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On second order necessary conditions in infinite dimensional optimal
control with state constraints

H. Frankowska, E.M. Marchini and M. Mazzola

Abstract— This paper is devoted to second order necessary
optimality conditions for control problems in infinite dimen-
sions. The main novelty of our work is the presence of pure state
constraints together with end point constraints, quite useful in
the applications.

Second order analysis for control problems involving PDEs
has been extensively discussed in the literature. The most usual
approach to derive necessary optimality conditions is to rewrite
the control problem as an abstract mathematical programming
one. Our approach is different, we avoid the reformulation
of the optimal control problem and use instead second order
variational analysis. The necessary optimality conditions are in
the form of a maximum principle and a second order variational
inequality. They are first obtained in the form of nonintersection
of convex sets. A suitable separation theorem allows to deduce
their dual characterization.

I. INTRODUCTION

In an infinite dimensional separable Banach space X , we
consider the solutions x : I = [0,1]→ X of the control system

ẋ(t) = Ax(t)+ f (t,x(t),u(t)) , a.e. t ∈ I , x(0) = x0 (1)

that satisfy an end point constraint

x(1) ∈ Q =
⋂

i=1,...,k

Qi =
⋂

i=1,...,k

{
x ∈ X : gi(x)≤ 0

}
, (2)

and a state constraint, for any t ∈ I,

x(t) ∈ K =
⋂

j=1,...,q

K j =
⋂

j=1,...,q

{
x ∈ X : ϕ j(x)≤ 0

}
. (3)

Here, u is a measurable control, that is a function from I
to a given closed non-empty bounded set U ⊂ Z, and Z is
a separable Banach space. The densely defined unbounded
linear operator A is the infinitesimal generator of a strongly
continuous semigroup S(t) : X→ X , the map f : I×X×Z→
X is twice Fréchet differentiable with respect to the second
variable x and the third variable u, while the functions
gi : X → R, ϕ j : X → R are twice Fréchet differentiable.
The trajectories of (1) are understood in the mild sense
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(see [18]). In this paper we analyze an infinite dimensional
Mayer problem: given a twice Fréchet differentiable map
g0 : X → R, consider the solutions of the problem

minimize
{

g0(x(1)) : x(·) is a solution of (1)–(3),

for some control u(·)
}
. (4)

The main results of this paper deal with second order
necessary optimality conditions. More precisely, let (x̄, ū) be
an optimal solution for our constrained problems and take a
critical direction ȳ that is tangent to the constraints. Then

〈∇g0(x̄(1)),z(1)〉+
1
2
〈g′′0(x̄(1))ȳ(1), ȳ(1)〉 ≥ 0 , (5)

for any suitable second-order tangent z to the constraints, see
the exact definition of tangents in Section II.

We work in a quite general infinite dimensional frame-
work, hence our results apply to optimal control problems
involving some classes of PDEs, see [17], [18], [21] where
reduction of some PDEs to the form (1) is discussed. In many
phenomena, such as heat conduction, reaction-diffusion,
population dynamics, economics, one seeks to optimize
measures of best performances. The optimal control theory
involving PDEs represents the natural framework to deal
with such models. In this setting, second order analysis has
been largely studied, with particular emphasis on sufficient
second order conditions, due to their application in numerical
analysis. It is impossible to provide here an exhaustive list of
papers. Some significant contributions can be found in [3],
[4], [5], [6], [7], [16], [19], [20], where evolution equations
are analyzed with a particular interest to the parabolic case,
see also the bibliographies therein. Second order optimality
conditions are usually obtained by rewriting the control
problem as an abstract mathematical programming one.
However this approach requires Robinson like constraint
qualification conditions, implying severe restrictions on the
data. Control constraints, mixed (control-state) constraints,
and some particular cases of state constraints were already
investigated in the literature. Nevertheless, to our knowledge
a general theory involving pure state constraints and end-
point constraints is still lacking.

