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Introduction.-The observation of the phenomenon of Bose-Einstein condensation has been reported in a variety of genuine quantum systems, such as ultracold atoms and molecules [START_REF] Pitaevskii | Bose-Einstein Condensation[END_REF], exciton polaritons [START_REF] Carusotto | Quantum fluids of light[END_REF] and photons [START_REF] Klaers | Bose-Einstein condensation of photons in an optical microcavity[END_REF]. On the other hand, recent studies on wave turbulence revealed that a purely classical system of random waves can exhibit a process of condensation with thermodynamic properties analogous to those of Bose-Einstein condensation [START_REF] Newell | Wave turbulence and intermittency[END_REF][START_REF] Nazarenko | Wave Turbulence[END_REF][START_REF] Newell | Wave Turbulence[END_REF][START_REF] Connaughton | Condensation of classical nonlinear waves[END_REF][START_REF] Berloff | Dissipative dynamics of superfluid vortices at nonzero temperatures[END_REF][START_REF] Düring | Breakdown of weakturbulence and nonlinear wave condensation[END_REF][START_REF] Sun | Observation of the kinetic condensation of classical waves[END_REF][START_REF] Suret | Far field measurement in the focal plane of a lens: a cautionary note[END_REF][START_REF] Rückriegel | Rayleigh-Jeans condensation of pumped magnons in thin-film ferromagnets[END_REF][START_REF] Nazarenko | Bose-Einstein condensation and Berezinskii-Kosterlitz-Thouless transition in the two-dimensional nonlinear Schrödinger model[END_REF][START_REF] Santic | Nonequilibrium precondensation of classical waves in two dimensions propagating through atomic vapors[END_REF]. Classical wave condensation finds its origin in the natural thermalization of the wave system toward the thermodynamic Rayleigh-Jeans equilibrium distribution, whose divergence is responsible for the macroscopic occupation of the fundamental mode of the system [START_REF] Newell | Wave turbulence and intermittency[END_REF][START_REF] Nazarenko | Wave Turbulence[END_REF][START_REF] Newell | Wave Turbulence[END_REF][START_REF] Connaughton | Condensation of classical nonlinear waves[END_REF][START_REF] Zakharov | Kolmogorov Spectra of Turbulence I[END_REF][START_REF]Advances in Wave Turbulence[END_REF][START_REF] Chiocchetta | Thermalization and Bose-Einstein condensation of quantum light in bulk nonlinear media[END_REF][START_REF] Picozzi | Optical wave turbulence: Toward a unified nonequilibrium thermodynamic formulation of statistical nonlinear optics[END_REF][START_REF] Laurie | Onedimensional optical wave turbulence: experiment and theory[END_REF]. This self-organization process takes place in a formally reversible system: The formation of the large scale coherent structure ('condensate') remains immersed in a sea of small-scale fluctuations ('uncondensed particles'), which store the information for time reversal.

There is a current surge of interest in studying quantum properties of fluids with light waves, such as superfluidity and the generation of Bogoliubov sound waves [START_REF] Carusotto | Quantum fluids of light[END_REF][START_REF] Vocke | Role of geometry in the superfluid flow of nonlocal photon fluids[END_REF][START_REF] Michel | Superfluid motion and drag-force cancellation in a fluid of light[END_REF]. Along this way, different forms of condensation processes have been reported in optical cavity systems, which are inherently nonequilibrium forceddissipative systems [START_REF] Picozzi | Optical wave turbulence: Toward a unified nonequilibrium thermodynamic formulation of statistical nonlinear optics[END_REF][START_REF] Conti | Condensation in disordered lasers: Theory, 3d+1 simulations, and experiments[END_REF][START_REF] Oren | Classical condensation of light pulses in a loss trap in a laser cavity[END_REF][START_REF] Turitsyna | The laminar-turbulent transition in a fibre laser[END_REF]. On the other hand, the irreversible process of condensation is predicted for purely conservative and formally reversible (Hamiltonian) systems of random waves. Unfortunately, however, the experimental study of condensation in a conservative (cavity-less) configuration constitutes a major challenge, because of the prohibitive large propagation lengths required to achieve thermalization [START_REF] Santic | Nonequilibrium precondensation of classical waves in two dimensions propagating through atomic vapors[END_REF][START_REF] Chiocchetta | Thermalization and Bose-Einstein condensation of quantum light in bulk nonlinear media[END_REF]. In marked contrast with this commonly accepted opinion, an astonishing phenomenon of beam self-cleaning has been recently discovered in multimode optical fibers (MMFs) [START_REF] Krupa | Observation of geometric parametric instability induced by the periodic spatial self-imaging of multimode waves[END_REF][START_REF] Wright | Self-organized instability in graded-index multimode fibres[END_REF][START_REF] Krupa | Spatial beam self-cleaning in multimode fibres[END_REF]. This phenomenon is due to a purely conservative Kerr nonlinearity [START_REF] Krupa | Spatial beam self-cleaning in multimode fibres[END_REF] and, so far, its underlying mechanism remains unexplained.

