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Abstract:		

Targeting	 transferrin	 receptor	 1	 (TfR1)	 with	 monoclonal	 antibodies	 is	 a	 promising	

therapeutic	strategy	in	cancer	as	tumor	cells	often	overexpress	TfR1	and	show	increased	

iron	needs.	We	have	re-engineered	six	anti-human	TfR1	single-chain	variable	fragment	

(scFv)	antibodies	into	fully	human	scFv2-Fcγ1	and	IgG1	antibodies.	We	selected	the	more	

promising	 candidate	 (H7),	 based	 on	 its	 ability	 to	 inhibit	 TfR1-mediated	 iron-loaded	

transferrin	 internalization	 in	 Raji	 cells	 (B-cell	 lymphoma).	 The	H7	 antibody	 displayed	

nanomolar	affinity	for	its	target	in	both	formats	(scFv2-Fcγ1	and	IgG1),	but	cross-reacted	

with	mouse	TfR1	 only	 in	 the	 scFv2-Fc	 format.	H7	 reduced	 the	 intracellular	 labile	 iron	

pool	 and,	 contrary	 to	 what	 has	 been	 observed	 with	 previously	 described	 anti-TfR1	

antibodies,	upregulated	TfR1	level	in	Raji	cells.	H7	scFv2-Fc	format	elimination	half-life	

was	 similar	 in	 FcRn	 knock-out	 and	 wild	 type	 mice,	 suggesting	 that	 TfR1	 recycling	

contributes	 to	 prevent	 H7	 elimination	 in	 vivo.	 In	 vitro,	 H7	 inhibited	 the	 growth	 of	

erythroleukemia	 and	 B-cell	 lymphoma	 cell	 lines	 (IC50	 0.1	 µg/mL)	 and	 induced	 their	

apoptosis.	Moreover,	the	Im9	B-cell	 lymphoma	cell	 line,	which	is	resistant	to	apoptosis	

induced	 by	 rituximab	 (anti-CD20	 antibody),	 was	 sensitive	 to	 H7.	 In	 vivo,	 tumor	

regression	was	observed	 in	nude	mice	bearing	ERY-1	 erythroleukemia	 cell	 xenografts	

treated	 with	 H7	 through	 a	 mechanism	 that	 involved	 iron	 deprivation	 and	 antibody-

dependent	cytotoxic	effector	functions.	Therefore,	targeting	TfR1	using	the	fully	human	

anti-TfR1	H7	is	a	promising	tool	for	the	treatment	of	leukemia	and	lymphoma.	
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Introduction	

	

Iron	deprivation	is	an	emerging	strategy	in	cancer	therapeutics.	Tumors	have	high	iron	

content	 and	 rely	 on	 iron	 for	 their	 growth	 and	 progression.1	 Cancer	 stem	 cells	 also	

require	iron	for	their	survival.2,	3	Iron	levels	in	cells	can	be	reduced	with	iron	chelators,4	

which	 are	 already	 used	 in	 the	 clinic	 for	 iron	 overload	 disorders,	 or	 with	monoclonal	

antibodies	 (mAbs)	 against	 transferrin	 receptor	 1	 (TfR1).	 TfR1	 is	 the	 main	 receptor	

responsible	for	the	cell	iron	supply	through	receptor-mediated	internalization	of	serum	

Fe3+-loaded	 transferrin	 (holo-Tf).	 Within	 the	 cell,	 Fe3+	 is	 released,	 reduced,	 excluded	

from	the	early	endosome	by	divalent	metal	ion	transporter	1	(DMT1),	and	used	for	cell	

metabolism.	 Fe3+	 excess	 is	 stored	 in	 ferritin,	while	TfR1	 is	 recycled	 at	 the	 cell	 surface	

together	with	iron-free	transferrin	(apo-Tf).5	

Several	studies	reported	that	in	vitro,	incubation	of	tumor	cell	lines	with	some	anti-TfR1	

mAbs	 decreases	 cell	 viability.	 The	 reasons	 for	 the	 decrease	 of	 cell	 viability	 (cell	 cycle	

arrest,	mechanism	of	cell	death,	if	observed)	and	its	intensity	largely	vary	depending	on	

the	 cancer	 cell	 type	 (for	 example,	 hematopoietic	 cancer	 cells	 are	more	 sensitive	 than	

solid	cancer	cells),	on	the	TfR1	epitope	recognized	by	the	antibody,	and	on	the	antibody	

format	 (bivalency	 is	 generally	 required).	 Inhibition	 of	 cell	 viability	 is	 observed	 when	

anti-TfR1	 mAbs	 reduce	 the	 cell	 iron	 supply	 through	 competition	 with	 holo-Tf,5-8	 or	

inhibition	of	TfR1	internalization,9	or	induction	of	TfR1	degradation.10,	11	

	

We	 have	 recently	 obtained	 six	 rapidly	 internalized	 agonistic	 competitive	 anti-TfR1	

single-chain	variable-fragment	(scFv)	antibodies	by	phage	display.12	In	this	monovalent	

format,	 the	 F12	 and	 H7	 antibodies	 were	 the	 best	 holo-Tf	 competitors.	 In	 vitro,	 they	
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inhibited	the	growth	of	B-cell	lymphoma	and	erythroleukemia	cells	(Raji	and	ERY-1	cell	

lines,	 respectively),	 and	 their	 efficiency	 increased	 upon	 conversion	 to	 the	 scFv	

homodimeric	 format	 (scFv2).	 However,	 we	 found	 that	 in	 nude	 mice	 with	 established	

subcutaneous	 (s.c.)	 ERY-1	 erythroleukemia	 cell	 xenografts,	 treatment	 with	 scFv2-F12	

significantly	 inhibited	 tumor	 growth,	 but	 tumor	 escape	 occurred.6	 We	 reasoned	 that	

because	bivalent	scFv2	antibodies	are	prone	to	rapid	elimination	through	the	kidney	due	

to	their	small	size	(50	kD)13,	14	and	because	the	Fc	domain	contributes	to	the	long	serum	

persistence	of	immunoglobulins	via	 interaction	with	the	neonatal	Fc	receptor	(FcRn),15	

we	 might	 improve	 the	 in	 vivo	 therapeutic	 effect	 observed	 with	 the	 scFv2	 format	 by	

converting	these	anti-TfR	scFv	antibodies	to	formats	containing	a	human	Fcγ1	(scFv2-Fc	

and	 full	 length	 IgG1,	Figure	1A).	These	 formats	were	 chosen	 to	 improve	 the	antibody	

pharmacokinetics	(PK)16	and	to	add	effector	functions	(such	as	antibody-dependent	cell-	

mediated	 cytotoxicity	 (ADCC)	 and	 phagocytosis	 (ADCP)),17	 to	 the	 scFv	 intrinsic	

inhibitory	potential.	

This	 report	 presents	 the	 in	 vitro	 characterization	 of	 the	 reformatted	 anti-TfR1	

antibodies	 and	 their	 effects	 on	 hematological	 cancer	 cell	 lines,	 particularly	 of	 H7,	 the	

most	efficient	antibody	that	also	displayed	promising	therapeutic	efficacy	in	vivo.	

	

Results	

	

Antibody	binding	to	TfR1	and	inhibition	of	holo-Tf	internalization		

All	 the	 six	 parental	 anti-TfR1	 scFv	 antibodies	 (H7,	 F12,	 C32,	 F2,	 H9,	 G9)	 could	 be	

converted	 into	 the	 scFv2-Fc	 and	 IgG1	 antibody	 formats	 (Figure	 1A),	 with	 high	

production	 yields	 except	 for	 F12-IgG1.	 The	 initial	 characterization	was	 done	 to	 verify	

that	 the	 new	 antibody	 formats	 could	 bind	 to	 TfR1	 and	 inhibit	 TfR1-mediated	 holo-Tf	
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internalization,	like	the	parental	scFv	antibodies.6	The	TfR1-expressing	B-cell	lymphoma	

Raji	and	mastocytoma	P815	cell	lines	were	used	to	test	the	binding	to	human	and	mouse	

TfR1,	 respectively	 (Figure	1C).	 Among	 the	 scFv2-Fc	 antibodies,	 only	H7,	 F12	 and	C32	

also	recognized	mouse	TfR1	(Figure	1C,	upper	panel).	Among	the	IgG1	antibodies,	H7	

and	C32	lost	cross-reactivity	to	mouse	TfR1	(Figure	1C,	lower	panel).	All	six	scFv2-Fc	

antibodies	 inhibited	 internalization	 of	 500	 nM	Alexa	 488-conjugated	 holo-Tf	 (holo-Tf-

A488),	 and	 H7-Fc	 was	 the	 most	 efficient	 with	 70%	 inhibition	 at	 5	 µg/mL	 (50	 nM)	

(Figure	 1D	 and	 S1).	 Concerning	 the	 IgG1	 antibodies,	 the	 inhibition	 of	 holo-Tf	

internalization	by	G9	and	C32	was	greatly	reduced	compared	with	the	scFv2-Fc	format.	

H7-IgG1	was	again	the	most	efficient	with	50%	inhibition	at	5	µg/mL	(33	nM).	Another	

anti-TfR1	 mAb	 Ba120	 (mouse	 IgG1),	 which	 shows	 inhibitory	 activity	 in	 leukemia	

models,18	had	no	effect.	

	

H7	was	then	chosen	for	more	extensive	characterization	and	comparison	with	Ba120.	To	

test	 their	capacity	 to	block	 internalization	of	holo-Tf	at	physiological	concentrations,	5	

µg/mL	of	H7-Fc	and	H7-IgG1	(i.e.,	50	nM	and	33	nM,	respectively)	were	mixed	with	10	

µM	holo-Tf-A488.	H7-Fc,	but	not	H7-IgG1,	 still	 inhibited	holo-Tf	 internalization	 in	Raji	

cells	 (Figure	 2A,	 left	 panel	 and	 right	 panel,	 respectively).	 Surprisingly,	 Ba120	

increased	 holo-Tf	 internalization	 of	 more	 than	 50%.	 The	 apparent	 affinity	 constant	

(EC50)	 (Figure	2B)	 and	 the	antibody	 concentration	 that	blocked	50%	of	holo-Tf-A488	

binding	(used	at	500	nM)	to	human	TfR1	(IC50)	at	4°C	in	Raji	cells	(Figure	2C)	were	then	

determined.	H7-Fc,	H7-IgG1	 and	Ba120	displayed	 subnanomolar	 EC50	 values,	 showing	

better	 binding	 to	 human	 TfR1	 than	 holo-Tf	 (EC50	 16	 nM)	 in	 the	 same	 conditions.	

Alternatively,	 H7-Fc	 and	 H7-IgG1	 KD	 (dissociation	 constant)	 values	 were	 also	

determined	 by	 surface	 plasmon	 resonance	 (SPR)	 using	 a	 steady-state	 fitting	 model	
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(Figure	S2).	Similar	KD	(5	nM)	were	found	for	H7-Fc	and	H7-IgG1.	Moreover,	H7-Fc	and	

H7-IgG1	 fully	 inhibited	holo-Tf	binding	 to	human	TfR1	 (IC50	of	5	nM),	whereas	Ba120	

could	only	inhibit	50%	of	binding	(Figure	2C),	consistent	with	Ba120	inability	to	reduce	

holo-Tf	 internalization	 (Figures	 1D,	 2A).	 When	 measured	 on	 mouse	 TfR1	 using	 the	

p815	mouse	cell	line,	H7-Fc	displayed	an	EC50	of	0.8	nM	(Figure	2D),	in	the	same	range	

as	the	EC50	for	human	TfR1	measured	in	Raji	cells	(0.3	nM).	Finally,	analysis	of	antibody	

(1	nM)	binding	 in	 the	presence	of	 increasing	 concentrations	of	holo-Tf	 at	4°C	 showed	

that	 in	Raji	 cells,	H7-Fc	binding	 to	human	TfR1	could	be	 fully	 inhibited	(IC50	115	nM).	

Conversely,	Ba120	binding	was	 inhibited	only	by	50%	even	 in	 the	presence	of	a	1000	

molar	 excess	 of	 holo-Tf	 (Figure	 2E).	 Altogether,	 these	 results	 indicate	 a	 competitive	

inhibition	of	holo-Tf	binding	by	H7	(i.e.,	the	H7	epitope	on	TfR1	overlaps	with	the	holo-

Tf	 binding	 site).	 Molecular	 modeling	 confirmed	 the	 TfR1-H7	 (red)	 interaction,	 and	

showed	that	the	Ba120	epitope	(green)	was	away	from	the	holo-Tf	binding	site	(Figure	

S3).	

	

Anti-TfR1	antibody	intrinsic	cytotoxic	activity		

After	 confirming	 that	 the	 ERY-1	 and	 Raji	 cancer	 cell	 lines	 are	 sensitive	 to	 the	 iron	

chelator	deferoxamine	(DFO)	(Figure	3A,	right	panel),	these	cell	lines	were	used	to	test	

the	effect	of	the	H7	and	Ba120	antibodies	on	cell	growth.	After	5	days	of	incubation,	H7-

Fc	and	H7-IgG1	strongly	decreased	the	viability	of	both	cell	lines	(IC50	in	the	range	of	0.1	

µg/mL)	(Figure	3A).	Conversely,	Ba120	had	a	limited	effect,	in	agreement	with	its	lower	

competition	with	holo-Tf	(Figures	2C,	2E).	Moreover,	H7-IgG1	reduced	rapidly	(4h)	the	

levels	of	the	intracellular	labile	iron	pool	(LIP)	in	Raji	and	ERY-1	cells,	while	Ba120	had	a	

more	 limited	 effect,	 especially	 at	 the	 lowest	 concentration	 used	 (1.5	 µg/mL)	 (Figure	

3B).	 In	ERY-1	cells,	apoptosis	could	be	detected	already	after	1	day	of	 incubation	with	
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H7-Fc	or	H7-IgG1.	After	3	days,	the	percentage	of	apoptotic	cells	was	higher	than	50%	

using	 5nM	 of	 H7-Fc	 or	 H7-IgG1	 (corresponding	 to	 0.5	 µg/mL	 and	 0.75	 µg/mL,	

respectively).	Conversely,	 apoptosis	was	more	 limited	with	Ba120,	 even	when	used	at	

high	concentration	(500	nM	corresponding	to	75	µg/mL)	(Figure	3C).	Apoptosis	upon	

H7	treatment	was	also	detected	in	Raji	cells,	with	the	same	kinetics	than	in	ERY-1	cells,	

but	 to	 a	 lesser	 extent,	 consistent	 with	 this	 cell	 line	 displaying	 autophagic,	 but	 not	

apoptotic	cell	death	features	upon	iron	deprivation.	Then,	to	compare	apoptosis	induced	

by	 rituximab	 (anti-CD20	 antibody)	 and	 by	H7,	 the	Bp3	 and	 Im9	B-cell	 lymphoma	 cell	

lines	 (sensitive	 and	 resistant	 to	 rituximab-induced	 apoptosis,	 respectively)	 were	

incubated	 with	 H7	 or	 rituximab.	 H7	 strongly	 induced	 apoptosis	 in	 both	 cell	 lines,	

(Figure	 3D).	 In	 Bp3	 cells	 (rituximab-sensitive),	 the	 apoptotic	 rate	 was	 higher	 upon	

incubation	with	H7	than	with	rituximab	(RX),	although	H7	effect	was	delayed	compared	

with	rituximab.	Ba120	induced	apoptosis	in	both	cell	lines,	but	was	less	efficient	than	H7	

(Figure	3D).	H7	also	induced	an	early	moderate	free	iron	level	decrease	in	both	Bp3	and	

Im9	cell	lines	(Figure	S4).	Altogether,	these	in	vitro	data	indicate	that	the	holo-Tf	uptake	

blockade	by	H7	induces	apoptosis	in	leukemia	and	lymphoma	cell	lines,	including	those	

resistant	to	rituximab,	likely	by	reducing	the	LIP.	

