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Abstract. Optimal transport distance is an appealing tool to measure the discrepancy between datasets in
the frame of inverse problems, for its ability to perform global comparisons and its convexity with respect to
shifted patterns in the compared quantities. However, solving inverse problems might require to compare signed
quantities, while the optimal transport theory has been developed for the comparison of probability measures.
In this study we propose to circumvent this difficulty by applying optimal transport to the comparison of
the graph of the data rather than the data itself. We investigate this approach in the frame of seismic
imaging, where each channel of the oscillatory data is interpreted as a discrete point cloud. We demonstrate
that the corresponding misfit function can be computed through the solution of series of linear sum assignment
problem (LSAP), while, based on the adjoint state technique, its gradient can be computed from the assignment
solution of these LSAP. We illustrate how this approach yields a convex misfit function in the frame of seismic
imaging using the full waveform. We show how an efficient strategy, based on a specific LSAP solver, the
auction algorithm, can be designed. We illustrate the interest of the approach on a realistic 2D visco-acoustic
seismic imaging problem. The proposed strategy relaxes the constraint on the accuracy of the initial model,
outperforming the conventional least-squares approach and a previously proposed optimal transport based
approach. The computational time increases by only a few percents compared with the least-squares approach,
opening the way to applications to 3D field data in the near future.

Keywords: seismic imaging, full waveform inversion, optimal transport, linear assignment problem,
auction algorithm
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1. Introduction

The framework of this study is a seismic imaging inverse problem named Full waveform inversion
(FWI). It is based on the iterative minimization of a misfit function between observed and calculated
data, over a space of model parameters which describe the subsurface. This method is used at
various scales: from global to regional scales in seismology (Fichtner et al., 2010; Tape et al., 2010;
Bozdağ et al., 2016), for seismic exploration in the oil & gas industry (Plessix and Perkins, 2010;
Stopin et al., 2014; Operto et al., 2015), and at the near surface scale for geotechnical targets
(Bretaudeau et al., 2013; Groos et al., 2014; Schäfer et al., 2013). The main interest of FWI
compared to standard tomography methods is its high-resolution power, down to half the shortest
wavelength of the propagated signals (Devaney, 1984). An up-to-date review of FWI and its
applications can be found in Virieux et al. (2017).

One of the main limitations of FWI is related to the non-convexity of the least-squares misfit
function which is conventionally used to define the distance between observed and calculated
data. This non-convexity is a severe limitation because the minimization process is based on local
optimization solvers: the expected resolution leads to use rather fine discretization of the model
space, responsible for number of unknowns from O(106) in 2D to O(109) in 3D for realistic size
FWI applications. For this reason, successful applications of FWI strongly rely on the definition
of an accurate enough initial model, to ensure the convergence towards the global minimum of the
misfit function.

The non-convexity of the least-squares misfit function has a physical interpretation. Large-
scale to medium-scale perturbations of the subsurface velocities are mainly responsible for shifting
in time the seismic data (Jannane et al., 1989). However, the least-squares misfit function is
not convex with respect to time-shifts. Schematically, for two shifted sinusoidal signals of period
T , minimizing the least-squares misfit between these two signals through local optimization will
conduct to put them in phase only if the initial shift is smaller than T/2. As soon as the initial
shift is larger than T/2, the minimization leads to interpreting the signals with at least one phase
shift (Virieux and Operto, 2009). This phenomenon is referred to as phase ambiguity or cycle
skipping. In terms of velocity model reconstruction, this phase shift can be interpreted as wrongly
increasing or decreasing the velocity model to fit the data.

This difficulty has been reported since the introduction of FWI in the 80s (Gauthier et al.,
1986). Overcoming this limitation has been the subject of an important number of studies.
Introducing a hierarchy in the data interpretation is a standard way to proceed. The general
aim is to include only few wavelengths of the data at each inversion step, to reduce the phase
ambiguity. This is performed by focusing first on the low-frequency part of the data and/or selected
events through time/offset windowing techniques (Bunks et al., 1995; Pratt, 1999; Shipp and Singh,
2002; Wang and Rao, 2009; Brossier et al., 2009). However, except for global and regional scale
applications, the low-frequency part of the data is often not energetic enough for this strategy to be
sufficient. In addition, designing this data hierarchy is strongly application-dependent and requires
specific human expertise.

Another - possibly complementary - strategy consists in designing more convex misfit functions,
presenting less local minima than the least-squares misfit function, with a wider valley of attraction
near the global minimum. This can be done working directly in the data space, modifying the
measure of distance between two data sets. Cross-correlation (Luo and Schuster, 1991; van Leeuwen
and Mulder, 2010), deconvolution (Luo and Sava, 2011; Warner and Guasch, 2016), instantaneous
phase or envelope (Fichtner et al., 2008; Bozdağ et al., 2011) have been proposed for instance. Other
convexification strategies rely on extending the parameter space. In migration velocity analysis
(MVA), a redundant parameter is introduced in the image condition (a time-lag or subsurface
offset for instance) to build image hypercubes. The correct velocity is expected to concentrate the
energy at zero offset/time-lag. A new misfit function can thus be defined to penalize the energy
away from zero in this augmented space. This function should behave as a travel-time tomographic
operator and therefore should exhibit a better convexity (Symes, 2008, 2015). Another class of
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extended space approach is referred to as wavefield reconstruction inversion (WRI) (van Leeuwen
and Herrmann, 2016). This method is based on a relaxation on the constraint imposed to the
wavefield to satisfy the wave equation to machine precision. In WRI, the wavefield becomes a
new unknown. The resulting problem can be solved in an alternate way between the subsurface
parameters and the wavefield (Aghamiry et al., 2018). It appears that this makes it possible to
mitigate the non-convexity of the least-squares misfit function.

