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INFINITE HORIZON OPTIMAL CONTROL OF
NON-CONVEX PROBLEMS UNDER STATE

CONSTRAINTS

HÉLÈNE FRANKOWSKA

Abstract. We consider the undiscounted infinite horizon optimal con-
trol problem under state constraints in the absence of convexity/concavity
assumptions. Then the value function is, in general, nonsmooth. Using
the tools of set-valued and nonsmooth analysis, the necessary optimality
conditions and sensitivity relations are derived in such a framework. We
also investigate relaxation theorems and uniqueness of solutions of the
Hamilton-Jacobi-Bellman equation arising in this setting.

1. Introduction

The following infinite horizon optimal control problem is often present in
models of mathematical economics and also in some engineering problems,
(like, for instance, the general model of capital accumulation or design of
asymptotically stabilizing controls),

maximize
∫ ∞

0
e−λt`(x(t),u(t))dt

over all trajectory-control pairs (x,u) of the autonomous control system{
x′(t) = f(x(t),u(t)), u(t) ∈ U for a.e. t≥ 0
x(0) = x0,

subject to the state constraint x(t) = (x1(t), ...,xn(t)) ≥ 0, where e−λt is
the discount factor for a given λ > 0. Its history goes back to Ramsey
[39]. Note that in the engineering problems maximization is often replaced
by minimization, where results are similar after obvious adaptation of the
involved data.

The literature addressing this problem deals with traditional questions
of existence of optimal solutions, necessary and sufficient optimality con-
ditions, sensitivity analysis, regularity of the value function, uniqueness of
solutions of the associated Hamilton-Jacobi equation, ergodic theory, etc.
The above problem is well investigated under the convexity/concavity as-
sumptions implying concavity of the value function (also called the utility
function). Then the powerful duality theory of convex analysis can be ap-
plied to get both necessary and sufficient optimality conditions and to show
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2 HÉLÈNE FRANKOWSKA

differentiability of the value function, see for instance [13, 42]. Indeed, when
data are convex/concave, necessary optimality conditions are also sufficient
and the value function is differentiable whenever optimal trajectories are
unique for every initial condition. This is, for instance, the case of strictly
concave problems. In this way a clear picture of optimal solutions can be
obtained.

In the general nonlinear case, however, typically the optimal solutions
are not unique and necessary conditions are no longer sufficient for opti-
mality. Even when state constraints are not involved, one can expect, at
most, local Lipschitz continuity of the value function. Furthermore, if the
discount factor is absent, the situation worsens, the value function being, in
general, at most upper semicontinuous possibly taking infinite values. Thus,
the classical tools can not be used any longer and have to be replaced by
notions coming from the set-valued and non-smooth analysis. For instance,
solutions of the Hamilton-Jacobi equation have to be understood in a gener-
alized sense, e.g. viscosity solutions. Sensitivity relations become also more
complex and involve generalized differentials, instead of derivatives.

Recently, while investigating necessary optimality conditions (in the ab-
sence of state constraints), a number of authors addressed more general
setting of the infinite horizon problems, not involving the discount factor.

In the present paper, we consider the nonautonomous infinite horizon
optimal control problem

(1) V (t0,x0) = sup
∫ ∞
t0

L(t,x(t),u(t))dt

over all trajectory-control pairs (x,u) of the control system

(2)
{
x′(t) = f(t,x(t),u(t)), u(t) ∈ U(t) for a.e. t≥ t0
x(t0) = x0,

satisfying the state constraint
(3) x(t) ∈K for all t≥ t0,
where L : R+×Rn×Rm→ R, f : R+×Rn×Rm→ Rn are given mappings,
R+ = [0,+∞), t0 ∈ R+, x0 ∈ Rn, U : R+ ; Rm is a measurable set-valued
map with closed nonempty images and K ⊂ Rn is nonempty and closed.
Selections u(t)∈U(t) are supposed to be Lebesgue measurable and are called
controls. The above setting subsumes the classical infinite horizon optimal
control problem when f and U are time independent, L(t,x,u) = e−λt`(x,u)
for some mapping ` : Rn×Rm→ R+ and λ > 0, t0 = 0.

Infinite horizon problems exhibit many phenomena not arising in the con-
text of finite horizon problems and their study is still going on, even in the
absence of state constraints, see [1, 2, 3, 4, 5, 6, 33, 36, 37, 38, 40, 43, 44] and
their bibliographies. Among such phenomena let us recall that already in
70ies Halkin, see [32] and also [36], observed that in the necessary optimality
conditions for an infinite horizon problem it may happen that the co-state
of the maximum principle is different from zero at infinity and that only
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abnormal maximum principles hold true (even for problems without state
constraints). Such phenomena do not occur for the finite horizon problems.

The presence of state-constraints drastically changes the maximum prin-
ciple: as in the case of finite horizon problems, a trajectory-control pair
satisfying simultaneously the unconstrained Pontryagin maximum principle
and the state constraint may be unique and not necessarily optimal. As a
consequence, one has to work with discontinuous co-states and more complex
adjoint systems.

While the existence theories for problems with or without state constraints
are essentially the same (on the domain dom(V ) of the value function), this
is no longer the case in what concerns optimality conditions and sensitivity
relations. Since 70ies many paths were exploited in the literature to de-
rive necessary optimality conditions for the infinite horizon problem when
K = Rn. The most immediate one consists in replacing the infinite horizon
problem by a family of (finite horizon) Bolza problems on intervals [t0,T ]
for T > t0 (that is substituting ∞ by T in the definition of the cost (1)) and
using the known results for the Bolza problem. In particular, the first order
necessary condition for each Bolza problem takes the form of the maximum
principle: if (x̄, ū) is an optimal trajectory-control pair for the Bolza prob-
lem at the initial condition (t0,x0), then the solution pT := p of the adjoint
system

−p′(t) = fx(t, x̄(t), ū(t))∗p(t) +Lx(t, x̄(t), ū(t)), p(T ) = 0
satisfies the maximality condition
〈p(t),f(t, x̄(t), ū(t))〉+L(t, x̄(t), ū(t)) =H(t, x̄(t),p(t)) a.e. in [t0,T ],

where the Hamiltonian H : R+×Rn×Rn→ R is defined by
H(t,x,p) := sup

u∈U(t)
(〈p,f(t,x,u)〉+L(t,x,u)).

We underline that the transversality condition p(T ) = 0 is due to the fact
that there is no additional cost term depending on the final state x(T ) in
the considered Bolza problems.

Recall that if H(t, ·, ·) is differentiable, then the adjoint system and the
maximality condition can be equivalently written in the form of the Hamil-
tonian system: for a.e. t ∈ [t0,T ]{

−p′(t) = Hx(t, x̄(t),p(t)), p(T ) = 0
x̄′(t) = Hp(t, x̄(t),p(t)), x̄(t0) = x0.

In general, however, H(t, ·, ·) is not differentiable and one writes instead a
Hamiltonian differential inclusion involving generalized gradients ofH(t, ·, ·),
see [19, 45].

Then, taking limits of co-states pT (·) when T →∞ is expected to lead
to the maximum principle of the infinite horizon problem. This approach
requests however some important modifications, due to the fact that the re-
strictions of an optimal solution (x̄, ū) of the infinite horizon problem to the
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finite intervals [t0,T ] may be not optimal for the Bolza problems. To over-
come this difficulty, some authors add the end point constraint x(T ) = x̄(T ).
With such an additional constraint the restriction of (x̄, ū) to the time in-
terval [t0,T ] becomes optimal for the above Bolza problem. This leads,
however, to possibly abnormal maximum principles for finite horizon prob-
lems, and, in fine, admits necessary optimality conditions not involving the
cost function L. Also the transversality condition at time T does disappear,
becoming −p(T )∈N{x̄(T )}(x̄(T )) =Rn (normal cone to the singleton {x̄(T )}
at x̄(T )).

Another way to deal with this issue is to modify the very definition of
optimal solution, cf. [3, 4, 17, 32, 46]. However, the notions like overtaking
(or weakly overtaking) optimal controls do not have appropriate existence
theory. More precisely, no specific sufficient conditions were proposed to
guarantee the existence of overtaking optimal controls. This is the reason
why we prefer to stick to the classical notion of optimality, where sufficient
condition for the existence of optimal controls are well understood.

An alternative approach to the discounted infinite horizon problems con-
sists in modification of the cost function in such a way that restrictions
of (x̄, ū) to intervals [t0,T ] are locally optimal for the Bolza problems, cf.
[35, 40, 47]. The presence of the discount factor allows then to pass to the
limit of the (finite horizon) maximum principles and to conclude that a co-
state satisfies the adjoint system, the maximality condition and vanishes at
infinity. We would like to underline here that such a “terminal” transversal-
ity condition at infinity is a consequence of the assumptions on data. This
differs substantially from the finite horizon settings, where the transver-
sality condition at the terminal time is an independent requirement. This
approach exploits the value function V . Actually, in [35] V is supposed to be
C1 (which is a too strong request) to get these conclusions, while in [47] it is
Lipschitz continuous. Furthermore, for the discounted problems considered
in [7, 35, 40, 47] the sensitivity relations helped to write a transversality
condition also at the initial time.

Another way to derive the maximum principle (still when there are no
state constraints) relies on the duality theory on weighted Sobolev spaces
with respect to the measure e−λtdt (or more general measures), cf. [7, 36,
37, 44].

In the absence of the discount factor, the question of necessary conditions
is quite challenging, because, unlike for classical finite horizon problems,
transversality conditions are not immediate. We refer to [2] for an extended
overview of the literature devoted to transversality conditions and for bibli-
ographical comments and also to [3] for a further discussion.

The major difficulties in dealing with state constrained problems are due
to the fact that for a given optimal solution (x̄, ū) of (1) - (3), small perturba-
tions of the initial state (t0,x0) or of the control ū may result in trajectories
violating state constraints. This creates obstacles for the direct application
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of classical variational methods (as for instance needle perturbations) to de-
rive necessary optimality conditions. In addition, it may happen that the
value function V takes infinite values and is discontinuous. For this reason
the classical tools of optimal control theory like Hamilton-Jacobi equation
and its viscosity solutions are no longer adapted.

Recall that (continuous) viscosity solutions to first-order partial differ-
ential equations were introduced in [20, 21] by Crandall, Evans, and Lions
to investigate Hamilton-Jacobi equations not admitting classical solutions.
In particular, given T > 0 and a continuous “terminal” function gT (·), they
proved existence and uniqueness of continuous solutions to

(4) −∂tV +H(t,x,−∇xV ) = 0 on (0,T )×Rn, V (T, ·) = gT (·),

when the Hamiltonian H is continuous. In the absence of state constraints,
under mild assumptions, the value function of the Bolza problem is the
unique viscosity solution of (4) provided it is bounded and uniformly contin-
uous. Some sufficient conditions (in the form of an inward pointing assump-
tion) for continuity of the value function for a discounted state constrained
infinite horizon problem can be found in [41], when f, ` are time independent
and K is a compact set having smooth boundary. It is shown in [41] that
the value function is the unique viscosity solution to a corresponding sta-
tionary Hamilton-Jacobi equation. However such a framework leaves aside
the conical state constraints and the time dependent case, because, as it was
shown later on, arguments of [41] no longer apply in the non-autonomous
case whenever the time dependence is merely continuous. Some extensions,
when K is a locally compact set with possibly nonsmooth boundary, can be
found in [29].

In the class of finite horizon state-constrained problems, the Mayer one
has been successfully investigated by many authors, see for instance [12, 15,
19, 26, 31, 45] and their bibliographies. Also, it is well known that the Bolza
problem can be stated, in an equivalent way, as the Mayer one (without
loosing optimality of solutions). This created a favorable background to
approach the infinite horizon problems under state constraints.

In [14], in the absence of state constraints, we proposed to use systemati-
cally the dynamic programming and to add to the integral functional of the
Bolza problem defined on [0,T ] the discontinuous (in general) cost function
V (T, ·). That is for gT (·) := V (T, ·) we considered the Bolza problem

maximize
(
gT (x(T )) +

∫ T

t0
L(t,x(t),u(t))dt

)
over all trajectory-control pairs (x,u) of (2) defined on [t0,T ].

The above finite horizon Bolza problem enjoys the following crucial prop-
erty: restrictions of an optimal solution (x̄, ū) of the infinite horizon problem
to the finite intervals [t0,T ] with T > t0 are optimal for the Bolza problems.
Also, for every T > t0 the value function of the Bolza problem coincides with
V on [t0,T ]×Rn.
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Let us underline however that this new problem involves the, possibly
discontinuous, cost function V (T, ·) and for this reason one needs nonsmooth
maximum principles derived for finite horizon problems to express necessary
optimality conditions.

Such an approach allowed us, by passing to the limit when T →∞, to
get the maximum principle and sensitivity relations and has lead to the
transversality condition at the initial time. In particular, this result con-
tains the maximum principle (the sensitivity relation and the initial time
transversality condition providing an additional information). Furthermore,
we have shown the validity of the relaxation theorems whenever the value
function of the relaxed problem is continuous with respect to the state vari-
able. It could be interesting to extend also the second order sensitivity
relations from [16] to the case of infinite horizon problems.