	

H7	fate	upon	TfR1	binding	

Upon	binding	of	its	natural	ligand	holo-Tf	TfR1	is	rapidly	internalized	and	recycled	after	

holo-Tf	has	released	iron	in	the	endosomes.	In	physiological	conditions,	TfR1	expression	

depends	on	LIP	level	through	the	regulation	of	TfR1	mRNA	stability	(for	review,	see	Ref.	

5).	 Previously	 described	 anti-TfR1	 competitive	 inhibitory	 antibodies	 decreased	 TfR1	

levels	through	antibody-dependent	TfR1	routing	to	the	lysosome	where	it	 is	degraded.	

Degradation	of	TfR1	upon	non-ligand	competitive	anti-TfR1	antibody	has	been	shown	to	
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be	enhanced	by	high	affinity	or	dimeric	receptor	binding	compared	to	lower	affinity	or	

monomeric	 binding	 of	 TfR1.19,	 20	 Here,	 incubation	 of	 Raji	 cells	 with	 the	 high	 affinity	

bivalent	anti-TfR1	H7	(5	µg/mL)	 for	36h	 led	 to	TfR1	 level	 increase.	Hypoxia-inducible	

factor	1-alpha	(HIF-1α),	the	stability	of	which	is	affected	by	LIP	through	iron-dependent	

proteases,21	 was	 also	 strongly	 increased	 by	 H7	 treatment	 (Figure	 3E).	 TfR1	 increase	

upon	treatment	was	strongly	prevented	by	translation	inhibition	by	cycloheximide	and	

slightly	 increased	 by	 NH4Cl	 treatment	 that	 limits	 lysosome	 acidification	 (Figure	 3F).	

Conversely,	 holo-Tf	 and	 Ba120	 treatment	 reduced	 TfR1	 level	 after	 36h	 of	 treatment	

(Figure	 3E).	 These	 data	 suggest	 that	 unlike	 Ba120,	 H7	 does	 not	 interfere	 with	 TfR1	

recycling	 and	 induces	 limited	 TfR1	 degradation.	 Finally,	 H7	 binding	 to	 TfR1	 was	 not	

decreased	 at	 pH	 6	 compared	 with	 pH	 7	 (Figure	 S5),	 indicating	 that,	 like	 apo-Tf,	 H7	

might	 not	 be	 released	 in	 the	 endosome	 and	 could	 be	mostly	 recycled	 back	 to	 the	 cell	

surface	together	with	TfR1.	However,	unlike	apo-Tf,	which	has	reduced	affinity	for	TfR1	

at	extracellular	pH,22	H7	should	not	dissociate	at	the	cell	surface,	and,	therefore,	reduce	

strongly	 the	accessibility	of	 the	 recycled	TfR1	 to	 iron-charged	holo-Tf,	 thus	explaining	

H7	high	iron	deprivation	efficiency.	

	

To	explore	the	potential	consequences	of	the	TfR1	modulation	by	H7	observed	 in	vitro	

on	H7	PK/pharmacodynamics	(PD),	the	biodistribution	of	a	mixture	of	125I-labeled	H7-

Fc	 and	 131I-labeled	 irrelevant	 scFv2-Fc	 antibodies	was	 evaluated	 in	mice.	The	 scFv2-Fc	

format	 was	 chosen	 because,	 differently	 from	 the	 IgG1	 format,	 it	 can	 cross-react	 with	

mouse	TfR1	(Figure	1C).	Nude	mice	bearing	subcutaneous		ERY-1	tumor	cell	xenografts	

received	one	intravenous	(i.v.)	injection	of	the	two	antibody	mixture	(6	µg,	5	µCi/each)	

(n=4).	The	percentage	of	 the	 injected	dose	 (%ID)	 after	48	h	 in	 each	 individual	mouse	

was	 similar	 for	 H7-Fc	 and	 the	 irrelevant	 scFv2-Fc	 antibody,	 consistent	 with	 the	well-
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described	enhanced	permeability	and	retention	(EPR)	effect	in	tumors23	(Figure	4A,	left	

panel).	Individual	variations	among	animals	could	be	explained	by	the	different	tumor	

sizes	 (300	 to	 800	mm3).	 However,	 as	 indicated	 by	 the	 organ	 repartition	 index,	 H7-Fc	

specificity	for	mouse	TfR1	resulted	in	increased	radioactivity	associated	with	the	tumor	

compared	with	the	irrelevant	scFv2-Fc	antibody	(ratio	>1)	(Figure	4A,	right	panel,	and	

Figure	S6).	In	a	parallel	experiment,	H7-Fc	(80	µg)	was	i.v.	injected	in	C57Bl/6	wild	type	

(WT)	mice	or	in	C57Bl/6	FcRn	knock-out	(KO)	mice	and	titered	by	ELISA	in	the	serum	

(Figure	4B).	As	seen	Figure	4B,	 in	WT	mice,	H7-Fc	was	cleared	from	the	serum	more	

rapidly	 than	 the	 irrelevant	 scFv2-Fc,	 likely	due	 to	 its	binding	 to	mouse	TfR1.	AUC	and	

serum	 clearance	 (CL)	 classic	 constants	 are	 reported	 in	 Table	 S1.	 A	 two-compartment	

model	 (plasma	 and	 intracellular/central	 compartments)	was	 designed	 to	 describe	 the	

cellular	 uptake	 and	 cellular	 recycling	 of	 the	 antibodies	 (see	 materials	 and	 methods	

section	and	Figure	4C).	This	model	is	derived	from	previously	published	models.24,	25	In	

our	model,	 the	 apparent	 distribution	 volume	 (VD)	 was	 higher	 for	 H7-Fc	 than	 for	 Irr-

scFv2-Fc,	 both	 in	WT	 and	 C57Bl/6	 FcRnKO	mice,	 consistent	 with	 higher	 intracellular	

localization	of	H7-Fc	(2.5	mL	versus	1	mL	for	H7-Fc	and	Irr-scFv2-Fc,	respectively,	(LRT,	

p<0.0005)).	As	expected,26	the	recycling	of	 Irr-scFv2-Fc	(kCS)	was	decreased	in	FcRnKO	

mice	 due	 to	 the	 lack	 of	 lysosomal	 rescue	 associated	 to	 the	 absence	 of	 FcRn15	 and	

consistently,	 its	 elimination	 half-life	 T1/2	 was	 lower	 in	 FcRnKO	 compared	 to	 WT	

background	(1.7	to	7.9	days,	LRT,	p<0.0005).	However,	strikingly,	if	the	recycling	of	H7-

Fc	 was	 also	 decreased	 in	 FcRnKO	mice,	 its	 elimination	 half-life	 was	 not	 affected	 and	

remained	 around	 4	 to	 5	 days	 in	 both	 genetic	 backgrounds	 (Figure	 4D	 and	 Table	 I).	

Since	both	FcRn	and	antibody	factors	were	quantified	simultaneously	in	the	multivariate	

model,	 the	 effects	 due	 to	 FcRn	 or	 TfR1	 binding	 and	 recycling	 are	 measured	

independently.	Therefore,	 this	 could	 indicate	 that	H7-Fc	 is	protected	 from	elimination	
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by	its	binding	to	TfR1.	Altogether,	the	biodistribution	and	PK	results	reveals	a	dominant	

target	mediated	stabilization	mechanism	for	H7-Fc.	

Finally,	nude	mice	with	established	s.c.	ERY-1	 tumor	cell	xenografts	were	 treated	with	

H7-Fc	 (5	mg/kg	 via	 intraperitoneal	 (i.p.)	 administration	 twice	 a	week)	 or	 phosphate-

buffered	 saline	 (PBS)	 (n=5	 animals/group).	 After	 4	 weeks	 of	 treatment,	 two	 animals	

were	cured	in	the	H7-Fc	group.	Moreover,	western	blot	analysis	of	the	tumors	(Figure	

4E)	 showed	 that	 TfR1	 levels	 were	 increased	 in	 the	 tumors	 of	 the	 other	 three	 mice	

treated	with	 H7-Fc	 compared	with	 the	 tumors	 of	 the	 PBS	 group.	 IHC	 analysis	 of	 one	

tumor	 for	 each	 group	 (900	 mm3)	 with	 an	 anti-TfR1	 antibody	 showed	 higher	 TfR1	

staining	 in	 the	 H7-Fc	 treated	 sample	 (Figure	 4F).	 These	 data	 indicate	 that	 H7-Fc	

treatment	upregulates	TfR1	in	vivo,	as	observed	in	vitro,	suggesting	that	tumors	treated	

with	H7	undergo	iron	deprivation.	

	

The	H7	antibody	can	mediate	ADCC	

Cytotoxic	effector	cells	require	interaction	with	the	Fc	portion	of	an	antibody	to	initiate	

FcγR-dependent	 degranulation	 and	 perform	 ADCC.	 TfR1	 is	 a	 rapidly	 internalizing	

receptor,	and	H7	was	isolated	on	the	basis	of	 its	rapid	internalization.27	 	To	determine	

whether	this	feature	affected	H7-mediated	ADCC,	the	antibody	was	added	to	the	target	

cells	(Raji	cells	or	HMC11	cells)	for	30	min,	to	allow	TfR1	internalization,	before	addition	

of	freshly	prepared	peripheral	blood	mononuclear	cells	(PBMC)	for	3h.	In	this	assay,	H7-

IgG1,	induced	ADCC	in	HMC11	cells	(TfR1pos,	CD117pos,	CD20neg)	and	Raji	cells	(TfR1pos,	

CD117neg,	CD20pos),	with	comparable	efficiency	(Figure	5A),	while	the	anti-CD117	mAb	

2D1	(human	IgG1),	and	the	anti-CD20	rituximab	(human	IgG1)	mediated	toxicity	only	on	

HMC11	 and	 Raji	 cells,	 respectively.	 Compared	 with	 H7-IgG1,	 H7-Fc	 effect	 was	 more	
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limited	 and	 observable	 only	 after	 16h	 of	 incubation	 with	 PBMC	 (Figure	 5B).	 This	

difference	was	confirmed	in	two	other	cell	lines	(Figure	S7).	

	

In	vivo	effects	of	H7	

Nude	mice	with	established	s.c.	ERY-1	tumors	were	treated	with	PBS	(controls)	or	H7-Fc	

(100	µg	per	 i.p.	 injection	twice	a	week)	for	4	weeks	(n=7/group).	Mice	were	sacrificed	

when	tumors	reached	1600	mm3.	Compared	with	controls,	 tumor	growth	 in	the	H7-Fc	

group	was	significantly	reduced	(p<0.05)	during	the	treatment	time.	Specifically,	 three	

mice	responded	to	the	treatment,	and	one	was	totally	cured	(Figure	6	A-B).	However,	

survival	was	not	 significantly	 improved	 (Figure	6C).	Weight	 loss	was	not	observed	 in	

any	mouse	during	 the	experiment.	 In	 the	next	experiment,	 (Figure	6	D),	 in	which	H7-

IgG1	(200	µg	per	i.p.	injection	twice	a	week)	was	used	instead	of	H7-Fc,	tumor	regression	

was	observed	 in	all	mice	treated	with	H7-IgG1,	but	 in	none	of	 the	PBS	group	or	of	 the	

irrelevant	IgG1	group	(n=6	mice/group).	In	five	mice	of	the	H7-IgG1	group,	tumors	were	

undetectable	 at	 day	 60	 after	 the	 end	 of	 the	 treatment.	 Finally,	 treatment	with	 a	 non-

glycosylated	 variant	 of	H7-IgG1	 (H7-IgG1	del297,	 defective	 in	ADCC	 and	ADCP	due	 to	

reduced	 affinity	 for	 the	 Fcγ	 receptors	 and	 defective	 in	 complement-dependent	

cytotoxicity,	 due	 to	 reduced	 affinity	 for	 C1q,28	 (n=6	 mice)	 inhibited	 tumor	 growth	

(p<0.05)	 and	 two	 mice	 were	 cured.	 Therefore,	 H7	 treatment	 reduced	 ERY-1	 tumor	

growth,	 with	 a	 stronger	 effect	 observed	 with	 the	 IgG1	 than	 the	 scFv2-Fc	 format.	

Altogether,	 these	 results	 indicate	 that	 the	 higher	 therapeutic	 efficiency	 of	 H7-IgG1	

compared	with	H7-Fc	correlates	with	its	higher	ADCC	activity	in	vitro.		

