Machine499

Intelligence 33 (2011) 699–708.500

[12] H. Sahbi, X. Li, Context-based support vector machines for interconnected501

image annotation, in: Asian Conference on Computer Vision (ACCV),502

2011, pp. 214–227.503

[13] F. Bach, G. Lanckriet, M. Jordan, Multiple kernel learning, conic duality,504

and the smo algorithm, in: International Conference on Machine Learning505

(ICML), 2004, pp. 1–6.506

31



[14] A. Rakotomamonjy, F. Bach, C. S., G. Yves, Simplemkl, Journal of Ma-507

chine Learning Research 9 (2008) 2491–2521.508
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