The present paper discusses results of the same nature but in the presence
of state constraints. We start by proving the upper semicontinuity of the
value function under the classical assumptions guaranteeing existence of
optimal solutions. These assumptions involve convexity of sets

F (t,x) :=
{(
f(t,x,u),L(t,x,u)− r

)
: u ∈ U(t) and r ≥ 0

}
.

We would like to emphasize that this condition (of Cesari-Olech type) is
classical in the existence theory of optimal control and does not yield con-
cavity of the value function. To investigate uniqueness of solutions to the
Hamilton-Jacobi equation, we also need a sufficient condition for V to vanish
at infinity. For this aim we shall impose the following assumption

(H0): There exists S > 0 such that |L(t,x,u)| ≤ α(t) for a.e. t ≥ S and
all x ∈K, u ∈ U(t), where α : [S,+∞)→ R+ is integrable on [S,+∞) (see
Section 4 for more details.)

Under this assumption
lim
t→∞

sup
x∈dom(V (t,·))

|V (t,x)|= 0.

This “terminal” condition at infinity replaces the final condition of (4).
When sets F (t,x) are not convex, then it is usual to consider the so-called

relaxed problems and speak about generalized solutions. They can be stated
either by using the probability measures and relaxed controls or, equivalently,
by considering the convexified infinite horizon problem

V rel(t0,x0) = sup
∫ ∞
t0

(
n∑
i=0

λi(t)L(t,x(t),ui(t))
)
dt

over all trajectory-control pairs of the relaxed constrained control system{
x′(t) =

∑n
i=0λi(t)f(t,x(t),ui(t)), ui(t) ∈ U(t), λi(t)≥ 0,

∑n
i=0λi(t) = 1

x(t0) = x0, x(t) ∈K ∀ t≥ t0,
where ui(·), λi(·) are Lebesgue measurable on R+ for i = 0, ...,n. Clearly
V rel≥V. Furthermore, for the relaxed problem the corresponding sets F (t,x)
are convex. When K = Rn, assumption (H0) allows to prove a relaxation
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theorem whenever the sets
{(
f(t,x,u),L(t,x,u)

)
: u ∈ U(t)

}
are compact

and to identify a more complex relaxed problem when they are neither
closed nor bounded, see Section 5 below for more details. In this way
we extend the relaxation theorem from [14] to the case of unbounded sets{(
f(t,x,u),L(t,x,u)

)
: u ∈ U(t)

}
.

For the finite horizon problems, one can find in the literature some relax-
ation theorems concerned with a single relaxed solution x(·) of a differential
inclusion whose right-hand side has compact integrably bounded values on
a tubular neighborhood of x(·), cf. [19, 45]. In our finite horizon relaxation
Theorem 5.3 below we show that for control systems such assumptions can
be skipped. Even though Theorem 5.3 concerns all the relaxed trajecto-
ries, its proof can be localized to a tubular neighborhood of a fixed relaxed
trajectory. Then assumptions can be localized as well without requiring
compactness and integral boundedness imposed in [19, 45]. In this respect,
Theorem 5.3 would imply a new result also in the setting of [19, 45].

The situation changes drastically, even in the finite horizon framework,
when state constraints are present. For instance the original control system
may not have any feasible trajectories, while the relaxed system does. Then,
in order to get relaxation theorems, one needs the so called relaxed inward
pointing condition (IPCrel) linking f with tangents to K at the bound-
ary points of K, that we recall in Section 6. This condition expresses the
compatibility of dynamics with state constraints. It was introduced in [26]
to derive the normal maximum principle and the sensitivity relations for a
state-constrained Mayer problem with locally Lipschitz cost function.

In Section 8 we show that it can be exploited as well to get similar results
for the state constrained infinite horizon problem, provided V (t, ·) is locally
Lipschitz on K for all large t. (IPCrel) is an alternative to the inward point-
ing condition from [41] to prove the so called Neighboring Feasible Trajectory
theorem, when dynamics depend on time. The inward pointing condition is
much simpler than (IPCrel), but, unfortunately, is not convenient to work
with data depending measurably (or even continuously) on time and state
constraints having nonsmooth boundaries. It is not difficult to realize that
under assumptions imposed in [41], the inward pointing condition is equiv-
alent to (IPCrel).

Recall that for problems without state constraints the sensitivity relation
p(t) = Vx(t, x̄(t)) has a significant economic interpretation (see for instance
[1], [42]): the co-state p (of the maximum principle) is the shadow price
describing the contribution to the value function of a unit increase of capital
x.

When the value function is merely locally Lipschitz on R+×K, the sen-
sitivity relation is more complex and takes the form

(−H(t, x̄(t), q(t)), q(t)) ∈ ∂V (t, x̄(t)),

where q is the adjoint state (of bounded variation) and ∂V denotes the gener-
alized gradient of V (defined in Section 8 taking into consideration the state
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constraints). In Section 8 we derive the maximum principle augmented by
the above sensitivity relation for a state constrained infinite horizon problem.
An important future of the obtained here necessary optimality condition is
its normality.

Local Lipschitz continuity of V for infinite horizon problems under state
constraints was recently investigated in [10]. On the other hand, uniqueness
of upper semicontinuous solutions of the associated Hamilton-Jacobi equa-
tion was studied in [11]. In Section 9 we show uniqueness of locally Lipschitz
solutions of the Hamilton-Jacobi equation by arguments simpler than those
in [11].

The outline of the paper is as follows. In Section 2, we recall some defini-
tions from set-valued and nonsmooth analysis. In Sections 3, we introduce
the value function V and basic assumptions that imply in Section 4 the up-
per semicontinuity of V . In Sections 5 and 6 we discuss the relaxation results
for problems without and with state constraints, respectively, and in Section
7 we describe the link between the finite and infinite horizon problems. Sec-
tion 8 is devoted to the maximum principle and sensitivity relations, while
Section 9 deals with the uniqueness of solutions to the Hamilton-Jacobi
equation.

2. Preliminaries and notations

Denote by L1
loc(R+;R+) the set of all locally integrable function ψ : R+→

R+. For any ψ ∈ L1
loc(R+;R+) and σ > 0 define

θψ(σ) = sup
{∫

J
ψ(τ)dτ : J ⊂ R+,M(J)6 σ

}
,

whereM(J) stands for the Lebesgue measure of J . Denote by Lloc the sub-
set of all ψ ∈L1

loc(R+;R+) such that limσ→0 θψ(σ) = 0. NotationW 1,1
loc (R+;Rn)

stands for the set of locally absolutely continuous functions on R+. For
ψ : R+→ R and t0 ≥ 0 define∫ ∞

t0
ψ(t)dt= lim

T→+∞

∫ T

t0
ψ(t)dt,

provided the above limit does exist.
Let X be a normed space, B(x,R) be the closed ball in X centered at

x ∈ X with radius R > 0 and set B := B(0,1). For a nonempty subset
C ⊂X we denote its interior by int(C), its boundary by bd(C), its convex
hull by coC, its closed convex hull by coC, and the distance from x ∈X to
C by dC(x) := inf {|x−y|X : y ∈ C}. If X = Rn, the negative polar cone to
C is given by C− = {p ∈ Rn : 〈p,c〉6 0 ∀c ∈ C}, where 〈 ·, ·〉 is the scalar
product in Rn. The unit sphere in Rn is denoted by Sn−1.

Let T ⊂Rk be nonempty and {Aτ}τ∈T be a family of subsets of Rn. The
upper and lower limits, in the Péano-Kuratowski sense, of Aτ at τ0 ∈ T are
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the closed sets defined respectively by
Limsupτ→T τ0Aτ = {v ∈ Rn : liminfτ→T τ0 dAτ (v) = 0} ,
Liminfτ→T τ0Aτ =

{
v ∈ Rn : limsupτ→T τ0 dAτ (v) = 0

}
,

where →T stands for the convergence in T and dAτ (v) = +∞ whenever
Aτ = ∅. See for instance [8] for properties of these set limits.

Let K ⊂ Rn and x ∈ K. The contingent cone to K at x consists of all
v ∈ Rn such that for some sequences hi→ 0+, vi→ v we have x+hivi ∈K.
The limiting normal cone to a closed subset K ⊂ Rn at x ∈K is given by

NL
K(x) := Limsupy→KxTK(y)−.

It is well known that if x lies on the boundary of K, then NL
K(x) is not

reduced to zero. The Clarke tangent and normal cones to K at x are de-
fined by CK(x) =

(
NL
K(x)

)−
and NK(x) = CK(x)−, respectively. Note that

NK(x) = coNL
K(x) and set N1

K(x) :=NK(x)∩Sn−1.
For ϕ :Rn→R∪{±∞} denote by dom(ϕ) the domain of ϕ, that is the set

of all x ∈Rn such that ϕ(x) is finite and by epi(ϕ) and hyp(ϕ), respectively,
its epigraph and hypograph. For any x ∈ dom(ϕ) the upper and lower (con-
tingent) directional derivatives of ϕ at x in the direction y ∈Rn are defined
respectively by

D↓ϕ(x)y = limsupz→y,h→0+
ϕ(x+hz)−ϕ(x)

h ,

D↑ϕ(x)y = liminfz→y,h→0+
ϕ(x+hz)−ϕ(x)

h

and the Fréchet superdifferential ∂+ϕ(x) (resp. subdifferential ∂−ϕ(x)) of
ϕ at x by

p ∈ ∂+ϕ(x) ⇐⇒ limsup
y→x

ϕ(y)−ϕ(x)−〈p,y−x〉
|y−x|

≤ 0

and
p ∈ ∂−ϕ(x) ⇐⇒ liminf

y→x
ϕ(y)−ϕ(x)−〈p,y−x〉

|y−x|
≥ 0.

By [22], p ∈ ∂+ϕ(x) if and only if (−p,+1) ∈ Thyp(ϕ)(x,ϕ(x))− and p ∈
∂−ϕ(x) if and only if (p,−1) ∈ Tepi(ϕ)(x,ϕ(x))−. Furthermore,

∂+ϕ(x) = {p : 〈p,y〉 ≥D↓ϕ(x)y ∀ y ∈ Rn},
∂−ϕ(x) = {p : 〈p,y〉 ≤D↑ϕ(x)y ∀ y ∈ Rn}.

To compare with sub and superdifferentials used in the theory of viscosity
solutions, let us emphasize that the very same arguments as those of [21,
Proof of Proposition 1.1] imply the following result.

Proposition 2.1. Let ϕ : Rn→R∪{−∞} be Lebesgue measurable. For any
x ∈ dom(ϕ), a vector p ∈ ∂+ϕ(x) if and only if there exists a continuous
mapping ψ : Rn→ R such that ψ(x) = ϕ(x), ψ(y) > ϕ(y) for all y 6= x and
the Fréchet derivative of ψ at x exists and is equal to p.
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Actually, in [21] ϕ is continuous and ψ ∈ C1. However for discontinuous
mappings, in general, ψ constructed in [21] is not continuously differentiable.
A similar result can be also stated for the subdifferential ∂−ϕ(x).

Clearly, for all p ∈ Rn and q ∈ R satisfying (p,q) ∈ NL
epi(ϕ)(x,ϕ(x)) we

have q ≤ 0. Furthermore, if q < 0, then (p,q) ∈NL
epi(ϕ)(x,ϕ(x)) if and only if

(p/|q|,−1)∈NL
epi(ϕ)(x,ϕ(x)). Any p∈Rn satisfying (p,−1)∈NL

epi(ϕ)(x,ϕ(x))
is called a limiting subgradient of ϕ at x. The set of all limiting subgradients
of ϕ at x is denoted by ∂L,−ϕ(x).

Consider ϕ : Rn → R, Lipschitz around a given x ∈ Rn, and denote by
∇ϕ(·) its gradient, which, by the Rademacher theorem, exists a.e. in a
neighborhood of x. The Clarke generalized gradient of ϕ(·) at x is defined
by

∂ϕ(x) := coLimsupy→x{∇ϕ(y)}.
It is well known that ∂ϕ(x) = co∂L,−ϕ(x), see [19].

3. Value function of the infinite horizon problem

Consider the non-autonomous infinite horizon optimal control problem
(1), (2), (3) with data as described in the introduction. In particular, U(·)
is Lebesgue measurable and has closed nonempty images. Every Lebesgue
measurable u :R+→Rm satisfying u(t)∈U(t) a.e. is called a control and the
set of all controls is denoted by U . Note that to state (2) we need controls
to be defined only on [t0,+∞). However, since throughout the paper the
time interval varies, to avoid additional notations and without any loss of
generality, we consider controls defined on [0,+∞). We underline that, by
the measurable selection theorem, for any measurable selection u(t) ∈ U(t)
for t ∈ [t0,∞) we can find ũ ∈ U such that ũ= u on [t0,∞).

