5th International Conference on Sensors Engineering and Electronics Instrumentation Advances (SEIA' 2019), 25-27 September 2019, Canary Islands (Tenerife), Spain

Type of Presentation:

Oral

Gas Sensors

Development of a sensitive and selective mixed-potential ammonia sensor for automotive exhausts

G. Nematbakhsh Abkenar¹, J. P. Viricelle¹, M. Rieu and P. Breuil¹

¹ Mines Saint-Etienne, Univ Lyon, CNRS, UMR 5307 LGF, Centre SPIN, F - 42023 Saint-Etienne France

Tel.: +33477426659

E-mail: gita.nematbakhsh@emse.fr

Abstract: Selective catalyst reduction (SCR) system using ammonia gas as a reductant, is one the most reliable ways to control NO_x emissions from diesel engine vehicles and trucks. In order to optimize the conversion rates of NO_x and to prevent inducing excessive NH_3 to the air, an NH_3 sensor is required to control the SCR system for maintaining NH_3 slip at an acceptable level. In this study, a highly selective ammonia sensor was developed to detect ammonia emissions from automotive exhaust. The effects of operating temperature and electrode composition on NH_3 response were investigated. The results indicate that the selectivity and stability of sensors are extremely dependent on previous parameters. These sensors also show remarkable sensing properties even for low concentrations of ammonia with logarithmic dependence on the gas concentration.

Keywords: Ammonia, Mixed-potential sensors, Selectivity, Vanadium oxide, Gas sensor.

1. Introduction

One of the most effective technologies in decreasing large-scale NO_x emission produced by diesel engine vehicles is Urea-SCR (selective catalytic reduction) system. However, an excess of urea injection can cause NH₃ emissions to the environment [1, 2].

So, many studies have been carried out in order to develop an effective ammonia sensor for harsh environments of automobiles exhausts. Nevertheless, most of existing sensors suffers from cross-sensitivity to other toxic gases, low sensitivity and stability [3].

 V_2O_5 has been proved to be one of the interesting metal-oxides suitable for gas-sensing applications due to its catalytic properties [4].

In the present study, low-cost highly selective YSZbased mixed potential sensors with $Au-V_2O_5$ working electrode and platinum reference electrode were fabricated.

2. Experimental

Sensors were fabricated using Al_2O_3 (2 cm×5cm) substrates. An electrolyte layer of YSZ (8mol% Y_2O_3 -doped) was screen-printed followed by 2 hours sintering at 1380 °C. Afterwards, the reference electrode (platinum) and working electrode (Au- V_2O_5 , 3 different mass ratio 85-15, 70-30 and 50-50) were printed on YSZ layer using commercial inks of platinum and gold, and home-made ink V_2O_5 . A platinum resistor was also printed at the backside of the alumina support to control the sensor temperature. The sintering temperature of reference and working electrodes were 850 °C and 600 °C respectively. The measured sensors' responses (ΔV) are the potential difference between reference and working electrode.

3. Results and disscution

Fig. 1 shows the responses of sensors with Au - $15\% V_2O_5$ working electrode, to 100 ppm CO, NO₂, NO and 20 ppm of NH₃ at four different temperatures of 450, 500, 550 and 600 °C. It can be seen that the sensors respond to all gases at lower temperatures while by increasing temperature to 600 °C the selectively toward NH₃ is greatly improved.

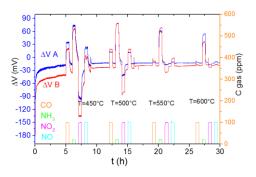


Fig. 1. Responses of Au-15% V₂O₅ sensors to 100 ppm CO, NO₂, NO and 20 ppm of NH₃ at temperatures of 450, 500, 550 and 600 °C.

The stability of sensors was tested by exposing them at 550 °C and 600 °C for long duration. Fig. 2

5th International Conference on Sensors Engineering and Electronics Instrumentation Advances (SEIA' 2019), 25-27 September 2019, Canary Islands (Tenerife), Spain

clearly shows that working electrode is completely destroyed after 17h working at 600 °C while it is stable after 48h working at 550 °C. Hence, investigate were made to decrease the selective working temperature of sensors.

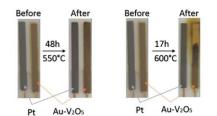
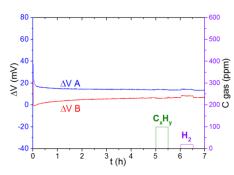



Fig. 2. Electrodes' appearances for new-fabricated Au -15% V₂O₅ sensors sintered 1h at 600 °C before and after tests for 48h at 550 °C and 17h at 600 °C.

After testing different mass percentages of V_2O_5 in working electrode, we concluded that by increasing this value to 50%, the selective temperature of ammonia sensors could be decreased to 550 °C. The selectivity of sensors were also confirmed by testing other possible gases such as hydrocarbons and hydrogen. Fig. 3 reveals that these sensors shows almost no response to 20ppm of H₂ and 100ppm of C_xH_y.

Fig. 3. Responses of Au-50% V_2O_5 sensors to 20ppm of H_2 and 100ppm of C_xH_y (a mixture of 56ppm propene (C_3H_6), 28 ppm n-butane (C_4H_{10}) and 16ppm methane (CH_4)) at 550°C.

The sensing performance of resulting ammonia sensors at 550 °C was investigated by stepwise change in the NH₃ concentration from 1 to 40ppm (Fig. 4). These results indicate that the sensors have high sensitivity to NH₃, even at low concentrations.

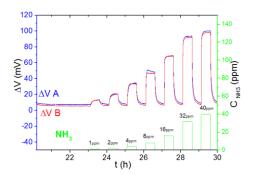


Fig. 4. Responses of Au-50% V_2O_5 sensors to different concentration of NH_3 at 550°C.

As illustrated in Fig. 5, the measured sensors' responses have logarithmic characteristic as a function of NH_3 concentration with sensitivity of around 55 mV/decade.

Further investigations are going on to gain deeper insight in sensing mechanism of V_2O_5 based working electrode which governs the sensor's performance.

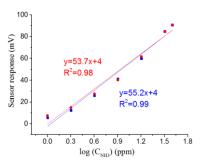


Fig. 5. Logarithmic dependence of sensors' response to NH₃ concentration at 550°C.

4. Conclusions

Selective ammonia sensors were developed using V₂O₅-Au as working electrode, and platinum reference electrode. Selectivity of sensors were found to be so temperature dependent. The durability of these sensors were increased by increasing the mass of percentage of V₂O₅ to 50% in working electrode with optimum operating temperature of 550 °C. A logarithmic trend of sensor responses as a function of NH₃ concentration were observed with sensitivity of around 24 mV/decade.

References

- K. Shimizu, I. Chinzei, et al. Doped-vanadium oxides as sensing materials for high temperature operative selective ammonia gas sensors, *Sensors and Actuators B*, Vol 141, 2009, pp. 410-416.
- [2]. M. van Nieuwstadt, I. Dpadhyay, et al. Control of Urea SCR Systems for US Diesel Applications in *IFP Energies nouvelles International Conference*, Dearborn, USA, 2011, pp. 655-665.
- [3]. A. Muzamil, F. Qazi, et al. "Recent Trends in Electrochemical Detection of NH₃, H₂S and NO_x Gases", *International Journal of Electrochemical Science*, Vol 12, 2017, pp. 1711-1733.
- [4]. V. Modafferi, S. Trocino, et al. Electrospun V₂O₅ composite fibers: Synthesis, characterization and ammonia sensing properties, *Thin Solid Films*, Vol 548, 2013, pp. 689-694.