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1  | INTRODUC TION

The Mantel test is a well-known statistical procedure pertaining to 
the distance decay relationships framework (Nekola & White, 1999) 

which assesses the correlation between two distance matrices com-
puted between pairs of samples and evaluates its significance using 
random permutations (Mantel, 1967). Although criticized in the liter-
ature concerning its assumption of a linear relationship between the 
two distance matrices, the formulation of its null hypothesis and the 
interpretation of its statistic which are not as trivial as with raw data 
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Abstract
1.	 Mantel tests are widely used in ecology to assess the significance of the relationship 

between two distance matrices computed between pairs of samples. However, recent 
studies demonstrated that the presence of spatial autocorrelation in both distance ma-
trices induced inflations of parameter estimates and type I error rates. These results 
also hold for partial Mantel test which is supposed to control for the spatial structures.

2.	 To address the issue of spatial autocorrelation in testing the Mantel statistic, we 
developed a new procedure based on spatially constrained randomizations using 
Moran spectral randomization. A simulation study was conducted to assess the 
performance of this new procedure. Different scenarios were considered by ma-
nipulating the number of variables, the number of samples, the regularity of the 
sampling design and the level of spatial autocorrelation.

3.	 As identified by previous studies, we found that Mantel statistic and its associated type 
I error rate are inflated in simple and partial Mantel tests when both distances matrices 
are spatially structured. We showed that these biases increased with the number of vari-
ables, decreased with the number of samples and were slightly lower for regular than 
irregular sampling. The new procedure succeeded in correcting the spurious inflations of 
the parameter estimates and type I error rates in any of the presented scenarios.

4.	 Our results suggest that studies from several fields (e.g. genetic or community ecology) 
could have been overestimating the relationship between two distances matrices when 
both presented spatial autocorrelation. We proposed an alternative solution applicable 
in every field to correctly compute Mantel statistic with a fair type I error rate.
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(Legendre, Fortin, & Borcard, 2015), this test is still widely used by 
ecologists from different fields. For instance in community ecology, 
Mantel test is often used to disentangle the roles of habitat selection 
and dispersal processes on community and metacommunity organi-
zation (Jones, Tuomisto, Clark, & Olivas, 2006; Moritz et al., 2013; 
dos Santos, Saraiva, Müller, & Overbeck, 2015). In molecular ecology, 
Mantel test is routinely used to test the link between two matrices of 
phenotypic (resp. genetic) distances measured on individuals or popu-
lations (Richardson, Brady, Wang, & Spear, 2016; Shafer & Wolf, 2013; 
Storfer, Murphy, Spear, Holderegger, & Waits, 2010).

When distance matrices are computed on samples located in 
space, a major problem lies in the possible presence of spatial au-
tocorrelation (Legendre & Fortin, 2010; Meirmans, 2012). Spatial 
autocorrelation is a well-known problem in statistical ecology (Sokal 
& Oden, 1978) as it violates the assumption of data independence 
required in many statistical methods (Diniz-Filho, Bini, & Hawkins, 
2003; Legendre & Legendre, 1998). As such, it induces an inflation of 
type I error rate; that is, rejecting the null hypothesis too often (Cliff 
& Ord, 1981). Mantel tests have been shown to be strongly affected 
by spatial autocorrelation when present in both distance matrices 
(Guillot & Rousset, 2013; Legendre et al., 2015; Oden & Sokal, 1992). 
As such, the partial Mantel test was developed (Smouse, Long, & 
Sokal, 1986) to control for spatial structures when testing the link 
between the two distance matrices of interest.

However, through a deep investigation of simple and par-
tial Mantel tests, Guillot and Rousset (2013) showed that partial 
Mantel test was unable to correct for the effect of spatial autocor-
relation and that both tests presented inflated type I error rates. 
The problem lies in the random permutation procedure which 
breaks the potential dependencies between distance matrices 
(as expected by the null hypothesis) but also their inherent au-
tocorrelation structures (Guillot & Rousset, 2013). To solve this 
issue, Guillot and Rousset (2013) mentioned different alternatives 
including shift permutations (Upton & Fingleton, 1985). This type 
of permutation allows randomizing the data to break the link be-
tween the two distance matrices, while preserving their individ-
ual spatial structures so that they are taken into account in the 
testing procedure. Nevertheless, shift permutations can only be 
applied when samples originate from a regular grid, whereas many 
empirical studies implement irregular samplings for practical rea-
sons. Following this idea, we propose here another strategy using 
Moran spectral randomization (MSR; Wagner & Dray, 2015). This 
spatially constrained randomization procedure initially developed 
in the simple case of bivariate correlation allows generating ran-
dom replicates that preserve the original spatial structures of 
the data while breaking their correlations. Contrary to shift per-
mutations, this procedure can be applied to regular or irregular 
samplings.

