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Main objectives Apply the spectral element method to solve the 3D frequency-domain anisotropic elas-
tic wave modeling and solve the linear system with a parallel direct solver. Analyze the performance of
the direct solver, the factorization time and memory cost. Present the current limit of the modeling scale
and illustrate the interest on future adoption of low-rank compression based techniques.

New aspects covered High order spectral element method for 3D frequency-domain elastic wave mod-
eling with complex topography and free surface boundary condition. A feasibility study of a parallel
direct solver on the linear system generated from discretization.

Summary
Complex topography, free surface boundary condition and inelastic properties of media should be well
considered for onshore geophysical prospecting. Thus an appropriate and accurate forward modeling en-
gine is very important. Unlike the time-domain implementation of many seismic imaging techniques, the
counterpart in the frequency domain is rarely studied, despite of having many advantages, for example,
only limited number of frequencies is needed for the inversion process, and solving the multiple-source
problem is quite cheap if a direct solver is used. In this study, the spectral element method is applied
to discretize the 3D frequency-domain anisotropic elastic wave modeling and the parallel direct solver
MUMPS is used to solve the linear system. The structure and building process of the impedance matrix
is thoroughly explained. We validate the numerical results by comparing with analytical solutions. A
hybrid implementation of MPI and OpenMP for MUMPS is shown to be more efficient in flops and
memory cost during the factorization. The influence of complex topography on MUMPS performance
is negligible. With the available resources, the largest scale modeling, 30 wavelength in each dimension,
is achieved. Other direct solvers and different low-rank techniques will also be investigated to reduce
the flops and memory cost.



Introduction
Onshore seismic imaging has drawn greater attention recently in the framework of geophysical prospect-
ing techniques. For such challenging problem, acoustic wave modeling can no longer be used because
of the elastic, visco-elastic or anisotropic effects in the onshore environment. It is thus necessary to
perform the anisotropic visco-elastic wave modeling. The majority of current seismic imaging appli-
cations relies on the time-domain forward modeling. It is straightforward to decompose the physical
domain and parallelize over the sources. The memory cost is acceptable in terms of the scale of model
size. In contrast, study on frequency-domain modeling in the framework of onshore seismic imaging is
relatively rare. A successful application in offshore environment is given in Operto and Miniussi (2018),
which prompts us to investigate the 3D frequency-domain anisotropic elastic wave modeling to prepare
for further imaging. One popular method in 3D elastic case is the finite-difference method (FDM) due
to its simplicity and high efficiency. However, it is required to refine the grid or use specific coordinate
transform techniques when dealing with the complex topography and free surface boundary condition
(FSBC). This would largely counteract its efficiency. The finite element method (FEM) seems a more ap-
propriate choice because FSBC is naturally satisfied in the weak form of wave equation and an adaptive
design of the mesh could further simplify the realization of complex topography and acknowledge the
variations in the media. The spectral element method (SEM), as a specific FEM, has been investigated
particularly in seismic imaging and seismology (Komatitsch et al., 2000; Trinh et al., 2019). The specific
character of SEM consists in using a mesh of hexahedra in 3D and choosing the Gauss-Lobato-Legendre
(GLL) points for the integration and Lagrange interpolation. Using high-order Lagrange polynomials
and Gauss quadrature on GLL points enables spectral convergence when solving smooth problems. Al-
though SEM, as a continuous FEM, could not handle the discontinuities in the media and solutions, it
fits well the applications for seismic exploration where we can presume the continuity of the solution
and media. Note that anisotropy can be considered without making an extra effort like in the FDM case.
The viscosity can also be easily incorporated by using complex-valued elastic modulus in the frequency
domain.
In this study, SEM is applied to 3D frequency-domain elastic wave modeling, taking into account the
heterogeneous anisotropic media, complex topography and FSBC. A general mesh is considered at the
very beginning. Simpler mesh, such as a vertically-deformed mesh or an undeformed Cartesian mesh,
could be realized simply by modifying the Jacobian matrix. MUMPS 5.1.2 is used to solve the large
sparse linear system obtained from the discretization. Several numerical experiments are conducted to
validate the accuracy of the numerical results and to assess the performance of MUMPS in terms of time
and memory complexity.
Spectral element method for 3D frequency-domain elastic wave modeling
The 3D frequency-domain elastic wave equation reads

ρ ω
2u j +

∂

∂xi

(
ci jkl

∂uk

∂xl

)
+ f j(ω,rs) = 0, i, j,k, l = 1,2,3, (1)

where ρ is the density, ω is the angular frequency, u j is the displacement vector, ci jkl is the elastic
modulus tensor and f j(ω,rs) is the point source force vector located at rs. Einstein convention is used
here. The seismic attenuation in viscoelastic media could be incorporated easily by using complex-
valued elastic moduli. The weak form of equation (1) is obtained by multiplying a test function φ and
integrating over the physical volume Ω. Using the integration by parts and incorporating FSBC and
absorbing boundary conditions, the weak form rewrites as