	

	

Discussion	
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Starting	from	a	panel	of	anti-TfR1	scFv	antibodies	that	were	isolated	for	their	rapid	cell	

internalization	 upon	 antigen	 binding,	 we	 engineered	 bivalent	 antibodies	 harboring	 a	

human	 Fcγ1.	 We	 found	 that	 for	 the	 scFv2-Fcγ1	 format,	 H7-Fc	 was	 the	 most	 efficient	

antibody	concerning	inhibition	of	holo-Tf	uptake	(Figure	1D).	This	was	due	to	H7	great	

efficiency	 in	 blocking	 holo-Tf	 binding	 (2	 log	 lower	 molar	 concentrations	 of	 H7	 are	

required	to	block	holo-Tf	binding,	and	2	log	higher	molar	concentrations	of	holo-Tf	are	

required	to	block	H7	binding)	(Figure	2	C,	E).	H7-IgG1	maintained	this	feature,	but	lost	

cross-reactivity	 to	 mouse	 TfR1	 (Figures	 1C,	 2D).	 This	 loss	 of	 cross-reactivity	 after	

reformatting	 has	 previously	 been	 observed	 with	 other	 antibodies.29,	 30	 Despite	 the	

similar	 apparent	 affinity	 of	 the	 two	 H7	 formats	 measured	 in	 Raji	 cells	 or	 by	 SPR	 on	

recombinant	 human	 TfR1	 (Figure	 2B,	 S2),	 H7-IgG1-mediated	 ADCC	 in	 Raji	 cells	 was	

strong,	 whereas	 H7-Fc	mediated	 limited	 ADCC	 (Figure	 5).	 This	 is	 surprising	 because	

several	 studies	 reported	 that	 the	 Fc	 domain	 of	 scFv2-Fc	 antibodies	 can	 direct	 effector	

cell	toxicity	to	antigen-expressing	target	cells.31,	32	However,	geometry	differences	in	the	

scFv2-Fc	 and	 the	 IgG1	 formats	 that	 modify	 Fc	 region	 access	 to	 the	 FcyR	 of	 immune	

effector	 cells	 and	 affect	 antibody-dependent	 cell-mediated	 killing	 have	 also	 been	

recently	reported.33		As	the	two	formats	were	not	produced	using	the	same	cell	system,	

this	 discrepancy	 could	 be	 also	 due	 to	 differences	 in	 glycosylation	 enzymes	 between	

HEK-293	T	(production	of	H7-Fc)	and	Chinese	hamster	ovary	(CHO)	cells	(production	of	

H7-IgG1).	Indeed,	in	HEK-293	T	cells,	the	increased	content	of	N-acetylneuraminic	acid	

(sialic	acid)	of	N-glycostructures34	can	reduce	 the	affinity	 for	FcγRIIIa,	 the	receptor	on	

natural	killer	cells.35,	36	
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Incubation	of	cells	with	H7-Fc	or	H7-IgG1	increased	TfR1	levels	(Figure	3E)	similarly	to	

incubation	 with	 the	 50	 kD	 dimeric	 (scFv)2	 H7	 antibody	 (H7-scFv2).6	 	 Therefore,	 the	

presence	of	an	Fc	region	did	not	change	the	receptor	modulation.	To	our	knowledge,	this	

property	is	unique	because,	like	the	anti-TfR1	Ba120	mAb	tested	in	this	study,	18	other	

previously	described	high	affinity	anti-TfR1	antibodies	in	the	IgG1	format	decrease	TfR1	

level	 through	 traffic	 diversion	 and	 degradation	 within	 lysosomes.10,	 11	 TfR1	 normal	

trafficking	is	not	extensively	diverted	to	lysosome	by	H7	binding	(Figure	3F).	Combined	

with	 the	 efficient	 iron	 deprivation	 that	 promotes	 TfR1	 translation,	 this	 property	

contributes	to	the	TfR1	level	 increase	observed	 in	vitro	and	 in	vivo	upon	H7	treatment	

(Figures	3E,	4D).	H7-mediated	iron	deprivation	is	higher	than	with	Ba120	in	ERY-1	and	

Raji	cells	lines	(Figure	3B).	We	also	find	that	Ba120	increases	rapidly	soluble	iron	levels	

in	Bp3	and	Im9	cells	lines	(Figure	S4).	Because	Ba120	induces	TfR1	degradation,	visible	

after	36h	in	Raji	cells	(Figure	3E),	the	increase	in	soluble	iron	level	mediated	by	Ba120	

is	probably	only	transient.	As	H7	binds	with	similar	affinity	to	TfR1	at	extracellular	and	

endosomal	pH	(Figure	S5B),	H7	may	be	 recycled	at	 the	cell	 surface	with	 the	 receptor	

after	 it	 has	 induced	 its	 internalization,	 thus	 immediately	 preventing	 TfR1	 association	

with	 extracellular	 holo-Tf.	 This	mechanism	 of	 action	 could	 contribute	 to	 the	 fast	 and	

strong	effect	observed	upon	incubation	with	H7	in	vitro	(apoptosis	detected	after	36h	in	

the	4	 cell	 lines	 tested	 (Figure	3	C-D)).	 The	 increased	efficiency	 (>2	 log)	 of	ERY-1	 cell	

viability	 inhibition	by	 the	bivalent	H7-IgG1	(IC50	0.5	nM),	H7-Fc	(IC50	1.4	nM)	and	H7-

scFv2	(IC50	2	nM)6	compared	with	the	monovalent	H7-scFv	(IC50	200	nM)6	suggests	that	

these	bivalent	antibodies	can	bind	to	two	proximal	TfR1	receptors	on	cells	in	which	the	

receptor	 is	present	at	high	density.	Accordingly,	 lower	toxicity	 is	expected	in	cells	 that	

express	 low	 levels	 of	 TfR1,	 as	 previously	 suggested	 for	 the	 anti-TfR1	mAb	 A247	 	 and	

demonstrated	for	the	anti-TfR1	JST-TFR09	antibody.8	In	agreement,	no	obvious	toxicity	
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was	observed	in	mice	treated	with	H7-Fc	(cross-reactive	with	mouse	TfR1)	for	1	month	

compared	 with	 untreated	 mice	 (PBS),	 indicating	 that	 despite	 background	 TfR1	

expression	 in	many	 tissues,	 iron	deprivation	due	 to	H7	should	have	 limited	 toxicity	 in	

vivo.	However,	since	non-competitive	effector	competent	anti-TfR1	antibodies	have	been	

shown	to	transiently	elicit	acute	clinical	signs	and	to	clear	immature	blood	reticulocytes	

in	mice,37	it	is	not	excluded	that	such	a	toxicity	may	occur	with	the	competitive	anti-TfR1	

H7	of	this	study.	This	will	need	to	be	determined	using	an	effector	function	competent	

variant	of	scFv2-Fc	H7	in	mice.	

As	 TfR1	 is	 expressed	 at	 low	 level	 by	many	 cell	 types,	 we	 hypothesized	 that	 antigen-

dependent	recycling	of	H7	could	protect	this	antibody	from	degradation	in	an	FcRn-like	

process.	 Indeed,	 FcRn	 and	 TfR1	 share	 similar	 intracellular	 trafficking	 and	 both	 can	

rescue	 their	 respective	 ligands	 from	 lysosomal	 degradation.15,	 38-40	 To	 test	 this	

hypothesis,	 because	human	Fcγ1	binding	 to	mouse	FcRn	 receptors	 allows	 relevant	PK	

observations	 in	 mice,41	 we	 compared	 the	 PK	 of	 the	 cross-reactive	 H7-Fc	 in	 WT	 and	

FcRnKO	mice.	In	our	model,	compared	to	WT	mice,	the	elimination	half-life	of	H7-Fc	was	

only	weakly	affected	in	FcRnKO	mice	(Figure	4D),	while	the	elimination	half-life	of	the	

irrelevant	scFv2-Fc	antibody	was	dramatically	 reduced,	as	previously	 reported	 for	 this	

antibody	format.32,	42	Moreover,	the	apparent	volume	of	distribution	of	H7-Fc	was	more	

than	 twice	 larger	 compared	 to	 the	 apparent	 volume	 of	 distribution	 of	 the	 irrelevant	

scFv2-Fc.	 Additionally,	 H7	 bound	 with	 similar	 affinity	 to	 TfR1	 at	 extracellular	 and	

endosomal	pH.	 	These	observations	are	consistent	with	the	hypothesis	of	a	mechanism	

of	 stabilization	 of	H7	 through	TfR1	 binding	 and	 recycling.	 This	 could	 also	 explain	 the	

antitumor	 effect	 of	 H7	 in	 a	 scFv2	 format	 in	 nude	 mice	 harboring	 s.c.	 ERY-1	 tumors,	

although	 no	 therapeutic	 effect	 was	 expected	 because	 of	 its	 small	 size	 (50	 kDa)	 and	

potential	fast	serum	clearance	through	kidneys.43,	44	H7	specificity	and	its	unique	mode	
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of	interaction	with	TfR1	(it	acts	like	an	exact	mimic	of	the	natural	ligand)	could	increase	

its	 persistence	 in	 vivo	 through	 an	 FcRn-like	mechanism	 that	 is	 independent	 of	 the	 Fc	

part	of	the	antibody.		

	

In	vitro,	H7	had	a	strong	inhibitory	effect	in	different	lymphoma	and	leukemia	cell	lines,	

including	 the	 rituximab-resistant	 B-cell	 lymphoma	 cell	 line	 Im9	 (Figure	 3	 A,D).	 H7	

drastically	reduced	cell	viability	of	Raji	and	ERY-1	cells	(IC50	in	the	range	of	0.1	µg/mL)	

and	 induced	 apoptosis	 in	 ERY-1,	 Raji,	 Bp3	 and	 Im9	 cells.	 In	 Raji	 cells,	 in	 addition	 to	

limited	 apoptosis,	 autophagic	 cell	 death	 features	 were	 observed	 with	 increased	 cell	

granularity	 and	 volume	 (not	 shown),	 as	 previously	 described	 with	 H7-scFv2.6	 Ba120	

showed	a	delayed	and	weaker	effect	compared	with	H7.	In	vitro,	IC50	as	low	as	those	for	

H7	 in	cancer	cells	have	been	observed	only	with	 the	recently	described	anti-TfR1	 JST-

TFR09	antibody	in	adult	T-cell	leukemia/lymphoma	(ATLL)	cells.	8	Moreover,	in	Raji	and	

ERY-1	 cells,	 H7	 also	 induced	 immunogenic	 cell	 death	 features45	 with	 exposure	 of	

calreticulin	at	the	cell	surface	of	pre-apoptotic	cells	and	ATP	release	(data	not	shown).	

Similar	effects	were	also	observed	upon	incubation	with	DFO	in	both	cell	lines	(data	not	

shown).	Therefore,	in	addition	to	the	direct	effect	on	tumor	cells	and	on	the	recruitment	

of	cytotoxic	cells,	H7-mediated	iron	deprivation	could	also	prime	the	adaptive	immune	

response.	

	

In	vivo,	in	nude	mice	xenografted	with	ERY-1	erythroleukemia	cells,	H7-IgG1	treatment	

allowed	curing	five	of	the	six	mice	with	established	tumors.	 Iron	deprivation	is	part	of	

the	 mechanism	 of	 action	 of	 H7-IgG1	 because	 H7-Fc	 and	 H7-IgG1	 del297	 (both	 with	

limited	 effector	 function)	 reduced	 tumor	 growth	 compared	 with	 PBS	 or	 irrelevant	

antibody	 treatment.	 However,	 effector	 functions	 improve	 the	 effect	 of	 TfR1	 targeting	
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because	 H7-IgG1	 was	 clearly	 more	 efficient	 than	 H7-Fc	 and	 H7-IgG1	 del297.	 The	

upregulation	of	TfR1	mediated	by	LIP	decrease	through	the	Iron	regulatory	protein/iron	

responsive	 element	 (IRP/IRE)	 system,1	 likely	 potentiates	 antibody-mediated	 immune	

effector	 recruitment	 to	 tumor	 cells	 in	 H7-IgG1-treated	 mice,	 and,	 therefore,	 iron	

deprivation	may	both	participate	directly	and	indirectly	to	the	overall	drastic	efficiency	

of	 H7-IgG1	 treatment.	 The	 lower	 H7-Fc	 efficacy	 could	 also	 be	 linked	 to	 a	 lower	

localization	in	the	tumor	compared	with	H7-IgG1	because	of	antigen-driven	localization	

of	the	cross-reactive	H7-Fc	in	other	tissues.	It	could	be	interesting	to	produce	an	effector	

function-competent	H7-Fc	in	CHO	cells	and	test	its	effect	in	this	erythroleukemia	model,	

or	 in	 syngeneic	 tumor	models	 to	 address	H7	 therapeutic	 effect	 and	 toxicity	 in	 a	more	

relevant	setting.	

In	 conclusion,	we	developed	 a	 promising	 fully	 human	 anti-TfR1	 antibody	with	unique	

PK/PD	properties	that	displays	high	therapeutic	efficiency	in	an	erythroleukemia	mouse	

model	with	no	apparent	toxicity.	As	TfR1	expression	is	 increased	in	many	tumors,	this	

antibody	could	also	be	active	in	other	cancer	types.	

	

	

Material	and	methods	

	

Antibodies,	cells	and	reagents	

The	scFv2-Fc	antibodies	were	produced	in	HEK-293	T	cells46	 	and		the	H7-IgG1	in	CHO	

cells	 (EVITRIA,	 Switzerland).	 The	 anti-TfR1	 H7-IgG1	 del297	 and	 Ba120	 mAbs	 were	

provided	by	A.	Fontayne	(LFB,	France).	The	Bp3,	Im9,47	Raji,	and	ERY-148		cell	lines	were	

grown	 in	 RPMI;	 the	 P815	 and	 HMC11	 cell	 lines	 in	 IMDM	 (both	 media	 were	

supplemented	with	10%	fetal	bovine	serum	and	antibiotics).	Commercial	antibodies	and	
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reagents	 for	 fluorescent-activated	 cell	 sorting	 (FACS),	 western	 blotting	 and	

immunohistochemistry	(IHC)	are	listed	in	the	on-line	supplement.	

	

In	vitro	assays	

Holo-Tf	 uptake,	 apparent	 affinity	 and	 ligand	 competition,	 cell	 viability	 and	 apoptosis	

assays	were	performed	as	described.	Intracellular	free	iron	levels	were	measured	using	

calcein,	as	described	 in	Ref.	49.	For	 the	ADCC	assay,	 target	cells	were	stained	with	 the	

PKH26	fluorescent	dye.	Then,	50	μL	of	stained	cells	(50,000	cells)	were	combined	with	

50	µL	of	antibody	for	30	minutes,	followed	by	50	μL	(2.5	106	cells)	of	PBMC	at	37°C	for	

3h.	Cells	were	stained	with	7-AAD	before	FACS	analysis.	Details	are	given	in	the	on-line	

supplement.	 Cells	 were	 incubated	 with	 50	 µg/mL	 cycloheximide	 and	 10	 mM	 NH4Cl	

(SIGMA)	in	some	experiments.	