While all these strategies provide interesting alternative to the standard FWI formulation,
they still suffer from a number of limitations. Cross-correlation based methods do not handle
complex data sets including multiple and mixed seismic arrivals. The deconvolution strategy
requires the tuning of a penalization function which might be application dependent. Instantaneous
envelope requires also to carefully adjust scaling parameters and suffer from losing the polarity
information, making difficult to correctly interpret the reflected events in the data. MVA methods
are computationally intensive as the construction of seismic image hypercube, involving high-
resolution migration, is required at each iteration of the method. WRI has been introduced for 2D
acoustic frequency-domain FWI, and its generalization to 3D time-domain and elastic modeling is
still under investigation (Wang et al., 2016).

Recently, an alternative data domain strategy based on the measure of the misfit between
observed and synthetic data through optimal transport (OT) has been introduced (Engquist and
Froese, 2014). OT is a mathematical field originating from the work of the French mathematician
Gaspard Monge (Monge, 1781). The problem posed was to minimize the efforts performed by
workers to transfer sand piles to fill in holes on a bridge building site. The corresponding
minimization problem formulated by Monge is not well posed: a solution does not always exist.
A well-posed relaxation of the problem was later proposed by Kantorovich (1942), leading to
the definition of the OT (Wasserstein) distance: The solution of the OT problem, through the
Kantorovich relaxation, defines a distance in the space of probability distributions.

This distance has a very interesting property: it is convex with respect to shifted patterns
in the distributions which are compared. This property has made OT a widely used tool in
image processing for applications such as image retrieval (Rubner et al., 2000; Rabin et al., 2010),
histogram equalization (Delon, 2006), color transfer (Pitié et al., 2007), texture mapping (Dominitz
and Tannenbaum, 2010; Rabin et al., 2012). More references on image processing applications of
OT can also be found in Lellmann et al. (2014). In the field of seismic imaging, this property is
very attractive. Assuming OT could be applied directly to seismic data, its convexity with respect
to shifted patterns would produce a distance convex with respect to time shifts, a good proxy for
the convexity with respect to the subsurface velocities. More generally, it also makes possible a
global comparison of the seismic data, besides the quantitative point-to-point comparison induced
by the use of Lp distances.

However, the seismic data is oscillatory, and cannot be represented as a probability
distribution. The generalization of OT to signed measures is a fundamental mathematics problem.
Until now, there are no clear ideas on how this extension could be formally made in a generic way
(Ambrosio et al., 2011; Mainini, 2012). The application of OT to seismic data therefore relies on
specific adaptations. A first approach consists in transforming the data into positive quantities and
normalizing it prior being compared through OT (Engquist and Froese, 2014; Qiu et al., 2017; Yang
et al., 2018b; Yang and Engquist, 2018). A second approach, which we have promoted, consists
in considering a special instance of the OT distance, based on the 1-Wasserstein distance, which
can be extended naturally to the comparison of non-positive data (Métivier et al., 2016a,b,c). We
have proposed a review of these two types of adaptations in Métivier et al. (2018). We illustrate
that both these types of strategies are either not adapted to the application to field data, or lose
the convexity property that first motivates the use of OT for FWI.

We provide in Métivier et al. (2018) a solution to overcome this contradiction. We propose
to compare the discrete graph of the data rather than the data itself, following the idea of Thorpe
et al. (2017). Each trace (time-signal) constituting the data is interpreted as a point cloud after
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a time-discretization. Mathematically, it is represented as a sum of Dirac delta functions in a 2D
space containing the time-dimension and an additional dimension associated with the amplitude of
the data. The discrete graph of the observed and the synthetic data is compared instead of the data
itself. This guarantees the positivity of the compared quantities, and maintain the convexity of the
distance with respect to time shifts and amplitude shifts. The illustrations provided in Métivier
et al. (2018) are encouraging: the convexity of the misfit function is enhanced compared with
previous implementation of OT based on the 1-Wasserstein distance. However, the introduction
of an augmented data space can increase significantly the computational cost of the method. In
Métivier et al. (2018), the proposed numerical strategy solves a fully 2D OT problem for each
seismic trace, using the algorithm developed in Métivier et al. (2016c), making it prohibitively
expensive for field data applications. For a 2D synthetic example, the additional computational
cost for one iteration represents 700% compared to the least-squares distance.

The main contribution of this study is to provide a mathematical analysis of the graph space
OT strategy, which yields the possibility to design a very efficient numerical strategy for this
approach. In the numerical example presented here, the additional computational cost represents a
6 % increase compared to a least-squares based FWI algorithm. Interestingly, we demonstrate how
the graph space OT distance can be interpreted as a generalization of conventional Lp distances.