The main novelty of our work are variational techniques,
quite different from those based on the reduction to a
mathematical programming problem. Following the approach
developed in the finite dimensional framework in [14], [15]
we avoid such reformulation of the optimal control problem.
This allows to work directly with the class of measurable
controls, as in the well-known and developed theory of first
order conditions, see e.g. [22], and to treat quite general



pure state constraints and end point constraints, useful in
applications. Further our abstract approach allows to apply
the results of this paper directly to different kinds of control
problems involving PDEs. For lack of space, we provide
only one classical example involving a parabolic equation,
nevertheless applications to wave equations are also possible,
as analyzed in a forthcoming paper [13].

The necessary optimality conditions, involving a maxi-
mum principle and a second order variational inequality,
are first obtained in the form of nonintersection of convex
sets, using an approximation result dealing with second-order
variations. By applying a suitable separation theorem, we get
their dual characterization. We do not need normality of the
maximum principle to get our results, so we can impose
more general assumptions with respect to the classical ones
present in the literature.

II. PRELIMINARIES

We list the notation, the definitions and the main assump-
tions in use.

A. Notation

- X is a separable Banach space;
- B(x,r) denotes the closed ball of center x∈X and radius

r > 0; B is the closed unit ball in X centered at 0;
- given a Banach space Y , L(X ,Y ) denotes the Banach

space of bounded linear operators from X into Y ;
C (I,X) the space of continuous functions from I to X ;
Lp(I,X) the space of Bochner Lp integrable functions
from I to X , and L∞(I,X) the space of measurable
essentially bounded functions from I to X ; M (I,Y )
the space of countably additive regular measures of
bounded variation on I with values in Y .
It is known that M (I,X∗) is isomorphic to the dual
space of C (I,X), see [9];

- 〈·, ·〉 stands for the duality pairing on X∗×X ;
- given a set-valued map F : X X , x∈X and y∈F (x),

the adjacent derivative dF (x,y) : X  X is defined by
v ∈ dF (x,y)u iff

lim
h→0+

dist
(

v,
F (x+hu)− y

h

)
= 0;

and, for v∈ dF (x,y)(u), the second order adjacent vari-
ation d2F (x,y,u,v) : X X by z∈ d2F (x,y,u,v)(w) iff

lim
h→0+

dist
(

z,
F (x+hu+h2w)− y−hv

h2

)
= 0;

- given K ⊂X and x∈K, define the adjacent tangent cone
to K at x by

T [
K(x) =

{
y ∈ X : lim

h→0+
dist
(

y,
K− x

h

)
= 0
}

and the second order tangent set to K at (x,y) by

T [(2)
K (x,y) =

{
z ∈ X : lim

h→0+
dist
(

z,
K− x−hy

h2

)
= 0
}

;

- dK(x) denotes the distance from x ∈ X to K.

Definition 2.1: Let x0 ∈ X . A function x ∈ C (I,X) is a
(mild) solution of (1) with initial datum x(0) = x0 if it
satisfies, for any t ∈ I,

x(t) = S(t)x0 +
∫ t

0
S(t− s) f (s,x(s),u(s))ds ,

for some control u(·). We denote f x(t) = f (t,x(t),u(t)) for
any t ∈ I. If in addition x satisfies (2)-(3), we say that (x,u)
is an admissible pair for problem (4).
Notice that, since S(·) is a strongly continuous semigroup,
there exists MS > 0 such that

‖S(t)‖L(X ,X) ≤MS, for any t ∈ I .

B. Assumptions

The following conditions (H) are imposed in the main
results:
(i) f is measurable in t, twice Fréchet differentiable w.r.t.

(x,u);
(ii) for any R > 0, there exists kR ∈ L1(I,R+) such that, for

a.e. t ∈ I and any u ∈U , f (t, ·,u) is kR(t)-Lipschitz on
RB, namely

‖ f (t,x,u)− f (t,y,u)‖X ≤ kR(t)‖x− y‖X ;

(iii) there exists φ ∈ L1(I,R+) such that, for a.e. t ∈ I, any
x ∈ X and any u ∈U ,

‖ f (t,x,u)‖X ≤ φ(t)
(
1+‖x‖X

)
.