As a matter of fact, light propagation in MMFs is known to be affected by a structural disorder of the material due to inherent imperfections and external perturbations [START_REF] Kaminow | Optical Fiber Telecommunications, Systems and Networks[END_REF], a feature of interest, e.g. in image formation [START_REF] Psaltis | Imaging with multimode fibers[END_REF] or to study integrable nonlinear Manakov systems [START_REF] Mecozzi | Nonlinear propagation in multimode fibers in the strong coupling regime[END_REF][START_REF] Mecozzi | Coupled Manakov equations in multimode fibers with strongly coupled groups of modes[END_REF][START_REF] Mumtaz | Nonlinear propagation in multimode and multicore fibers: Generalization of the Manakov equations[END_REF][START_REF] Xiao | Theory of intermodal four-wave mixing with random linear mode coupling in few-mode fibers[END_REF]. The remarkable result of our work is to show that a ('time'-dependent) structural disorder is responsible for a dramatic acceleration of the process of wave condensation. On the basis of the wave turbulence theory [START_REF] Newell | Wave turbulence and intermittency[END_REF][START_REF] Nazarenko | Wave Turbulence[END_REF][START_REF] Zakharov | Kolmogorov Spectra of Turbulence I[END_REF], we develop a nonequilibrium kinetic formulation of the random waves that accounts for the impact of disorder. The theory reveals that a conservative disorder introduces an effective dissipation in the system, which is shown to deeply modify the regularization of resonant wave interactions. We derive a discrete kinetic equation revealing that a weak disorder accelerates the rate of thermalization and condensation by several order of magnitudes. Note that at variance with the notion of prethermalization to out of equilibrium states [START_REF] Santic | Nonequilibrium precondensation of classical waves in two dimensions propagating through atomic vapors[END_REF][START_REF] Campa | Statistical mechanics and dynamics of solvable models with long-range interactions[END_REF][START_REF] Langen | Prethermalization and universal dynamics in near-integrable quantum systems[END_REF], here the system achieves a fast relaxation to a fully thermalized equilibrium state. The counterintuitive mechanism of condensation acceleration can provide a natural explanation for the effect of optical beam self-cleaning. We report experiments in MMFs that highlight the transition to condensation with clear evidence of the macroscopic population of the fundamental mode of the fiber.