In this study, we first performed a simulation study to illustrate 
how simple and partial Mantel tests can be affected by spatial au-
tocorrelation. Second, we proposed and evaluated a new approach 
based on MSR to improve the testing and computing of the Mantel 
statistic in the presence of spatial autocorrelation.

2  | MATERIAL S AND METHODS

2.1 | Simple and partial Mantel tests

The Mantel test considers two n × n symmetric matrices DX and DY 
containing pairwise distances among n samples. If original data con-
sist in raw data stored in tables X and Y (i.e. samples by variables), 
they should be transformed in distance matrices DX and DY prior to 
the computation of the Mantel statistic.

The observed Mantel statistic (rM-obs) is defined as the sum of 
cross products between both distance matrices DX and DY:

Partial Mantel test, introduced by Smouse et al. (1986), is widely 
used in ecology to control for spatial autocorrelation present in the 
data. The test considers DX, DY and an additional distance matrix DZ 
which can be derived from a raw data table Z. To control for spa-
tial structure, Z generally contains geographical coordinates so that 
DZ represents the geographical distances between samples. Partial 
Mantel test is based on the correlation coefficient between DX and 
DY while controlling for the effect of the third matrix DZ.

The significance of simple and partial Mantel tests is assessed with 
a permutation procedure. The two matrices (DX and DY, or equivalently 
X and Y if DX and DY are obtained from raw data) are permuted inde-
pendently (i.e. rows and columns are permuted in the same manner for 
distance matrices; only rows for raw data) and the Mantel statistic is 
recomputed. This permutation procedure is repeated nRND times (e.g. 
nRND = 999) to obtain the distribution of the Mantel statistic under the 
null hypothesis. Note that permuting both matrices is not required as 
this distribution can be obtained by permuting only one matrix (DX or 
DY). The observed value of the statistic rM-obs is then compared to this 
distribution to assess its significance. The null hypothesis H0 associated 
with this testing procedure states that “the distances in DX are not lin-
early related to the corresponding distances in DY” (Legendre et al., 2015).

2.2 | Overcoming the spatial autocorrelation 
problem with an alternative randomization procedure

As used in Mantel tests, classical permutation procedures assume 
implicitly that samples are exchangeable. The presence of spatial au-
tocorrelation induces a kind of pseudo-replication (Hurlbert, 1984) 
leading to a violation of the exchangeability assumption hence an 
inflation of type I error rates and imprecise parameter estimates. To 
address the issue of spatial autocorrelation in testing the Mantel sta-
tistic, we used the MSR (Wagner & Dray, 2015) instead of standard 
permutation procedure. The MSR aims at producing random repli-
cates which preserves the spatial structures of the original variables 
so that spatial autocorrelation is taken into account in the testing 
procedure.

Moran spectral randomization starts by defining a n × n spatial 
weighting matrix W. This matrix is a mathematical representation of 
the geographical layout of the region under study. The spatial weights 

(1)rM-obs=

n−1
∑

i=1

n
∑

j=i+1

DXij
DYij

.
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reflect a priori the absence (wij = 0), presence or intensity (wij > 0) of the 
spatial relationships between the samples i and j. The doubly centred 
matrix W is diagonalized and we define Λ = diag(λ1, …, λn−1) the diag-
onalmatrix of eigenvalues and V the n × (n − 1) matrix with associated 
eigenvectors v1, …, vn−1 stored as columns. These eigenvectors, named 
Moran's Eigenvector Maps (MEM) by Dray, Legendre, and Peres-Neto 
(2006), are orthogonal and maximize spatial autocorrelation measured 
by the Moran's index of spatial autocorrelation. If we consider a centred 
 variable x, the Moran's index of autocorrelation is equal to (Dray, 
2011):

with

The variable x can thus be entirely decomposed on the orthogo-
nal basis of MEM as follows:

This decomposition allows to define a scalogram (Dray et al., 
2012), depicting the multiscale structure of x, where each MEM ex-
plains a proportion of the variance of x equal to cor2

(

vi, x
)

. In its 
strictest version, the MSR algorithm aims to find a set of coefficients 
a1, …, an−1 to define a new variable xMSR=

∑n−1

i=1
aivi with the following 

additional constraints:

This ensures that the new variable xMSR (MSR replicate) has 
the same global level of spatial autocorrelation and multiscale 
structure than the original variable x. More details can be found 
in Wagner and Dray (2015), especially concerning the case of mul-
tivariate data.

2.3 | Applying the MSR procedure to test the 
Mantel statistic

We considered two cases: (a) if data from DX originate from a raw 
data table X or (b) if data have been obtained directly as distances in 
DX. The complete procedure consists in:

1.	 Compute the observed Mantel statistic rM-obs between DX and 
DY;

2.	 Build a MSR replicate DX-MSR of the original distance matrix DX:
i.	 if data from DX originate from a raw data table X, MSR is ap-

plied on X to produce a random replicate XMSR. Then, XMSR 

is transformed in DX-MSR using the same computation of dis-
tances applied to obtain DX from X.

ii.	 if data have been obtained directly as distances in DX, a princi-
pal coordinates analysis (PCO; Torgerson, 1958; Gower, 1966) 
is applied on DX. MSR is then performed on the complete set 
of principal coordinates to produce a random replicate XMSR. 
Euclidean distances are computed from XMSR to obtain DX-MSR.

3.	 Compute the Mantel statistic rM-MSR between DX-MSR and DY.
4.	 Repeat nMSR times the steps 2 and 3 (e.g. nMSR = 999). The p-value 

of the test is then simply the number of rM-MSR that are higher or 
equal to the observed value rM-obs (plus one) divided by (nMSR + 1) 
in the case of an upper-tailed test.

The value of the observed Mantel statistic can eventually be cor-
rected to take into account the spurious correlation due to spatial 
autocorrelation, as follows:

where E(rM-MSR) is the average of the rM-MSR values and corresponds 
to the expected value of the Mantel statistic under the null hypoth-
esis H0-MSR stating that “considering the levels of spatial autocorrela-
tion in original data, the distances in DX are not linearly related to the 
corresponding distances in DY.” As such, the MSR procedure allows 
using a new null hypothesis compared to the Mantel test to take 
into account spatial autocorrelation by randomizing the original data 
while preserving their spatial structures. The method is schemati-
cally represented in Figure 1 and denoted MSR Mantel in the rest 
of the study.

2.4 | Simulations

To assess the performance of the MSR Mantel approach to correct for 
the spurious correlation found in simple and partial Mantel tests, we 
conducted a simulation study. To evaluate type I error rates and values 
of the statistics under the null hypothesis, two tables X and Y with iden-
tical dimensions were independently generated by randomly drawing 
values from a normal distribution. We considered the measurement of 
5 variables for 225 randomly located samples (i.e. irregular sampling 
design; geographic coordinates are drawn from two independent uni-
form distributions). Following Dray (2011), variables in X and Y were 
generated spatially autocorrelated using a univariate simultaneous au-
toregressive model with increasing levels of autocorrelation (autore-
gressive parameter ρ varying from 0 to 0.8) and a row-standardized 
spatial weighting matrix defined by a Gabriel graph (Wgab).

We assessed the effect of (a) the level of spatial autocorrelation 
(ρ = {0, 0.2, 0.4, 0.6, 0.8}) for 5 variables and 225 samples, (b) the 
number of variables by considering 1, 5 and 10 variables for 225 
samples in both X and Y with ρ = 0.8; (c) the number of samples by 
generating 100, 225 and 400 samples for 5 variables with ρ = 0.8 
and (d) the sampling design with 225 samples located on a square 
grid with rook specification (i.e. regular sampling).