(iv) gi, for i = 0, . . .k, and ϕ j, for j = 1, . . .q, are twice
Fréchet differentiable.

C. Critical directions and second order tangent variations

For a.e. t ∈ I and any x ∈ X , set

F(t,x) = co f (t,x,U) ,

where co f (t,x,U) is the closed convex hull of f (t,x,U).
Given x a solution of (1), we introduce the linearized

differential inclusion:

ẏ(t) ∈ Ay(t)+dxF(t,x(t), f x(t))y(t) , y(0) = 0 . (6)

Definition 2.2: A solution y of (6) is a first order variation
if there exist a ∈ L1(I,R+), h0 > 0 s.t. ∀0 < h≤ h0,

dist
(

f x(t)+hπ
y(t),F(t,x(t)+hy(t))

)
≤ a(t)h2 , (7)

where πy(t)∈ dxF(t,x(t), f x(t))y(t) is an integrable selection
such that, for every t ∈ I,

y(t) =
∫ t

0
S(t− s)πy(s)ds . (8)

Sufficient conditions ensuring the validity of (7) can be found
in [13], see also [14] for the case Z =Rn. We say that a first
order variation y is admissible, and we write y ∈ V 1(x), if

〈∇gi(x(1)),y(1)〉 ≤ 0 , ∀ i = 1, . . . ,k s.t. x(1) ∈ ∂Qi ,

〈∇ϕ j(x(t)),y(t)〉 ≤ 0 , ∀ j = 1, . . . ,q, t ∈ I s.t. x(t) ∈ ∂K j .

A function y ∈ V 1(x) is critical if

〈∇g0(x(1)),y(1)〉= 0 .



Definition 2.3: Let x solve (1) and y be a first order
variation. We say that z∈C (I,X) is a second order variation
at (x,y) if it is a solution of the inclusion

ż(t) ∈ Az(t)+d2
x F [t]z(t) , z(0) = 0 ,

where [t] = (t,x(t), f x(t),y(t),πy(t)) and πy is as in (8).
To deduce second order conditions (5) we need to find
suitable second order tangents to the constraints. For this
aim, we introduce the following sets:

S =
{

x ∈ C (I,X) : x solves (1) for some control u(·)
}
,

Q =
{

x ∈ C (I,X) : x(1) ∈ Q
}
,

K =
{

x ∈ C (I,X) : x(I)⊂ K
}
,

Given (x̄, ū) that is optimal for problem (4) and ȳ ∈ V 1(x̄)
that is critical, we aim to express some second order tangents
to S ∩Q∩K . Since, in general, the inclusion

T [(2)
S∩Q∩K (x̄, ȳ)⊂ T [(2)

S (x̄, ȳ)∩T [(2)
Q (x̄, ȳ)∩T [(2)

K (x̄, ȳ)

may be strict, we need to work with convex subsets of
T [(2)
S (x̄, ȳ), T [(2)

Q (x̄, ȳ), and T [(2)
K (x̄, ȳ). To this aim define the

sets:

S 2 =
{

z ∈ C (I,X) : z is a second order variation at (x̄, ȳ)
}
,

Q2
i =

{
z ∈ C (I,X) : 〈∇gi(x̄(1)),z(1)〉

+
1
2
〈g′′i (x̄(1))ȳ(1), ȳ(1)〉< 0

}
, i = 0, . . .k ,

Q2 =
⋂
Ig

Q2
i ,

Ig =
{

i = 1, ...,k : gi(x̄(1)) = 0 , 〈∇gi(x̄(1)), ȳ(1)〉= 0
}
,

K 2
j =

{
z ∈ C (I,X) : max

t∈M j0

(
〈∇ϕ j(x̄(t)),z(t))〉

+
1
2
〈ϕ ′′j (x̄(t))ȳ(t), ȳ(t)〉

)
< 0
}
, j = 1, . . .q ,

K 2 =
q⋂

j=1

K 2
j , M j0 =

{
t ∈ I : x̄(t) ∈ ∂K j

}
.