The present work contributes to the challenging question of spontaneous organization of coherent states in nonlinear disordered (turbulent) systems [START_REF] Antenucci | Statistical physics of nonlinear wave interaction[END_REF][START_REF] Pierangeli | Observation of replica symmetry breaking in disordered nonlinear wave propagation[END_REF][START_REF] Churkin | Wave kinetics of a random fibre laser[END_REF][START_REF] Frostig | Focusing light by wavefront shaping through disorder and nonlinearity[END_REF][START_REF] Segev | Anderson localization of light[END_REF][START_REF] Cherroret | Thermalization of matter waves in speckle potentials[END_REF][START_REF] Schirmacher | What is the right theory for Anderson localization of light? An experimental test[END_REF][START_REF] Ermann | Dynamical thermalization of Bose-Einstein condensate in Buni-movich stadium[END_REF]. Furthermore, MMFs are attracting for telecommunication applications [START_REF] Kaminow | Optical Fiber Telecommunications, Systems and Networks[END_REF] and novel fiber laser sources [START_REF] Wright | Spatiotemporal mode-locking in multimode fiber lasers[END_REF]. Nonlinear Schrödinger model.-We consider the standard scalar (2+1)D nonlinear Schrödinger (NLS) equation, which is known to describe the propagation (along z) of a polarized optical beam in a waveguide modelled by a confining potential V (r) (with r = (x, y)) [START_REF] Horak | Multimode nonlinear fibre optics: Theory and applications[END_REF]. The potential V (r) is parabolic-shaped, which models graded-index MMFs [START_REF] Picozzi | Optical wave turbulence: Toward a unified nonequilibrium thermodynamic formulation of statistical nonlinear optics[END_REF][START_REF] Krupa | Observation of geometric parametric instability induced by the periodic spatial self-imaging of multimode waves[END_REF][START_REF] Wright | Self-organized instability in graded-index multimode fibres[END_REF][START_REF] Krupa | Spatial beam self-cleaning in multimode fibres[END_REF][START_REF] Kaminow | Optical Fiber Telecommunications, Systems and Networks[END_REF], or trapped Bose-Einstein condensates [START_REF] Pitaevskii | Bose-Einstein Condensation[END_REF]. We expand the random wave into the basis of the linear eigenmodes u p (r), ψ(r, z) = p A p (z)u p (r) exp(-iβ p z), β p being the eigenvalues of the N * modes of the fiber. The modal components A p (z) of the NLS equation verify

i∂ z A p = β p A p -γF p (A), (1) 
where the modal expansion of the cubic Kerr nonlinearity reads F p (A) = q,l,m S pqlm A q A l A * m and the tensor S pqlm accounts for the spatial overlap among the eigenmodes [START_REF] Picozzi | Optical wave turbulence: Toward a unified nonequilibrium thermodynamic formulation of statistical nonlinear optics[END_REF][START_REF] Horak | Multimode nonlinear fibre optics: Theory and applications[END_REF].

We report in Fig. 1(a) a typical evolution of the modal components A p (z) and corresponding intensity pattern |ψ| 2 (r, z), obtained by solving the NLS Eq.( 1) with typical experimental parameters [START_REF] Krupa | Spatial beam self-cleaning in multimode fibres[END_REF], i.e., a MMF with N * = 120 modes (core radius R = 26µm, n 2 = 3.2 × 10 -20 m 2 /W ) and injected power N = 47.5kW. At variance with usual simulations of wave turbulence 2) showing the evolution of np(z) for the fundamental mode p = 0 (red), and p = 4 (blue), and corresponding simulation of the kinetic Eq.( 3) (dotted red and blue lines) starting from the same initial incoherent condition: n0(z) reaches the theoretical equilibrium value n eq 0 /N 0.57 (dashed black). (b) Corresponding energy per mode Ep(z) = (βp -β0)np(z) at z = 0 (blue dots), and at z = 20m (red dots) showing that the beam reaches thermal equilibrium with energy equipartition E eq p = T . (c) Condensate fraction at equilibrium n eq 0 /N vs energy E (keeping constant the power N ): For E ≤ Ecrit the system undergoes a phase transition to condensation. The NLS simulations of Eq.( 2) (red circles) are in quantitative agreement with the theory (blue line) without adjustable parameters. [START_REF] Nazarenko | Wave Turbulence[END_REF][START_REF] Nazarenko | Bose-Einstein condensation and Berezinskii-Kosterlitz-Thouless transition in the two-dimensional nonlinear Schrödinger model[END_REF][START_REF]Advances in Wave Turbulence[END_REF][START_REF] Picozzi | Optical wave turbulence: Toward a unified nonequilibrium thermodynamic formulation of statistical nonlinear optics[END_REF], we did not impose a random phase among the initial modes A p (z = 0), which is consistent with the experimental conditions where a laser beam featured by a coherent transverse phase front is launched into the optical fiber. The simulations of Eq. [START_REF] Pitaevskii | Bose-Einstein Condensation[END_REF] show that a strong phase-correlation among the modes is preserved during the propagation, thus leading to a phase-sensitive coherent regime of modal interaction. The modes A p (z) then experience a quasi-reversible exchange of power with each other (Fig. 1(a)), which leads to an oscillatory dynamics of the intensity pattern |ψ| 2 (r, z) (see the movie in [46]). Such a multimode beam does not exhibit an enhanced brightness that characterizes a stable self-cleaning effect. This coherent regime of mode interactions then freezes the thermalization process, a feature of growing interest that is analyzed in the framework of finite size effects in discrete or mesoscopic wave turbulence [START_REF] Zakharov | Mesoscopic Wave Turbulence[END_REF][START_REF] Nazarenko | Sandpile behaviour in discrete waterwave turbulence[END_REF][START_REF] Nazarenko | Discrete and mesoscopic regimes of finite-size wave turbulence[END_REF][START_REF] Bustamante | Robust Energy Transfer Mechanism via Precession Resonance in Nonlinear Turbulent Wave Systems[END_REF][START_REF] Hassaini | Confinement effects on gravitycapillary wave turbulence[END_REF].