To evaluate power, X was simulated with the same protocol as 
above with 5 variables, 225 irregular samples and ρ = 0.8. However, 

(2)I (x)=

n−1
∑

i=1
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2
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)
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Y was generated as linearly correlated with X with the following 
formula:

where a is a real number controlling for the strength of the link between 
X and Y, and N is a table of nonspatially structured random noise ob-
tained by permuting the rows of X (this allows to ensure that both X 
and N have the same level of variance). We tested for the strength of 
the relationship between X and Y by varying values of a from 0.1 to 0.5.

To describe space (table Z) in the partial Mantel tests, we used 
the geographic coordinates of the sites. Distances matrices were ob-
tained by computing Euclidean distances from tables X, Y and Z. In 
these simulations, the MSR procedure was performed using Wgab, 
that is, the spatial weighting matrix also used to generate the data. 
We performed 1,000 simulations for each scenario.

In the case of real datasets, an important step of the MSR proce-
dure lies in the definition of the spatial weighting matrix W. Hence, in 
a second simulation study, we evaluated the procedure of Bauman, 
Drouet, Fortin, and Dray (2018) recently developed to select a 
spatial weighting matrix W among a set of potential candidates. In 
the case of MSR, this procedure consists in three main steps (see 
Bauman et al., 2018, for further details):

1.	 Perform two multivariate linear regressions of X on Moran's 
Eigenvectors Maps associated with positive and negative ei-
genvalues, respectively, for each W candidate. As such, each 
W candidate is characterized by two adjusted R2 with their 
corresponding p-value (corrected for multiple tests).

2.	 Add the significant adjusted R2 for each W candidate which is 
then characterized by a sum of adjusted R2.

3.	 Select the W matrix with the highest sum of adjusted R2.

In this study, we first reported the effects of a misspecification 
of W on MSR performance over 1,000 simulations. We generated X 
with the spatial weighting matrix Wgab but performed MSR Mantel 
with a different spatial weighting matrix Wdist defined as a distance-
based graph. In such representation, two samples are connected 
solely if their geographic distance is inferior to a certain threshold, 
defined here as the maximum branch length of the minimum span-
ning tree connecting all samples (i.e. the most parsimonious path 
connecting all samples, see Legendre & Legendre, 1998 for details 
in neighbour graph definitions). Second, we evaluated the ability of 
the selection procedure proposed by Bauman et al. (2018) in the 
context of MSR Mantel. For this, X was simulated 1,000 times using 

(9)Y = aX + (1 − a)N

F IGURE  1 Schematic representation 
of the MSR-Mantel procedure using 
Moran spectral randomization as a 
spatially constrained null model. (1) 
Distance matrices DX and DY are, 
respectively, computed from matrices X 
and Y (case with raw data). The statistic 
rM-obs is computed between distance 
matrices DX and DY. (2) If distance matrix 
DX originates from raw data matrix X, 
nMSR replicates XMSR preserving spatial 
autocorrelation of table X are generated 
with MSR. (2’) If DX does not originate 
from raw data, a principal coordinates 
analysis (PCO) is conducted on DX and the 
replicates XMSR are generated by applying 
MSR on the complete set of principal 
coordinates. (3) Distance matrices DX-MSR 
are then computed from the nMSR XMSR 
replicates. (4) nMSR Mantel statistics are 
then computed between DY and DX-MSR 
to produce rM-MSR. The expected value 
E(rM-MSR) is an estimate of the bias due 
to spatial autocorrelation (i.e. expected 
under H0-MSR). (5) The effect of spatial 
autocorrelation is removed from rM-obs to 
obtain the unbiased statistic r∗

M-obs
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five different spatial weighting matrices (200 tables X generated for 
each definition, see Legendre & Legendre, 1998): (a) Wgab, (b) Wdist, 
(c) Wmst obtained from a minimum spanning tree, (d) Wdel defined 
with a Delaunay triangulation and (e) Wrel obtained from a relative 
neighbourhood graph. We applied the selection procedure consider-
ing all the five spatial weighting matrices as candidates and evaluate 
type I error rates of the MSR Mantel conducted using the selected 
spatial weighting matrix. The study on misspecification and selec-
tion procedure considered X and Y generated as previously with an 
autoregressive model of parameter ρ = 0.8 and with 5 variables and 
225 irregular samples.