Notice that M j0 is closed and

〈∇ϕ j(x̄(·)),z(·)〉+
1
2
〈ϕ ′′j (x̄(·))ȳ(·), ȳ(·)〉 ∈ C (I,R) .

Proposition 3.1 below guarantees the desired properties:
S 2 ⊂ T [(2)

S (x̄, ȳ), Q2 ⊂ T [(2)
Q (x̄, ȳ), K 2 ⊂ T [(2)

K (x̄, ȳ), and

S 2∩Q2∩K 2 ⊂ T [(2)
S∩Q∩K (x̄, ȳ) .

III. THE MAIN RESULTS

Let (x̄, ū) be a local minimizer for problem (1)–(4), namely
there exists ε > 0 such that

g0(x(1))≥ g0(x̄(1)) ,

for any admissible x satisfying ‖x− x̄‖L∞(I,X) ≤ ε , and let
ȳ ∈ V 1(x̄) be critical. We prove below three results dealing
with second order conditions. The first is an abstract result
which implies, as a direct consequence, the validity of (5),
for any z ∈S 2∩Q2∩K 2 ⊂ T [(2)

S∩Q∩K (x̄, ȳ). Then, using a

separation theorem and duality arguments we deduce some
more concrete second order conditions together with the va-
lidity of the Pontryagin minimum principle, see Proposition
3.2 and Theorem 3.1 below.

Proposition 3.1: Assume (H) and that

∃δ > 0 : max
t∈M jδ

〈∇ϕ j(x̄(t)), ȳ(t)〉 ≤ 0 , ∀ j = 1, . . .q , (9)

where M jδ =
{

t ∈ [0,1] : ϕ j(x̄(t)) ≥ −δ , d∂K j(x̄(t)) ≤ δ
}
.

Then,
S 2∩Q2∩K 2 ⊂ T [(2)

S∩Q∩K (x̄, ȳ). (10)

Moreover,
S 2∩Q2

0 ∩Q2∩K 2 = /0 . (11)
Proof: Let z ∈S 2∩Q2∩K 2 and let hn→ 0+ as n→

+∞. By Proposition 5.1, there exists a sequence xn = x̄+
hnȳ+h2

nzn ∈S , such that zn→ z uniformly. We need to show
that, for any n large enough, xn satisfies the constraints (2)
and (3). Let j ∈ {1, . . . ,q}. Since z∈K 2, from the regularity
of ϕ j we deduce the existence of δ > 0 such that

max
t∈M jδ

(
〈∇ϕ j(x̄(t)),z(t))〉+

1
2
〈ϕ ′′j (x̄(t))ȳ(t), ȳ(t)〉

)
< 0 . (12)

Hence, by Taylor expansion and (12), for any n large enough
and any t ∈M jδ ,

ϕ j(xn(t)) = ϕ j(x̄(t))+hn〈∇ϕ j(x̄(t)), ȳ(t)〉

+h2
n〈∇ϕ j(x̄(t)),zn(t)〉+h2

n
1
2
〈ϕ ′′j (x̄(t))ȳ(t), ȳ(t)〉+h2

nrn(t)

≤ ϕ j(x̄(t))+h2
n

(
〈∇ϕ j(x̄(t)),zn(t)〉

+
1
2
〈ϕ ′′j (x̄(t))ȳ(t), ȳ(t)〉

)
+h2

nrn(t)< 0 ,

where rn(·)→ 0 uniformly, as n→ ∞. If t 6∈M jδ , we have
that either ϕ j(x̄(t)) < −δ or dK j(x̄(t)) > δ , and we obtain
again xn(t) ∈ K. Hence, xn(I)⊂ K, for all large n.