Kinetic equation with weak disorder.-Light propagation in MMFs is known to be affected by disordered random fluctuations. Such a disorder breaks the coherent modal regime discussed in Fig. 1(a) and leads to a turbulent incoherent regime with uncorrelated random phases fluctuations of the modes [46]. We stress that the acceleration of thermalization predicted by our theory is not simply due to a breaking of the coherent regime by disorder, but solely results from the interplay of disorder and the incoherent modal interaction. Note that our theory goes beyond the mean-field approximation reported in [START_REF] Krupa | Spatial beam self-cleaning in multimode fibres[END_REF], which is a formally reversible theory that does not explain the irreversible process of beam self-cleaning.

We first consider the dominant contribution of a weak disorder that originates in polarization random coupling [START_REF] Kaminow | Optical Fiber Telecommunications, Systems and Networks[END_REF][START_REF] Mumtaz | Nonlinear propagation in multimode and multicore fibers: Generalization of the Manakov equations[END_REF][START_REF] Xiao | Theory of intermodal four-wave mixing with random linear mode coupling in few-mode fibers[END_REF]. Accordingly, the vector modal components in the linear polarization basis A T p (z) = (A p,x (z), A p,y (z)) T are governed by a straightforward generalization of the scalar NLS Eq.( 1):

i∂ z A p = β p A p + D p (z)A p -γF p (A), (2) 
where F p (A) = q,l,m S pqlm

1 3 A T q A l A * m + 2 3 A † m A l
A q and the superscript T ( † ) denotes the transpose (conjugate transpose) operation. Note that each mode A p can be represented as a Stokes vector on the Poincaré sphere, so that the NLS Eq.( 2) can model a system of N * -coupled spins, in relation with spinor Bose-Einstein condensates. Our model of disorder is general because the random matrices D p (z) = 3 j=1 ν p,j (z)σ j are expanded on the Pauli spin matrices σ j , which constitute a complete basis of 2×2 Hermitian matrices. The functions ν p,j (z) are zero mean identically distributed random realvalued processes, with variance σ 2 β and correlation length l β [46]. The effective strength of disorder is controlled by the parameter ∆β = σ 2 β l β . This model of disorder is conservative, in the sense that the NLS Eq.( 2) conserves the power N = p |A p | 2 (z) and the linear contribution to the energy E = p β p |A p | 2 (z), which dominates the nonlinear contribution. Indeed, in the experiments of beam self-cleaning the system evolves in the weakly nonlinear regime where linear dispersion (diffraction) effects dominate nonlinear effects L lin = β -1 0 L nl , and where disorder is a perturbation with respect to linear propagation L lin L disor = 1/∆β (∆β β 0 ). Notice that since disorder is ('time') z-dependent, our system is of different nature than those studying the interplay of thermalization and Anderson localization [START_REF] Cherroret | Thermalization of matter waves in speckle potentials[END_REF][START_REF] Ermann | Quantum Gibbs distribution from dynamical thermalization in classical nonlinear lattices[END_REF].