Assumptions (H1):
i) There exists c ∈ L1

loc(R+;R+) such that for a.e. t≥ 0,
2〈f(t,x,u),x〉 ≤ c(t)(1 + |x|2), |f(t,0,u)| ≤ c(t) ∀ x ∈ Rn, u ∈ U(t);
ii) For every R > 0, there exist cR ∈ L1

loc(R+;R+) and a modulus of
continuity ωR : R+×R+→ R+ such that for a.e. t ∈ R+, ωR(t, ·) is
increasing, limr→0+ωR(t,r) = 0 and for every u ∈ U(t) and x,y ∈
B(0,R),

|f(t,x,u)−f(t,y,u)| ≤ cR(t)|x−y|, |L(t,x,u)−L(t,y,u)| ≤ ωR(t, |x−y|);
iii) The mappings f, L are Carathéodory, that is measurable in t and

continuous in x,u ;
iv) There exists β ∈ L1

loc(R+;R+) and an increasing function φ : R+→
R+ such that for a.e. t ∈ R+,

|L(t,x,u)| ≤ β(t)φ(|x|), ∀ x ∈K, u ∈ U(t);
v) There exists S > 0 such that L(t,x,u) ≤ α(t) for a.e. t ≥ S and all

x ∈K, u ∈ U(t), where α : [S,+∞)→ R+ is integrable on [S,+∞).
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vi) For a.e. t ∈ R+ and for all x ∈ Rn the set
F (t,x) :=

{(
f(t,x,u),L(t,x,u)− r

)
: u ∈ U(t) and r ≥ 0

}
is closed and convex.

Remark 3.1.
a) In some results below (H1) i) or (vi) will be skipped.
b) Assumptions (H1) i), ii) and iii) imply that for every (t0,x0)∈R+×Rn

and u ∈ U there exists a unique solution defined on [t0,∞) of the system
(5) x′ = f(t,x,u(t))
satisfying x(t0) = x0.

c) Note that assumption (H1) i) holds true whenever

(6) ∃ θ ∈L1
loc(R+;R+), |f(t,x,u)| ≤ θ(t)(|x|+1), ∀ t∈R+, x∈Rn, u∈U(t).

d) Note that iv) and v) imply that for every feasible trajectory control
pair of (5) defined on [t0,∞) the limit limT→∞

∫ T
t0
L(t,x(t),u(t))dt does exist

and belongs to [−∞,∞).
e) Even though it may seem, at first glance, that conditions like i), ii),

iv), vi) yield compactness of sets U(t), since f(t,x, ·) is genuinely nonlinear
and merely continuous, (H1) does not imply boundedness of sets U(t).

Consider 0 ≤ a ≤ b and u ∈ U . An absolutely continuous function x :
[a,b]→ Rn satisfying x′(t) = f(t,x(t),u(t)) a.e. in [a,b] is called a solution
of (5) corresponding to the control u(·) and (x,u) is called a trajectory-
control pair of (5) on [a,b]. If moreover x(t) ∈K for all t ∈ [a,b], then such a
solution x is called feasible and (x,u) is called a feasible trajectory-control
pair on [a,b]. It may happen that for some control u(·) and (t0,x0)∈R+×K
the system (5) does not have any feasible solution satisfying x(t0) = x0. If
(x,u) : [a,∞)→ Rn×Rm is so that for every b > a, the restriction of (x,u)
to [a,b] is a trajectory-control pair of (5) on [a,b], then (x,u) is called a
trajectory-control pair on [a,∞). It is feasible, if x(t) ∈K for every t≥ a.

The function V : R+×K→R+ defined by (1), (2), (3) is called the value
function of the infinite horizon problem. If for a given (t0,x0) ∈ R+×K
no trajectory of (2), (3) does exist, we set V (t0,x0) = −∞. This choice
is dictated by the fact that, in general, V is discontinuous and, under the
(classical) assumptions (H1), it is upper semicontinuous on dom(V )⊂R+×
K, see the next section. To preserve its upper semicontinuity on R+×Rn
we set V =−∞ on (R+×Rn)\dom(V ). Clearly, under assumption (H1) iv),
if for some T ≥ 0 the set dom(V (T, ·)) 6= ∅, then dom(V (t, ·)) 6= ∅ for every
t≥ T .

Denote by x(·; t0,x0,u) the trajectory of (5) corresponding to the control u
and satisfying x(t0) = x0. By Gronwall’s lemma and (H1) i), for all (t0,x0)∈
R+×Rn,

|x(t; t0,x0,u)|2 ≤
(
|x0|2 +

∫ t

t0
c(s)ds

)
e

∫ t
t0
c(s)ds ∀ t≥ t0.
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Moreover, setting

Mt(T,r)2 =
(
r2 +

∫ T

t
c(s)ds

)
e
∫ T
t
c(s)ds ∀ T ≥ t≥ 0 , r ≥ 0,

the following holds true: for all r ≥ 0 and u ∈ U
(7) |x0| ≤ r =⇒ |x(t; t0,x0,u)| ≤Mt0(t,r) ∀ t≥ t0.
The above bound, together with the assumption (H1) ii) and the Gronwall
lemma, yield the local Lipschitz dependence of trajectories on the initial
conditions: for all r, T > 0, for every t0 ∈ [0,T ] and x0, x1 ∈B(0, r),

|x(t; t0,x1,u)−x(t; t0,x0,u)| ≤ |x1−x0|e
∫ t
t0
cMt0 (T,r)(s)ds ∀ t ∈ [t0,T ].

Given a feasible trajectory-control pair (x,u), define∫ ∞
t0

L(s,x(s),u(s))ds= lim
t→∞

∫ t

t0
L(s,x(s),u(s))ds.

We claim that (H1) iv), v) imply that the above limit does exist and belongs
to [−∞,∞). Indeed, since L(s,x,u) ≤ α(s) for a.e. s ≥ S and all x ∈ K,
u ∈ U(s), the mapping t 7→

∫ t
S(L(s,x(s),u(s))−α(s))ds is nonincreasing on

[S,∞) (with respect to t) and so it has a limit when t→∞ (possibly equal
to −∞). Since∫ t

S
(L(s,x(s),u(s))−α(s))ds=

∫ t

S
L(s,x(s),u(s))ds−

∫ t

S
α(s)ds≤ 0

and limt→∞
∫ t
S α(s)ds does exist and is finite, it follows that also the limit

limt→∞
∫ t
SL(s,x(s),u(s))ds does exist and is different from +∞. On the

other hand, by (H1) iv) the integral
∫ S
t0
L(s,x(s),u(s))ds is finite, proving

our claim.
For any (t0,x0) ∈ R+ ×K, a feasible trajectory-control pair (x̄, ū) on

[t0,∞) is called optimal for the infinite horizon problem at (t0,x0) if x̄(t0) =
x0 and for every feasible trajectory-control pair (x,u) on [t0,∞) satisfying
x(t0) = x0 we have∫ ∞

t0
L(t, x̄(t), ū(t))dt≥

∫ ∞
t0

L(t,x(t),u(t))dt.

It is not difficult to realize that if (H1) i), iv), v) are satisfied, then V
is locally bounded from the above on dom(V ) and that V takes values in
[−∞,∞).

4. Upper semicontinuity of the value function

The question of existence of optimal controls is pretty well understood.
The standard proofs rely on taking limits of maximizing subsequences of
trajectories and weak limits of their derivatives. Cesari-Olech type convexity
and upper semicontinuity assumptions are needed to justify that the limiting
trajectory is optimal. The very same arguments can be applied as well to
study the upper semicontinuity of the value function.
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Theorem 4.1. Assume (H1). Then V is upper semicontinuous, takes values
in [−∞,∞) and for every (t0,x0)∈ dom(V ), there exists a feasible trajectory-
control pair (x̄, ū) satisfying V (t0,x0) =

∫∞
t0
L(t, x̄(t), ū(t))dt.

Moreover, if

(8)
{
∃ S̄ > 0 and an integrable δ : [S̄,∞)→ R+ such that
L(t,x,u)≥−δ(t) for a.e. t > S̄, ∀ x ∈K, u ∈ U(t),

then
(9) lim

t→∞
sup

x∈dom(V (t,·))
|V (t,x)|= 0.

Proof. Assumptions (H1) iv), v) and (7) yield that V never takes value
+∞. The arguments for proving the existence of optimal solutions are well
known. We recall them because similar ones will be also exploited in the
other results of this paper.

Let (t0,x0)∈ dom(V ). Consider a maximizing sequence of feasible trajectory-
control pairs (xi,ui) satisfying xi(t0) = x0. That is

lim
i→∞

∫ ∞
t0

L(t,xi(t),ui(t))dt= V (t0,x0).

In particular, xi(t) ∈K for all t≥ t0 and i≥ 1. By (7), for every T > t0,
the restrictions of xi to [t0,T ] are equibounded.

We construct the optimal trajectory control pair (x̄, ū) of the infinite
horizon problem using the induction argument. Let R > 0 be such that for
every i,

sup
t∈[t0,t0+1]

|xi(t)| ≤R.

Then

(10) |f(t,xi(t),ui(t))| ≤ |f(t,0,ui(t))|+ |f(t,xi(t),ui(t))−f(t,0,ui(t))|
≤ c(t) + cR(t)R

Thus, (H1) iv) and the Dunford-Pettis theorem, imply that, taking a subse-
quence and keeping the same notation, we may assume that for some inte-
grable functions y : [t0, t0 + 1]→ Rn, γ : [t0, t0 + 1]→ R+, the restrictions of
(x′i(·),L(·,xi(·),ui(·))) to [t0, t0 +1] converge weakly in L1([t0, t0 +1];Rn×R)
to (y,γ). Define

zi(t) =
∫ t

t0
L(t,xi(t),ui(t))dt, ∀ t ∈ [t0, t0 + 1].

Since
xi(t) = x0 +

∫ t

t0
f(t,xi(t),ui(t))dt, ∀ t ∈ [t0, t0 + 1],

we deduce that functions (xi,zi) converge pointwise on [t0, t0 +1] when i→∞
to the function (x̄,z) : [t0, t0 + 1]→ Rn×R defined by

x̄(t) = x0 +
∫ t

t0
y(t)dt, z(t) =

∫ t

t0
γ(t)dt, ∀ t ∈ [t0, t0 + 1].
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Hence (x̄,z) is absolutely continuous on [t0, t0 + 1]. Furthermore, (7), (10),
(H1) iv) and the Ascoli-Arzelà theorem imply that (xi,zi) converge uni-
formly to (x̄,z). Moreover, at every Lebesgue point t of y(·) we have
x̄′(t) = y(t).

Observe next that, by (H1) ii), for a.e. t ∈ [t0, t0 + 1],
(x′i(t),L(t,xi(t),ui(t))) ∈ F (t,xi(t))⊂ F (t, x̄(t))+

(cR(t)|xi(t)− x̄(t)|+ωR(t, |xi(t)− x̄(t)|))B.
Let ε > 0 and i0 ≥ 1 be such that supt∈[t0,t0+1] |xi(t)− x̄(t)| ≤ ε for all i≥ i0.
The set

Fε(t, x̄(t)) := F (t, x̄(t)) + (cR(t)ε+ωR(t,ε))B
being convex and closed, also the set
Fε := {(v,w) ∈ L1([t0, t0 + 1];Rn×R) | (v(t),w(t)) ∈ Fε(t, x̄(t)) for a.e. t}

is convex and closed. Thus, by the Mazur theorem, it is weakly closed and
therefore (x̄′,γ) ∈ Fε. So

(x̄′(t),γ(t)) ∈ F (t, x̄(t)) + (cR(t)ε+ωR(t,ε))B for a.e. t ∈ [t0, t0 + 1].
By the arbitrariness of ε > 0, (x̄′(t),γ(t)) ∈ F (t, x̄(t)) for a.e. t ∈ [t0, t0 + 1].

From the measurable selection theorem [8, Theorem 8.2.10] we deduce
that there exist a control ū(·) and a measurable function r : [t0, t0 +1]→R+
such that for a.e. t ∈ [t0, t0 + 1],

x̄′(t) = f(t, x̄(t), ū(t)), γ(t) = L(t, x̄(t), ū(t))− r(t).
Since xi(t)∈K for all t≥ t0 and K is closed we know that x̄([t0, t0 +1])⊂K.
Furthermore,

limi→∞
∫ t0+1
t0

L(t,xi(t),ui(t))dt =
∫ t0+1
t0

(L(t, x̄(t), ū(t))− r(t))dt
≤
∫ t0+1
t0

L(t, x̄(t), ū(t)))dt.