2.5 | Statistical analysis

For each pair of distance matrices, we applied simple and partial 
Mantel tests, and the MSR-Mantel procedure. Using the 1,000 simu-
lations, we computed type I error rates corresponding to the pro-
portion of significant relationships identified when X and Y are not 
linked (i.e. false positives). In the cases where X and Y are linearly 
correlated, the proportion of significant relationships represents the 
power of the test. We used 999 permutations for the simple and 
partial Mantel tests, and 99 replicates for the MSR procedure to re-
duce the computation time. Statistical tests and simulations were 

computed with R software 3.3.2 (R Core Team, 2016). Simple and 
partial Mantel tests were, respectively, computed with ade4 (Dray & 
Dufour, 2007) and vegan (Oksanen et al., 2017) packages. MSR pro-
cedure was performed using adespatial package (Dray et al., 2016). 
Examples showing how to reproduce the analysis and the selection 
procedure in R are provided in Supporting Information Appendix 5.

3  | RESULTS

When DX and DY were not correlated (i.e. X and Y independently gen-
erated), rM-obs was expected to be 0. Simple Mantel test performed 
well when there was no spatial autocorrelation (the rM-obs are cen-
tred on 0 and type I error rate close to 0.05 for ρ = 0; Figure 2a). On 
the contrary, type I error rates and rM-obs were increasingly inflated 
with higher levels of spatial autocorrelation (Figure 2a) and this bias 
increased with the number of variables (Figure 3a) but decreased 
with the number of samples (Supporting Information Appendix 1a). 
Note also that the variance of rM-obs on 1,000 simulations increased 
with the level of spatial autocorrelation (Figure 2a). Likewise, type 
I error rates and rM-obs presented similar inflations for a regular 
sampling design (Supporting Information Appendix 2a, 3a and 4a). 
Worth noting that in the case of regular sampling grids rM-obs was 

F IGURE  2 Type I error rates and 
values of Mantel statistic for simple and 
partial Mantel tests and MSR Mantel for 
irregular sampling. (a–b) Observed Mantel 
statistic (rM-obs) and type I error rates for 
(a) simple and (b) partial Mantel test. (c–d) 
Corrected Mantel statistic (r∗

M-obs
)  

and type I error rates of MSR Mantel 
on (c) raw table X, or (d) the principal 
coordinates obtained from a (PCO) on 
DX. X and Y contain 5 variables and 225 
samples. Both tables present spatial 
autocorrelation varying from ρ = 0 to 
ρ = 0.8. rM-obs and r∗

M-obs
 are reported with 

boxes representing the 25, 50 and 75 
quartiles, the whiskers are minimum and 
maximum values. Red line corresponds to 
rM = 0
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not overestimated and type I error rate presented no inflation for 
the lowest levels of spatial autocorrelation (Supporting Information 
Appendix 2a).

As observed in other studies, partial Mantel tests did not control 
for the spatial autocorrelation effect: the rM-obs statistic remained 
overestimated and, although improved, type I error rates were still 
inflated (Figure 2b). As previously observed for the simple Mantel 
tests, the number of variables increased rM-obs and type I error rates 
(Figure 3b), and inversely for the number of samples (Supporting 
Information Appendix 1b). However, worth noting that in the case 
of regular sampling grids, even if rM-obs was still overestimated, type 
I error rates presented lower inflations (Supporting Information 
Appendix 2b, 3b and 4b).

The use of the MSR Mantel fully controlled for inflations due to 
spatial autocorrelations so that estimates and type I error rates be-
have as expected (r∗

M- obs
 and type I error rates, respectively, centred 

on 0 and 0.05; Figure 2c). Similarly, the procedure succeeded for the 
various situations considered: increasing number of variables 
(Figure 3c), increasing number of samples (Supporting Information 
Appendix 1c) and for regular sampling (Supporting Information 
Appendix 2c). Moreover, even when conducted on the principal co-
ordinates of DX and not on raw data, the use of MSR procedure suc-
cessfully controlled for spatial autocorrelation biases (Figure 2d). 
Note, however, that our approach did not correct the increase in the 
variance for high level of spatial autocorrelation (Figure 2c, 
Supporting Information Appendix 2c).