We show in Section 2 how the computation of the graph space OT distance can be expressed
as a linear sum assignment problem (LSAP), for which exists specific numerical solvers. In Section
3, we introduce this formalism in the frame of full waveform inversion. The analogy between the
graph space OT distance and the Lp distance is highlighted. We prove how the adjoint source
corresponding to the graph space OT misfit function is a generalization of the Lp adjoint source.
We discuss practical implementation issues regarding the scaling between time and amplitude axis
when considering 2D shot gathers. We then illustrate the convexity of the resulting misfit function
on canonical examples. We provide an analysis of the gradient building with this new metric and
establish a connection with another misfit function modification based on the cross-correlation of
synthetic and observed data. In Section 4, we provide a numerical strategy for the computation
of the misfit function and its gradient which takes benefit of the LSAP formulation, based on the
auction algorithm (Bertsekas and Castanon, 1989). We show how the computational cost should
marginally increase compared to Lp misfit functions, for realistic size FWI problems, making the
method suitable for applications to 2D and 3D field data. In Section 5, we illustrate the interest
of the approach on a realistic 2D synthetic benchmark based on the Valhall model, representative
of the North Sea geology. Conclusion and perspectives are provided in the final Section.
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2. Optimal transport distance between point clouds: a linear sum assignment
problem

In this section we recall the basic definition of the Wasserstein distance through the Kantorovich
relaxation problem. We show how its application to the comparison of discrete point clouds
translates into a LSAP. We refer the readers to Villani (2008); Ambrosio (2003); Santambrogio
(2015) for a more detailed introduction on the OT theory.

2.1. Basics on optimal transport theory

Consider two probability measures µ(x) ∈ P(X) and ν(y) ∈ P(Y ), where X and Y are two
complete and separable metric spaces. For a given map T : X → Y , the image measure of µ
through T is denoted by T#µ, such that for any measurable set A ⊂ Y

(T#µ) (A) = µ
(
T−1(A)

)
. (1)

The general definition of the Kantorovich problem is

min
γ∈Π(µ,ν)

∫
X×Y

c(x, y)dγ(x, y), (2)

where Π(µ, ν) is

Π(µ, ν) =
{
γ ∈ P(X × Y ), (πX)# γ = µ, (πY )# γ = ν

}
, (3)

with πX and πY the projections on X and Y respectively, and c(x, y) a continuous function from
X×Y to [0; +∞]. The coupling measure γ specifies for each pair of points (x, y) how much particles
from µ(x) should be moved to ν(y). The constraints (3) on (πX)# γ and (πY )# γ make sure that
γ describes a mapping from µ(x) to ν(y). The criterion which is minimized in (2) measures, for
a given mapping (or transport plan) γ(x, y), the total energy required to achieve this mapping.
It is the sum, for all points (x, y), of the product between the amount of mass γ(x, y) which is
moved, multiply by a measure of the distance between these points c(x, y). Solving the Kantorovich
problem amounts to find the optimal transport plan γ(x, y) which minimizes this criterion.

The Kantorovich problem can be used to define a distance between probability measures,
named the Wasserstein distance. Assuming that

X = Y = Ω ⊂ Rn, n ∈ N, (4)

and that µ and ν are probability measures with finite p-moment, p ∈ N, such that∫
Ω

‖x‖pdµ(x) < +∞,
∫

Ω

‖x‖pdν(x) < +∞, (5)

with ‖.‖ a norm on Rn, the p-Wasserstein distance between µ and ν is defined as

Wp(µ, ν) =

(
min

γ∈Π(µ,ν)

∫
Ω×Ω

‖x− x′‖pdγ(x, x′)

)1/p

. (6)

In this study, we will consider the case where ‖.‖. is the Euclidean norm on Rn.

2.2. Discrete Kantorovich problem and comparison of point clouds

In practice, we deal with discrete instances of the p-Wasserstein distance. Considering the domain
Ω is discretized as

Ω = {xi, i = 1, . . . , N}, (7)

we introduce the conventional notations

γ(xi, xj) = γij , µ(xi) = µi, ν(xj) = νj . (8)
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In these discrete settings, the p-Wasserstein distance between µ and ν can be computed through
the solution of the linear programming problem

Wp(µ, ν)p = min
γij

N∑
i,j=1

γij‖xi − xj‖p,

γij ≥ 0, i, j = 1, . . . , N,
N∑
j=1

γij = µi, i = 1, . . . , N,

N∑
i=1

γij = νj , j = 1, . . . , N.

(9)

For two point clouds, the two distributions µ(x) and ν(y) can be described as a normalized
sum of Dirac delta functions δ(x), such that

µ(x) =
1

K

K∑
k=1

δ(x− uk), ν(x) =
1

K

K∑
k=1

δ(x− vk), (10)

where uk ∈ Ω (respectively vk ∈ Ω) indicates the position of the points defining µ(x) (respectively
ν(x)). Denote

IK = {i, ∃k ∈ {1, . . . ,K}, i = ik} , JK = {j, ∃k ∈ {1, . . . ,K}, j = jk} , (11)

where ik and jk denote the position on the discrete mesh of the points uk and vk respectively.
Consider

IK = {1, . . . , N} /IK , JK = {1, . . . , N} /JK . (12)

We have

∀i ∈ IK , µi = 0, ∀j ∈ JK , νj = 0. (13)

Because of the positivity constraints on γij , this implies that all the coefficients of the rows i ∈ IK
and the columns j ∈ JK of γ are equal to 0. These coefficients thus have no contribution in the
criterion and can be removed. The linear programming problem (9) can thus be simplified as