We extend next (x̄, ū) on [t0,∞). Set (x̄1(t), ū1(t)) := (x̄(t), ū(t)) for t ∈
[t0, t0 + 1]. Let us assume that for some k ≥ 1 we have constructed a sub-
sequence {(xkij ,u

k
ij

)}j of {(xi,ui)}i, a trajectory control pair (x̄k, ūk) on
[t0, t0 + k] and an absolutely continuous function zk ∈ W 1,1([t0, t0 + k];R)
such that x̄k([t0, t0 +k])⊂K and for

zkij (t) :=
∫ t

t0
L(s,xkij (s),u

k
ij (s))ds, ∀ t ∈ [t0, t0 +k]

the following holds true :
(xkij ,z

k
ij

) converge uniformly on [t0, t0 + k] to (x̄k,zk), ((xkij )
′,(zkij )

′) con-
verge weakly in L1([t0, t0 +k];Rn×R) to ((x̄k)′,(zk)′) and if k ≥ 2

(x̄k(t), ūk(t),zk(t)) = (x̄k−1(t), ūk−1(t),zk−1(t)) ∀ t ∈ [t0, t0 +k−1].
Consider the interval [t0, t0 + k+ 1]. By the same arguments, we find a
subsequence {(xkij` ,u

k
ij`
,zkij`

)}` of {(xkij ,u
k
ij
,zkij )}j , a trajectory-control pair

(x̄k+1, ūk+1) on [t0, t0 + k+ 1] and an absolutely continuous zk+1 : [t0, t0 +
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k+ 1] → R, such that (xkij` ,z
k
ij`

) converge uniformly on [t0, t0 + k+ 1] to
(x̄k+1,zk+1), ((xkij` )

′,(zkij` )
′) converge weakly in L1([t0, t0 +k+1];Rn×R) to

((x̄k+1)′,(zk+1)′),

lim
`→∞

∫ t0+k+1

t0
L(t,xkij` (t),u

k
ij`

(t))dt≤
∫ t0+k+1

t0
L(t, x̄k+1(t), ūk+1(t))dt

and x̄k+1([t0, t0 +k+ 1])⊂K,

(x̄k+1(t), ūk+1(t),zk+1(t)) = (x̄k(t), ūk(t),zk(t)) ∀ t ∈ [t0, t0 +k].

Rename (xkij` ,u
k
ij`

) by (xk+1
ij

,uk+1
ij

) and set (x̄(t), ū(t)) = (x̄k+1(t), ūk+1(t))
for t ∈ [t0, t0 +k+1]. Applying the induction argument with respect to k we
obtain a trajectory-control pair (x̄, ū) defined on [t0,∞).

To show that it is optimal, fix ε > 0. By H1) v) for all large T and for
every feasible trajectory-control pair (x,u) on [t0,∞),∫ ∞

T
L(s,x(s),u(s))ds≤ ε.

Consequently for any fixed sufficiently large k, using the same notation as
before, we get

lim
j→∞

∫ ∞
t0

L(t,xkij (t),u
k
ij (t))dt≤ lim

j→∞

∫ t0+k

t0
L(t,xkij (t),u

k
ij (t))dt+ε

≤
∫ t0+k

t0
L(t, x̄(t), ū(t))dt+ε.

We proved that for every ε > 0 and all large k,

V (t0,x0)≤
∫ t0+k

t0
L(t, x̄(t), ū(t))dt+ε

Taking the limit when k→∞ we obtain

V (t0,x0)≤
∫ ∞
t0

L(t, x̄(t), ū(t))dt+ε.

Since ε > 0 is arbitrary, this inequality implies that (x̄, ū) is optimal.
To prove the upper semicontinuity of V , consider a sequence (ti0,xi0) ∈

R+×K converging to some (t0,x0) when i→∞. We have to show that
limsupi→∞V (ti0,xi0) ≤ V (t0,x0). If for all large i, V (ti0,xi0) = −∞, then we
are done. So it is enough to consider the case when (ti0,xi0) ∈ dom(V ) for all
i.

Let (xi,ui) be an optimal trajectory-control pair corresponding to the
initial condition (ti0,xi0). If ti0 > t0, then we extend xi on [t0, ti0] by setting
xi(s) = xi0 for s ∈ [t0, ti0]. Using exactly the same arguments as before we
construct a trajectory-control pair (x̄, ū) such that x̄(t0) = x0 and for every
ε > 0 and all large k,

limsup
i→∞

∫ ∞
ti

L(t,xi(t),ui(t))dt≤
∫ t0+k

t0
L(t, x̄(t), ū(t))dt+ε.
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Taking the limit when k→∞ and using that ε is arbitrary, the upper semi-
continuity of V at (t0,x0) follows.

Suppose next that (8) is satisfied. Thus, if t is sufficiently large and
xt ∈ dom(V (t, ·)), then |V (t,xt))| ≤

∫∞
t (α(s) + δ(s))ds. Then (9) follows

from the equality limt→∞
∫∞
t (α(s) + δ(s))ds= 0.

�

In the above proof we needed assumption (H1) i) to deduce (7). A dif-
ferent assumption involving bounds on the growth of |f | with respect to L
is convenient as well. Its advantage lies in the fact that we do not request
anymore the sets f(t,x,U(t)) to be bounded.

Theorem 4.2. Assume (H1) ii)-vi) and (8). If there exist c > 0, r > 0 and
θ ∈ L1

loc(R+;R+) such that for a.e. t≥ 0,
(11) |f(t,x,u)|1+r ≤ θ(t) + cL(t,x,u) ∀ x ∈ Rn, u ∈ U(t),
then (9) holds true and for every (t0,x0) ∈ dom(V ), there exists a feasible
trajectory-control pair (x̄, ū) satisfying V (t0,x0) =

∫∞
t0
L(t, x̄(t), ū(t))dt.

Furthermore, if V is locally bounded from the above, then it is upper
semicontinuous.

Proof. Conclusion (9) follows as in the proof of Theorem 4.1. Let (t0,x0) ∈
dom(V ). Consider a maximizing sequence of feasible trajectory-control pairs
(xi,ui) satisfying xi(t0) = x0. By our assumptions, for a.e. t ≥ t0 and all
i≥ 1,

|f(t,xi(t),ui(t))|1+r ≤ θ(t) + cL(t,xi(t),ui(t)).
Hence for every t≥ t0,

sup
i≥1

∫ t

t0
|f(s,xi(s),ui(s))|1+rds≤ sup

i≥1

∫ t

t0
(θ(s) + cL(s,xi(s),ui(s)))ds.

Observe next that there exists M > 0 such that for all large t > t0 and every
i, ∫ t

t0
L(s,xi(s),ui(s))ds≤

∫ ∞
t0

L(s,xi(s),ui(s))ds+
∫ ∞
t

δ(s)ds <M.

Consequently {f(·,xi(·),ui(·))}i is bounded in L1+r([t0, t];Rn) and therefore
it is also bounded in L1+r([t0, t0 + 1];Rn). Since L1+r([t0, t0 + 1];Rn) is re-
flexive, taking a subsequence and keeping the same notation, we may assume
that for some integrable function y : [t0, t0 +1]→Rn, the restrictions of x′i(·)
to [t0, t0 + 1] converge weakly in L1+r([t0, t0 + 1];Rn) to y.

Set p= (1+ r)/r. By the Hölder inequality, for any i and for all t0 ≤ a <
b≤ t0 + 1,

|xi(b)−xi(a)| ≤ (b−a)
1
p

(∫ b

a
|f(s,xi(s),ui(s))|1+rds

) 1
1+r

.

Therefore {xi}i are equicontinuous on [t0, t0 + 1]. Starting at this point
the same arguments as those in the proof of Theorem 4.1 can be applied to
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get the existence of an optimal solution at the initial condition (t0,x0). The
upper semicontinuity of V can be proved in a similar way using that V is
locally bounded from the above.

�

5. Relaxation in the absence of state constraints

In the previous section we have shown that the value function is upper
semicontinuous and that the optimal trajectories do exist assuming that the
sets F (t,x) are closed and convex. If the convexity assumption (H1) vi)
is not imposed, then, in the literature, one usually considers the so-called
relaxed problems.

In this section we restrict our attention to the case when K = Rn, that is
without state constraints. Consider the relaxed infinite horizon problem

(12) V rel(t0,x0) = sup
∫ ∞
t0

(
n∑
i=0

λi(t)L(t,x(t),ui(t))
)
dt

over all trajectory-control pairs of
(13){

x′(t) =
∑n
i=0λi(t)f(t,x(t),ui(t)), ui(t) ∈ U(t), λi(t)≥ 0,

∑n
i=0λi(t) = 1

x(t0) = x0,

where ui(·), λi(·) are Lebesgue measurable on R+ for i = 0, ...,n. Then
V rel ≥ V. For v = (u0, ...,un), Λ = (λ0, ...,λn) define

f̂(t,x,v,Λ) =
n∑
i=0

λif(t,x,ui), L̂(t,x,v,Λ) =
n∑
i=0

λiL(t,x,ui)

and
Û(t) := U(t)× ...×U(t)︸ ︷︷ ︸

n+1

×{(λ0, ...,λn) |λi ≥ 0 ∀ i, Σn
i=0λi = 1}.

Thus the relaxed problem is of type (1) - (2) with f, L replaced by f̂ , L̂ and
U(t) replaced by Û(t).

Our first relaxation result addresses a case where the celebrated Filippov-
Ważewski theorem can be applied.

Theorem 5.1. Assume (H1) i)− v) with ωR(t,r) = c̄R(t)r, where for all
R > 0, c̄R : R+→ R+ is locally integrable, and that for a.e. t ∈ R+ and all
x ∈ Rn, the set

G(t,x) :=
{(
f(t,x,u),L(t,x,u)

)
: u ∈ U(t)

}
is compact. Further assume that (8) is satisfied.

Then V rel = V on R+×Rn and for every (t0,x0) ∈ R+×Rn, there exists
(x̄(·), v̄(·) = (ū0(·), ..., ūn(·)), Λ̄(·) = (λ̄0(·), ..., λ̄n(·))) satisfying (13) such that

V rel(t0,x0) =
∫ ∞
t0

L̂(t, x̄(t), v̄(t), Λ̄(t))dt.
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Furthermore, (9) holds true.
In particular, if a trajectory-control pair (x̄, ū) is optimal for (1), (2),

then it is also optimal for the relaxed problem (12), (13).

Remark 5.2.
a) If the set U(t) is compact, then so is G(t,x).
b) In [14] a similar relaxation result was proved under slightly different

assumptions. It can be shown that (8) and (H1) i)−v) imply that V rel(t, ·)
is continuous and so the proof could be done using the same scheme as in
[14]. However, as we show below, under our assumptions it can be simplified
avoiding the use of V rel.

Proof. It is not difficult to realize that f̂ , L̂, Û satisfy (H1). Let (t0,x0) ∈
R+×Rn. Since K = Rn, Theorem 4.1 and (8) imply that V rel 6= ±∞. By
Theorem 4.1 applied to f̂ , L̂, Û , there exists (x̄(·), v̄(·), Λ̄(·)) satisfying (13)
such that

V rel(t0,x0) =
∫ ∞
t0

L̂(t, x̄(t), v̄(t), Λ̄(t))dt.

Fix ε > 0 and let k >max{t0,S, S̄} be so that
∫∞
k (α(t) + δ(t))dt≤ ε/3.

Then

V rel(t0,x0) =
∫∞
k L̂(t, x̄(t), v̄(t), Λ̄(t))dt+

∫ k
t0
L̂(t, x̄(t), v̄(t), Λ̄(t))dt

≤ ε
3 +

∫ k
t0
L̂(t, x̄(t), v̄(t), Λ̄(t))dt.

By the Filippov-Ważewski relaxation theorem and the measurable selection
theorem, see for instance [24], there exists uε ∈ U such that the solution xε
of the system

x′ = f(t,x,uε(t)), x(t0) = x0

satisfies ∣∣∣∣∣
∫ k

t0
L̂(t, x̄(t), v̄(t), Λ̄(t))dt−

∫ k

t0
L(t,xε(t),uε(t))dt

∣∣∣∣∣< ε

3 .

Consider any trajectory-control pair (x,u) of (5) on [k,∞) with x(k) = xε(k).
Thus ∫ ∞

k
L(t,x(t),u(t))dt≥

∫ ∞
k

(−δ(t))dt

We extend the trajectory-control pair (xε,uε) on the time interval [k,∞) by
setting (xε(s),uε(s)) = (x(s),u(s)) for s > k. Hence

V rel(t0,x0) ≤ 2ε
3 +

∫ k
t0
L(t,xε(t),uε(t))dt

≤ 2ε
3 +

∫∞
t0
L(t,xε(t),uε(t))dt+

∫∞
k δ(t)dt≤ ε+V (t0,x0).

This yields V rel(t0,x0)≤ V (t0,x0)+ε. Since ε > 0 and (t0,x0) are arbitrary,
we get V rel = V . �
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The above result has a restrictive assumption of compactness of sets
G(t,x) because in the proof we used the Filippov-Ważewski relaxation the-
orem dealing with compact valued maps. In the case of control systems this
theorem can be stated without such compactness assumption.
Theorem 5.3 (Finite horizon relaxation theorem). Let T > 0, U : [0,T ] ;
Rm be measurable, with closed nonempty images, g : [0,T ]×Rn×Rm→ Rn
be a Carathéodory function such that for every R > 0, there exists cR ∈
L1([0,T ];R+) satisfying for a.e. t ∈ [0,T ],

|g(t,x,u)−g(t,y,u)| ≤ cR(t)|x−y| ∀x,y ∈B(0,R), u ∈ U(t).
Further assume that ψ(t) := infu∈U(t) |g(t,0,u)| is integrable on [0,T ].