When DX and DY were linearly correlated, the performances of 
the Mantel tests (simple, partial) and MSR Mantel were very similar 
and their power increased with the strength of the correlation be-
tween the two matrices (Figure 4). These similarities showed that 
MSR Mantel did not affect the ability to detect a link between DX 
and DY when present. However, as simple and partial Mantel tests 
had inflated type I error rates (Figure 2a,b), they should not be used 
and their power was only given for comparison purposes.

Performing MSR Mantel with a misspecified spatial weighting 
matrix (Wdist instead of Wgab) led to an inflated type I error rate 
(0.115 over 1,000 simulations). When the selection procedure de-
veloped by Bauman et al. (2018) is applied prior to MSR Mantel, the 
type I error rate drops down to 0.049.

4  | DISCUSSION

In this study, we developed a new procedure based on MSR (Wagner 
& Dray, 2015) to overcome the biases when testing the Mantel sta-
tistic when distance matrices DX and DY present independent spatial 
autocorrelations.

As shown previously (Guillot & Rousset, 2013), we found that 
simple Mantel tests performed well in the absence of spatial auto-
correlation but that the statistic and associated type I error rates 
were spuriously inflated as soon as spatial autocorrelation was in-
troduced. Moreover, these inflations increased with the number of 
variables. This trend was expected as a higher number of indepen-
dent spatially structured variables in both distance matrices leads 
to a higher diversity of spatial patterns and thus higher chances to 
obtain spurious correlations between DX and DY. On the contrary, 

F IGURE  3 Type I error rates and values of Mantel statistic 
for simple and partial Mantel tests and MSR Mantel for irregular 
sampling with increasing number of variables. (a–b) Observed 
Mantel statistic (rM-obs) and type I error rates for (a) simple and (b) 
partial Mantel test. (c) Corrected Mantel statistic (r∗

M-obs
) and type 

I error rates of MSR Mantel on raw table X. (a–c) X and Y contain 
225 samples and increasing number of variables: 1, 5 and 10. Both 
tables present spatial autocorrelation fixed to ρ = 0.8. rM-obs and 
r∗
M-obs

 are reported as in Figure 2. Red line corresponds to rM = 0
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increasing the number of samples reduces the effects of spatial au-
tocorrelation, as such decreasing the detection of spurious correla-
tions. Likewise, partial Mantel tests presented similar inflations of 
type I error rates and estimations with the same trends relative to 
the number of variables and samples. However, partial Mantel test 
biases were lower than for simple Mantel test due to the usage of 
the geographic distance matrix DZ to consider space. Worth noting 
that for high spatial autocorrelation (ρ = 0.8), the regular sampling 
offered a better Type I error even in the case of high number of vari-
ables and low number of samples. To sum up, as reported by Guillot 
and Rousset (2013), we confirmed that partial Mantel tests failed to 
adequately correct for the effect of spatial autocorrelation observed 
in Mantel tests.

In contrast, our approach based on MSR procedure provided ac-
ceptable levels for type I error rates when distance matrices were 
independently generated but both spatially autocorrelated. On the 
other hand, when distances matrices were linearly correlated and 
spatially structured, our procedure detected the relationship with 
a high statistical power. This demonstrates the efficiency of our 
procedure to correct for the spurious correlation induced by spa-
tial autocorrelation, while conserving the ability to detect correla-
tions when present. In addition, our procedure can be applied on 
regular as well as irregular samplings, commonly used in ecological 
surveys (e.g. Saito, Soininen, Fonseca-Gessner, & Siqueira, 2015; 
Tuomisto et al., 2016). Besides, by subtracting the expected value 
of the Mantel statistic under H0-MSR, our formula provided a cor-
rection to the Mantel statistic but does not improve its precision as 
the variance of the statistic is not transformed. As such, computing 
standardized effect size (SES; e.g. Gotelli & McCabe, 2002) by divid-
ing Equation (8) by the standard deviation of MSR replicates would 

probably be more adapted to compare the values of the corrected 
Mantel statistics between studies.