Wp(µ, ν)p = min
γij

K∑
i,j=1

γij‖ui − vj‖p (14a)

γij ≥ 0, i, j = 1, . . . ,K, (14b)

K∑
i=1

γij =
1

K
, j = 1, . . . ,K, (14c)

K∑
j=1

γij =
1

K
, i = 1, . . . ,K. (14d)

or equivalently

Wp(µ, ν)p =
1

K
min
γij

K∑
i,j=1

γij‖ui − vj‖p (15a)

γij ≥ 0, i, j = 1, . . . ,K, (15b)

K∑
i=1

γij = 1, j = 1, . . . ,K, (15c)

K∑
j=1

γij = 1, i = 1, . . . ,K. (15d)
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The linear programming problem (15) is a standard linear sum assignment problem (LSAP). While,
formally, fractional values for the unknown γij are authorized, a standard result states that the
values of the optimal solution are either 0 or 1. This comes from the fact that the matrix describing
the linear constraints (15c) and (15d) is totally unimodular: for such a linear programming problem,
the solution can take only integer values (Birkhoff, 1946; Burkard et al., 2012).

Using this result, the problem (15) can be further reformulated as

Wp(µ, ν)p =
1

K
min

σ∈S(K)

K∑
i=1

‖ui − vσ(i)‖p, (16)

where S(K) denotes the ensemble of permutations of {1, . . . ,K}.
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3. Full waveform inversion using optimal transport in the graph space

In this section, we first introduce the mathematical framework for FWI as a PDE-constrained
optimization problem. In its conventional formulation, the data fitting term is based on the Lp

distance. We then define a new FWI strategy based on a graph-space OT misfit function. We
show how this strategy can be understood as a generalization of the conventional Lp distance
based FWI, by highlighting the connections between the formulas defining the misfit functions and
their gradients. We then discuss practical implementation issues related to the amplitude and time
axis scaling, especially when considering the interpretation of 2D shot gathers. We then explore
the properties of this FWI strategy through canonical examples implying the comparison of shifted
Ricker signal, the computation of 2D misfit function maps, and the analysis of the residuals in a
simple transmission case.

3.1. Conventional Lp based FWI

A conventional seismic acquisition comprises at set of seismic sources (pressure or directional forces)
and a set of receivers (hydrophones or geophones), generally located at or near the free surface.
For each source, the receivers record the wavefield during a certain time duration T ∈ R∗+. The
resulting seismic dataset can be represented as a collection of time dependent functions named
seismic traces ds,r(t) where s ∈ N and r ∈ N correspond respectively to the source and receiver
indexes, and t ∈ R+ denotes the time variable.

After time discretization, a seismic trace is a vector of K time samples [ds,r1 , . . . , ds,rK )] ∈ RK
where we use the notation

ds,r(tk) = ds,rk , k = 1, . . . ,K. (17)

FWI is based on the comparison between observed and synthetic data ds,robs and ds,rcal. The
synthetic data is computed in two steps. First, the wavefield us(x, t) corresponding to the source
s is computed through the solution of partial differential equations (PDE) representing the wave
propagation within the subsurface. Under a general formulation, this set of PDE can be written
as

A(m, ∂t, ∂x)u(x, t) = fs(x, t), (x, t) ∈ Rd × [0, T ], (18)

where A(m, ∂t, ∂x) is a time-space partial differential operator, m(x) represents the subsurface
parameters, d is the spatial dimension (d = 1, 2, 3). Initial homogeneous conditions are imposed,
as the medium is considered at rest before the propagation. For the boundary conditions, we
usually assume zero energy at infinity, which can be efficiently implemented through absorbing
layers techniques (Cerjan et al., 1985; Bérenger, 1994; Métivier et al., 2014).

Based on the solution of this PDE, the calculated data ds,rcal(t) is given by

ds,rcal(t) = us(xr, t), (19)

where xr ∈ Rd denotes the spatial position of the rth receiver.
After discretization, the extraction of the wavefield values at the receivers positions can be

written as the linear operation

ds,rcal = Rru
s, (20)

where now ds,rcal ∈ RK , us ∈ RNK , with N the number of discrete samples in space, and
Rr ∈ MK,NK(N) is a sparse matrix defined as a discretization of the Dirac comb extracting for
each time sample the value of the wavefield u at the receiver position xr at time tk.

For (dcal, dobs) ∈ RK × RK , we introduce the Lp based comparison function

hLp(dcal, dobs) =
1

p

K∑
i=1

|dcal,i − dobs,i|p =
1

p
‖dcal − dobs‖pp, (21)



A graph space OT distance as a generalization of Lp distances: application to FWI 9

where ‖.‖p is the Lp norm in RK . The conventional Lp FWI problem is formulated as the
minimization problem

min
m

fLp [m] =

Ns∑
s=1

Nr∑
r=1

hLp(ds,rcal[m], ds,robs), (22)

where the dependency of the calculated data with respect to the velocity model m(x) is denoted
with square brackets [m]. In practice, mostly the cases p = 2 (least-squares) or p = 1 are considered,
the latter being preferred to interpret heavily noise-contaminated data for its better robustness with
respect to outliers (see Brossier et al., 2010, for instance).