Then for any ε> 0 and any absolutely continuous x : [0,T ]→Rn satisfying
(14) x′(t) ∈ cog(t,x(t),U(t)) a.e. in [0,T ],
there exists a measurable selection u(t)∈U(t) for t∈ [0,T ] and an absolutely
continuous function xε : [0,T ]→ Rn such that

x′ε(t) = g(t,xε(t),u(t)) a.e. in [0,T ], xε(0) = x(0)
and maxt∈[0,T ] |xε(t)−x(t)|< ε.
Remark 5.4. We would like to underline that in the above theorem the
sets g(t,x,U(t)) are neither closed nor bounded.
Proof. We first observe that g(t,0,U(t))∩B(0,ψ(t) + ε) 6= ∅ for every ε > 0
and every t ∈ [0,T ]. By the inverse image theorem [8, Theorem 8.2.9],
there exists a measurable selection u0(t) ∈ U(t) for t ∈ [0,T ] such that
|g(t,0,u0(t))| ≤ ψ(t) + ε a.e. Thus the function k : [0,T ]→ R+ defined by
k(t) := |g(t,0,u0(t))| is integrable. By the Castaing representation theorem,
see for instance [8], there exist measurable selections ui(t) ∈ U(t), i ≥ 1 for
t ∈ [0,T ] such that U(t) =

⋃
i≥1{ui(t)} for every t ∈ [0,T ]. Fix an integer

j ≥ 1 and define

uij(t) =
{
ui(t) if |g(t,0,ui(t))| ≤ j ·k(t)
u0(t) otherwise,

Uj(t) = {u0(t)}∪
⋃

1≤i≤j
{uij(t)}.

Observe that for every t, the family of finite sets Uj(t) is increasing (with
respect to j) and U(t) =

⋃
j≥1Uj(t). By the continuity of g(t,x, ·), for a.e.

t ∈ [0,T ] and all x ∈ Rn,⋃
j≥1

cog(t,x,Uj(t)) = cog(t,x,U(t)).

Notice that for every t, the set g(t,x,Uj(t)) is compact. Let x(·) ∈
W 1,1([0,T ];Rn) satisfy (14). Then

γj(t) := dcog(t,x(t),Uj(t))(x′(t))≤ |x′(t)−g(t,0,u0(t))|+ cr(t)|x(t)|
≤ |x′(t)|+ |g(t,0,u0(t))|+ cr(t)|x(t)|,
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where r > 0 is so that maxt∈[0,T ] |x(t)| < r. Hence {γj}j≥1 are bounded by
an integrable function. Moreover limj→∞ γj(t) = 0 for a.e. t ∈ [0,T ]. Let

tj = max
{
t ∈ [0,T ] : e

∫ T
0 c2r(s)ds

∫ t

0
γj(s)ds≤ r

}
.

Since
∫ T

0 γj(s)ds converge to zero when j→∞, we deduce that tj =T for all j
larger than some j0. By the Filippov theorem, see for instance [24, Theorem
1.2] and the remark following it, for every j ≥ j0, there exists an absolutely
continuous function xj : [0,T ]→Rn such that x′j(t) ∈ cog(t,xj(t),Uj(t)) a.e.
in [0,T ], xj(0) = x(0) and

sup
t∈[0,T ]

|xj(t)−x(t)| ≤ e
∫ T

0 c2r(s)ds
∫ T

0
γj(s)ds.

Let ε > 0 and consider j ≥ j0 such that e
∫ T

0 c2r(s)ds ∫ T
0 γj(s)ds < ε

2 . By the
Filippov-Ważewski relaxation theorem there exists an absolutely continuous
function xε : [0,T ]→ Rn such that

x′ε(t) ∈ g(t,xε(t),Uj(t)) a.e. in [0,T ], xε(0) = x(0)

and supt∈[0,T ] |xε(t)−xj(t)|< ε/2. By the measurable selection theorem we
can find a measurable selection uε(t) ∈ Uj(t) such that for a.e. t ∈ [0,T ] we
have x′ε(t) = g(t,xε(t),uε(t)). Since

sup
t∈[0,T ]

|xε(t)−x(t)| ≤ sup
t∈[0,T ]

(|xj(t)−x(t)|+ |xε(t)−xj(t)|)< ε,

the proof is complete.
�

We next apply the above result to the infinite horizon relaxation prob-
lem with possibly unbounded and not necessarily closed sets f(t,x,U(t)).
Theorems 5.5 and 5.7 below are new.

Theorem 5.5. Assume (H1) ii)− v) with ωR(t,r) = c̄R(t)r, where for all
R > 0, c̄R : R+→ R+ is locally integrable, and that for some T0 > 0 and all
t0 ≥ T0, x0 ∈ Rn there exists a trajectory of (2) defined on [t0,∞). Further
assume that (8) holds true and that the function

ψ(t) := inf
{
|f(t,0,u)|+ |L(t,0,u)| : u ∈ U(t)

}
is locally integrable on R+. Then (9) is satisfied and V rel = V .

Remark 5.6. The assumption that for some T0 > 0 and all t0 ≥ T0, x0 ∈Rn
there exists a trajectory of (2) defined on [t0,∞) holds true, for instance,
whenever the function ψ(·) is locally integrable on R+ and there exists T0 > 0
such that cR(t) do not depend on R for all t ≥ T0. Indeed, by the proof of
Theorem 5.3, we know that there exists a measurable selection u0(t) ∈ U(t)
such that |f(t,0,u0(t))| ≤ ψ(t) + 1 for every t ∈ R+. Furthermore, setting
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c(t) = cR(t) for t ≥ T0 we obtain |f(t,x,u0(t))| ≤ ψ(t) + 1 + c(t)|x|. Given
t0 ≥ T0, x0 ∈ Rn, it is enough to consider the solution of

x′ = f(t,x,u0(t)), x(t0) = x0.

Proof. (of Theorem 5.5). Clearly V ≤ V rel. Therefore, if V rel(t0,x0) =−∞,
then V (t0,x0) = −∞. We first show that for every (t0,x0) ∈ dom(V rel) we
have V rel(t0,x0)≤ V (t0,x0). Fix (t0,x0) ∈ dom(V rel), ε > 0 and consider a
trajectory-control pair (x,v,Λ) of the relaxed system satisfying V rel(t0,x0)≤∫∞
t0
L̂(t,x(t),v(t),Λ(t))dt+ ε

4 .
By our assumptions, for every sufficiently large k > 0 and any trajectory-

control pair (x̃, ũ) defined on [k,∞), we have∫ ∞
k
|L(t, x̃(t), ũ(t))|dt≤ ε

4 ,
∫ ∞
k
|L̂(t,x(t),v(t),Λ(t))|dt≤ ε

4 .

By Theorem 5.3 applied to the function g(t,x,u) = (f(t,x,u),L(t,x,u))
and the time interval [t0,k] with k > t0, there exists a trajectory-control pair
(xε,uε) of the control system (2) defined on [t0,k] such that∣∣∣∣∣

∫ k

t0
L̂(t,x(t),v(t),Λ(t))dt−

∫ k

t0
L(t,xε(t),uε(t))dt

∣∣∣∣∣< ε

4 .

Consider k > 0 sufficiently large and a trajectory-control pair (x,u) of (5)
defined on [k,∞) and satisfying x(k) = xε(k). Set (xε(t),uε(t)) = (x(t),u(t))
for t > k. Then
V rel(t0,x0)≤

∫∞
t0
L̂(t,x(t),v(t),Λ(t))dt+ ε

4 ≤
∫ k
t0
L̂(t,x(t),v(t),Λ(t))dt+ ε

2

≤
∫ k
t0
L(t,xε(t),uε(t))dt+ 3ε

4 ≤
∫∞
t0
L(t,xε(t),uε(t))dt+ε≤ V (t0,x0) +ε.

Hence V rel(t0,x0)≤ V (t0,x0), by the arbitrariness of ε > 0.
It remains to consider the case V rel(t0,x0) = +∞. Then there exist

trajectory-control pairs (xi,vi,Λi) of the relaxed problem such that

lim
i→∞

∫ ∞
t0

L̂(t,xi(t),vi(t),Λi(t))dt= +∞.

Applying the same arguments as before, for every k > 0 and ε > 0, we
can find trajectory-control pairs (xiε,uiε) of (5) defined on [t0,∞), satisfying
xiε(t0) = x0 and∣∣∣∣∣

∫ k

t0
L̂(t,xi(t),vi(t),Λi(t))dt−

∫ k

t0
L(t,xiε(t),uiε(t))dt

∣∣∣∣∣< ε

3 .

Moreover, for k > 0 large enough and every i we have∫ ∞
k
|L̂(t,xi(t),vi(t),Λi(t))|dt < ε

3 ,
∫ ∞
k
|L(t,xiε(t),uiε(t))|dt <

ε

3 .

Combining the above inequalities we get∫ ∞
t0

L̂(t,xi(t),vi(t),Λi(t))dt <
∫ ∞
t0

L(t,xiε(t),uiε(t))dt+ε.
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Hence
lim
i→∞

∫ ∞
t0

L(t,xiε(t),uiε(t))dt= +∞

and therefore V (t0,x0) = +∞. �

Finally we would like to observe that, in general, when the sets G(t,x) are
not compact, the sets coG(t,x) may be not closed. For this reason optimal
solutions of the relaxed problem (12), (13) may not exist. To get the exis-
tence, without changing the value function, the correct relaxed problem in
the case of unbounded, not necessarily closed sets G(t,x), takes the following
less familiar form. Define

V
rel(t0,x0) = sup

∫ ∞
t0

`(t)dt

over all x ∈W 1,1
loc ([t0,∞);Rn) and ` ∈ L1

loc([t0,∞);R) satisfying

(15)
{

(x′(t), `(t)) ∈ coG(t,x(t)) a.e. in [t0,∞)
x(t0) = x0.

Such a pair (x,`) will be called below a solution of (15). In the above we set
V
rel(t0,x0) =−∞ if (15) does not have solutions defined on [t0,∞).

Theorem 5.7. Under all the assumptions of Theorem 5.5 suppose that there
exist c > 0, r > 0 and θ ∈L1

loc([0,∞);R+) such that (11) holds true. Then for
every (t0,x0)∈ dom(V rel), there exists a solution (x̄(·), ¯̀(·)) of (15) satisfying

(16) V
rel(t0,x0) =

∫ ∞
t0

¯̀(t)dt.

Furthermore, V rel = V and (9) holds true. Moreover, if V is locally bounded
from the above, then it is upper semicontinuous.

Remark 5.8. Theorem 5.7 allows to avoid assumption (H1) vi) to claim
that V is upper semicontinuous and satisfies (9).

Proof. By our assumptions, (f̂ , L̂, Û) satisfy (11). Thus for every (y,`) ∈
coG(t,x) we have |y|1+r ≤ θ(t) + c`. Then the same inequality holds true
also for any (y,`) ∈ coG(t,x).

The same arguments as those in the proof of Theorem 4.2 imply (9)
and that for every (t0,x0) ∈ dom(V rel), there exists a solution (x̄(·), ¯̀(·)) of
(15) satisfying (16). Also, as before, if V rel is locally bounded from the
above, then it is upper semicontinuous. It remains to show that V rel = V .
By Theorem 5.5 it is sufficient to verify that V rel = V rel. Fix (t0,x0) ∈
R+×Rn. If V rel(t0,x0) = −∞, then also V rel(t0,x0) = −∞. Assume next
that (t0,x0) ∈ dom(V rel) and consider (x̄(·), ¯̀(·)) solving the inclusion (15)
and satisfying (16). By the Castaing representation theorem there exist
measurable selections ui(t) ∈ U(t), i ≥ 1 defined on R+ such that U(t) =⋃
i≥1{ui(t)} for every t≥ 0. Consider u0 ∈ U such that the function defined
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by k(t) := |f(t,0,u0(t))|+ |L(t,0,u0(t))| is locally integrable on R+. Let the
sets Uj(t) be defined in the same way as in the proof of Theorem 5.3 for
g = (f,L).

Then for a.e. t≥ t0

(x̄′(t), ¯̀(t)) ∈
⋃
j≥1

co{(f(t, x̄(t),u),L(t, x̄(t),u)) : u ∈ Uj(t)}.

Define
γj(t) := dco{(f(t,x̄(t),u),L(t,x̄(t),u)) :u∈Uj(t)}(x̄

′(t), ¯̀(t))

and observe that for a.e. t≥ t0 we have limj→∞ γj(t) = 0.
Fix ε > 0. By our assumptions there exists τ > T0 such that for every j

and any solution (x,`) of the inclusion

(17) (x′(t), `(t)) ∈ co{(f(t,x(t),u),L(t,x(t),u)) : u ∈ Uj(t)} for a.e. t≥ t0

we have
∫∞
τ |`(t)|dt < ε/3 and

∫∞
τ |¯̀(t)|dt < ε/3.