	

Pharmacokinetics	

Ten	 WT	 C57Bl/6	 (Janvier,	 Saint-Berthevin,	 France)	 and	 FcRnKO	 (B6.Cg-Fcgrttm1Dcr)50	

(Jackson	Laboratory,	Bar	Harbor,	ME)	mice	received	an	 i.v.	retro-orbital	injection	of	80	

µg	 of	 scFv2-Fc	 (single	 dose).	 From	 2h	 to	 day	 21	 post-injection,	 blood	 samples	 were	

collected	and	scFv2-Fc	 titered	by	ELISA	 (see	on-line	 supplement).	A	 two-compartment	

model	 was	 designed	 to	 describe	 cellular	 uptake	 of	 antibodies.	 Compartments	 were	

serum	(S)	and	intracellular	(C)	and	kSC,	kCS	and	kE	are	cellular	uptake,	cellular	recycling	

and	 intracellular	 elimination	 rate	 constants,	 respectively	 (Figure	 4C).	 The	 PK	 of	

antibodies	 was	 analyzed	 using	 population	 PK	 modelling	 using	 Monolix®2018	 suite	

(Lixoft,	 Orsay,	 France).	 Interindividual	 and	 residual	 variabilities	 of	 the	PK	parameters	

were	 estimated	 using	 exponential	 and	 proportional	 models,	 respectively.	 The	

association	of	FcRn	(WT	vs.	KO)	and	antibody	(Irrelevant	scFv2-Fc	vs	H7-Fc)	factors	was	
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tested	as	dichotomous	covariates	on	PK	parameter	interindividual	distributions.	These	

covariates	 were	 tested	 using	 likelihood	 ratio	 tests	 (LRT)	 based	 on	 objective	 function	

value	(OFV).	From	pairs	of	nested	models	(i.e.,	models	with	vs.	without	covariate),	 the	

difference	 between	 their	 OFV	 was	 tested	 using	 a	 chi-square	 test.	 A	 covariate	 was	

considered	as	significant	if	corresponding	p-value	was	<	0.05.	

Biodistribution	

A	mixture	 of	 125I-labeled	H7-Fc	 and	 131I-labeled	 irrelevant	 scFv2-Fc	 (6	 µg,	 5	 µCi	 each)	

was	 injected	 (i.v.)	 in	 four	 6	 to	 8-week-old	 female	 athymic	 mice	 (Harlan	 Labs)	

xenografted	with	ERY-1	cells	 (2	×	106)	by	s.c.	 injection	 in	 the	 flank	and	 in	 four	6	 to	8-

week-old	 BALB/C	 mice	 (Envigo,	 France).	 After	 48h,	 mice	 were	 killed	 and	 the	

radioactivity	of	both	iodine	isotopes	was	quantified	in	all	organs	and	tissues	by	using	a	

dual-channel	γ	scintillation	counter.		

	

In	vivo	erythroleukemia	model	and	H7-based	therapy	

When	tumors	reached	an	average	volume	of	100	mm3,	mice	bearing	s.c.	ERY-1	tumors	

were	randomized	in	different	treatment	groups	(6	to	8	animals/group):	100	µg	of	H7-Fc,	

200	µg	of	H7-IgG1,	H7-IgG1	del297	or	PBS,	all	by	i.p.	injection	twice	a	week	for	4	weeks.	

For	 survival	 analysis,	 mice	 were	 sacrificed	 when	 tumors	 reached	 a	 volume	 of	 1,600	

mm3.	Mice	were	considered	as	cured	when	tumor	was	non	more	palpable.	The	statistical	

analyses	are	described	in	the	on-line	supplement.		

	

	

References	

1.	 Torti	SV,	Torti	FM.	Iron	and	cancer:	more	ore	to	be	mined.	Nat	Rev	Cancer	2013;	
13:342-55.	



	

	 20	

2.	 Basuli	D,	Tesfay	L,	Deng	Z,	 Paul	B,	 Yamamoto	Y,	Ning	G,	 et	 al.	 Iron	addiction:	 a	
novel	therapeutic	target	in	ovarian	cancer.	Oncogene	2017;	36:4089-99.	
3.	 Rychtarcikova	Z,	Lettlova	S,	Tomkova	V,	Korenkova	V,	Langerova	L,	Simonova	E,	
et	 al.	 Tumor-initiating	 cells	 of	 breast	 and	 prostate	 origin	 show	 alterations	 in	 the	
expression	of	genes	related	to	iron	metabolism.	Oncotarget	2017;	8:6376-98.	
4.	 Heath	JL,	Weiss	JM,	Lavau	CP,	Wechsler	DS.	Iron	deprivation	in	cancer--potential	
therapeutic	implications.	Nutrients	2013;	5:2836-59.	
5.	 Daniels	 TR,	 Delgado	 T,	 Rodriguez	 JA,	 Helguera	 G,	 Penichet	ML.	 The	 transferrin	
receptor	 part	 I:	 Biology	 and	 targeting	 with	 cytotoxic	 antibodies	 for	 the	 treatment	 of	
cancer.	Clin	Immunol	2006;	121:144-58.	
6.	 Crepin	 R,	 Goenaga	 AL,	 Jullienne	 B,	 Bougherara	 H,	 Legay	 C,	 Benihoud	 K,	 et	 al.	
Development	 of	 human	 single-chain	 antibodies	 to	 the	 transferrin	 receptor	 that	
effectively	antagonize	the	growth	of	 leukemias	and	lymphomas.	Cancer	research	2010;	
70:5497-506.	
7.	 Moura	 IC,	 Lepelletier	 Y,	 Arnulf	 B,	 England	 P,	 Baude	 C,	 Beaumont	 C,	 et	 al.	 A	
neutralizing	monoclonal	antibody	(mAb	A24)	directed	against	 the	 transferrin	receptor	
induces	apoptosis	of	tumor	T	lymphocytes	from	ATL	patients.	Blood	2004;	103:1838-45.	
8.	 Shimosaki	 S,	 Nakahata	 S,	 Ichikawa	 T,	 Kitanaka	 A,	 Kameda	 T,	 Hidaka	 T,	 et	 al.	
Development	of	 a	 complete	human	 IgG	monoclonal	 antibody	 to	 transferrin	 receptor	1	
targeted	 for	 adult	 T-cell	 leukemia/lymphoma.	 Biochemical	 and	 biophysical	 research	
communications	2017;	485:144-51.	
9.	 Lesley	 JF,	 Schulte	 RJ.	 Inhibition	 of	 cell	 growth	 by	 monoclonal	 anti-transferrin	
receptor	antibodies.	Mol	Cell	Biol	1985;	5:1814-21.	
10.	 Lepelletier	 Y,	 Camara-Clayette	 V,	 Jin	 H,	 Hermant	 A,	 Coulon	 S,	 Dussiot	 M,	 et	 al.	
Prevention	 of	mantle	 lymphoma	 tumor	 establishment	 by	 routing	 transferrin	 receptor	
toward	lysosomal	compartments.	Cancer	research	2007;	67:1145-54.	
11.	 Ng	PP,	Helguera	G,	Daniels	TR,	Lomas	SZ,	Rodriguez	JA,	Schiller	G,	et	al.	Molecular	
events	contributing	to	cell	death	in	malignant	human	hematopoietic	cells	elicited	by	an	
IgG3-avidin	fusion	protein	targeting	the	transferrin	receptor.	Blood	2006;	108:2745-54.	
12.	 Goenaga	AL,	Zhou	Y,	Legay	C,	Bougherara	H,	Huang	L,	Liu	B,	et	al.	 Identification	
and	characterization	of	tumor	antigens	by	using	antibody	phage	display	and	intrabody	
strategies.	Molecular	immunology	2007;	44:3777-88.	
13.	 Bayliss	LE,	Kerridge	PM,	Russell	DS.	The	excretion	of	protein	by	the	mammalian	
kidney.	J	Physiol	1933;	77:386-98.	
14.	 Wu	AM.	Engineered	antibodies	 for	molecular	 imaging	of	 cancer.	Methods	2014;	
65:139-47.	
15.	 Ghetie	V,	Ward	ES.	FcRn:	 the	MHC	class	 I-related	receptor	 that	 is	more	 than	an	
IgG	transporter.	Immunology	today	1997;	18:592-8.	
16.	 Zuckier	 LS,	 Chang	 CJ,	 Scharff	 MD,	 Morrison	 SL.	 Chimeric	 human-mouse	 IgG	
antibodies	 with	 shuffled	 constant	 region	 exons	 demonstrate	 that	 multiple	 domains	
contribute	to	in	vivo	half-life.	Cancer	research	1998;	58:3905-8.	
17.	 Bruhns	 P,	 Jonsson	 F.	 Mouse	 and	 human	 FcR	 effector	 functions.	 Immunological	
reviews	2015;	268:25-51.	
18.	 Loisel	S,	Andre	PA,	Golay	J,	Buchegger	F,	Kadouche	J,	Cerutti	M,	et	al.	Antitumour	
effects	 of	 single	 or	 combined	 monoclonal	 antibodies	 directed	 against	 membrane	
antigens	expressed	by	human	B	cells	leukaemia.	Molecular	cancer	2011;	10:42.	
19.	 Yu	YJ,	Zhang	Y,	Kenrick	M,	Hoyte	K,	Luk	W,	Lu	Y,	et	al.	Boosting	brain	uptake	of	a	
therapeutic	 antibody	 by	 reducing	 its	 affinity	 for	 a	 transcytosis	 target.	 Sci	 Transl	 Med	
2011;	3:84ra44.	



	

	 21	

20.	 Bien-Ly	N,	 Yu	YJ,	 Bumbaca	D,	 Elstrott	 J,	 Boswell	 CA,	 Zhang	Y,	 et	 al.	 Transferrin	
receptor	(TfR)	trafficking	determines	brain	uptake	of	TfR	antibody	affinity	variants.	The	
Journal	of	experimental	medicine	2014;	211:233-44.	
21.	 Bruick	 RK,	 McKnight	 SL.	 Transcription.	 Oxygen	 sensing	 gets	 a	 second	 wind.	
Science	2002;	295:807-8.	
22.	 MacGillivray	RT,	Moore	SA,	Chen	J,	Anderson	BF,	Baker	H,	Luo	Y,	et	al.	Two	high-
resolution	 crystal	 structures	 of	 the	 recombinant	N-lobe	 of	 human	 transferrin	 reveal	 a	
structural	change	implicated	in	iron	release.	Biochemistry	1998;	37:7919-28.	
23.	 Matsumura	 Y,	 Maeda	 H.	 A	 new	 concept	 for	 macromolecular	 therapeutics	 in	
cancer	 chemotherapy:	 mechanism	 of	 tumoritropic	 accumulation	 of	 proteins	 and	 the	
antitumor	agent	smancs.	Cancer	research	1986;	46:6387-92.	
24.	 Hansen	RJ,	Balthasar	JP.	Effects	of	intravenous	immunoglobulin	on	platelet	count	
and	antiplatelet	antibody	disposition	in	a	rat	model	of	immune	thrombocytopenia.	Blood	
2002;	100:2087-93.	
25.	 Guilleminault	L,	Maillet	A,	S.	Pesnel,	Paintaud	G,	Congy-Jolivet	N,	G.	Thibault	G,	et	
al.	Aerosoltherapy	in	lung	cancer.	European	Respiratory	Society	2008;	Abstract	1547.	
26.	 Chen	N,	Wang	W,	Fauty	S,	Fang	Y,	Hamuro	L,	Hussain	A,	 et	 al.	The	effect	of	 the	
neonatal	Fc	receptor	on	human	IgG	biodistribution	in	mice.	mAbs	2014;	6:502-8.	
27.	 Poul	MA,	Becerril	B,	Nielsen	UB,	Morisson	P,	Marks	JD.	Selection	of	tumor-specific	
internalizing	human	antibodies	from	phage	libraries.	J	Mol	Biol	2000;	301:1149-61.	
28.	 Tao	MH,	Morrison	SL.	Studies	of	aglycosylated	chimeric	mouse-human	IgG.	Role	
of	 carbohydrate	 in	 the	 structure	 and	 effector	 functions	 mediated	 by	 the	 human	 IgG	
constant	region.	J	Immunol	1989;	143:2595-601.	
29.	 Krebs	B,	Rauchenberger	R,	Reiffert	S,	Rothe	C,	Tesar	M,	Thomassen	E,	et	al.	High-
throughput	 generation	 and	 engineering	 of	 recombinant	 human	 antibodies.	 Journal	 of	
immunological	methods	2001;	254:67-84.	
30.	 Thie	H,	Toleikis	L,	Li	J,	von	Wasielewski	R,	Bastert	G,	Schirrmann	T,	et	al.	Rise	and	
fall	of	an	anti-MUC1	specific	antibody.	PloS	one	2011;	6:e15921.	
31.	 De	Lorenzo	C,	Tedesco	A,	Terrazzano	G,	Cozzolino	R,	Laccetti	P,	Piccoli	R,	et	al.	A	
human,	compact,	fully	functional	anti-ErbB2	antibody	as	a	novel	antitumour	agent.	Br	J	
Cancer	2004;	91:1200-4.	
32.	 Powers	 DB,	 Amersdorfer	 P,	 Poul	 M,	 Nielsen	 UB,	 Shalaby	 MR,	 Adams	 GP,	 et	 al.	
Expression	 of	 single-chain	 Fv-Fc	 fusions	 in	 Pichia	 pastoris.	 Journal	 of	 immunological	
methods	2001;	251:123-35.	
33.	 Weber	F,	Bohrmann	B,	Niewoehner	J,	Fischer	JAA,	Rueger	P,	Tiefenthaler	G,	et	al.	
Brain	 Shuttle	 Antibody	 for	 Alzheimer's	 Disease	 with	 Attenuated	 Peripheral	 Effector	
Function	due	to	an	Inverted	Binding	Mode.	Cell	Rep	2018;	22:149-62.	
34.	 Croset	A,	Delafosse	L,	Gaudry	JP,	Arod	C,	Glez	L,	Losberger	C,	et	al.	Differences	in	
the	glycosylation	of	recombinant	proteins	expressed	in	HEK	and	CHO	cells.	J	Biotechnol	
2012;	161:336-48.	
35.	 Scallon	BJ,	Tam	SH,	McCarthy	SG,	Cai	AN,	Raju	TS.	Higher	 levels	of	sialylated	Fc	
glycans	 in	 immunoglobulin	 G	molecules	 can	 adversely	 impact	 functionality.	Molecular	
immunology	2007;	44:1524-34.	
36.	 Cymer	 F,	 Beck	 H,	 Rohde	 A,	 Reusch	 D.	 Therapeutic	 monoclonal	 antibody	 N-
glycosylation	-	Structure,	function	and	therapeutic	potential.	Biologicals	2017.	
37.	 Couch	JA,	Yu	YJ,	Zhang	Y,	Tarrant	JM,	Fuji	RN,	Meilandt	WJ,	et	al.	Addressing	safety	
liabilities	of	TfR	bispecific	antibodies	that	cross	the	blood-brain	barrier.	Sci	Transl	Med	
2013;	5:183ra57,	1-12.	