The minimization problem (22) is solved through quasi-Newton techniques (Nocedal, 1980)
based on the iteration

mq+1 = mq + αq∆mq, (23)

starting from a given m0. In (23), αq ∈ R+ is a linesearch parameter ensuring the convergence
towards the closest local minimum, and ∆mq is a descent direction, given by

∆mq = −Bq∇f [mq], (24)

where Bq is the l-BFGS approximation of the inverse Hessian operator computed from l
previous gradients ∇f [mq−l+1], . . . ,∇f [mq] (see Métivier and Brossier, 2016, for a review of local
optimization techniques for FWI). The key quantity to compute is thus the gradient ∇fLp [m].

Following the adjoint-state approach, the gradient ∇fLp [m] can be expressed as

∇fLp [m] =

Ns∑
s=1

(
∂A(m, ∂t, ∂x)

∂m
us, λs

)
, (25)

where (., .) is the scalar product in the wavefield space and λs(x, t) is the solution of the adjoint
state equation

AT (m, ∂t, ∂x)λ(x, t) = gs(x, t), x ∈ Rd × [0, T ]. (26)

In equation (26), the adjoint operator of the partial differential operator A is denoted by AT . The
source term gs(x, t) of the adjoint equation is given, after discretization, by

gs =

Nr∑
r=1

RTr

(
∂hLp(ds,rcal, d

s,r
obs)

dcal

)
, (27)

with

∂hLp(dcal, dobs)

dcal,k
= p|dcal,k − dobs,k|p−2(dcal,k − dobs,k), k = 1, . . . ,K. (28)

Equations (25) to (28) can be interpreted as follows: the gradient of the misfit function fLp [m] is
given by the sum over the sources of a weighted zero-lag correlation between the incident wavefield
us(x, t) and the adjoint wavefield λs(x, t). The weight depends on the derivatives of the partial
differential operator A(m, ∂t, ∂x) with respect to the parameter m. This term is known as the
radiation pattern in the seismic imaging community. Most importantly, the source function for
the adjoint computation is given by the derivative with respect to dcal of the comparison function
hLp(dcal, dobs) defined in (21).

In what follows we introduce a new FWI strategy where the comparison function is modified
into a graph-space OT misfit function. Benefiting from the adjoint state formulation, computing
the gradient of the corresponding misfit function requires only to modify the adjoint source as the
derivative with respect to dcal of the new comparison function. This result has been abundantly
documented in the literature, thus we prefer not to describe its proof in this study and redirect
the reader to reference papers such as the review from Plessix (2006) or the book from Chavent
(2009) for more details.
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3.2. Graph space optimal transport full waveform inversion

3.2.1. Mathematical development Introducing the vector t ∈ RK , t = (t1, . . . , tK), the discrete
graph of a seismic trace d(t) is the ensemble of K points of R2 defined by (t1, d1), . . . , (tK , dK). In
short, we will denote this discrete graph by (t, d).

Using these notations, introducing the graph-space optimal transport misfit function amounts
to modify the definition of the comparison function such that the new FWI problem is

min
m

fWp [m], (29)

where

fWp [m] =

Ns∑
s=1

Nr∑
r=1

hWp(ds,rcal[m], ds,robs), (30)

with

hWp(dcal, dobs) = KW p
p

(
(t, dcal) , (t, dobs)

)
. (31)

For simplicity of the following developments, we multiply the p-Wasserstein distance by the
normalization factor K. Because (t, dcal) and (t, dobs) represent two point clouds in a 2D space,
hWp(dcal, dobs) can be rewritten as the solution of the linear programming problem (16), where the
points ui and vi now correspond to

ui = (ti, dcal,i) ∈ R2, vi = (ti, dobs,i) ∈ R2. (32)

Let σ∗ be the permutation solution of the problem (16). We have

hWp(dcal, dobs) =

K∑
i=1

|ti − tσ∗(i)|p + |dcal,i − dobs,σ∗(i)|p (33)

Solving the FWI problem (29) requires to access the gradient of the misfit function (30). Through
the adjoint state technique, this only requires to express the derivatives of the comparison function
hWp(dcal, dobs) with respect to dcal. Here, we use the following

Theorem 1. Let X = (xi)1≤i≤K , Y = (yj)1≤j≤K be two ensembles of K points in Rd,
such that all the points yj are distinct. Consider the function F (X) which computes, for p ≥ 1,
the p-Wasserstein distance between the point clouds X and Y , defined by the LSAP

F (X) = min
σ∈S(K)

K∑
i=1

‖xi − yσ(i)‖p, (34)

where ‖.‖ is the Euclidean norm in Rd. Then, the solution σ∗(X) to (34) is unique and locally

constant a.e., to be defined in
(
Rd
)K

. Thus, F (x) is differentiable a.e., and its gradient is given
by

∇F (X) = p

 ‖x1 − yσ∗(1)‖p−2
(
x1 − yσ∗(1)

)
...
‖xK − yσ∗(K)‖p−2

(
xK − yσ∗(K)

)
 . (35)

In the specific case p = 2, we have

∇F (X) = 2 (X − Yσ∗) (36)

where Yσ∗ ∈
(
Rd
)K

is defined by

∀i, 1 ≤ i ≤ K, (Yσ∗)i = yσ∗(i). (37)
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Proof. We start with the simpler case p = 2. In a second step, we generalize the proof to p > 1
and p = 1. We introduce the functions

Fσ(X) =

K∑
i=1

‖xi − yσ(i)‖2 = ‖X‖2 − 2 (X,Yσ) + ‖Y ‖2. (38)

The LSAP (34) is thus equivalent to

min
σ
Gσ, Gσ(X) = −2 (X,Yσ) . (39)

We have assumed that all the yj are distinct, i.e.