We now consider the constraint Q. If i /∈ Ig, then either
gi(x̄(1))< 0 or

gi(x̄(1)) = 0 and 〈∇gi(x̄(1)), ȳ(1)〉< 0 .

The Taylor expansion yields, for n large enough,

gi(xn(1)) = gi(x̄(1))+hn〈∇gi(x̄(1)), ȳ(1)〉+o(hn)< 0 .

On the other hand, if i∈ Ig, by the definition of Q2
i , applying

the Taylor expansion again, we obtain

gi(xn(1)) = gi(x̄(1))+hn〈∇gi(x̄(1)), ȳ(1)〉

+h2
n〈∇gi(x̄(1)),zn(1)〉+h2

n
1
2
〈g′′i (x̄(1))ȳ(1), ȳ(1)〉+o(h2

n)

= h2
n

(
〈∇gi(x̄(1)),zn(1)〉+

1
2
〈g′′i (x̄(1))ȳ(1), ȳ(1)〉+o(1)

)
< 0

for n large enough, implying xn(1) ∈ Q. We can conclude
that xn ∈ T [(2)

S∩Q∩K (x̄, ȳ), showing (10).
In order to prove (11), suppose by contradiction that there
exists

z ∈S 2∩Q2
0 ∩Q2∩K 2 .



By the first part of the proof, given hn→ 0+ there exists a
sequence xn = x̄+hnȳ+h2

nzn of solutions of (1)–(3) such that
zn→ z uniformly. Reasoning as above, replacing gi with g0
and taking x̃ = xn, for some n sufficiently large, we obtain
the existence of a solution x̃ of (1)–(3) such that

g0(x̃(1))< g0(x̄(1)) .

This contradicts the optimality of x̄.
As a consequence of Proposition 3.1, we deduce the sec-

ond order necessary condition in the form of the variational
inequality (5).

Now, applying a separation theorem, we can analyze (11)
and obtain sharper conditions, as outlined in the results
below.

Proposition 3.2: Let ȳ∈V 1(x̄) be critical and assume (H),
(9) and that

∇ϕ j(x̄(t)) 6= 0 , ∀ t ∈M j0 , ∀ j = 1, . . . ,q . (13)

Then, for every convex nonempty subset S̃ 2 ⊂ S 2 there
exist λi ≥ 0, for i∈ Ig, positive ψ j ∈M (I,R) with suppψ j ⊂
M j0, for j = 1, . . . ,q, not vanishing simultaneously, and x∗ ∈
C (I,X)∗, such that, for any z ∈ C (I,X),

∑
i∈Ig

λi〈∇gi(x̄(1)),z(1)〉+
q

∑
j=1

∫
I
〈∇ϕ j(x̄(t)),z(t)〉dψ j(t)= 〈x∗,z〉

(14)
and

inf〈x∗,S̃ 2〉+ 1
2 ∑

i∈Ig

λi〈g′′i (x̄(1))ȳ(1), ȳ(1)〉 (15)

+
1
2

q

∑
j=1

∫
I
〈ϕ ′′j (x̄(t))ȳ(t), ȳ(t)〉dψ j(t)≥ 0 .

Moreover, if
S̃ 2∩Q2∩K 2 6= /0 ,

then the above necessary optimality conditions hold in nor-
mal form, i.e. with λ0 = 1.

The proof of Proposition 3.2 follows from a separation
theorem and density properties. Because of the lack of space
we postpone it to [13].