Then, as in the proof of Theorem 5.3 applied with T = τ and the initial
time t0 instead of zero, it follows that for every sufficiently large j there
exist an absolutely continuous xj : [t0, τ ]→Rn and `j ∈ L1([t0, τ ];R) solving
(17) on [t0, τ ] and satisfying∣∣∣∣∫ τ

t0
`j(t)dt−

∫ τ

t0

¯̀(t)dt
∣∣∣∣< ε

3 .

Consider any trajectory-control pair (x,u) of (2) with t0 replaced by τ and x0
by xj(τ). We extend the trajectory-control pair (xj ,uj) on the time interval
(τ,∞) by the pair (x,u) and set `j(t) = L(t,x(t),u(t)) for all t > τ . Hence

V
rel(t0,x0)<

∫ τ

t0

¯̀(t)dt+ ε

3 <
∫ τ

t0
`j(t)dt+

2ε
3 <

∫ ∞
t0

`j(t)dt+ε.

By the measurable selection theorem, any solution of (17) satisfies the re-
laxed system (13) for some measurable {(ui,λi)}ni=0. Therefore

V
rel(t0,x0)≤ V rel(t0,x0) +ε.

Hence, by the arbitrariness of ε > 0, we get V rel(t0,x0)≤ V rel(t0,x0).
It remains to consider the case V rel(t0,x0) = +∞. Then there exist (x̄s, ¯̀s)

solving (15) such that lims→∞
∫∞
t0

¯̀s(t)dt= +∞. By the same arguments as
above we can find (xs,vs,Λs) satisfying (13) such that

lim
s→∞

∫ ∞
t0

n∑
i=0

λsi (t)L(t,xs(t),usi (t))dt= +∞.

Hence V (t0,x0) = +∞. This completes the proof. �
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6. Relaxation in the presence of state constraints

In this section we consider the problem (12), (13), (3).
When K 6= Rn, in general, it may happen that dom(V ) is strictly con-

tained in dom(V rel) even under all the assumptions of the previous section.
In fact one needs to impose some geometric restrictions on f on the bound-
ary of K, the so called Relaxed Inward Pointing Condition, to obtain the
relaxation theorem.

We denote by (IPCrel) the following assumption:
∀ t ∈ [0,∞),∀ x ∈ bd(K),
∀v ∈ Limsup(s,y)→(t,x) f(s,y,U(s)) with maxn∈N1

K(x)〈n,v〉 ≥ 0,
∃w ∈ Liminf(s,y)→(t,x) cof(s,y,U(s)) with maxn∈N1

K(x)〈n,w−v〉< 0.

Remark 6.1. If f is continuous and the set-valued map U(·) is continuous
and has compact nonempty images, then the above condition takes a simpler
form: ∀ t ∈ [0,∞),∀ x ∈ bd(K), ∀u ∈ U(t)with maxn∈N1

K(x)〈n,f(t,x,u)〉 ≥ 0,
∃w ∈ cof(t,x,U(t))with maxn∈N1

K(x)〈n,w−f(t,x,u)〉< 0.

Theorem 6.2. Under all the assumptions of Theorem 5.1 with (H1) i)
replaced by (6), suppose (IPCrel) and that f, L are locally bounded on R+×
bd(K).

Then dom(V rel) =R+×K, V rel =V and for every (t0,x0)∈R+×K, there
exists (x̄(·), v̄(·) = (ū0(·), ..., ūn(·)), Λ̄(·) = (λ̄0(·), ..., λ̄n(·))) satisfying (13) such
that x̄(t) ∈K for every t≥ t0 and

V rel(t0,x0) =
∫ ∞
t0

L̂(t, x̄(t), v̄(t), Λ̄(t))dt.

Remark 6.3. We replaced (H1) i) by (6) just to fit the assumptions of
[26]. However in [26] assumption (6) is needed only to get uniform bounds
on trajectories of a differential inclusion on a finite time interval. By what
precedes we know that such bounds follow also from (H1) i). Hence the
above result is valid as well with assumption (H1) i) instead of (6).

Proof. From [26, Theorem 3.3] applied with α = 0, β = 0 and finite time
intervals [t0 +k,t0 +k+ 1] instead of [0,1], we deduce, using the induction
argument, that for every (t0,x0) ∈ R+×K, there exists a feasible solution
of (13) defined on [t0,∞). Hence, in the same way as before, dom(V rel) =
R+×K. Since f̂ , L̂, Û satisfy (H1) the third statement follows from Theorem
4.1. To prove the second one, observe that V rel ≥ V. Let (t0,x0) ∈ R+×K
and (x̄(·), v̄(·), Λ̄(·)) be optimal for the relaxed problem. Fix any ε > 0 and
T > t0 such that

∫∞
T (α(s) + δ(s))ds≤ ε/2. Then

V rel(t0,x0)≤ ε

2 +
∫ T

t0
L̂(t, x̄(t), v̄(t), Λ̄(t))dt.
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From [26, Corollary 3.4] we deduce that there exists a trajectory-control
pair (xε,uε) of (2), (3) defined on [t0,T ] such that∣∣∣∣∣

∫ T

t0
L̂(t, x̄(t), v̄(t), Λ̄(t))dt−

∫ T

t0
L(t,xε(t),uε(t))dt

∣∣∣∣∣< ε

2 .

Applying [26, Theorem 3.3 and Corollary 3.4] and an induction argument,
we extend the feasible trajectory-control pair (xε,uε) on the time interval
[T,∞).

The proof ends in the same way as the one of Theorem 5.1.
�

To investigate locally Lipschitz solutions of the Hamilton-Jacobi equation
we need to recall the result below proved in [10].

Consider the infinite horizon optimal control problem B∞ :

maximize
∫ ∞
t0

e−λtl(t,x(t),u(t))dt

over all feasible trajectory-control pairs (x(·),u(·)) of (2) defined on [t0,∞),
where λ > 0, f, U, K are as in the introduction and l : R+×Rn×Rm→ R
is a given function. Let Vλ be the corresponding value function and V rel

λ be
the value function of the relaxed problem (12), (13) under sate constraint
(3) for L(t,x,u) = e−λtl(t,x,u).

We denote by (H2) the following assumptions on f and l:
(i) there exists q ∈ Lloc such that for a.e. t ∈ R+,

sup
u∈U(t)

(|f(t,x,u)|+ |l(t,x,u)|)6 q(t), ∀x ∈ bd(K);

(ii) for all (t,x) ∈ R+×Rn the set {(f(t,x,u), l(t,x,u)) : u ∈ U(t)} is
compact;

(iii) l is bounded and there exist c ∈ L1
loc(R+;R+) and k ∈ Lloc such that

for a.e. t ∈ R+ and for all x, y ∈ Rn and u ∈ U(t),

|f(t,x,u)−f(t,y,u)|+ |l(t,x,u)− l(t,y,u)|6 k(t)|x−y|, |f(t,0,u)|6 c(t);

(iv) limsupt→∞ 1
t

∫ t
0(c(s) +k(s))ds <∞;

(v) the mappings f, l are Carathéodory;
We also need the following (stronger than before) Inward Pointing Con-

dition linking the dynamics to the state constraints : (IPC∞)

∃ η > 0, ρ > 0,M > 0 such that for a.e. t ∈ R+,∀ y ∈ bd(K) +ηB,

∀u ∈ U(t) with supn∈N1
y,η
〈n,f(t,y,u)〉> 0,

∃w ∈ {w′ ∈ U(t) : |f(t,y,w′)−f(t,y,u)|6M} such that
supn∈N1

y,η
{〈n,f(t,y,w)〉, 〈n,f(t,y,w)−f(t,y,u)〉}6−ρ,

where N1
y,η := {n ∈N1

K(x) : x ∈ bd(K)∩B(y,η)}.
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Theorem 6.4. Assume (H2) and (IPC∞). Then there exist C > 1 and κ> 0
such that for every λ > κ and every t > 0 the function Vλ(t, ·) is Ce−(λ−κ)t

-Lipschitz continuous on K.
Furthermore, if f is also bounded, then for every λ > κ , Vλ is locally

Lipschitz on R+×K.

Remark 6.5. In [10] the constants C and κ are obtained explicitly. They
depend solely on ρ, M, q, c, k.

Theorem 6.6. Assume (H2) and (IPC∞). Then, for all large λ > 0, Vλ =
V rel
λ on R+×K.

Proof of Theorem 6.4 is lengthly and highly technical. The presence of the
discount factor plays an important role there. The main idea is to use the so
called Neighboring Feasible Trajectory (NFT) theorem from [26]. Theorem
6.6 is proved thanks to the continuity of Vλ(t, ·) and the technique developed
in [14].

7. Relation to a finite horizon Bolza problem

Let t0 ≥ 0 and T > t0. Define gT (x) = V (T,x) for all x ∈K, gT (x) =−∞
for all x /∈K and consider the Bolza problem BT

maximize
(
gT (x(T )) +

∫ T

t0
L(t,x(t),u(t))dt

)

over all trajectory-control pairs (x,u) of the system{
x′(t) = f(t,x(t),u(t)), u(t) ∈ U(t) for a.e. t ∈ [t0,T ]
x(t0) = x0, x(t) ∈K ∀ t ∈ [t0,T ].

The value function V B of the Bolza problem BT is given by : for every
(s0,y0) ∈ [t0,T ]×K

V B(s0,y0) = sup
(
gT (x(T )) +

∫ T

s0
L(t,x(t),u(t))dt

)

over all feasible trajectory-control pairs (x,u) of (5) defined on [s0,T ] with
x(s0) = y0. Again, if there is no feasible trajectory-control pair of (5) defined
on [s0,T ] and satisfying x(s0) = y0, then we set V B(s0,y0) =−∞.

If (H1) holds true, then, by Theorem 4.1, V (T, ·) is upper semicontinuous
and, by the well known existence theorems for finite horizon problems, for
every y0 ∈ dom(V B(s0, ·)), the above Bolza problem has an optimal solution.

Proposition 7.1. Assume (H1) i) - v). Then V B(s0,y0) = V (s0,y0) for
every (s0,y0) ∈ [t0,T ] ∈ K. Moreover, if (x̄, ū) is optimal for the infinite
horizon problem at (t0,x0), then the restriction of (x̄, ū) to [t0,T ] is optimal
for BT .
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Proof. By (7) and (H1) iv), for any R > 0 there exists M > 0 such that
for any trajectory-control pair (x,u) of (5) defined on [s0,T ] with T ≥
s0 ≥ 0, satisfying x(s0) = y0 and T + |y0| ≤ R we have |x(T )| ≤ M and∫ T
s0
|L(t,x(t),u(t))|dt≤M . As in the proof of Theorem 4.1 it can be shown

that V B and V take values in [−∞,∞).
Let (s0,y0)∈ [t0,T ]×K. If V B(s0,y0) =−∞, then V B(s0,y0)≤ V (s0,y0).

If it is finite, then fix ε > 0 and consider a feasible trajectory-control pair
(xε,uε) with xε(s0) = y0 defined on [s0,T ] such that

V B(s0,y0)≤ gT (xε(T )) +
∫ T

s0
L(s,xε(s),uε(s))ds+ ε

2 .

Since gT (xε(T )) is finite, we deduce that (T,xε(T )) ∈ dom(V ). Consider
a feasible trajectory-control pair (x,u) of (5) on [T,∞) such that x(T ) =
xε(T ) and V (T,xε(T )) ≤

∫∞
T L(s,x(s),u(s))ds+ ε/2. Set (xε(s),uε(s)) =

(x(s),u(s))) for s > T. Then,

V B(s0,y0) ≤
∫ T
s0
L(s,xε(s),uε(s))ds+

∫∞
T L(s,xε(s),uε(s))ds+ε

≤ V (s0,y0) +ε.

Since ε > 0 is arbitrary, V B(s0,y0) ≤ V (s0,y0). On the other hand, if
V (s0,y0) = −∞, then V (s0,y0) ≤ V B(s0,y0). If it is finite, then consider a
feasible trajectory-control pair (xε,uε) of (5) on [s0,∞) satisfying xε(s0) = y0
and such that V (s0,y0)≤

∫∞
s0
L(s,xε(s),uε(s))ds+ε. Then

V (s0,y0)≤
∫ T
s0
L(s,xε(s),uε(s))ds+

∫∞
T L(s,xε(s),uε(s))ds+ε

≤
∫ T
s0
L(s,xε(s),uε(s))ds+V (T,xε(T )) +ε≤ V B(s0,y0) +ε.

By the arbitrariness of ε > 0, this yields V (s0,y0) ≤ V B(s0,y0). Hence
V (s0,y0) = V B(s0,y0). The point (s0,y0) ∈ [t0,T ]×K being arbitrary, we
deduce the first statement. The second one is a simple consequence of the
dynamic programming principle. �

8. Maximum principle and sensitivity relation

When state constraints are present, then, in general, the familiar maxi-
mum principle does not hold unless the optimal trajectory takes values in
the interior of K only. Furthermore, for problems under state constraints
the adjoint state may be discontinuous, even for finite horizon problems.