Random mode coupling in MMFs has been widely studied in recent years. In the limit of rapid disordered fluctuations, the generalized NLS equation has been remarkably reduced to the integrable Manakov equation [START_REF] Mecozzi | Nonlinear propagation in multimode fibers in the strong coupling regime[END_REF][START_REF] Mecozzi | Coupled Manakov equations in multimode fibers with strongly coupled groups of modes[END_REF][START_REF] Mumtaz | Nonlinear propagation in multimode and multicore fibers: Generalization of the Manakov equations[END_REF][START_REF] Xiao | Theory of intermodal four-wave mixing with random linear mode coupling in few-mode fibers[END_REF]. However, the Manakov equation does not describe power exchange among the modes. To describe a process of beam self-cleaning, here we go beyond the Manakov limit. We have derived the following kinetic equation governing the evolution of the averaged modal components n p (z) = |A p (z)| 2 [46]:

∂ z n p (z) = 2γ 2 9∆β q,l,m δ K βq+β l -βm-βp |S pqlm | 2 M pqlm (n) + 16γ 2 27∆β q δ K βq-βp |s pq (n)| 2 (n q -n p ), (3) 
with s pq (n) = m S pqm m n m , and M pqlm (n) = n q n l n p + n q n l n m -n m n p n l -n m n p n q , where 'n m ' stands for 'n m (z)', while the Kronecker symbol reflects energy conservation of wave resonances. The discrete nature of the kinetic equation originates in finite size effects related to the relative small number of modes of the trapping potential (∼100 modes with β 0 1/L nl ) [46]. Acceleration of thermalization.-Our derivation of the kinetic Eq.( 3) differs from the conventional wave turbulence approach [START_REF] Nazarenko | Wave Turbulence[END_REF] in that it accounts for the presence of disorder. The theory reveals that disorder deeply affects the evolution of the moments equations. Specifically, the dynamics of a fourth-order moment of the random wave is governed by an effective forced-damped oscillator equation, in which dissipation originates from the phasemixing dynamics induced by the conservative disorder. It turns out that the singularity associated to a resonance is regularized by the dissipation due to disorder: The lower the magnitude of disorder ∆β, the stronger the efficiency of the wave resonance. Clearly, the amount of disorder ∆β cannot decrease arbitrarily since ∆βL nl 1 -in the opposite regime ∆β 1/L nl the regularization due to disorder is negligible and the kinetic equation recovers the standard continuous form [START_REF] Nazarenko | Wave Turbulence[END_REF][START_REF] Picozzi | Optical wave turbulence: Toward a unified nonequilibrium thermodynamic formulation of statistical nonlinear optics[END_REF]. More precisely, the characteristic lengths ('times') of thermalization (ζ th ) in the presence and the absence of disorder scale as

ζ disor /ζ ord th ∼ ∆β/β 0 . (4) 
This shows that thermalization is significantly accelerated by the perturbative disorder ∆β/β 0 1. Considering typical experimental parameters [START_REF] Krupa | Spatial beam self-cleaning in multimode fibres[END_REF] used in the simulations of Figs. 1-2, β 0 5 × 10 3 m -1 , L disor 0.4m (beat length 2π/σ β 2.14m, l β 30cm), one obtains ∆β/β 0 5 × 10 -4 : The rate of thermalization is increased by several orders of magnitude by the disorder. Although the experimental parameters of disorder are not precisely known, the effect of disorder induces beam cleaning shown in Figs. 1-2 is robust and has been observed over a wide range of parameters (e.g., 2π/σ β and l β of several meters) [46].