To state our third result involving the second order nec-
essary conditions and the Pontryagin minimum principle, let
us consider the linearized system{

ẏ(t) = Ay(t)+ fx[t]y(t)+ fu[t]v(t)
y(0) = 0 , (16)

where

v(·) is a measurable selection of the set-valued map

t T [
U (ū(t)) . (17)

Assume that, for any R > 0 there exists ψR > 0 such that

‖ f (t,x,u)− f (t,x,v)‖X ≤ ψR‖u− v‖Z , (18)

for a.e. t ∈ I and any u,v ∈U and x ∈ RB. Then, it is not
difficult to prove that a solution (ȳ, v̄) of (16)–(17), with
v̄ ∈ L∞(I,Z), solves (6). Assume further that

f ′′[·](ȳ(·), v̄(·))2 ∈ L1(I,X) , (19)

and consider the second order linearization
ż(t) = Az(t)+ fx[t]z(t)+ fu[t]w(t)

+ 1
2 f ′′[t](ȳ(t), v̄(t))2 +η(t)

z(0) = 0 ,
(20)

with

η ∈ L1(I,X) , η(t) ∈ TF(t,x̄(t))( f x̄(t)) , a.e. in I . (21)

and w ∈W , where

W = {w : I→ Z measurable : fu[·]w(·) ∈ L1(I,X) , (22)

w(t) ∈ T [(2)
U (ū(t), v̄(t)) a.e. in I} .

Theorem 3.1: Assume (H), (13), and (18). Let (x̄, ū) be
a local minimizer and (ȳ, v̄) be a solution of (16)–(17)
satisfying (19) and v̄ ∈ L∞(I,Z). Assume that ȳ is a critical
admissible first order variation satisfying (9) and W 6= /0.
Then, there exist λi≥ 0, for i∈ Ig, and positive ψ j ∈M (I,R)
with suppψ j ⊂M j0, for j = 1, . . . ,q, not all equal to zero
such that the function p : I→ X∗ defined by

p(t) = T (1, t)∗
(

∑
i∈Ig

λi∇gi(x̄(1))
)

(23)

+
∫ 1

t
T (s, t)∗

( q

∑
j=1

∇ϕ j(x̄(s))dψ j(s)
)
,

with T the solution operator associated with

ẏ(t) = Ay(t)+ fx[t]y(t) ,

satisfies the minimum principle

〈p(t), f (t, x̄(t), ū(t))〉= min
u∈U
〈p(t), f (t, x̄(t),u)〉 . (24)

Further, for any w∈W , the following second order condition
holds

1
2 ∑

i∈Ig

λi〈g′′i (x̄(1))ȳ(1), ȳ(1)〉 (25)

+
1
2

q

∑
j=1

∫
I
〈ϕ ′′j (x̄(s))ȳ(s), ȳ(s)〉dψ j(s)

+
1
2

∫ 1

0
〈p(s), f ′′[s](ȳ(s), v̄(s))2〉ds

+
∫ 1

0
〈p(s), fu[s]w(s)〉ds≥ 0 .

If X is reflexive, then, by [9], p is the mild solution of the
adjoint measure-driven equation

d p(t) =−
(
A∗+ fx(t, x̄(t), ū(t))∗

)
p(t)dt

−∑
q
j=1 ∇ϕ j(x̄(t))dψ j(t)

p(1) = ∑
k
i=0 λi∇gi(x̄(1)) .

(26)

Notice that, under the assumptions of Theorem 3.1, the set

S̃ 2 := L 2C (I,X)
, (27)

where

L 2 =
{

z ∈ C (I,X) : z solves (20) for w,η as in (22), (21)
}



is convex and nonempty, the technical details can be found
in [13].

Proof: (Proof of Theorem 3.1.) Let S̃ 2 be defined as
in (27) and let λi, for i ∈ Ig, ψ j, for j = 1, . . . ,q, and x∗ ∈
C (I,X)∗ be as in Proposition 3.2. Let z ∈L 2. Then,

z(t) =
∫ t

0
T (t,s)(β (s)+η(s))ds ,

where
β (t) = fu[t]w(t)+

1
2

f ′′[t](ȳ(t), v̄(t))2

for some w and η as in (22) and (21). Applying an integration
by parts, see Lemma 4.1. in [8], we obtain from (14):