∀(j, j′), 1 ≤ j ≤ K, 1 ≤ j′ ≤ K, j 6= j′ =⇒ yj 6= yj′ . (40)

Therefore, for (σ, σ′) ∈ S(K)× S(K), we have

Yσ = Yσ′ ⇐⇒ ∀j, 1 ≤ j ≤ K, Yσ(j) = Yσ′(j)
⇐⇒ ∀j, 1 ≤ j ≤ K, σ(j) = σ′(j)
⇐⇒ σ = σ′.

(41)

Therefore the Yσ are all distinct. In addition, we have

Gσ(X) = Gσ′(X)⇐⇒ (X,Yσ − Yσ′) = 0 (42)

and the ensembles Hσ,σ′ such that

Hσ,σ′ =
{
X ∈

(
Rd
)K

, Gσ(X) = Gσ′(X)
}
, (43)

are hyperplanes of codimension 1, and therefore are null sets. The ensemble

H =
⋃
σ 6=σ′

Hσ,σ′ , (44)

is thus also a null set. For X /∈ H, the functions Gσ(X) are all distinct, and thus we have a unique
minimizer

σ∗(X) = arg min
σ

Gσ(X). (45)

From the uniqueness of σ∗(X) we have

∃δ > 0, ∀σ ∈ S(K), σ 6= σ∗(X), Fσ(X)− Fσ∗(X) > δ. (46)

Let X ′ ∈
(
Rd
)K

and consider

σ ∈ S(K), σ 6= σ∗. (47)

By continuity of Fσ(X) with respect to X, we have

∃η1 > 0, ‖X −X ′‖ < η1 =⇒ Fσ(X ′) ≥ Fσ(X)− δ

4
(48)

and

∃η2 > 0, ‖X −X ′‖ < η2,=⇒ Fσ∗(X) ≥ Fσ∗(X ′)−
δ

4
(49)

Combining inequalities (46), (48) and (49) we obtain

∃η = min(η1, η2) > 0, ‖X −X ′‖ < η =⇒ ∀σ ∈ S(K), Fσ(X ′) > Fσ∗(X
′). (50)
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This shows that σ∗(X) is locally constant

∃η > 0, ‖X −X ′‖ < η, σ∗(X ′) = σ∗(X). (51)

We have

∇F (X) = 2(X − Yσ∗) +
∂F

∂σ

∂σ∗

∂X
, (52)

and from (51) we deduce that

∇F (X) = 2(X − Yσ∗). (53)

We now consider the case p > 1. We proceed in a similar way: we try first to characterize the
ensemble of points X which satisfy, for (σ, σ′) ∈ S(K)2, σ 6= σ′

Fσ(X) = Fσ′(X). (54)

For convenience, we introduce the notation

FY (X) = ‖X − Y ‖p. (55)

For two distinct point clouds Y ∈
(
Rd
)K

and Z ∈
(
Rd
)K

, such that Y 6= Z, we have

∇FY (X) = ∇FZ(X) ⇐⇒ ∀j, 1 ≤ j ≤ K,
‖xj − yj‖p−2 (xj − yj) = ‖xj − zj‖p−2 (xj − zj) .

(56)

Let us consider one particular index k such that yk 6= zk. Dropping the index, we obtain

‖x− y‖p−2 (x− y) = ‖x− z‖p−2 (x− z) (57)

This implies that x 6= y, x 6= z, and that x, y, z are aligned along the same line. Up to a change of
variables, we are in the situation where y = 0, z = 1, and x = t, such that it should satisfy

|t|p−2t = |t− 1|p−2(t− 1). (58)

However this equation cannot be satisfied for p > 1. For t ∈ [0, 1], the left hand side is negative
and the right hand side positive. For t > 1, the left hand side is strictly greater than the right
hand side. We reach symmetric conclusion for t < 0. Therefore, we conclude that

Y 6= Z =⇒ ∇FY (X) 6= ∇FZ(X). (59)

From the assumption that the point yj are all distinct, we have

σ 6= σ′ =⇒ Yσ 6= Yσ′ . (60)

Therefore, using (59), we have

σ 6= σ′ =⇒ ∇Fσ(X) 6= ∇Fσ′(X). (61)

Consider now

Gσ,σ′(X) = Fσ(X)− Fσ′(X). (62)

The ensembles Hσ,σ′ , defined by

Hσ,σ′ =
{
X ∈

(
Rd
)K

, Fσ(X) = Fσ′(X)
}
, (63)

are characterized by

Hσ,σ′ =
{
X ∈

(
Rd
)K

, Gσ,σ′(X) = 0, ∇Gσ,σ′(X) 6= 0
}
. (64)
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From the implicit functions theorem, (64) reveals that the codimension of Hσ,σ′ is 1. Therefore,
(44) holds in the general case p > 1. The same conclusions as in the specific case p = 2 can thus be
drawn: the functions Fσ(X) are distinct a.e., and thus the minimizer σ∗(X) is unique a.e. From
the continuity of the functions Fσ(X) with respect to X, we can show that the minimizer σ∗(X)
is locally constant, and thus obtain the general formula (35) for the gradient of F (X).