The kinetic Eq.( 3) has the same structure as the conventional wave turbulence equation, hence it describes wave condensation [START_REF] Nazarenko | Wave Turbulence[END_REF][START_REF] Connaughton | Condensation of classical nonlinear waves[END_REF] (irrespective of the sign of the nonlinearity γ [START_REF] Picozzi | Optical wave turbulence: Toward a unified nonequilibrium thermodynamic formulation of statistical nonlinear optics[END_REF]). It conserves the 'number of particles' N , the energy E and exhibits a H-theorem of entropy growth for the nonequilibrium entropy S(z) = p n p (z) log n p (z) , so that it describes an irreversible evolution to the Rayleigh-Jeans equilibrium distribution realizing the maximum of entropy n eq p = T /(β p -µ) (the finite number of modes N * regularizing the untraviolet catastrophe of classical waves [START_REF] Picozzi | Optical wave turbulence: Toward a unified nonequilibrium thermodynamic formulation of statistical nonlinear optics[END_REF]).

Proceeding as in Refs. [START_REF] Nazarenko | Wave Turbulence[END_REF][START_REF] Connaughton | Condensation of classical nonlinear waves[END_REF][START_REF] Düring | Breakdown of weakturbulence and nonlinear wave condensation[END_REF][START_REF] Picozzi | Optical wave turbulence: Toward a unified nonequilibrium thermodynamic formulation of statistical nonlinear optics[END_REF], the system exhibits a phase transition to condensation: For E ≤ E crit N β 0 N * /2, µ → β 0 and the condensate amplitude increases as the energy decreases,

n 0 /N 1 -(E -E 0 )/(E crit -E 0 )
, where E 0 = N β 0 is the lower energy of the system. The fundamental mode then gets macroscopically populated n 0 n p , while the higher-order modes exhibit energy equipartition E eq p = (β p -β 0 )n eq p = T . Note that E crit only depends on the geometry of the waveguide potential. These theoretical predictions have been confirmed by the simulations of the NLS Eq.( 2) and kinetic Eq.( 3): A quantitative agreement has been obtained without adjustable parameters even beyond the validity regime of the kinetic equation, see Fig. 2 and [46] -we have checked that even the low-order modes evolve in the weakly nonlinear regime through a scale by scale analysis [START_REF] Biven | Breakdown of wave turbulence and the onset of intermittency[END_REF]. As a consequence of the macroscopic population of the fundamental mode u 0 (r), the intensity pattern of the random wave |ψ| 2 (r) exhibits a stable self-cleaned shape (see the movie in [46]).

Impact of strong disorder.-For relatively large propagation lengths, a strong coupling among different modes can no longer be neglected [START_REF] Kaminow | Optical Fiber Telecommunications, Systems and Networks[END_REF][START_REF] Mecozzi | Nonlinear propagation in multimode fibers in the strong coupling regime[END_REF][START_REF] Mecozzi | Coupled Manakov equations in multimode fibers with strongly coupled groups of modes[END_REF][START_REF] Mumtaz | Nonlinear propagation in multimode and multicore fibers: Generalization of the Manakov equations[END_REF][START_REF] Xiao | Theory of intermodal four-wave mixing with random linear mode coupling in few-mode fibers[END_REF]. We have extended the above theory by considering a general form of the N * × N * matrix D(z) modelling random mode coupling. The theory shows that strong disorder introduces an additional term in the kinetic Eq.( 3):