In this section we prove the maximum principle using the Hamilton-
ian H defined in the introduction. Recall that H(t,x, ·) is convex and if
f(t, ·,u), L(t, ·,u) are locally Lipschitz uniformly in u ∈ U(t), then H(t, ·, ·)
is locally Lipschitz. Then we denote by ∂H(t;y,q) the generalized gradient
of H(t, ·, ·) at (y,q). It has convex compact images and the set-valued map
(y,q) ; ∂H(t;y,q) is upper semicontinuous.
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If V is locally Lipschitz on R+×K, then define for (t,x) ∈ R+×K,

∂intV (t,x) := coLimsup (s,y)→ (t,x)
y ∈ int(K)

{∇V (s,y)}.

Observe that the set ∂intV (t,x) is compact. It coincides with the generalized
gradient of V at (t,x) whenever x ∈ int(K).

Below we denote by ∂L,−x V (t0,x0) the limiting subdifferential of V (t0, ·)
at x0. Recalling the notation introduced in Section 4,

G(t,x) :=
{(
f(t,x,u),L(t,x,u)

)
: u ∈ U(t)

}
,

we state the maximum principle under state constraints.

Theorem 8.1. Assume (IPCrel), (H1) ii)-v) with ωR(t,r) = c̄R(t)r, where
for all R > 0, c̄R ∈ L1

loc(R+;R+), that G(t,x) is compact for every (t,x) ∈
R+×Rn and that there exists c > 0 such that for a.e. t≥ 0,

sup
u∈U(t)

(|f(t,x,u)|+ |L(t,x,u)|)≤ c(|x|+ 1) ∀x ∈ Rn.

Then
I) if for all large j ∈N, the function V (j, ·) is locally Lipschitz on K, then

V is locally Lipschitz on R+×K.
II) if (x̄, ū) is optimal for the infinite horizon problem at (t0,x0) ∈ R+×

int(K), then there exist p ∈W 1,1
loc (t0,∞;Rn), positive Borel measure µ on

[t0,∞), and a Borel measurable selection ν(t) ∈ NK(x̄(t))∩B defined on
[t0,∞) such that for q(t) := p(t) +η(t) with

η(t) :=
{∫

[t0,t] ν(s)dµ(s) t ∈ (t0,∞)
0 t= t0,

the following relations are satisfied:
(i) the Hamiltonian inclusion

(−p′(t), x̄′(t)) ∈ ∂H(t; x̄(t), q(t)) for a.e. t ∈ [t0,∞) ;

(ii) the maximality condition〈
q(t), x̄′(t)

〉
+L(t, x̄(t), ū(t)) =H(t, x̄(t), q(t)) for a.e. t ∈ [t0,∞);

(iii) the sensitivity relation

(−H(t, x̄(t), q(t)), q(t)) ∈ ∂intV (t, x̄(t)) for a.e. t ∈ [t0,∞);

(iv) the transversality condition at the initial time

(18) p(t0) ∈ ∂L,−x V (t0,x0).

Furthermore, if H is continuous, then

(−H(t, x̄(t), q(t)), q(t)) ∈ ∂intV (t, x̄(t)) ∀ t ∈ (t0,∞).
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Remark 8.2.
a) Recall that Theorem 6.4 provides sufficient conditions for the local

Lipschitz continuity of V on R+×K. Instead one can also assume that
(H2) holds true for t ∈ [j,∞) and some integer j (in place of [0,∞)) to
deduce Lipschitz continuity of V on [j,∞)×K.

b) It is not difficult to realize that (i) contains the maximality condition
(ii). We have stated (ii) in order to underline the link with the more familiar
maximum principle.

Proof. For every sufficiently large integer j > t0, let gj : Rn→R be a locally
Lipschitz function that coincides with V (j, ·) on K. Consider the Mayer
problem (Mj)

V j(t0,x0,z0) = sup(gj(x(j)) +z(j))
over all the trajectory-control pairs of the control system

x′(t) = f(t,x(t),u(t)) a.e. t ∈ [t0, j]
z′(t) = L(t,x(t),u(t)) a.e. t ∈ [t0, j]
x(t0) = x0, z(t0) = z0

u(t) ∈ U(t) a.e. t ∈ [t0, j]
x(t) ∈K ∀ t ∈ [t0, j].

From [26, Theorem 5.1] (after rewriting the above Mayer problem as a
minimization problem), we deduce that V j is locally Lipschitz on [0, j]×
K ×R whenever j is sufficiently large. It is not difficult to realize that
V j(t0,x0,0) = V B(t0,x0) for every (t0,x0)∈ [0, j]×K, where V B is the value
function of the Bolza problem (introduced in the previous section) for T = j.
Hence, by Proposition 7.1, V is locally Lipschitz continuous on R+×K.

To prove the second statement of our theorem, consider an optimal pair
(x̄, ū) of the infinite horizon problem at (t0,x0) ∈ R+× int(K). Setting

z̄(t) =
∫ t

t0
L(s, x̄(s), ū(s))ds,

it follows that the restriction of (x̄, z̄, ū) to [t0, j] is optimal for (Mj) at
(t0,x0,0). By [26, Theorem 5.3] (after rewriting the above Mayer problem
as a minimization problem on the interval [t0, j] instead of [0,1]), for every
integer j > t0 there exist an absolutely continuous function pj , a positive
Borel measure µj and a Borel measurable selection νj(s) ∈ NK(x̄(s))∩B
µj− a.e. defined on the time interval [t0, j] such that, setting

ηj(t) :=
{∫

[t0,t] νj(s)dµj(s) t ∈ (t0, j]
0 t= t0

and qj(t) := pj(t)+ηj(t), the following relations hold true for a.e. t ∈ [t0, j]:
(19) (−p′j(t), x̄′(t)) ∈ ∂H(t; x̄(t), qj(t));

(20) 〈qj(t),f(t, x̄(t), ū(t))〉+L(t, x̄(t), ū(t)) =H(t, x̄(t), qj(t));
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(21) (−H(t, x̄(t), qj(t)), qj(t)) ∈ ∂intV (t, x̄(t));

(22) pj(t0) ∈ ∂L,−x V (t0,x0).
Let k > t0 be a fixed integer.
Step 1: Since x0 ∈ int(K) and V is locally Lipschitz, we deduce from (22)

that the sequence {pj(t0)}j is bounded. The measure µj being regular, we
know that qj is right continuous on (t0, j). Since V is locally Lipschitz on
R+×K from (21) we deduce that the functions {qj}j>k are equibounded on
[t0,k].

On the other hand, if R> 0 is so that supt∈[t0,k] |x̄(t)|<R, then for a.e. t∈
[t0,k] and all (a,b)∈ ∂H(t; x̄(t), qj(t))⊂Rn×Rn we have |a| ≤ cR(t)|qj(t))|+
c̄R(t). This and (19) imply that |p′j(t)| ≤ cR(t)|qj(t))|+ c̄R(t) a.e. in [t0,k].
Hence also the mappings {pj}j are equibounded on [t0,k] and therefore so
are {ηj}j .

For every j > k define the positive measure µ̄j on Borel subsets of [t0,k] by
µ̄j(A) =

∫
A |νj(t)|dµj(t) for any Borel set A⊂ [t0,k]. We claim that µ̄j([t0,k])

are equibounded. Indeed, the inward pointing condition implies that for
every t ≥ t0, int(CK(x̄(t))) 6= ∅. Thus the set valued map t CK(x̄(t)) is
lower semicontinuous on [t0,∞). By [18, proof of Lemma 11] we know that
there exists a continuous selection ψ(t) ∈ CK(t) defined on [t0,k] such that

sup
n∈N1

K(x̄(t))
〈n,ψ(t)〉6−2 ∀ t ∈ [t0,k] with x̄(t) ∈ bd(K).

Consider ψ̄ ∈ C∞([t0,k];Rn) such that supt∈[t0,k] |ψ(s)− ψ̄(s)|6 1. Then

sup
n∈N1

K(x̄(t))
〈n,ψ̄(t)〉6−1 ∀ t ∈ [t0,k] with x̄(t) ∈ bd(K).

Consequently, for every j > k,∫
[t0,k]
〈 ψ̄(s),νj(s)〉dµj(s) =

∫
[t0,k]∩{s :νj(s)6=0}

〈
ψ̄(s), νj(s)

|νj(s)|

〉
|νj(s)| dµj(s)

6−
∫

[t0,k]∩{s :νj(s)6=0}
|νj(s)| dµj(s) =−

∫
[t0,k]
|νj(s)| dµj(s).

Using that {ηj}j are equibounded on [t0,k] and have bounded total variation,
integrating by parts we deduce from the above inequality that for some
constant C > 0 and all j > k,∫

[t0,k]
|νj(s)| dµj(s)6

∫
[t0,k]
〈−ψ̄(s),νj(s)〉dµj(s) =

∫
[t0,k]
−ψ̄(s)dηj(s)

=−ηj(k)ψ̄(k) +
∫

[t0,k]
ηj(s)ψ̄′(s)ds6 C( sup

s∈[t0,k]
|ψ̄(s)|+ sup

s∈[t0,k]
|ψ̄′(s)|).

Since ψ̄(·) does not depend on j our claim follows.

Step 2: By Step 1, the Ascoli-Arzelà theorem and the Dunford-Pettis
criterion, taking a subsequence and keeping the same notation, we deduce
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that there exists an absolutely continuous function pk : [t0,k]→Rn such that
pj→ pk uniformly on [t0,k] and p′j⇀ (pk)′ weakly in L1([t0,k];Rn). Since the
total variations of ηj are bounded by

∫
[t0,k] |νj(s)| dµj(s) and ηj(0) = 0, from

the Helly’s selection theorem, taking a subsequence and keeping the same
notation, we conclude that there exists a function of bounded variation ηk
on [t0,k] such that ηj→ ηk pointwise on [t0,k] and ηk(t0) = 0. Furthermore,
there exists a nonnegative finite measure µk on [t0,k] such that, by further
extraction of a subsequence and preserving the same notation, µ̄j ⇀∗ µk
(weakly-*) in C([t0,k];R)∗. Let

γj(t) :=


νj(t)
|νj(t)|

νj(t) 6= 0

0 otherwise.

Since γj(t) ∈NK(x̄(t))∩B µ̄j−a.e. in [t0,k] is a Borel measurable selection,
applying [45, Proposition 9.2.1], we deduce that, for a subsequence {ji}i,
there exists a Borel measurable function νk such that νk(t) ∈NK(x̄(t))∩B
µk-a.e. in [t0,k] and for every φ ∈ C([t0,k];Rn)∫

[t0,k]
〈φ(s),γji(s)〉dµ̄ji(s)→

∫
[t0,k]
〈φ(s),νk(s)〉dµk(s) as i→∞.(23)

Using that for all t ∈ (t0,k],

ηji(t) =
∫

[t0,t]
νji(s)dµji(s) =

∫
[t0,t]

γji(s)dµ̄ji(s),

from (23) and the separation theorem it follows that for every t ∈ (t0,k]

ηk(t) =
∫

[t0,t]
νk(s)dµk(s).

Recall that ∂H(t; ·, ·) is upper semicontinuous and has convex compact
images and that ∂L,−x V (0,x0), ∂intV (t, x̄(t)) are closed sets.

Define qk = pk+ηk. Passing to the limits in (20) and (21) a.e. in [t0,k] for
the subsequence qji when i→∞, we deduce that (ii) and (iii) are satisfied
on [t0,k] with q replaced by qk . From (22) we obtain (18) for pk(t0). Taking
the weak limit in (19) for the subsequence p′ji when i→∞ and using the
Mazur lemma and the upper semicontinuity of ∂H(t; ·, ·) we get (i) on [t0,k]
with p replaced by pk and q by qk.

Step 3: Consider now the interval [t0,k+1]. By the same argument as in
the second step, taking suitable subsequences {pjil}l ⊂ {pji}i and {ηjil}l ⊂
{ηji}i, we deduce that there exist an absolutely continuous function pk+1, a
function of bounded variation ηk+1, a Borel measurable selection νk+1(t) ∈
NK(x̄(t))∩B on [t0,k+ 1] and a positive Borel measure µk+1 on [t0,k+ 1]
which satisfy (i), (ii), (iii), (iv) on [t0,k+1] with p, q replaced by pk+1, qk+1
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and moreover, when `→∞

pjil → pk+1 uniformly on [t0,k+ 1],

p′jil
⇀ (pk+1)′ weakly in L1([t0,k+ 1];Rn)

qjil → qk+1 pointwise on [t0,k+ 1],

µjil ⇀
∗ µk+1 weakly-* in C([t0,k+ 1];R)∗

pk+1|[t0,k] = pk, qk+1|[t0,k] = qk,

and for all t ∈ [t0,k+ 1]

ηjil (t)→ ηk+1(t) =
{∫

[t0,t] ν
k+1(s)dµk+1(s) t ∈ (t0,k+ 1]

0 t= t0.

Furthermore, since ηk+1|[t0,k] = ηk and µk+1|[t0,k] = µk, we have

νk+1|[t0,k] = νk µk-a.e. on [t0,k].