While this new procedure is promising, it has some limitations. 
MSR Mantel relies on MSR whose first step is to define a spatial 
weighting matrix W. The specification of W plays an important role in 
determining the appropriate form of spatial model (e.g. Stakhovych 
& Bijmolt, 2009 in the case of spatial autoregressive models). Hence, 
its misspecification can greatly influence the performance of our 
procedure by defining incorrectly the potential spatial dependence 
between observations. Indeed, we showed that, when W is misspec-
ified, MSR Mantel failed to control for the inflation of type I error 
rates in the presence of spatial autocorrelation. Our results indicate 
that the selection procedure proposed by Bauman et al. (2018) offers 
a promising solution to optimize the choice of W among a set of can-
didates. Furthermore, the MSR procedure is only able to deal with 
continuous variables in X, excluding counts, binary and categorical 
variables. Moreover, in the case where data have been obtained di-
rectly as distances matrices, our procedure based on principal coor-
dinates analysis assumes that data can be represented in a Euclidean 
space. Hence, further work is required to extend these promising 
results to other types of variables and non-Euclidean distance ma-
trices. When non-Gaussian response variables are expected, alter-
native methods based on generalized linear mixed models may be 
considered. In genetics, for instance, Guillot, Vitalis, le Rouzic, and 
Gautier (2014) developed a spatially explicit model that directly con-
sider autocorrelation and Rousset and Ferdy (2014) presented fitting 
procedures for spatial GLMM providing correct estimate of correla-
tion parameters. However, spatial GLMM are only suitable when raw 
data are available or when they can be reconstructed from available 
distance matrices and, as the MSR Mantel, they can be sensitive to 
the specification of the spatial model (Duncan, White, & Mengersen, 
2017).

Our approach aims to consider spatial autocorrelation when 
studying the link between two distance matrices. From a theo-
retical viewpoint, this issue pertains to the necessity to account 
for nuisance parameters during the analysis of parameters of in-
terest. Raufaste and Rousset (2001) designed a simple simulation 
model where the objective is to study the effect of an environ-
mental variable on the abundance of a species at location k(xk) in 
the presence of migration flows from the two adjacent popula-
tions (xk+1 and xk−1). They showed that “the partial Mantel test is 
inadequate in this model because the permutations will not hold 
constant the (minimal) sufficient statistic for the nuisance param-
eter under the null hypothesis.” In their model, these statistics are 
�
∑

k xk,
∑

k x
2

k
,
∑

k

�

xk+1+xk−1
�

xk,
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k

�
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�

 and the MSR 
procedure, by preserving the mean, variance and global level of au-
tocorrelation measured by Moran's index (Wagner & Dray, 2015), 
holds constant the first three elements, but not the fourth. However, 
results showed that type I error rates were controlled in all cases 
with our simulation design suggesting that the MSR-Mantel proce-
dure seemed quite robust. An alternative is to use the MSR-Mantel 
procedure in the context of maximized Monte-Carlo (Dufour, 2006) 
so that the distribution of the statistic under the null hypothesis 

F IGURE  4 Power of simple and partial Mantel tests and MSR 
Mantel for irregular sampling when X and Y are linearly related. 
Comparison of the power of simple (solid line) Mantel test, 
partial (dashed line) Mantel test and MSR Mantel (dotted line). X 
and Y contain 225 samples and 5 variables. Both tables present 
spatial autocorrelation fixed to ρ = 0.8. The strength of the linear 
relationship varied from a = 0.1 to a = 0.5
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is built for the values of sufficient statistics that maximized the  
p-value. This ensures that the test is exact.

In conclusion, our results confirmed Guillot and Rousset (2013) 
findings and suggest that several studies ranging from genetic (e.g. 
Shafer & Wolf, 2013) to community ecology (e.g. Astorga et al., 
2012) could have wrongly identified an effect when standard or par-
tial Mantel tests were used in the presence of spatial autocorrela-
tion. Spatial autocorrelation is a problem regularly underlined when 
quantifying the spatial structure of genetic (Manel et al., 2010) and 
community data (Gilbert & Bennett, 2010; Smith & Lundholm, 2010) 
and our procedure could solve this issue by providing an alternative 
distance-based statistical approach.
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