∂ z n p = ∆β sd q Γ pq R (β p -β q )l β n q (z) -n p (z) , (5) 
where the Γ pq describes mode coupling and ∆β sd the corresponding amount of strong disorder [46]. Note that Eq.( 5) has a form similar to power coupling models [START_REF] Kaminow | Optical Fiber Telecommunications, Systems and Networks[END_REF]. In principle, the extra term (5) breaks the conservation of energy E, so that a H-theorem of the complete kinetic Eq.( 3) and ( 5) would describe an irreversible thermalization toward an equilibrium state of power equipartition among all the modes. Strong disorder would then deteriorate the condensation process. However, the key observation is that mode coupling among non-degenerate modes is quenched by the Fourier transform of the correlation function of the fluctuations R β 0 l β 0 [START_REF] Kaminow | Optical Fiber Telecommunications, Systems and Networks[END_REF], because β 0 l β 1 in the experiments of beam self-cleaning. Mode coupling is then restricted to degenerate modes ( R(0) = 1), and Eq.( 5) describes an exponential relaxation to an equipartition of power within groups of degenerate modes. Interestingly, this is a property of the Rayleigh-Jeans distribution (n eq p only depends on β p ). This reveals that strong disorder does not deteriorate condensation, but instead enforces the thermalization to the Rayleigh-Jeans equilibrium distribution. However, given the short fiber lengths considered in beam cleaning experiments (∼10-20m) [START_REF] Krupa | Spatial beam self-cleaning in multimode fibres[END_REF], such an acceleration of thermalization is negligible with respect to the dramatic acceleration due to weak disorder, see Eq.( 4).

Experiments.-We performed experiments in a MMF to evidence the transition to light condensation by varying the coherence of the input beam. The energy E provides a measure of the 'coherence' of the beam in the sense that E increases as the beam populates higher order modes: By increasing the coherence (keeping constant the power N ), E decreases and n 0 increases according to the condensation curve in Fig. 2(c). The sub-nanosecond pulses delivered by a Nd:YAG laser (λ = 1.06µm) are passed through a diffuser to generate a beam with different properties of coherence. The beam is subsequently injected into a graded-index MMF, and the near field intensity is recorded at the fiber output with a (CMOS) camera. The specific fiber launch conditions are known to significantly alter the number of modes excited at the fiber input. Hence, it is important to compare with the same launch conditions and the same power, the intensity pattern after a small propagation length (Z 0 ) representing the 'input' (initial) field, with the corresponding intensity pattern after propagation through the whole fiber length L. To this aim, the field intensity has been recorded at the output of the fiber length L = 13m, which has been subsequently cut to Z 0 = 20cm to record the corresponding 'input' field.

The input and output intensity patterns are reported in Fig. 3 for a power fixed to N = 19kW (at the fiber output). The incoherent beam evolves in the weakly nonlinear regime, L lin ( 0.2mm) L nl ( 1m). When a large number of modes are excited by the 'initial' beam (i.e., E > E crit ), the intensity distribution tends to relax to the equilibrium Rayleigh-Jeans distribution I inc (r) = p n eq p |u p (r)| 2 , see Fig. 3(d). By reducing the excitation of modes (i.e., E < E crit ), the power gradually condenses into the fundamental Gaussian mode u 0 (r) of the parabolic potential V (r), see the orangefilled region in Fig. 3(a-c). This allowed us to compute with accuracy the condensate contribution in the fundamental mode I cond (r) = n 0 u 2 0 (r) (orange region), and the incoherent contribution from all other modes I inc (r) = p =0 n eq p |u p (r)| 2 (grey region). We observe a transition from a vanishing n 0 to a condensate fraction of up to 60% as the coherence of the 'input' beam is increased -these measurements being only weakly affected by the Raman effect [46].