	

	 22	

38.	 Goebl	NA,	Babbey	CM,	Datta-Mannan	A,	Witcher	DR,	Wroblewski	VJ,	Dunn	KW.	
Neonatal	 Fc	 receptor	mediates	 internalization	 of	 Fc	 in	 transfected	 human	 endothelial	
cells.	Mol	Biol	Cell	2008;	19:5490-505.	
39.	 Ramalingam	 TS,	 Detmer	 SA,	 Martin	 WL,	 Bjorkman	 PJ.	 IgG	 transcytosis	 and	
recycling	by	FcRn	expressed	in	MDCK	cells	reveals	ligand-induced	redistribution.	EMBO	
J	2002;	21:590-601.	
40.	 Tuma	 P,	 Hubbard	 AL.	 Transcytosis:	 crossing	 cellular	 barriers.	 Physiological	
reviews	2003;	83:871-932.	
41.	 Ober	 RJ,	 Radu	 CG,	 Ghetie	 V,	Ward	 ES.	 Differences	 in	 promiscuity	 for	 antibody-
FcRn	 interactions	 across	 species:	 implications	 for	 therapeutic	 antibodies.	 Int	 Immunol	
2001;	13:1551-9.	
42.	 Kenanova	V,	Olafsen	T,	Crow	DM,	Sundaresan	G,	Subbarayan	M,	Carter	NH,	et	al.	
Tailoring	 the	pharmacokinetics	and	positron	emission	 tomography	 imaging	properties	
of	 anti-carcinoembryonic	 antigen	 single-chain	 Fv-Fc	 antibody	 fragments.	 Cancer	
research	2005;	65:622-31.	
43.	 Demignot	S,	Pimm	MV,	Baldwin	RW.	Comparison	of	biodistribution	of	791T/36	
monoclonal	 antibody	 and	 its	 Fab/c	 fragment	 in	 BALB/c	mice	 and	 nude	mice	 bearing	
human	tumor	xenografts.	Cancer	research	1990;	50:2936-42.	
44.	 Holliger	 P,	 Hudson	 PJ.	 Engineered	 antibody	 fragments	 and	 the	 rise	 of	 single	
domains.	Nature	biotechnology	2005;	23:1126-36.	
45.	 Hernandez	C,	Huebener	P,	Schwabe	RF.	Damage-associated	molecular	patterns	in	
cancer:	a	double-edged	sword.	Oncogene	2016;	35:5931-41.	
46.	 Le	Gall	M,	Crepin	R,	Neiveyans	M,	Auclair	C,	Fan	Y,	Zhou	Y,	et	al.	Neutralization	of	
KIT	 Oncogenic	 Signaling	 in	 Leukemia	 with	 Antibodies	 Targeting	 KIT	 Membrane	
Proximal	Domain	5.	Molecular	cancer	therapeutics	2015;	14:2595-605.	
47.	 Brien	 G,	 Trescol-Biemont	 MC,	 Bonnefoy-Berard	 N.	 Downregulation	 of	 Bfl-1	
protein	expression	sensitizes	malignant	B	cells	 to	apoptosis.	Oncogene	2007;	26:5828-
32.	
48.	 Ribadeau	Dumas	A,	Hamouda	NB,	Leriche	L,	Piffaut	MC,	Bonnemye	P,	Kuen	RL,	et	
al.	Establishment	and	characterization	of	a	new	human	erythroleukemic	cell	line,	ERY-1.	
Leuk	Res	2004;	28:1329-39.	
49.	 Roth	 M,	 Will	 B,	 Simkin	 G,	 Narayanagari	 S,	 Barreyro	 L,	 Bartholdy	 B,	 et	 al.	
Eltrombopag	 inhibits	 the	 proliferation	 of	 leukemia	 cells	 via	 reduction	 of	 intracellular	
iron	and	induction	of	differentiation.	Blood	2012;	120:386-94.	
50.	 Arnoult	C,	Brachet	G,	Cadena	Castaneda	D,	Azzopardi	N,	Passot	C,	Desvignes	C,	et	
al.	Crucial	Role	for	Immune	Complexes	but	Not	FcRn	in	Immunization	against	Anti-TNF-
alpha	Antibodies	after	a	Single	Injection	in	Mice.	J	Immunol	2017;	199:418-24.	
	

	

Disclosure	of	Potential	Conflicts	of	Interest	

No	potential	conflicts	of	interest	were	disclosed.	

	

Acknowledgments	



	

	 23	

The	authors	thank	Alexandre	Fontayne	(LFB)	for	the	production	of	the	IgG1	formats	of	

the	antibodies.	

	

Grant	Support	

This	work	was	 supported	by	 the	program	 "Investissement	d'avenir"	 grant	 agreement:	

Labex	MabImprove,	ANR-10-LABX-53-01.	RM	was	partly	supported	by	a	PhD	fellowship	

from	the	Lebanese	University	and	AISOS,	AL	was	supported	by	a	PhD	 fellowship	 from	

the	Labex	MabImprove.	

	



	

	 24	

	
Legends	to	the	figures	

	

Figure	1:	Preliminary	characterization	of	the	reformatted	anti-TfR1	scFvs	

(A)	 Graphic	 representation	 of	 the	 scFv2-Fc	 and	 the	 IgG1	 formats,	 in	 grey	 variable	

domains	 (light	 grey,	 VH;	 dark	 grey,	 VL),	 in	 black,	 constant	 domains.	 (B)	 Validation	 of	

TfR1	surface	expression	on	the	lymphoma	Raji	cell	line	(human)	and	P815	mastocytoma	

cells	 (mouse)	by	FACS	 (FC500	 cytometer)	with	 a	 commercial	mouse	anti-human	TfR1	

IgG	or	a	rat	anti-mouse	TfR1	IgG	(10	µg/mL)	followed	by	anti-mouse	IgG	or	anti-rat	IgG	

fluorescent	secondary	antibodies,	respectively,	or	with	fluorescent	holo-Tf	(500	nM)	(C)	

Detection	of	 the	binding	of	 the	panel	of	anti-TfR1	antibodies	reformatted	 into	bivalent	

scFv	by	fusion	to	Fc	(upper	panel)	or	in	full-length	human	IgG1	(lower	panel)	to	the	Raji	

or	the	mouse	P815	cell	lines,	as	indicated.	Binding	is	detected	with	an	anti-human	IgG1	

antibody	 conjugated	 to	 FITC	 and	 FACS	 analysis	 (FC500	 cytometer).	 Dark	 grey	 peaks	

represent	 fluorescent	 background	 of	 the	 secondary	 antibody	 alone	 or,	 in	 case	 of	 the	

detection	of	fluorescent	holo-Tf	binding,	cell	autofluorescence.	(D)	scFv2-Fc	(left	panel)	

and	full	length	IgG1	(right	panel)	interference	with	fluorescent	holo-Tf	internalization	in	

Raji	 cells:	 antibodies	 at	 the	 indicated	 concentrations	 are	 combined	 with	 fluorescent	

holo-Tf	(500	nM)	and	incubated	at	37°C	with	Raji	cells	 for	3	h	then	cells	are	collected,	

washed	 with	 PBS	 and	 analyzed	 by	 FACS.	 Results	 are	 expressed	 in	 Mean	 Fluorescent	

Intensity	 (MFI)	 relative	 to	 cells	 incubated	with	 fluorescent	holo-Tf	only.	 Irr,	 irrelevant	

antibody	 of	 the	 same	 format.	 The	 data	 shown	 are	 representative	 of	 3	 independent	

experiments.	

	



	

	 25	

Figure	 2:	 Characterization	 of	 the	 anti-TfR1	 H7	 scFv2-Fc	 and	 full	 length	 IgG1	

antibodies	

	(A)	 Interference	 of	 H7-Fc	 and	H7-IgG1	 (5	 µg/mL)	 (left	 and	 right	 panel,	 respectively)	

with	the	internalization	of	10	µM	or	1	µM	Alexa	488-conjugated	holo-Tf,	measured	as	in	

Figure	1.	(B)	Apparent	affinity	of	H7-Fc,	H7-IgG1	and	Ba120	(mouse	monoclonal	anti-

TfR1	IgG1)	and	of	Alexa	488-conjugated	holo-Tf	for	human	TfR1	measured	by	detection	

of	 the	 binding	 of	 increasing	 concentrations	 of	 antibody/holo-Tf	 in	 Raji	 cells	 at	 4°C.	

Bound	antibodies	were	detected	with	a	mouse	anti-human-Fc	fluorescent	antibody	and	

analyzed	by	 FACS	 (Gallios	 cytometer);	 results	 are	 expressed	 as	MFI	 in	 function	of	 the	

primary	antibody	concentration.	The	EC50	values	(nM)	are	indicated.	(C)	Measurement	

of	the	fluorescence	signal	in	Raji	cells	after	incubation	(at	4°C	for	1h)	with	500	nM	Alexa	

488-conjugated	 holo-Tf	 and	 increasing	 concentrations	 of	 H7-Fc,	 H7-IgG1,	 irrelevant	

scFv2-Fc	antibody,	or	Ba120.	Results	 are	expressed	as	 the	%	MFI	 compared	with	 cells	

incubated	 with	 holo-Tf	 alone.	 (D)	 Apparent	 affinity	 of	 H7-Fc	 and	 H7-IgG1	 for	 mouse	

TfR1	measured	by	detection	of	 the	binding	of	 increasing	concentrations	of	antibody	 in	

P815	cells	at	4°C	as	in	B,	(E)	H7-Fc	(left	panel)	and	Ba120	(right	panel)	binding	to	TfR1	

in	Raji	 cells	 in	 the	presence	of	 increasing	 concentrations	 of	 holo-Tf.	 Bound	 antibodies	

were	 detected	 by	 FACS	 with	 anti-human-Fc	 or	 anti-mouse-Fc	 fluorescent	 secondary	

antibodies,	 (Gallios	cytometer)	and	results	expressed	as	MFI.	The	 IC50	values	(nM)	are	

indicated.	 In	B,	D	and	E,	 similar	EC50	 and	 IC50	determinations	were	obtained	 in	2	 to	3	

independent	experiments	in	the	same	setting.	

	

	

Figure	3:	Functional	properties	of	 the	anti-TfR1	H7	scFv2-Fc	and	 full	 length	 IgG1	

antibodies	
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(A)	Viability	of	ERY-1	erythroleukemia	(upper	panel)	and	Raji	B-cell	lymphoma	(lower	

panel)	 cells	was	assessed	with	 the	MTS	assay	after	 incubation	with	H7-Fc,	H7-IgG1	or	

Ba120	(5	days).	Results	are	expressed	as	the	percentage	of	viable	cells	compared	with	

untreated	cells.	The	 iron	chelator	DFO	was	also	tested	 in	the	same	conditions;	 the	IC50	

values	 (µg/mL	 for	 antibodies	 or	 µM	 for	 DFO)	 are	 indicated.	 The	 irrelevant	 scFv2-Fc	

antibody	(Irr-Fc)	did	not	have	any	effect	on	cell	viability	(H7-Fc	panel).	(B)	Variation	of	

intracellular	soluble	iron	levels	in	ERY-1	and	Raji	cells	induced	by	incubation	with	DFO,	

H7-IgG1	or	Ba120	at	37°C	for	4h	and	8h.	 	Before	addition	of	the	antibodies,	cells	were	

labeled	with	 the	 intracellular	 iron-chelating	dye	calcein.	Calcein	 fluorescence,	which	 is	

quenched	when	chelated	to	 iron,	was	measured	by	FACS.	Results	are	expressed	as	 the	

percentage	 of	 change	 in	 the	 fluorescence	 signal	 relative	 to	 untreated	 cells	 (NT).	

Apoptosis	induction	in	(C)	ERY-1	and	Raji	cells	and	in	(D)	Bp3	and	Im9	B-cell	lymphoma	

cells	after	incubation	with	H7-Fc,	H7-IgG1	(or	an	irrelevant	antibody	in	the	same	format,	

Irr.),	 Ba120,	 or	 rituximab	 (RX,	 human	 IgG1;	 only	 in	 D)	 for	 the	 indicated	 time.	 After	

treatment,	cells	were	collected	and	stained	with	Annexin	conjugated	to	FITC	and	7-AAD,	

and	analyzed	by	FACS.	Results	are	expressed	as	the	percentage	of	Annexin+/7AAD-	cells	

(i.e.,	early	apoptotic	cells)	compared	with	untreated	cells.	(E)	Comparative	effect	of	TfR1	

H7-IgG1	(5	µg/mL)	and	holo-Tf	(10	µM)	treatment	(36	h)	of	Raji	cells	on	TfR1	and	HIF-

1α	 levels.	Cells	were	alternatively	 treated	with	Ba120	or	 the	 corresponding	 irrelevant	

antibody	 format	 at	 the	 same	 concentration.	 After	 treatment,	 protein	 extracts	 (20	 µg)	

separated	by	SDS-PAGE	 (7%	polyacrylamide	 separation	gel)	 and	analyzed	by	Western	

Blot.	 Quantification	 relative	 to	 actin	 is	 represented	 under	 the	Western	 Blot.	 The	 data	

shown	are	representative	of	3	independent	experiments.	Irr,	irrelevant.	In	(F),	Raji	cells	

were	 treated	 as	 in	 E.	 for	 18	 hr	 in	 the	 presence	 of	 10	 mM	 NH4Cl	 or	 50	 µg/mL	

cycloheximide	(CHX)	as	indicated	or	not,	and	TfR1	levels	were	quantifyed	like	in	E.	
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Figure	4:	PK/PD	of	the	crossreactive	anti-TfR1	H7	scFv2-Fc	format	(H7-Fc)	

(A)	 Four	 nude	 mice	 bearing	 ERY-1	 tumors	 were	 injected	 i.v.	 with	 a	 mixture	 of	 125I-

labelled	H7-Fc	and	131I	irrelevant	scFv2-Fc	(6	µg,	5	µCi	each).	After	48	h,	mice	were	killed	

and	 the	 radioactivity	 in	 all	 organs	 and	 tissues	 was	 quantified	 by	 dual-channel	 γ	

scintillation	 counting	 of	 both	 iodine	 isotopes.	 Results	 are	 expressed	 as	 the	 %	 of	 the	

injected	dose	(ID)	in	the	whole	mice	(left	panels)	or	as	the	organ	specificity	index	at	the	

time	of	 sacrifice	 (125I	%	cpm	relative	 to	 total	body	dose)/(131I	%	cpm	relative	 to	 total	

body	dose	for	a	specific	organ)	(right	panels;	raw	data	are	available	in	Fig.	S6.)	(B)	Two	

groups	of	 10	WT	and	FcRnKO	C57Bl/6	mice	were	 injected	 i.v.	with	4	mg/kg	of	H7-Fc	

(about	80	µg)	(left	panel)	or	irrelevant	scFv2-Fc	(right	panel).	Antibody	concentration	in	

serum	at	 various	 time	 after	 injection	was	 evaluated	by	ELISA	by	 Fc	 domain	detection	

and	 normalized	 for	 each	mice	 to	 the	 concentration	measured	 2	 h.	 after	 injection.	 (C)	

Two-compartment	 model	 describing	 antibody	 PK,	 where	 kSC,	 kCS	 and	 kE	 are	 cellular	

uptake,	cellular	recycling	and	intracellular	elimination	rate	constants,	respectively	(see	

methods	for	details).	(D)	Apparent	volume	of	distribution	(VD),	serum	elimination	half-

life	 (T1/2)	and	recycling	constant	kCS	and	determined	by	 the	model,	 ***,	p<0,005	 (E,	F)	

Groups	of	5	nude	mice	with	ERY-1	subcutaneous	tumors	of	200	mm3	were	treated	for	4	

weeks	with	either	PBS	or	H7-Fc	(5	mg/kg	injected	i.p.	2	times	a	week)	and	(E)	all	tumors	

were	 then	 processed	 for	 protein	 extraction	 and	Western	 Blot	 for	 TfR1	 detection,	 the	

relative	 intensity	 of	 the	 TfR1	 band	 and	 the	 size	 of	 individual	 tumors	 at	 the	 time	 of	

analysis	are	indicated.	(F)	One	tumor	of	similar	size	at	the	time	of	sacrifice	in	each	group	

(900	mm3)	was	analyzed	by	IHC	for	TfR1	expression.	
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Figure	5:	ADCC	on	Raji	cells	using	 the	anti-TfR1	H7	scFv2-Fc	and	 full	 length	 IgG1	

antibodies		

Live	lymphoma	Raji	cells	(A,	B)	or	mastocytoma	leukemic	HMC11	cells	(A)	were	stained	

with	the	fluorescent	dye	PKH-67	and	then	pre-incubated	with	H7-IgG1	(A,B),	H7-Fc	(B),	

anti-CD117	(2D1)	or	anti-CD20	(RX)	human	IgG1	at	the	indicated	concentrations	for	30	

min	 before	 addition	 of	 freshly	 prepared	 PBMC	 (effector	 cells/target	 cells	 ratio	 =	 50).	