〈x∗,z〉=
∫ 1

0

〈
∑
i∈Ig

λi∇gi(x̄(1)),T (1,s)(β (s)+η(s))
〉

ds

+
∫ 1

0

q

∑
j=1

〈
∇ϕ j(x̄(t)),

∫ t

0
T (t,s)(β (s)+η(s))ds

〉
dψ j(t)

=
∫ 1

0

〈
T (1,s)∗

(
∑
i∈Ig

λi∇gi(x̄(1))
)
,β (s)+η(s)

〉
ds

+
∫ 1

0

〈∫ 1

s
T (t,s)∗

( q

∑
j=1

∇ϕ j(t)dψ j(t)
)
,β (s)+η(s)

〉
ds

=
∫ 1

0
〈p(s),β (s)+η(s)〉ds,

Then, from (15) we get

1
2

k

∑
i=0

λi〈g′′i (x̄(1))ȳ(1), ȳ(1)〉

+
1
2

q

∑
j=1

∫
I
〈ϕ ′′j (x̄(t))ȳ(t), ȳ(t)〉dψ j(t)

+
1
2

∫ 1

0
〈p(s), f ′′[s](ȳ(s), v̄(s))2〉ds

+ inf
{w as in (22)}

∫ 1

0
〈p(s), fu(s, x̄(s), ū(s))w(s)〉ds

+ inf
{η as in (21)}

∫ 1

0
〈p(s),η(s)〉ds≥ 0,

yielding (25) and∫ 1

0
〈p(s),η(s)〉ds≥ 0, for any η as in (21) , (28)

because the set of functions η satisfying (21) is a cone. As
in [12, Theorem 4.2], (28) implies (24).

IV. APPLICATIONS: CONTROL PROBLEMS
INVOLVING PDES

Our analysis is performed in great generality, so a large
class of concrete models can be considered. For lack of
space, we propose here only one example of optimal control
problem involving a heat equation.

Example 4.1 (A controlled heat equation): We analyze a
control system describing a heat transfer problem. A similar
problem (without state constraints) has been considered in
[1], dealing with second order conditions, and it has been
studied in [12] to get first order state constrained necessary

conditions. Given Ω⊂ RN , a bounded domain with smooth
boundary ∂Ω, we consider a heat equation where the heat
supply is represented by a multiplicative control:

∂tx(t,x)−∆x(t,x) = ϕ(t,x)+u(t)b(x)x(t,x). (29)

Here ϕ ∈ L1(I,L2(Ω)), b ∈ L∞(Ω), x = x(t,x) is the temper-
ature distribution, a function of the time t ∈ I = [0,1] and
the position x ∈ Ω, the control u takes values in the closed
interval U = [c,d] of R, where c < d. Below we omit writing
explicitly the dependence on the variable x. Equation (29)
is endowed with Dirichlet boundary conditions and initial
condition x(0) = x0 ∈ L2(Ω).

In order to handle (29) as system (1) and implement
our abstract machinery, we define the operator A = ∆ with
domain D(A) = H2(Ω) ∩ H1

0 (Ω). A generates a strongly
continuous semigroup S(t) on X = L2(Ω). Thus, (29) can be
written as the abstract system (1) with f (t,x,u) = ϕ(t)+ubx.

Our aim is to find a temperature x to be close, at the final
time t = 1, to a reference temperature xD ∈ X , namely we
want to minimize the functional

g0(x(1)) =
1
2
‖x(1)− xD‖2

X

among all the trajectory/control pairs (x,u) satisfying the
energy state constraint

K =
{

x ∈ X : ‖x‖2
X −1≤ 0

}
and the end point constraint

Q =
{

x ∈ X : ‖x− x1‖2
X − r ≤ 0

}
,

for some fixed x1 ∈ L2(Ω) and r > 0. It is not difficult to
prove that assumption (H) is satisfied.