Conclusion.-We have shown that the previously unrecognized process of disorder-induced acceleration of condensation can explain the phenomenon of optical beam self-cleaning. Our experiments report the first observation of light condensation into the fundamental mode of a (cavity-less) waveguide trapping potential. The mechanism of acceleration of condensation is general in the sense that the scaling of Eq.( 4) does not depend on the details of the system, such as the specific forms of the considered model of disorder and of the nonlinearity [46]. The theory and the experiment can be extended to study turbulence cascades [START_REF] Nazarenko | Wave Turbulence[END_REF][START_REF] Newell | Wave Turbulence[END_REF], or spatio-temporal effects [START_REF] Krupa | Observation of geometric parametric instability induced by the periodic spatial self-imaging of multimode waves[END_REF][START_REF] Wright | Self-organized instability in graded-index multimode fibres[END_REF][START_REF] Wright | Ultrabroadband dispersive radiation by spatiotemporal oscillation of multimode waves[END_REF][START_REF] Liu | Kerr self-cleaning of femtosecond-pulsed beams in graded-index multimode fiber[END_REF][START_REF] Laegsgaard | Spatial beam cleanup by pure Kerr processes in multimode fibers[END_REF][START_REF] Krupa | Spatiotemporal lightbeam compression from nonlinear mode coupling[END_REF]. At variance with recent observations of superfluid light flows [START_REF] Vocke | Role of geometry in the superfluid flow of nonlocal photon fluids[END_REF][START_REF] Michel | Superfluid motion and drag-force cancellation in a fluid of light[END_REF], our experiment of light condensation could demonstrate a key manifestation of superfluidity, namely the nucleation of vortices induced by a rotating confining potential (along the 'time' z-variable) in manufactured fibers, in complete analogy with rotating trapped Bose-Einstein condensates [START_REF] Pitaevskii | Bose-Einstein Condensation[END_REF].

FIG. 1 :

 1 FIG. 1: Disorder-induced condensation: (a) Numerical simulations of the modal NLS Eq.(1) in the absence of disorder (a), and in the presence of disorder (b) [NLS Eq.(2)], starting from the same initial coherent condition. Evolutions of the modal populations np/N : fundamental mode p = 0 (red), p = 1 (dark blue), p = 2 (blue), p = 3 (light blue), p = 4 (cyan), p = 5 (light green), p = 6 (green), p = 7 (yellow), p = 8 (orange). Disorder breaks the coherent modal interaction (a) and induces condensation in the fundamental mode n0 (b), which relaxes to the theoretical value n eq 0 /N = 0.67 at thermal equilibrium (dashed black). The dotted red line in (b) reports n0(z) from the simulation of the kinetic Eq.(3). The insets show the corresponding intensity patterns |ψ| 2 (r, z) (N * = 120 modes without including polarization degeneracy).

FIG. 2 :

 2 FIG. 2: Condensation to equilibrium. (a) Simulation of the modal NLS Eq.(2) showing the evolution of np(z) for the fundamental mode p = 0 (red), and p = 4 (blue), and corresponding simulation of the kinetic Eq.(3) (dotted red and blue lines) starting from the same initial incoherent condition: n0(z) reaches the theoretical equilibrium value n eq 0 /N 0.57 (dashed black). (b) Corresponding energy per mode Ep(z) = (βp -β0)np(z) at z = 0 (blue dots), and at z = 20m (red dots) showing that the beam reaches thermal equilibrium with energy equipartition E eq p = T . (c) Condensate fraction at equilibrium n eq 0 /N vs energy E (keeping constant the power N ): For E ≤ Ecrit the system undergoes a phase transition to condensation. The NLS simulations of Eq.(2) (red circles) are in quantitative agreement with the theory (blue line) without adjustable parameters.

FIG. 3 :

 3 FIG. 3: Experiments. Intensity patterns recorded at Z0 = 20cm (bottom line), and at the output of the whole fiber length L = 13m (middle line): By reducing the number of modes initially excited (i.e., by decreasing E), a transition occurs from n0 = 0 to a condensate fraction of n0/N 0.63. (a-d) The fundamental Gaussian mode u0(r) of the MMF gets macroscopically populated as evidenced by the intensity line-outs I(x, y = 0) recorded experimentally at z = L (blue line), and the corresponding fits of the condensate contribution I cond (r) (orange filled region), and of the incoherent contribution Iinc(r) (grey filled region). The red-dashed line denotes I cond (r) + Iinc(r). Above the transition to condensation n0 = 0 (d), we computed the angle averaged distance |r| of the intensity recorded experimentally (blue), which is in agreement with the Rayleigh-Jeans distribution Iinc(r) (reddashed). R = 26µm is the fiber core radius (corresponding to the circles (e-l)), N * = 120 modes, N = 19kW.