After	3h	(or	16h),	cells	were	collected	and	stained	with	the	7-AAD	fluorescent	dye.	The	

percentage	 of	 dead	 cells	 (7AAD+)	 among	 the	 target	 PKH-67+	 cells	was	 determined	 by	

FACS	analysis.	In	A,	experiments	were	in	duplicate.	

	

Figure	 6:	 Therapeutic	 effect	 of	 the	 anti-TfR1	 H7	 scFv2-Fc	 and	 full	 length	 IgG1	

antibodies	

ERY-1	cells	were	implanted	s.c.	into	nude	mice.	When	tumors	reached	200	mm3,	(A,	B,	C)	

H7-Fc	(100µg	in	200	µL	of	PBS)	or	PBS	(200	µL)	or	(D,	E,	F)	H7-IgG1,	unglycosylated	H7-

IgG1	(H7-IgG1	del297)	or	irrelevant	IgG1	(200µg	in	200	µL	PBS),	or	PBS	(200	µL),	were	

injected	 i.p	twice	a	week	for	4	weeks	and	tumor	growth	was	monitored.	(A,	D)	Tumor	

volume	of	 individual	mice	or	(B,	E)	average	tumor	volumes	and	(C,	F)	percent	of	mice	

with	 tumor	 volume<1600	 mm3	 are	 represented	 as	 a	 function	 of	 time.	 Shaded	 zone	

represent	 treatment	 period.	 Experiments	 A,B,C	 and	 D,E,F	 were	 performed	

independently.	*,	p<0.05,	**,	p<0.01	
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Supplementary	material	

	 	

Material	and	methods	

scFv2-Fc	and	full	length	IgG1	antibody	design	and	production	

	To	obtain	scFv	 fused	with	 the	Fc	 fragment	of	human	 IgG1,	 the	cDNA	encoding	 the	six	

anti-TfR1	scFv	antibodies1	or	anti-botulinum	toxin		(negative	control)1	were	NcoI/NotI-

digested	from	the	phagemid	pHEN2	and	subcloned	into	the	pFUSE-hFc2(IL2ss)	vector3,	a	

gift	 from	 Frank	 Perez,	 CNRS-Institut	 Curie,	 Paris,	 France.	 Soluble	 100	 kD	 scFv2-Fc	

antibodies	were	produced	after	 transient	 transfection	of	HEK-293	T	cells	and	purified	

using	protein	A	affinity	chromatography,	as	previously	described	in	Ref.4.	Full	length	H7-

IgG1	 (CK	 isotype	 for	 the	 light	 chain)	 and	 2D1-IgG1	 (anti-CD117	 antibody)4	 were	

produced	 in	 CHO	 cells	 from	 their	 VH	 and	 VL	 sequences	 by	 EVITRIA	 (EVITRIA,	

Switzerland).	 C32-IgG1,	 F2-IgG1,	H9-IgG1,	 G9-IgG1,	H7-IgG1	del297	 (that	 has	 reduced	

affinity	for	Fcγ	receptors	and	C1q	due	to	deletion	of	the	Asn297	residue)5	and	the	anti-

TfR1	 mouse	 mAb	 Ba1206	 were	 a	 gift	 from	 Alexandre	 Fontayne	 (LFB,	 France).	 The	

apparent	affinities	for	TfR1	of	the	two	H7-IgG1	and	H7-IgG1	del297	were	identical	(not	

shown).	 Rituximab	 was	 from	 Roche.	 The	 irrelevant	 IgG1	 antibody	 was	 a	 human	

polyclonal	 IgG	 (SIGMA,	 I2511).	 Antibody	 concentrations	 were	 verified	 by	 measuring	

their	 A280nm	 by	 spectrophotometry	 (1	 UA	 at	 280	 nm	 corresponds	 to	 0.8	mg/mL)	 and	

purity	was	checked	by	SDS-PAGE.	

	

Cell	lines	

The	B-cell	 lymphoma	Bp3,	 Im97	 (a	 gift	 from	Nathalie	Bonnefoy,	 IRCM)	 and	Raji	B-cell	

lymphoma	 cell	 lines,	 the	 erythroleukemia	 ERY-1	 cell	 line	 (a	 gift	 from	 Michel	 Arock,	

LBPA,	 ENS	 Cachan,	 France),8	 and	 the	 BxPC3	 and	 CFPAC	 pancreatic	 cancer	 cell	 lines	
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(obtained	 from	 ATCC)	 were	 grown	 in	 RPMI-Glutamax	 supplemented	 with	 10%	 fetal	

bovine	 serum	 (FBS;	 ThermoScientific	 SV30160.03)	 and	 with	 penicillin/streptomycin	

(Gibco	 15240-062).	 The	 mouse	 P815	 (a	 gift	 from	 Nicolas	 Fazilleau,	 Institut	 Pasteur,	

Paris,	France)	and	human	HMC11	mastocytoma	(a	gift	from	Michel	Arock,	ENS	Cachan,	

France)	cell	lines	were	grown	in	IMDM.	Adherent	human	embryonic	kidney	HEK-293	T	

cells	(a	gift	from	Laurent	Le	Cam,	IRCM)	were	grown	in	DMEM,	10%	FBS	and	antibiotics.	

All	 cell	 lines	 were	 cultured	 at	 37°C	 in	 a	 humidified	 atmosphere	 with	 5%	 CO2	 and	

screened	monthly	for	mycoplasma	infection.	

Commercial	antibodies	and	reagents	for	FACS,	western	blotting	and	IHC	

Anti-human	CD71	 (Invitrogen,	 136800),	 -HIF1-α	 (Santa	 Cruz	Biotechnology,	 sc-8711),	

and	 -beta-actin	 (Cell	 Signaling	 Technology	 3700S)	 antibodies	 were	 used	 for	 western	

blotting.	 PE-conjugated	 anti-mouse	 TfR1	 (BD	 Pharmingen,	 553267),	 APC-conjugated	

anti-human	 TfR1	 (BD	 Pharmingen	 551374),	 FITC-conjugated	 goat	 anti-human	 Fc	

(SIGMA,	 F9512)	 or	 anti-mouse	 Fc	 (Invitrogen,	 31569)	 antibodies	were	 used	 for	 FACS	

analysis	of	TfR1	levels.	Anti-human	TfR1	(SIGMA,	HPA028598)	was	used	for	IHC.	Human	

holo-Tf	 was	 from	 SIGMA	 (T0665),	 DFO	 from	 Santa	 Cruz	 (Sc-203331;	 stock	 solution:	

50mM	in	H20,	stored	at	4°C),	holo-Tf	conjugated	to	Alexa	Fluor	488	(holo-Tf-A488)	from	

Invitrogen	 (T13342;	 50	 µM	 solution	 in	 PBS	 stored	 at	 4°C),	 and	 calcein-AM	 from	

Invitrogen	(C3100MP;	stock	solution:	50	µM	in	DMSO	at	-20°C).	

	

Holo-Tf	uptake	measurement	

Raji	cells	 (5×105)	were	washed	and	resuspended	 in	RPMI	medium	supplemented	with	

1%	fetal	calf	serum	(FCS)	and	500	nM	holo-Tf-A488	together	or	not	with	antibodies	or	

non-conjugated	holo-Tf	at	37°C	 for	3h.	Cells	were	 then	washed	with	 cold	PBS	and	 the	
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cell	 fluorescence	 associated	 with	 holo-Tf-A488	 uptake	 measured	 by	 FACS	 (FC500	 or	

Gallios	 cytometer,	 Beckman	 Coulter).	 Preliminary	 experiments	 with	 an	 additional	

incubation	 of	 cells	 with	 50mM	 glycine	 pH	 2.8/500mM	NaCl	 buffer	 for	 10	min	 at	 4°C	

before	 FACS	 analysis	 showed	 that	 the	 fluorescence	 measured	 was	 more	 than	 95%	

intracellular.	Therefore,	this	step	was	omitted	in	further	experiments	to	limit	the	steps	

before	analysis	(Figure	S1B).	The	cell	mean	fluorescence	intensity	(MFI)	was	calculated	

using	the	Flow	Jo	Version	10.1r7	software.	

	

Antibody	apparent	affinity	and	antibody/ligand	competition	

All	incubation	steps	were	done	on	ice.	Raji	or	P815	cells	(5×105	cells)	were	resuspended	

in	 100	 μL	 of	 FACS	 buffer	 [PBS,	 1%	 FBS]	 containing	 various	 concentrations	 of	 the	

primary	antibody	 for	1h,	washed	twice	with	FACS	buffer,	and	 then	 incubated	with	 the	

suitable	fluorescent	secondary	antibody.	After	a	final	wash,	cells	were	analyzed	by	FACS.	

The	 apparent	 affinity	 was	 determined	 using	 the	 GraphPad	 software.	 For	 competition	

experiments,	 cells	 were	 incubated	 with	 1nM	 antibody	 mixed	 with	 increasing	

concentrations	 of	 holo-Tf	 (0.5pM	 to	 5µM).	 Then,	 bound	 antibodies	 were	 detected	 as	

before.	 Alternatively,	 cells	 were	 incubated	 with	 500	 nM	 holo-Tf-A488	 mixed	 with	

increasing	concentrations	of	antibody	(5nM	to	500	nM),	or	with	holo-Tf	(0.1	nM	to	10	

µM).		

	

Biacore	analysis	

SPR	 analyses	 were	 performed	 on	 a	 BIA3000	 apparatus	 at	 25°C	 in	 HBS-P	 (GE	

Healthcare).	 For	affinity	measurements,	 anti-human	 IgG(Fc)	 (Human-antibody	 capture	

Kit	(GE-Healthcare,		BR-1008-39)	was	covalently	immobilized	on	CM5	sensor	chip	using	

EDC/NHS	 activation	 according	 to	 the	 manufacturer’s	 instructions	 (GE	 Healthcare).	
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Recombinant	homodimeric	human	TfR1	(produced	in	baculovirus/insect	cell	expression	

system	 from	 pACGP67A-human	 TfR1	 vector	 (clone	 12130,	 Addgene))9	 at	 various	

concentrations	was	injected	on	H7-IgG1	or	H7-Fc	captured	on	immobilized	anti-human-

Fc	IgG	during	180s.	After	400s	of	dissociation	with	running	buffer,	the	sensor	chip	was	

regenerated	using	MgCl2	3M.	The	KD	values,	 taking	 into	account	of	affinity	and	avidity	

with	this	protocol,	were	calculated	using	a	steady-state	fitting	model	(BiaEvaluation3.2,	

GE	 Healthcare).	 	 For	 competition	 analysis,	 human	 TfR1	 was	 injected	 at	 20nM	 during	

180s	at	50µl/min	on	H7–IgG1	or	H7-Fc	captured	at	a	level	around	1800	RU.	During	the	

dissociation	step	(very	slow	dissociation	rate),	human	holo-Tf	was	injected	at	different	

concentrations	(1.25-1250nM)	to	displace	human	TfR1.	

	

Cell	viability	assay	

Cells	(5	×	103)	were	plated	in	sixplicates	in	96-well	U-bottom	plates.	Antibody	solutions	

diluted	 in	 culture	 medium	 were	 added	 to	 each	 well	 (total	 volume	 200	 µL).	 A	 well	

containing	only	200	µL	of	 culture	medium	was	also	prepared	(reference).	After	4	 to	5	

days,	cell	viability	was	estimated	using	the	CellTiter	96	AQueous	cell	proliferation	MTS	

assay	(Promega,	G5430).	Briefly,	20	µL	of	MTS	reagent	was	added	to	each	well	and	left	

for	 about	2	hours.	Plates	were	 then	 centrifuged	and	100	µL	of	 supernatant	 from	each	

well	was	transferred	to	a	well	of	a	96-well	plate	(flat	bottom)	for	OD	reading	at	490	nm	

using	a	microplate	reader	(Multiskan).		

	

Apoptosis	assay	

ERY-1	cells	or	Raji	cells	or	the	B-cell	 lymphoma	Im9	and	Bp3	cells	(2.5	105	cells	or	1.5	

105	cells	according	to	the	incubation	time)	were	plated	in	6-wells	plates	in	2ml	medium	

and	 incubated	 with	 various	 concentrations	 of	 antibodies	 for	 24h	 to	 72h.	 Cells	 were	
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collected,	stained	using	the	Beckman	Coulter	IM3614	Apoptosis	Kit,	as	recommended	by	

the	manufacturer,	 and	 analyzed	by	 FACS.	 Granularity	 over	 size	was	plotted	 and	 small	

debris	 excluded	 for	 the	 relative	 quantification	 (%)	 of	 Annexin-positive	 and	 7-AAD-

negative	cells	that	represent	early	apoptotic	cells.	