Finally, the same conclusion can be obtained in the case p = 1. We first consider the ensembles
on which the functions FY (X) are not differentiable, defined by

EY =
{
X ∈

(
Rd
)K

, ∃j, xj = yj

}
. (65)

The ensemble EY contains a finite number of points and is therefore a null set.
For Y 6= Z, the equations (56) hold for X /∈ (EY ∪ EZ). We thus have,

∀X /∈ (EY ∪ EZ) , ∇FY (X) = ∇FZ(X)⇐⇒ X ∈ DY,Z (66)

where DY,Z is defined by

DY,Z = {∃j, xj ∈ Line(yj , zj)} =
⋃
j

{X, xj ∈ [yj , zj ]} (67)

In (67), Line(yj , zj) denotes the line connecting yj and zj in Rd. Indeed, for p = 1, there exists a
solution to the equations (56). However, the space DY,Z is of codimension 1. For two permutations
σ, σ′ ∈ S(K)2, σ 6= σ′, we can thus define a space Hσ,σ′ of codimension 1, defined by

Hσ,σ′ = EYσ ∪ EYσ′ ∪ DYσ,Yσ′ , (68)

such that

∀X ∈
(
Rd
)K

, X /∈ Hσ,σ′ =⇒ Fσ(X) 6= Fσ′(X). (69)

We can thus show, as for the previous case, that the solution to the problem (34) is unique and
locally constant a.e.

�

The result from the theorem provides the gradient of the LSAP misfit function with respect
to displacements of the point cloud X in all directions of Rd. The FWI case we consider here
is less general. We consider point clouds in R2, and we are interested in the sensitivity of the
LSAP misfit function with respect to displacements of the point cloud X along one dimension
only, the one corresponding to the amplitude (derivative with respect to dcal). This means that
we are interested in only a subset of the components of the gradient ∇F (X), those corresponding
to variations along the amplitude axis. Following (35), we obtain

∂hWp

∂dcal,k
= p|dcal,k − dobs,σ∗(k)|p−2

(
dcal,k − dobs,σ∗(k)

)
. (70)

3.2.2. Interpretation The cost hLp(dcal, dobs) given in equation (21) computes the distance
between dcal and dobs by summing over local, sample by sample comparisons between dcal,k and
dobs,k. The corresponding adjoint source in equation (28) is the simple difference, sample by sample,
between calculated data and observed data. This difference is weighted by its norm to the power
p− 2, which indicates the well-known better resilience to outliers for p tending to 1.

Alternatively, the graph-space OT cost function hWp(dcal, dobs) in equation (33) computes
the misfit between dcal and dobs through nonlocal comparisons: each sample i of the calculated
data is assigned with a sample σ(i) of the observed data through the solution of the graph-space
OT problem. The comparison function hWp is the sum of the distance between samples from the
calculated and observed data connected through this assignment. For each sample i, the time-delay
|ti − tσ(i)|p associated with these two connected samples is added to the misfit measurement.
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The corresponding residuals in equation (70) are also very similar to those from the Lp distance.
Instead of being based on the `p residuals between dcal,k and dobs,k, they correspond to the `p

residuals between the sample k of the calculated data dcal,k and the sample σ∗(k) of the observed
data, also weighted by a power p− 2 of this difference.

This comparison illustrates how the graph space OT misfit can be seen as a generalization
of the Lp distance on RK : the local, sample by sample comparison, is replaced with a global
comparison given by the optimal permutation computed through the graph-space OT problem.

Interestingly, we can actually show that the graph space OT misfit defines a distance in RK .

Theorem 2. The misfit function (hWp(dcal, dobs))
1/p

defines a distance in RK .
Proof. Let dcal, dobs be two vectors of RK .

Positivity. We have hWp(dcal, dobs) ≥ 0.
Identity of indiscernibles. Assume that hWp(dcal, dobs) = 0. Then we have

K∑
i=1

|ti − tσ∗(i)|p + |dcal,i − dobs,σ∗(i)|p = 0 (71)

where σ∗ is the permutation solution of the corresponding LSAP problem. Then

∀i, 1 ≤ i ≤ K, ti = tσ∗(i), (72)

which means that σ∗ = Id where Id is the identity permutation of {1, . . . ,K}. Therefore

∀i, 1 ≤ i ≤ K, dcal,i = dobs,σ∗(i) = dobs,i (73)

and dcal = dobs.
Symmetry. Let f(σ) be such that

f(σ) =

K∑
i=1

|ti − tσ(i)|p + |dcal,i − dobs,σ(i)|p, (74)

and g(σ) such that

g(σ) =

K∑
i=1

|tσ(i) − ti|p + |dcal,σ(i) − dobs,i|p. (75)

Introducing j = σ(i) in the sum, g can be rewritten as

g(σ) =

K∑
j=1

|tj − tσ−1(j)|p + |dcal,j − dobs,σ−1(j)|p = f(σ−1). (76)

We introduce σ∗ such that

hWp(dcal, dobs) = f(σ∗), (77)

and σ̂ such that

hWp(dobs, dcal) = g(σ̂). (78)

By definition we have,

∀σ ∈ S(K), g(σ̂) ≤ g(σ). (79)