Let (x̄, ū) be optimal and let (ȳ, v̄) be a solution of the
linearized system{

ẏ(t) = Ay(t)+bū(t)y(t)+bv(t)x̄(t)
y(0) = 0 , (30)

satisfying all the assumptions of Theorem 3.1. Since X is a
reflexive space, the function p defined as in (23) is a mild
solution of the adjoint equation{

d p(t) =−
(
A+bū(t)

)
p(t)dt−2x̄(t)dψ(t) , t ∈ I

p(1) = λ0(x̄(1)− xD)+λ12(x̄(1)− x1) ,
(31)

for some positive ψ ∈M (I,R+) and λ0,λ1 ≥ 0 satisfying
the properties stated in Theorem 3.1. Then, the following
second order optimality condition holds

(λ0 +2λ1)‖ȳ(1)‖2
X

+
∫

I
2‖ȳ(t)‖2

X dψ(t)+
∫ 1

0
〈p(s),bȳ(s)v̄(s)〉ds

+ inf
{w∈L1(I,X) satisfying (22)}

2
∫ 1

0
〈p(s),bx̄(s)w(s)〉ds≥ 0 ,

together with the minimum principle

ū(t)〈p(t),b x̄(t)〉= min
u∈U

u〈p(t),b x̄(t)〉 , for a.e. t ∈ I .

It is not difficult to prove that, if 〈p(t),b x̄(t)〉> 0, then ū(t)=
c and, if 〈p(t),b x̄(t)〉< 0, then ū(t) = d, a.e. in I.



V. APPENDIX
This section contains a technical result dealing with second

order variations, needed in the proof of Proposition 3.1.
Proposition 5.1: Assume (H) (i)–(iii). Let x ∈S , y be a

first order variation and z be a second order variation at (x,y).
Then, for any hn→ 0+, there exist xn ∈S such that

xn− x−hny
h2

n
→ z , uniformly on I as n→ ∞ .

Proof: Set

x1
n(t) = x(t)+hny(t)+h2

nz(t) .

We prove first that there exists a solution x2
n to

ẋ(t) ∈ Ax(t)+F(t,x(t)) ,

such that
x1

n− x2
n

h2
n
→ 0 , uniformly on I as n→ ∞ . (32)

Let πy be as in (8) and αz(t) ∈ d2
x F [t]z(t) be an integrable

selection such that

z(t) =
∫ t

0
S(t− s)αz(s)ds , ∀ t ∈ I .

By the definition of the second order variation, we obtain
that, for a.e. t ∈ I,

lim
h→0+

dist
(

α
z(t),

F(t,x(t)+hy(t)+h2z(t))− f x(t)−hπy(t)
h2

)
= 0 .

Hence, setting

γn(t) = dist
(

f x(t)+hnπ
y(t)+h2

nα
z(t),F(t,x1

n(t))
)

we obtain that, for a.e. t,

lim
n→∞

γn(t)
h2

n
= 0 .

Further, using assumption (H) (ii) and (7) we get for a.e.
t ∈ I,

γn(t)≤ dist
(

f x(t)+hnπ
y(t)+h2

nα
z(t),F(t,x(t)+hny(t))

)
+h2

nkR(t)‖z(t)‖X

≤ dist
(

f x(t)+hnπ
y(t),F(t,x(t)+hny(t))

)
+h2

n‖αz(t)‖X +h2
nkR(t)‖z(t)‖X

≤ h2
n
(
a(t)+‖αz(t)‖X + kR(t)‖z‖L∞(I,X)

)
with R > 0 such that, for every n≥ 1,

‖x(t)+hny(t)‖X +‖x(t)+hny(t)+h2
nz(t)‖X ≤ R.

The dominated convergence theorem ensures that

lim
n→∞

1
h2

n

∫ 1

0
γn(t)dt = 0 .

By Lemma A.1 from [11], we obtain the claimed x2
n satis-

fying (32). A relaxation theorem, see [10], guarantees the
existence of xn ∈S such that

xn− x2
n

h2
n
→ 0 , uniformly on I as n→ ∞.

Finally, (32) allows to end the proof.
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