	

Intracellular	free	iron	detection		

Intracellular	 free	 iron	 levels	 were	 measured	 using	 the	 fluorescent	 probe	 calcein,	 as	

previously	described	Ref.10.	This	probe	binds	 to	 iron	 stoichiometrically	 in	a	 reversible	

manner,	 forming	 fluorescence-quenched	calcein-iron	complexes.	Therefore,	higher	 cell	

fluorescence	means	that	the	levels	of	 intracellular	 labile	 iron	pool	are	reduced.	Briefly,	

cells	were	washed	and	resuspended	 in	medium	without	FCS	and	stained	with	250	nM	

calcein-AM	 at	 37°C	 for	 5min.	 They	 were	 washed	 with	 complete	 medium	 and	

resuspended	 in	 pre-warmed	 culture	 medium	 with	 1%	 FCS	 and	 incubated	 with	 the	

studied	 antibodies	 or	 deferoxamine	 (DFO)	 for	 4	 or	 8h.	 Cell	 fluorescence	 due	 to	 free	

calcein	 was	 measured	 by	 flow	 cytometry	 and	 the	 percentage	 increase	 in	 calcein	

fluorescence	relative	to	untreated	control	was	calculated.	

	

Western	blotting	

Raji	cells	(5.105	cells	in	2	mL)	were	treated	as	indicated	in	the	figure	legends	for	18	h	or	

36	 h.	 Cells	 were	 harvested,	 centrifuged	 and	 washed	 with	 cold	 PBS.	 Proteins	 were	

extracted	with	100	µL	of	boiling	lysis	buffer	(1%	SDS,	1	mM	sodium	orthovanadate,	10	

mM	Tris	pH	7.4)/cell	pellet.	The	viscous	mix	was	sonicated	on	ice	four	times	at	25mA	for	

5s,	 and	 then	 centrifuged.	 Protein	 concentration	was	 determined	 using	 the	 BCA	 assay	

(Interchim).	Proteins	were	extracted	from	tumor	samples	using	a	lysis	buffer	containing	

1%	Triton-X100,	0.5%	NP40,	1	mM	EDTA,	150	mM	NaCl,	10	mM	Tris-Hcl	pH	7.5,	100	
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mM	 NaF,	 1	 mM	 sodium	 orthovanadate,	 2	 mM	 phenylmethylsulfonyl	 fluoride	

complemented	 with	 1	 tablet	 of	 protease	 inhibitors	 mixture	 for	 10	 mL	 (Roche	

Diagnostics).	A	piece	of	tumor	of	10	mm3	was	cut	into	small	pieces,	and	then	0.5	mL	of	

lysis	buffer	was	added	at	4°C	for	30min,	followed	by	grinding	with	glass	beads	using	a	

Retsch	 MM300	 TissueLyser	 (Qiagen)	 at	 maximum	 power	 for	 3	 min,	 followed	 by	

incubation	at	4°C	 for	30	min.	Protein	extracts	were	centrifuged	(12,000g	at	4°C	 for	30	

min),	 and	proteins	 in	 the	 soluble	 fraction	 quantified	with	 the	BCA	 assay.	 For	western	

blotting,	 20	 µg	 of	 protein	 were	 separated	 by	 SDS-PAGE	 on	 7%	 polyacrylamide	

separation	 gels	 and	 transferred	 to	 PVDF	membranes.	 Membranes	 were	 blocked	 with	

PBS/0.1%	Tween-5%	milk	at	room	temperature	(RT)	for	2h.	Incubations	with	primary	

and	 secondary	 antibodies	 were	 done	 overnight	 at	 4°C	 and	 1h	 at	 RT,	 respectively.	

Membranes	 were	 revealed	 with	 Western	 Lightning	 PLUS-ECL	 (Perkin	 Elmer)	 and	

analyzed	with	a	G-box	(Syngene).	Quantification	was	done	using	the	ImageJ	software.	

	

ADCC	

Raji	or	HMC11	cells	were	stained	with	the	PKH26	Red	Fluorescent	Cell	Linker	Mini	Kit	

(SIGMA,	 Mini26-1	 KT)	 following	 the	 manufacturer’s	 instructions.	 Briefly,	 cells	 were	

harvested	 and	 stained	with	PKH26	 fluorescent	 dye	 at	RT	 for	 3	min,	washed	 and	 then	

cultured	 in	 complete	medium	overnight.	 Stained	 cells	 (50,000	 cells;	 50	μL/well)	were	

then	 transferred	 in	 96-well	 U-bottom	 plates	 and	 combined	 with	 50	 µL	 of	 rituximab	

(anti-CD20),	 2D1	 (anti-CD117),	 H7-IgG1	 or	 H7-Fc	 (0.2	 or	 1	 µg/mL	 final)	 at	 37°C	 for	

30min.	Peripheral	Blood	Mononuclear	cells	(PBMC)	(50	μL,	2.5	106	cells)	isolated	from	

normal	human	blood	using	Ficoll	were	added	to	the	mixture	(effector	to	target	cell	ratio	

of	50).	After	3h	of	incubation	at	37°C,	cells	were	collected	and	stained	with	7-AAD	(0.1	
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µg/mL	 final)	 at	 4°C	 for	 15min	 before	 FACS	 analysis.	 The	 percentage	 of	 7-AAD+	 cells	

among	the	PKH26+	cells	represented	the	target	cells	killed	by	PBMC.	

	

Determination	of	scFv2-Fc	concentration	in	serum	samples	by	ELISA	

Blood	samples	were	centrifuged	at	1500g	for	15	min,	and	serum	samples	were	stored	at	

-20°C	 until	 dilution	 (1000	 times	 in	 PBS)	 and	 scFv2-Fc	 titration	 by	 ELISA.	 An	 ELISA	

sandwich	assay	(linear	range	from	10	to	150	ng	/mL)	was	specifically	developed	using	a	

goat	 anti-human	 Fc	 as	 the	 capture	 antibody	 (Sigma,	 I-2126,	 10	 µg/mL)	 and	 a	 HRP-

conjugated	goat	anti-human-Fc	antibody	as	the	detection	antibody	(A0170,	dilution	20	

000).	 Samples	 were	 tested	 in	 duplicate	 and	 tittered	 in	 two	 independent	 ELISA	

experiments.	

	

In	vivo	experiments	

All	in	vivo	experiments	were	performed	in	compliance	with	the	French	regulations	and	

ethical	 guidelines	 for	 experimental	 animal	 studies	 in	 an	 accredited	 establishment.	 In	

some	 experiments,	 tumors	were	 isolated	 and	 prepared	 for	 IHC	 analysis	with	 an	 anti-

TfR1	 antibody	 (IRCM	 Histology	 core	 facility)	 or	 for	 protein	 extraction	 for	 western	

blotting.		

	

Statistical	analysis	(in	vivo	study	for	therapeutic	efficiency)	

A	linear	mixed	regression	model	was	used	to	determine	the	relationship	between	tumor	

growth	 and	 the	 number	 of	 days	 post-graft.	 The	 fixed	 part	 of	 the	 model	 included	

variables	 corresponding	 to	 the	 number	 of	 days	 post-graft	 and	 the	 different	 groups.	

Interaction	terms	were	built	into	the	model.	Random	intercept	and	random	slope	were	

included	 to	 take	 into	 account	 the	 time	 effect.	 The	 coefficients	 of	 the	 model	 were	
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estimated	by	maximum	likelihood	and	considered	significant	at	the	0.05	level.	Survival	

rates	 were	 estimated	 using	 the	 Kaplan-Meier	 method	 from	 the	 date	 of	 the	 xenograft	

until	 the	 date	when	 the	 tumor	 reached	 a	 volume	of	 1,600	mm3.	 Survival	 curves	were	

compared	using	the	log-rank	test.	Statistical	analyses	were	carried	out	using	the	STATA	

11.0	software	(StataCorp,	College	Station,	TX).	
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Table	S1	:	scFv2-Fc antibody formats classic pharmacokinetic constants 
	
mouse	phenotype	 mAb	 AUC	(mg.h.mL-1)	 CL	(mL.h-1)	
WT	 H7-Fc	 4.0	[3.3-5.2]	 0.98	[0.93-1.02]	
	 Irr-Fc	 16,1	[13.0–18.6]	 0.40	[0.36-0.43]	
FcRn	KO	 H7-Fc	 2.4	[1.3–4.0]	 3.30	[3.13-3.38]	
	 Irr-Fc	 3.3	[2.5–4.4]	 1.31	[1.27-1.35]	
AUC,	Area	Under	the	Curve	calculated	from	day	0	to	day	21,	CL,	serum	clearance;		numbers	in	brackets	
represent	maxima	and	minima	within	the	groups	of	10	mice.	Irr-Fc,	irrelevant	scFv2-Fc.		
	
In	the	WT	background,	H7-Fc	binding	to	mouse	TfR1	decreases	the	AUC	and	increase	CL	compared	to	the	
non	specific	counterpart	format.	AUC	of	the	irrelevant	scFv2-Fc	drastically	decreases	and	its	CL	increases	
in	the	FcRnKO	background	because	the	antibody	is	not	protected	by	the	FcRn.	
The	results	obtained	for	the	H7-Fc,	where	the	AUC	slightly	decreases	and	the	CL	strongly	increases	in	the	
FcRnKO	background,	could	indicate	that,	since	FcRn	and	TfR1	colocalize	in	the	recycling	intracellular	
trafficking	pathway,	the	binding	of	H7-Fc	to	TfR1	is	enhanced	in	the	absence	of	FcRn	through	limitation	of	
steric	hindrance	that	occurs	I	case	of	double	binding.	This	remains	to	be	confirmed	by	further	
investigations.	
	
	
	

	

Supplementary	figure	legends:	

	

Figure	S1:	Setting	up	of	the	holo-Tf	cell	internalization	test	

(A,	 B)	 Raji	 cells	 were	 incubated	 at	 37°C	 or	 4°C	 (to	 allow	 or	 not	 internalization,	

respectively)	with	 500	 nM	 holo-Tf	 conjugated	 to	 Alexa-488	 (holo-Tf-A488)	 in	 culture	

medium	for	the	indicated	times.	Cells	were	then	washed	with	PBS,	incubated	or	not	with	

NaCl-glycine	buffer	(50	mM	glycine	pH	2.8,	500	mM	NaCl)	at	4°C	for	10min,	then	washed	

again	 with	 PBS	 to	 remove	 surface-bound	 holo-Tf-A488,	 and	 cell	 fluorescence	 was	

measured	 by	 FACS.	 Total,	 fluorescence	 in	 cells	 without	 glycine	 step;	 intracellular,	

fluorescence	 in	 cells	 with	 glycine	 step.	 Fluorescence	 increased	 from	 1	 to	 3h	 and	was	

more	 than	 95%	 intracellular;	 therefore,	 the	 glycine	 incubation	 step	 was	 omitted	 in	

further	 experiments.	 The	 cell	mean	 fluorescence	 intensity	 (MFI)	was	 calculated	 using	

the	Flow	Jo	Version	10.1r7	software.	(C)	Raji	cells	were	incubated	with	500	nM	holo-Tf-
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A488	 together	with	 increasing	 concentrations	 of	 unconjugated	holo-Tf	 at	 37°C	 for	 3h.	

Increasing	 concentrations	 of	 unconjugated	holo-Tf	 reduced	 fluorescence	 accumulation	

(IC50	 =	 580	 nM)	 in	 a	 dose-dependent	 manner,	 showing	 the	 specificity	 of	 the	 holo-Tf	

internalization	test.	

	

Figure	 S2:	 SPR	 analysis	 of	 H7-Fc	 and	 H7-IgG1	 interactions	 with	 recombinant	

human	TfR1	and	competition	with	holo-Tf	

(A,B)	 Various	 concentrations	 (0.25-32	 nM)	 of	 homodimeric	 human	 recombinant	 TfR1	

were	injected	on	H7-Fc	or	H7-IgG1	captured	on	immobilized	anti-human-Fc	IgG.	The	KD	

values,	 taking	 into	 account	 of	 affinity	 and	 avidity	 with	 this	 protocol,	 were	 calculated	

using	 a	 steady-state	 fitting	model.	 H7-Fc	 and	 H7-IgG1	 display	 similar	 KD	 (5	 nM).	 (C)	

Human	 TfR1	was	 injected	 on	H7-Fc	 or	 H7-IgG1	 immobilized	 onto	 anti-human-Fc	 IgG.	

Human	 holo-Tf	 was	 injected	 at	 the	 indicated	 concentrations	 to	 displace	 human	 TfR1.	

Higher	 concentrations	 of	 holo-Tf	were	 required	 to	 quantitatively	 release	 human	TfR1	

from	H7-Fc	than	from	H7-IgG1,	consistent	with	the	results	obtained	in	the	competition	

experiment	for	holo-Tf	internalization	on	cells	of	figure	1D	where	H7-Fc	blocks	holo-Tf	

internalization	better	than	H7-IgG1.	

	

	

Figure	S3:	3D	modeling	of	the	interaction	of	H7	and	Ba120	with	human	TfR1	

(A)	Modeling	of	the	interaction	of	H7	(red)	and	Ba120	(green)	with	human	TfR1	(grey)	

using	their	VH	and	VL	amino	acid	sequences.	Docking	of	both	antibodies	on	human	TfR1	

was	done	with	MabTope,11	using	3D	models	of	the	antibodies	and	the	3D	structure	of	the	

ectodomain	of	human	TfR1	(PDB:1CX8).12	The	3D	models	of	both	antibodies	were	made	

using	Modeller13	and	the	templates	PDB:3F12	for	H7	VH,	PDB:3MA9	for	H7	VL,	3BZH	for	
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Ba120	 VH	 and	 3L7E	 for	 Ba120	 VL	 (NB:	 Ba120	 sequences	were	 determined	 from	 the	

original	hybridoma	by	Dr.	Martine	Cerutti,	 CNRS,	 Saint	Christol-Les-Ales,	 France).	(B),	

Representation	of	the	interaction	of	human	holo-Tf	(blue,	from	PDB	1SUV)	with	human	

TfR1.	This	model	predicts	that	H7	competes	directly	with	holo-Tf	binding,	while	Ba120	

and	 holo-Tf	 can	 bind	 to	 TfR1	 at	 the	 same	 time,	 in	 agreement	 with	 the	 in	 vitro	

experimental	 data	 (Figure	 2).	 Figures	 were	 prepared	 using	 Pymol	 (The	 PyMOL	

Molecular	Graphics	System,	Version	2.0	Schrödinger,	LLC).	MAbTope	is	a	coarse-grained	

protein-protein	docking	method,	it	doesn't	use	force	fields,	neither	energy	minimization	

and	there's	no	solvent.	MAbTope	uses	HEX	for	docking	poses	generation.	HEX	generates	

about	 10^8	 poses.	 The	 top-500	 HEX	 poses	 are	 then	 reranked	 using	 different	 scoring	

functions,	of	which	one	is	learnt	on	two	datasets	of	protein-protein	complexes	of	known	

structures.	We	have	shown	that	on	a	benchmark	of	129	antibody-antigen	complexes	the	

top-30	 ranked	conformations	 correctly	define	 the	epitope,	 and	 that	 in	80%	cases,	 one	

near-native	docking	pose	is	present	 in	the	top-30.	For	the	figure,	one	docking	pose	for	

each	antibody	has	been	manually	chosen	within	the	top-30.	Thus,	there	is	no	guaranty	

that	 the	orientation	of	 the	antibody	relative	 to	 the	 target	 is	 correct,	however	 the	pose	

correctly	defines	the	epitope	on	the	TfR1.	