ω
2
∫
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ρu jφ dx+
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∂uk

∂xl
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∂xi
dx+

∫
Ω

f j(ω,rs)φ dx = 0. (2)

The volume Ω is then divided into a set of non-overlapping hexahedral elements. A mapping is defined
to transform a unitary cube [−1,1]⊗ [−1,1]⊗ [−1,1] into a single element Ωe. The unitary cube is
discretized by GLL points. With respect to these GLL points, a scalar function could be approximated by
corresponding Lagrange polynomials and an integral could be discretized by Gauss quadrature. Taking
the basis functions as the test function and incorporating the interpolation and GLL quadrature, we
obtain the discretized linear system of equation (2) as follows

Au = f, (3)
where A=ω2M+K is the impedance matrix, M is the mass matrix and K is the stiffness matrix. Vector u
is the discretized displacement and f represents the discretized source vector. Note that the combination
of using the Gauss quadrature and the Lagrange interpolation at GLL points leads to a diagonal mass
matrix M for the discretization of the wave equation. This is a huge advantage for the time-domain wave
modeling if explicit time marching scheme is used, no matrix inversion is required.
As for the boundary conditions, we adopt the anisotropic PML method (Shi et al., 2016) on lateral and
bottom sides of the 3D model. With appropriate arrangement, the complex coordinate stretching tech-
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nique leads to complex-valued elastic parameters and density, while keeping the original wave equation
unchanged. The new parameters are defined as follows

ρ̃ = ρ sx1sx2sx3 , c̃i jkl = ci jkl
sx1sx2sx3

sxisxk

, (4)

where s∗ corresponds to the complex coordinate stretching in each dimension.
Since the mass matrix M is diagonal and easy to construct, the main part of building A lies in the stiffness
matrix K. We take as an example the discretization of only one term in the expansion of equation (2) to
illustrate the connection between the grid points, i.e., the structure of K. Denoting u j as u and ci jkl as c
and taking test function as a product of Lagrange polynomials in each dimension φ(x) = `p(x)`q(y)`r(z),
we have∫
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uĩ jr`

′
j(ηq)∂1η +∑

k
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where w∗ are the GLL quadrature weights and J is the Jacobian matrix. The red terms in the sum
indicate that one point in an element is connected to those points on three ‘planes’, which intersect at
this point, i.e., upqr is connected to ui jr (i, j = 1, . . . ,n), uiqk (i,k = 1, . . . ,n) and up jk ( j,k = 1, . . . ,n),
where n is the number of GLL points in each dimension in one element. The discretization of other terms
in equation (2) has similar formula. Thus from a global point of view, the point with the largest number
of connected points is a vertex of elements and is shared by 8 surrounding elements. In this case, the
point is connected to 12 ‘elemental planes’. Figure 1 (a) shows the distribution of points in a 5th-order
SEM element and in (b) a detailed illustration of the connection mode. The blue cube at the center is
an example of the mentioned points. The points on these three planes, i.e., the 12 ‘elemental planes’,
are connected to this point. For a SEM of polynomial order n, the number of points connected (number
of nonzeros in each matrix row) is 36n2 + 18n+ 3, i.e., 993 for a 5th-order SEM. The matrix will thus
be denser than that of standard FDM. However, the higher order accuracy of SEM will decrease the
total number of grid-points per wavelength compared with conventional FDM. Moreover, implementing
FSBC would also require a FDM grid fine enough to simulate the surface waves, while for SEM no
extra treatment needs to be taken. Both of these factors largely reduce the size of the SEM mesh and
consequently generate an impedance matrix much smaller than that from FDM.
The way we build K is the same as calculating Ku in the time-domain modeling, apart from altering
u into a canonical basis vector ei = (0, . . . ,0,1,0, . . . ,0) for the i-th row. Hence the matrix is built row
by row. Note that the calculation involves only the points inside one elements. Therefore, building
one row of K is an elemental behavior, which is very efficient. We adopt the highly efficient algorithm
proposed by Deville et al. (2002) and implemented in Trinh et al. (2019), which recasts the matrix-vector
product as a tensor-product evaluation, benefits from the tensorial properties of hexahedral elements, the
optimization of cache usage, and the combination of efficient loop vectorization and manual unrolling.
Numerical experiments indicate that performing the tensor-product evaluation is as least ten times faster
than the direct matrix-vector product.

Figure 1 Point distribution in one ele-
ment (left) and connection mode of points
(right) for a 5th-order SEM.