The mappings pk+1, ηk+1, and νk+1 extend pk, ηk, and νk respectively on
the time interval [t0,k+ 1], and the measure µk+1 extends the measure µk.

Applying the induction argument we get p, η, ν and µ defined on [t0,∞)
and satisfying the second claim of our theorem.

If H is continuous, then the right continuity of q on (t0,∞) and the upper
semicontinuity of ∂intV on R+×K imply the last statement of our theorem.

�

9. Hamilton-Jacobi equation

The Hamilton-Jacobi (HJ) equation associated to the non-autonomous
infinite horizon optimal control problem is as follows

∂tW +H(t,x,∂xW ) = 0 on (0,∞)×K, (HJ)

where ∂t, ∂x denote the partial derivatives of W with respect to t and x.
If the value function is differentiable, then it is well known that it satisfies

(HJ). If in addition f is time independent and L(t,x,u) = e−λt`(x,u) for some
` : Rn×Rm → R, then V (t,x) = e−λtV (0,x). Setting W1(x) := V (0,x) we
deduce from (HJ) thatW1 is a solution of the following, more familiar in the
context of infinite horizon problems, stationary Hamilton-Jacobi equation

−λW +H(x,∂xW ) = 0 on K,

where H(x,p) := supu∈U(t)(〈p,f(x,u)〉+ `(x,u)).
Conversely, if W1 is a smooth solution of this stationary Hamilton-Jacobi

equation, then W (t,x) := e−λtW1(x) solves (HJ). If f and/or ` are time de-
pendent, then, in general, (HJ) can not be replaced by the above stationary
equation.

It is well known that (HJ) may not have differentiable solutions. Fur-
thermore, if a smooth solution does exist, it may be not uniquely defined
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because, in the difference with the finite horizon case, there is no “termi-
nal” condition involved, as in (4). In Section 4 we have shown that under
some integrable boundedness assumptions for large times, the value function
V (t, ·) restricted to its domain of definition converges to zero as t→∞. In
such a setting, the natural “terminal” condition should be as follows

lim
t→∞

sup
y∈dom(W (t,·))

|W (t,y)|= 0.

The value function V being not differentiable, and even possibly discon-
tinuous, solutions of (HJ) have to be understood in a generalized sense. In
[11] we have investigated uniqueness of generalized solutions in the class of
upper semicontinuous functions satisfying the above “terminal” condition.
In this section we restrict our attention to locally Lipschitz continuous solu-
tions on R+×K only, the case, where results are much simpler to state and
to prove. Then the above “terminal” condition becomes

(24) lim
t→∞

sup
y∈K
|W (t,y)|= 0.

Denote by (H3) the following assumptions on f, L:
(i) ∃ c∈L1

loc(R+;R+) such that for a.e. t> 0 and for all x∈Rn, u∈U(t)

|f(t,x,u)|+ |L(t,x,u)|6 c(t)(1 + |x|);

(ii) ∃ k ∈ Lloc such that for a.e. t> 0 and for all x, y ∈ Rn, u ∈ U(t)

|f(t,x,u)−f(t,y,u)|+ |L(t,x,u)−L(t,y,u)|6 k(t)|x−y|;

(iii) limsupt→∞
1
t

∫ t
0(c(s) +k(s))ds <∞;

(iv) ∃ q ∈ Lloc such that for a.e. t> 0

sup
u∈U(t)

(|f(t,x,u)|+ |L(t,x,u)|)6 q(t), ∀x ∈ bd(K);

(v) for a.e. t> 0 and all x ∈ Rn, G(t,x) is compact;
(vi) There exists S > 0 such that |L(t,x,u)| ≤ α(t) for a.e. t≥ S and all

x ∈K, u ∈ U(t), where α : [S,+∞)→ R+ is integrable on [S,+∞).
The Outward Pointing Condition (OPC∞) is the same as (IPC∞) but

with f replaced by −f.

Theorem 9.1. Assume (H1) iii),vi) and (H3). Let W : R+×K → R be a
locally Lipschitz function satisfying (24).

1. If (OPC∞) holds true, then W = V if and only if W is a bilateral
solution of (HJ), that is for a.e. t > 0

(25)
{
pt+H(t,x,px) = 0 ∀(pt,px) ∈ ∂+W (t,x), ∀x ∈ int(K)
pt+H(t,x,px)≥ 0 ∀(pt,px) ∈ ∂+W (t,x), ∀x ∈ bd(K).
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2. If (IPC∞) holds true, then W = V if and only if W is a viscosity
solution of (HJ), that is for a.e. t > 0

(26)
{
pt+H(t,x,px)6 0 ∀ (pt,px) ∈ ∂−W (t,x), ∀x ∈ int(K),
pt+H(t,x,px)> 0 ∀(pt,px) ∈ ∂+W (t,x), ∀x ∈K.

Now, let l : R+×Rn×Rm→ R+, λ > 0, and

L(t,x,u) = e−λtl(t,x,u).(27)

From Theorems 6.2, 9.1 and 6.4 we immediately get the following corol-
laries.
Corollary 9.2. Assume (27), (H2), (IPC∞), (OPC∞) and that f is bounded.
Then for every λ > 0 sufficiently large, the value function Vλ is the only lo-
cally Lipschitz function W : R+×K→ R satisfying for a.e. t > 0

pt+H(t,x,px) = 0 ∀(pt,px) ∈ ∂+W (t,x), ∀x ∈ int(K),
pt+H(t,x,px)> 0 ∀(pt,px) ∈ ∂+W (t,x), ∀x ∈ bd(K)
limt→∞ supy∈K |W (t,y)|= 0.

Corollary 9.3. Assume (27), (H2), (IPC∞) and that f is bounded. Then
for every λ > 0 sufficiently large, the value function Vλ is the only locally
Lipschitz function W : R+×K→ R satisfying for a.e. t > 0

pt+H(t,x,px)6 0 ∀(pt,px) ∈ ∂−W (t,x), ∀x ∈ int(K),
pt+H(t,x,px)> 0 ∀(pt,px) ∈ ∂+W (t,x), ∀x ∈K
limt→∞ supy∈K |W (t,y)|= 0.

The proof of Theorem 9.1 follows the path initiated in [23] that was
subsequently applied in many papers, see for instance [27, 29, 30, 31, 25].

We first state several auxiliary results.
Proposition 9.4. The following relations hold true:

• for any x ∈ dom(V (0, ·)), limsups→0+,y→KxV (s,y) = V (0,x);
• for a.e. t > 0, ∀x ∈ dom(V (t, ·)), ∃ ū ∈ U(t) such that

D↓V (t,x)(1,f(t,x, ū))≥−L(t,x, ū);
• for a.e. t > 0, ∀x ∈ int(K)∩ dom(V (t, ·)), ∀u ∈ U(t) the following
two inequalities are satisfied

D↓V (t,x)(−1,−f(t,x,u))≥ L(t,x,u)
and

D↑V (t,x)(1,f(t,x,u))≤−L(t,x,u).
The above proposition follows easily from the dynamic programming prin-

ciple and [27, Theorems 2.9, 4.2 and Corollary 2.7]. The equivalence results
below allow to state the Hamilton-Jacobi inequalities involving sub and su-
perdifferentials in terms of directional derivatives. Such equivalence is im-
portant, because it allows to deduce dynamic programming properties of a
generalized solution which, in turn, yield uniqueness of solutions to (HJ)
with the terminal condition (24).
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Proposition 9.5. Let W : R+×K→ R be locally Lipschitz. Then
(1) the following two statements are equivalent:

(a) for a.e. t > 0, ∀x ∈K, ∃ ū ∈ U(t) such that

D↓W (t,x)(1,f(t,x, ū))≥−L(t,x, ū);

(b) pt +H(t,x,px) ≥ 0 for a.e. t > 0, ∀x ∈K and every (pt,px) ∈
∂+W (t,x).

(2) the following two statements are equivalent:
(a)′ for a.e. t > 0, ∀x ∈ int(K), ∀u ∈ U(t),

D↓W (t,x)(−1,−f(t,x,u))≥ L(t,x,u);

(b)′ pt+H(t,x,px)≤ 0 for a.e. t> 0, ∀x∈ int(K) and every (pt,px)∈
∂+W (t,x).

Proof. Note that (a)⇒ (b) and (a)′⇒ (b)′ by the very definition of superdif-
ferential. From [27, Corollary 2.7 and Theorem 2.9] and [28, Corollary 3.2]
we deduce that (b)⇒ (a) and (b)′⇒ (a)′. �

An analogous proposition can be stated also for the epigraph of W , we
shall not dwell on it however.

Lemma 9.6. Let W : R+×K → R be locally Lipschitz and satisfying (a)′
of Proposition 9.5. Then for all 0< τ0 < τ1 and any trajectory-control pair
(x(·),u(·)) of (5) on [τ0, τ1], with x([τ0, τ1]) ⊂ int(K), the function w(·) de-
fined by

w(t) :=W (τ1,x(τ1)) +
∫ τ1

t
L(s,x(s),u(s))ds

satisfies (x(t),w(t)) ∈ hypW (t, ·) for all t ∈ [τ0, τ1].
Consequently, W (τ0,x(τ0))≥W (τ1,x(τ1)) +

∫ τ1
τ0
L(t,x(t),u(t))dt.

Proof. Define φ(t) = W (t,x(t)). By the Lipschitz continuity of W for a.e.
t ∈ [τ0, τ1]

−φ′(t) =D↓W (t,x(t))(−1,−f(t,x(t),u(t)))≥ L(t,x(t),u(t)).

Integrating on [t,τ1] implies

φ(t)−W (τ1,x(τ1))≥
∫ τ1

t
L(s,x(s),u(s))ds= w(t)−W (τ1,x(τ1)).

Hence W (t,x(t))≥ w(t). �

Similarly, we have the following lemma (after stating an analogue of
Proposition 9.5 for the lower directional derivatives).

Lemma 9.7. Let W : R+×K→R be locally Lipschitz. If for a.e. t > 0 and
all x ∈ int(K),

pt+H(t,x,px)6 0 ∀(pt,px) ∈ ∂−W (t,x),
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then for all 0< τ0 < τ1 and any trajectory-control pair (x(·),u(·)) of (5) on
[τ0, τ1] with x([τ0, τ1])⊂ int(K), the function w(·) defined by

w(t) :=W (τ0,x(τ0))−
∫ t

τ0
L(s,x(s),u(s))ds

satisfies (x(t),w(t)) ∈ epiW (t, ·) for all t ∈ [τ0, τ1].
Consequently, W (τ0,x(τ0))≥W (τ1,x(τ1)) +

∫ τ1
τ0
L(t,x(t),u(t))dt.

Proof. (of Theorem 9.1). To show that the locally Lipschitz value function
satisfies (25) and (26) it is sufficient to apply Proposition 9.4 and defini-
tions of super and subdifferentials. Let (t0,x0) ∈ R+×K. To show that
W (t0,x0) ≥ V (t0,x0), it is enough to consider the case when V (t0,x0) >
−∞. Let (x̄(·), ū(·)) be optimal at (t0,x0). We apply (NFT) theorem
from [10] under either the assumption (OPC∞) or (IPC∞) and associate
with any ε > 0, the time interval [tε,Tε]⊂ R+ and a trajectory-control pair
(xε(·),uε(·)) defined on [tε,Tε] satisfying xε([tε,Tε])⊂ int(K), limε→0+Tε =
∞, limε→0+(tε,xε(tε)) = (t0,x0) and∣∣∣∣∣

∫ Tε

tε
L(t,xε(t),uε(t))dt−

∫ Tε

tε
L(t, x̄(t), ū(t))dt

∣∣∣∣∣≤ ε.
Then Lemmas 9.6 and 9.7 yield

W (τε,xε(τε)) ≥W (Tε,xε(Tε)) +
∫ Tε
τε
L(t,xε(t),uε(t))dt

≥W (Tε,xε(Tε)) +
∫ Tε
tε
L(t, x̄(t), ū(t))dt−ε.

Hence, whenever Tε > S we get

W (τε,xε(τε))≥W (Tε,xε(Tε)) +
∫ ∞
tε

L(t, x̄(t), ū(t))dt−
∫ ∞
Tε

α(t)dt−ε.

Taking the limit when ε→ 0+, using (24) and the integrability of α on R+
we obtain W (t0,x0)≥ V (t0,x0). Hence W ≥ V.

Finally, Proposition 9.5 (a) and a measurable viability theorem [28, Corol-
lary 3.2] imply that for every (t0,x0) ∈ R+×K and T > t0 there exists a
trajectory-control pair (x̄(·), ū(·)) such that

W (t0,x0)−
∫ T

t0
L(t, x̄(t), ū(t))dt≤W (T, x̄(T )).

Hence for any T > S, W (t0,x0)≤W (T, x̄(T )) +V (t0,x0) +
∫∞
T α(t)dt. This,

(24) and the integrability of α on [S,∞) imply that for every ε > 0 we have
W (t0,x0) ≤ V (t0,x0) + ε. Consequently W ≤ V and we deduce that (25)
yields W = V . Similarly, (26) implies W = V . �
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