	

	

Figure	 S4:	 Variation	 of	 intracellular	 iron	 levels	 in	 the	 Bp3	 and	 the	 Im9	 B-

lymphoma	cell	lines	upon	H7	treatment.		

The	 same	 protocol	 than	 Figure	 3B	was	 applied.	 Results	 are	 expressed	 as	 the	 %	 of	

change	in	the	fluorescence	relative	to	non	treated	cells	(NT).	In	Bp3	and	Im9	cell	lines,	

H7	induced	only	low	soluble	iron	decrease	compared	to	ERY	or	Raji	cell	lines	(see	Figure	
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3B)	and	Ba120	induced	an	increase	in	soluble	iron	levels,	in	agreement	with	its	ability	to	

accelerate	holo-Tf	uptake	mediated	by	TfR1	(see	figure	2A,	left	panel).	

	

	

Figure	 S5:	 Comparison	 of	 H7-IgG1,	 Ba120	 and	 human-holo-Tf	 binding	 to	 native	

human	TfR1	at	different	pH	values	

The	protocol	described	in	(A)	was	used	to	study	H7-IgG1	binding	to	TfR1	at	different	pH	

values,	 similar	 to	 those	 encountered	 during	 physiological	 TfR1	 internalization	 and	

recycling	 after	holo-Tf	 binding.	The	 experiment	was	performed	at	 4°C.	Raji	 cells	were	

incubated	 with	 anti-TfR1	 antibodies	 (10	 µg/mL)	 or	 human	 holo-Tf	 conjugated	 to	

Alexa488	(500	nM)	at	pH	7	 for	1h.	Unbound	antibodies	or	holo-Tf	were	eliminated	by	

washing	at	pH	7,	and	then	cells	were	incubated	at	a	given	pH	(from	7	to	5),	to	mimic	the	

conditions	 within	 endosomes	 after	 internalization	 (1	 h	 at	 4°C).	 A	 final	 wash	 was	

performed	at	pH	7,	to	mimic	the	conditions	after	TfR1	recycling	at	the	cell	surface.	FITC-

conjugated	anti-human	or	mouse	IgG	secondary	antibodies	were	used	to	detect	by	FACS	

the	 remaining	 bound	 antibodies	 after	 these	 steps.	 (B)	 Results	 are	 expressed	 as	 the	

percentage	of	 the	Mean	Fluorescent	 Intensity	(MFI)	relative	to	 the	MFI	of	cells	kept	at	

pH	 7	 for	 the	 entire	 experiment.	 As	 expected,	 holo-Tf	 binding	 decreased	 at	 lower	 pH,	

because	of	the	loss	of	Fe3+	at	low	pH	and	the	reduced	affinity	of	apo-Tf	at	pH	7.	(C)	The	

iron	content	of	holo-Tf	at	various	pH	values	was	monitored	by	taking	advantage	of	the	

fact	 that	holo-Tf,	but	not	apo-Tf,	displays	an	absorption	peak	at	460	nm.14	Holo-Tf	(10	

µM)	was	resuspended	in	buffer	at	various	pH.	Results	are	expressed	as	the	ratio	of	the	

sample	 absorbance	 at	 460	 nm	 normalized	 to	 the	 standard	 protein	 concentration	

obtained	at	280	nm.		
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Figure	 S6.	 Biodistribution	 of	 the	 cross-reactive	 anti-TfR1	 H7	 scFv2-Fc	 (H7-Fc)	

antibody	in	mice	with	tumors	

The	four	nude	mice	bearing	ERY-1	tumors	that	received	one	i.v.	injection	of	a	mixture	of	

125I-labeled	H7-Fc	 and	 131I-labeled	 irrelevant	 scFv2-Fc	used	 in	Figure	4	were	 killed	 at	

48h	post-injection,	 and	 the	 radioactivity	 in	all	organs	and	 tissues	was	quantified	as	 in	

Figure	4.	Results	are	expressed	as	the	%	of	the	injected	dose	(ID)	per	g	(%ID/g).	H7-Fc	

accumulated	in	the	tumor.	

	

Figure	S7.	ADCC	on	BxPC3	and	CFPAC	cells	using	the	anti-TfR1	H7	scFv2-Fc	and	full	

length	IgG1	antibodies	

ADCC	was	evaluated	in	live	BxPC3	or	CFPAC	cells	(both	derived	from	a	pancreatic	ductal	

adenocarcinoma)	with	 the	 same	protocol	 used	 for	Raji	 cells	 in	Figure	5.	 Briefly,	 cells	

were	stained	with	 the	 fluorescent	dye	PKH-67,	and	 the	day	after	were	 incubated	with	

H7-Fc	 or	 H7-IgG1,	 or	 an	 irrelevant	 scFv2-Fc	 antibody	 (0.2	 or	 1	 µg/mL	 final	

concentration)	 for	 30min.	 Then,	 freshly	 prepared	 PBMC	 (Effector/Target	 ratio	 =	 50)	

were	 added	 for	 3h.	 Cells	were	 then	 collected	 and	 stained	with	 the	 7-AAD	 fluorescent	

dye.	 The	 percentage	 of	 dead	 cells	 (7AAD+)	 cells	 among	 the	 target	 PKH-67+	 cells	 was	

evaluated	 by	 FACS	 analysis.	 The	 H7-IgG1	 antibody	 was	 more	 efficient	 than	 H7-Fc	 to	

mediate	ADCC	of	BxPC3	and	CFPAC	cells,	as	already	observed	in	Raji	cells	(Figure	5).	
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Figure S1: Setting up of the holo-Tf cell internalization test 

(A, B) Raji cells were incubated at 37°C or 4°C (to allow or not internalization, respectively) with 

500 nM holo-Tf conjugated to Alexa-488 (holo-Tf-A488) in culture medium for the indicated times. 

Cells were then washed with PBS, incubated or not with NaCl-glycine buffer (50 mM glycine pH 

2.8, 500 mM NaCl) at 4°C for 10min, then washed again with PBS to remove surface-bound holo-

Tf-A488, and cell fluorescence was measured by FACS. Total, fluorescence in cells without glycine 

step; intracellular, fluorescence in cells with glycine step. Fluorescence increased from 1 to 3h and 

was more than 95% intracellular; therefore, the glycine incubation step was omitted in further 

experiments. The cell mean fluorescence intensity (MFI) was calculated using the Flow Jo Version 

10.1r7 software. (C) Raji cells were incubated with 500 nM holo-Tf-A488 together with increasing 

concentrations of unconjugated holo-Tf at 37°C for 3h. Increasing concentrations of unconjugated 

holo-Tf reduced fluorescence accumulation (IC50 = 580 nM) in a dose-dependent manner, showing 

the specificity of the holo-Tf internalization test. 
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Figure S2: SPR analysis of H7-Fc and H7-IgG1 interactions with recombinant human TfR1 
and competition with holo-Tf 

(A,B) Various concentrations (0.25-32 nM) of homodimeric human recombinant TfR1 were 

injected on H7-Fc or H7-IgG1 captured on immobilized anti-human-Fc IgG. The KD values, 

taking into account of affinity and avidity with this protocol, were calculated using a steady-state 

fitting model. H7-Fc and H7-IgG1 display similar KD (5 nM). (C) Human TfR1 was injected on 

H7-Fc or H7-IgG1 immobilized onto anti-human-Fc IgG. Human holo-Tf was injected at the 

indicated concentrations to displace human TfR1. Higher concentrations of holo-Tf were required 

to quantitatively release human TfR1 from H7-Fc than from H7-IgG1, consistent with the results 

obtained in the competition experiment for holo-Tf internalization on cells of figure 1D where H7-

Fc blocks holo-Tf internalization better than H7-IgG1.  

KD=	5.0+/-0.50	nM	 KD=	5.4+/-0.7	nM	

H7-IgG1	H7-Fc	

C	
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Figure	S3:	3D	modeling	of	the	interacHon	of	H7	and	Ba120	with	human	TfR1	
(A)	Modeling	of	the	interac0on	of	H7	(red)	and	Ba120	(green)	with	human	TfR1	(grey)	using	their	
VH	 and	 VL	 amino	 acid	 sequences.	 Docking	 of	 both	 an0bodies	 on	 human	 TfR1	 was	 done	 with	
MabTope,11	using	3D	models	of	the	an0bodies	and	the	3D	structure	of	the	ectodomain	of	human	
TfR1	 (PDB:1CX8).12	 The	 3D	 models	 of	 both	 an0bodies	 were	 made	 using	 Modeller13	 and	 the	
templates	PDB:3F12	 for	H7	VH,	PDB:3MA9	 for	H7	VL,	3BZH	 for	Ba120	VH	and	3L7E	 for	Ba120	VL	
(NB:	Ba120	sequences	were	determined	from	the	original	hybridoma	by	Dr.	Mar0ne	CeruU,	CNRS,	
Saint	Christol-Les-Ales,	France).	(B),	Representa0on	of	the	interac0on	of	human	holo-Tf	(blue,	from	
PDB	1SUV)	with	human	TfR1.	This	model	predicts	that	H7	competes	directly	with	holo-Tf	binding,	
while	 Ba120	 and	 holo-Tf	 can	 bind	 to	 TfR1	 at	 the	 same	 0me,	 in	 agreement	 with	 the	 in	 vitro	
experimental	data	(Figure	2).	Figures	were	prepared	using	Pymol	(The	PyMOL	Molecular	Graphics	
System,	 Version	 2.0	 Schrödinger,	 LLC).	 MAbTope	 is	 a	 coarse-grained	 protein-protein	 docking	
method,	 it	doesn't	use	force	fields,	neither	energy	minimiza0on	and	there's	no	solvent.	MAbTope	
uses	HEX	for	docking	poses	genera0on.	HEX	generates	about	10^8	poses.	The	top-500	HEX	poses	
are	 then	 reranked	 using	 different	 scoring	 func0ons,	 of	 which	 one	 is	 learnt	 on	 two	 datasets	 of	
protein-protein	 complexes	 of	 known	 structures.	 We	 have	 shown	 that	 on	 a	 benchmark	 of	 129	
an0body-an0gen	complexes	the	top-30	ranked	conforma0ons	correctly	define	the	epitope,	and	that	
in	80%	cases,	one	near-na0ve	docking	pose	 is	present	 in	 the	 top-30.	 For	 the	figure,	one	docking	
pose	for	each	an0body	has	been	manually	chosen	within	the	top-30.	Thus,	there	is	no	guaranty	that	
the	orienta0on	of	the	an0body	rela0ve	to	the	target	is	correct,	however	the	pose	correctly	defines	
the	epitope	on	the	TfR1.	
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Figure S4: Variation of intracellular soluble iron levels in the Bp3 and the Im9 B-

lymphoma cell lines upon H7 treatment.  

The same protocol than Figure 3B was applied. Results are expressed as the % of change in the 

fluorescence relative to non treated cells (NT). In Bp3 and Im9 cell lines, H7 induced only low 

soluble iron decrease compared to ERY or Raji cell lines (see Figure 3B) and Ba120 induced an 

increase in soluble iron levels, in agreement with its ability to accelerate holo-Tf uptake 

mediated by TfR1 (see figure 2A, left panel). 
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Figure S5: Comparison of H7-IgG1, Ba120 and human-holo-Tf binding to native human TfR1 

at different pH values 

The protocol described in (A) was used to study H7-IgG1 binding to TfR1 at different pH values, 

similar to those encountered during physiological TfR1 internalization and recycling after holo-Tf 

binding. The experiment was performed at 4°C. Raji cells were incubated with anti-TfR1 antibodies 

(10 µg/mL) or human holo-Tf conjugated to Alexa488 (500 nM) at pH 7 for 1h. Unbound antibodies 

or holo-Tf were eliminated by washing at pH 7, and then cells were incubated at a given pH (from 7 

to 5), to mimic the conditions within endosomes after internalization (1 h at 4°C). A final wash was 

performed at pH 7, to mimic the conditions after TfR1 recycling at the cell surface. FITC-conjugated 

anti-human or mouse IgG secondary antibodies were used to detect by FACS the remaining bound 

antibodies after these steps. (B) Results are expressed as the percentage of the Mean Fluorescent 

Intensity (MFI) relative to the MFI of cells kept at pH 7 for the entire experiment. As expected, holo-

Tf binding decreased at lower pH, because of the loss of Fe3+ at low pH and the reduced affinity of 

apo-Tf at pH 7. (C) The iron content of holo-Tf at various pH values was monitored by taking 

advantage of the fact that holo-Tf, but not apo-Tf, displays an absorption peak at 460 nm.14 Holo-Tf 

(10 µM) was resuspended in buffer at various pH. Results are expressed as the ratio of the sample 

absorbance at 460 nm normalized to the standard protein concentration obtained at 280 nm.  
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Figure S6.  Biodistribution of the cross-reactive anti-TfR1 H7 scFv2-Fc (H7-Fc) 

antibody in mice with tumors 

The four nude mice bearing ERY-1 tumors that received one i.v. injection of a mixture of 
125I-labeled H7-Fc and 131I-labeled irrelevant scFv2-Fc used in Figure 4 were killed at 48h 

post-injection, and the radioactivity in all organs and tissues was quantified as in Figure 4. 

Results are expressed as the % of the injected dose (ID) per g (%ID/g). H7-Fc accumulated 

in the tumor. 
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Figure S7. ADCC on BxPC3 and CFPAC cells using the anti-TfR1 H7 scFv2-Fc and full 

length IgG1 antibodies 

ADCC was evaluated in live BxPC3 or CFPAC cells (both derived from a pancreatic ductal 

adenocarcinoma) with the same protocol used for Raji cells in Figure 5. Briefly, cells were 

stained with the fluorescent dye PKH-67, and the day after were incubated with H7-Fc or H7-

IgG1, or an irrelevant scFv2-Fc antibody (0.2 or 1 µg/mL final concentration) for 30min. Then, 

freshly prepared PBMC (Effector/Target ratio = 50) were added for 3h. Cells were then 

collected and stained with the 7-AAD fluorescent dye. The percentage of dead cells (7AAD+) 

cells among the target PKH-67+ cells was evaluated by FACS analysis. The H7-IgG1 antibody 

was more efficient than H7-Fc to mediate ADCC on BxPC3 and CFPAC cells by PBMC, as 

already observed in Raji cells (Figure 5).  
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