Validation of numerical solutions
We validate the accuracy of the numerical results by comparison with analytical solutions. The parameter
settings for modeling are summarized in Table 1. A 5th-order SEM is used in the following experiments.
Thus setting one element, i.e., 5 points per wavelength should guarantee the accuracy. The real parts
of 3D elastic wavefields uy are shown in Figure 2. The difference between the analytical and numerical
solutions are negligible. Same conclusion applies to ux and uz.
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#e/dim #e in PML |e| (m) Vp (m/s) Vs (m/s) ρ (g/cm3) f (Hz) DOF /wavelength λ

20 2 100 5000 2500 1 25 5
Table 1 Parameter settings
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Figure 2 First row: Analytical (left), numerical (middle) solutions and the difference (right) for wave-
fields uy. Second row: slices from the analytical and numerical wavefields
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Analysis of MUMPS performance
MUMPS 5.1.2 (full rank version) is used to solve the linear system (3). It is based on a multifrontal
method (MUMPS-team, 2017), which recasts the original matrix into multiple frontal matrices and
computes the LU decomposition of these smaller matrices to save memory and computational cost. We
use MUMPS with a hybrid implementation of MPI and OpenMP, which fully benefits from the high-
level BLAS (Basic Linear Algebra Subprograms) and allows a better usage of memory hierarchy and
better performance thanks to the blocking techniques used in BLAS routines. The numerical settings
are the same as in Table 1. The total number of MPI and OpenMP is increased from 96 to 256 and the
number of OpenMP threads varies from 1 to 8 in order to fit our hardware settings (2 Intel E5-2670
processors per node, 8 cores per processor). Figure 3 presents the corresponding factorization time and
memory cost of MUMPS with different number of OpenMP threads. The dashed lines indicate the ideal
scalability and the solid curves are real computing time. With a fixed total number of MPI and OpenMP,
the more OpenMP threads we use, the better MUMPS scales. Fewer MPI leads to larger blocks of matrix
for BLAS to deal with where BLAS could fully adopt the OpenMP parallelization. As for the memory
cost, using multithreaded BLAS allows a better usage of memory, which is also illustrated in Figure 3.
Although the memory usage of 8 threads is larger for smaller number of total MPI + OpenMP, the trend
agrees well with the expectation when the number of total MPI + OpenMP increases.
To investigate the growth trend of MUMPS memory cost and flops, we increase the model size from 10×
10×10 to 20×20×20 elements. The parameters settings are the same as in Table 1 except for #e/dim.
The number of cores is 64,96,160,192,224,256 respectively with #OMP = 8. Free surface boundary
condition is taken into account. Two sets of experiments, one with Cartesian non-deformed mesh and
the other with vertically deformed mesh, are conducted to test the influence of complex topography. The
factorization time and memory cost are presented in Figure 4. It is promising to see that the deformed
mesh does not introduce great increment of the factorization time and memory cost because the matrix
structure in each case is very similar. A direct solver is thus not affected by this modification. Conversely,
the surface waves generated from the complex topography and FSBC may lead to drastic convergence
delay for iterative solvers (Li et al., 2015).
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Table 2 summarizes the largest modeling scale we have achieved so far (30 and 28 wavelengths re-
spectively in each dimension) both with Cartesian and vertically deformed mesh. The size of the linear
system reaches tens of millions and the number of nonzeros in the matrix surpasses 109. As seen,
these results could be obtained using moderate scale of computing resources. Time for solving each
RHS is trivial, which is very appealing for seismic imaging applications with thousands of sources.
The current bottleneck comes from the matrix ordering before the factorization. We use the sequential
METIS (Karypis, 2013) which is quite efficient for the subsequent factorization in terms of both time
and memory. However, the memory cost of METIS reaches its limit as the model size increases to
about 30×30×30 elements. The parallel version of METIS (ParMETIS) and other ordering algorithms
have been tested as well. But the flops and memory cost of factorization with these ordering algorithms
exceeds the capacity of our current computing environment.

#λ DOF NNNZ #core Memorytotal (GB) TimeFactorization(s) TimeSolve(s)
Cartesian 30 1.4E7 2.1E9 384 1913.6 2085.9 5.1
Deformed 28 1.2E7 5.4E9 320 1434.6 1828.2 4.6

Table 2 Current largest modeling with MUMPS (#OMP=16)
Conclusions and perspectives
We have applied SEM to perform the 3D frequency-domain anisotropic elastic wave modeling and used
MUMPS to solve the generated linear system. Complex topography and FSBC are well handled by
deformed mesh. The accuracy of numerical results are validated by comparing with the analytical solu-
tions. MUMPS with a hybrid implementation of MPI and OpenMP presents a satisfactory performance
in terms of scalability, flops and memory cost. Using deformed mesh only introduce slight extra flops
and memory cost compared with using Cartesian mesh. It is very promising for future onshore applica-
tions where complex topography has to be considered. With limited computing resources, a moderate
scale modeling (30 wavelengths in each dimension) is achieved. Note that the experiments are con-
ducted with a full rank MUMPS. Using the block low-rank version of MUMPS as well as other direct
solvers and other low-rank techniques will be investigated in the future. This could reduce the flops and
memory cost during the factorization. Other parallel ordering methods should also be tested to avoid
current bottleneck. Ultimately, incorporating the forward modeling into the framework of FWI might be
considered.
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