Therefore, using (76), we have

∀σ ∈ S(K), f((σ̂)−1) ≤ f(σ−1), (80)
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which means that

∀σ ∈ S(K), f((σ̂)−1) ≤ f(σ). (81)

This shows that

(σ̂)−1 = σ∗. (82)

Therefore, using again (76),

g(σ̂) = f(σ∗), (83)

and

hWp(dobs, dcal) = hWp(dcal, dobs). (84)

Triangle inequality. We simply rely on the Wasserstein distance definition. For any
(d1, d2, d3) ∈ (RK)3 we have

(hWp(d1, d3))
1/p

= Wp ((t, d1), (t, d3))
≤Wp ((t, d1), (t, d2)) +Wp ((t, d2), (t, d3))

≤ (hWp(d1, d2))
1/p

+ (hWp(d2, d3))
1/p

.

(85)

�

3.3. Practical implementation: how to choose time and amplitude extremal values?

The aspect ratio between the time and amplitude axis used to represent the points cloud plays a
major role in the solution of the graph space OT problem. Intuitively, if the amplitude limits are
significantly larger than the time limits, the OT solution will favor displacement along the time
axis. In the opposite regime, the OT solution will favor displacement along the amplitude axis
and we might end up with a distance similar to a Lp distance. A balance thus needs to be found
between the maximum amplitude and time variations. We first analyze the situation for a single
trace. Then we discuss how to perform properly this balance in a shot gather configuration, where
the relative amplitude of each trace, as an imprint of the Amplitude Versus Offset (AVO) response,
is different.

3.3.1. Single trace normalization We introduce

A+
cal = max

1≤i≤K
dcal,i, A−cal = min

1≤i≤K
dcal,i, (86)

and

A+
obs = max

1≤i≤K
dobs,i, A−obs = min

1≤i≤K
dobs,i. (87)

We define A as

A = max
{
A+
cal −A

−
cal, A

+
cal −A

−
obs, A

+
obs −A

−
cal, A

+
obs −A

−
obs

}
(88)

The quantity A is the maximum amplitude variation in both observed and calculated data. The
maximum time variation is simply T .

We introduce a parameter η in the ground cost to rescale properly the amplitude values with
respect to the time values, such that we consider the (scaled) misfit measurement

hWp(dcal, dobs) =

K∑
i=1

cηiσ∗(i), (89)

with

cηij(dcal, dobs) = |ti − tj |p + |η (dcal,i − dobs,j) |p. (90)
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Accordingly, we have

∂hWp

∂dcal,k
= pηp|dcal,k − dobs,σ∗(k)|p−2

(
dcal,k − dobs,σ∗(k)

)
. (91)

We propose to calibrate the coefficient η based on the aspect ratio between the time and
amplitude axis, such that

η =
∆T

A
. (92)

The parameter ∆T is a control parameter yielding the possibility to adjust the sensitivity of the
graph space OT distance with respect to time and amplitude shifts. For a given ∆T , it costs the
same, for an OT point of view, to displace a Dirac mass along the whole amplitude axis than
from 0 to ∆T . Therefore, ∆T can be interpreted as the maximum time shift one might expect to
recover from OT when applying the graph space OT strategy. For practical applications, it is easy
to estimate this maximum time shift in the initial model.

In a regime where we have ∆T << T , the cost associated with displacement along the
amplitude axis becomes negligible. Therefore, the solution of the graph space OT problem consists
in mapping the observed data with the calculated data through displacement only along this axis.
The associated permutation solution of the LSAP problem would thus be σ∗ = Id, and

hWp(dcal, dobs) =

K∑
i=1

η|dcal,i − dobs,i|p, (93)

In this case we see that the misfit function h̃(dcal, dobs) becomes equivalent to the Lp distance. In
the limit case where ∆T reaches 0, the misfit function hWp(dcal, dobs) becomes identically equal to
0.

On the opposite regime ∆T >> T , the cost associated with displacement along the time axis
becomes negligible. In the schematic (and quite specific) case where the calculated and observed
data are only shifted in time (perfect amplitude prediction), the solution of the graph space OT
problem is σ∗ such that

∀i, 1 ≤ i ≤ K, dcal,i = dobs,σ∗(i), (94)

and we have

hWp(dcal, dobs) =

K∑
i=1

|ti − tσ∗(i)|p. (95)

The misfit function becomes sensitive only to the time shifts between events. If the time shifts are
the same for all the samples in time, the misfit function is convex with respect to this time shift.

However, in practice, the calculated and observed data both differ by time and amplitude shifts:
the amplitude of the seismic events is never perfectly predicted, both because of the assumptions
in the numerical modeling and the presence of noise in the observations. As a consequence, for
∆T >> T , the graph space OT misfit function would be dominated by the amplitude mismatch

hWp(dcal, dobs) '
K∑
i=1

η|dcal,i − dobs,σ∗(i)|p. (96)

An illustration of the influence of ∆T is provided in Figure 1, where a 3D view of the discrete
graph of two Ricker functions is presented. The two functions are shifted in time, and the red
Ricker is scaled by a factor 1.25 so that the amplitude of the two functions is different.

The assignment solution of the LSAP problem is represented by gray arrows connecting the
points from the graph of the shifted Ricker (in blue) towards the points of the reference Ricker
(in red), following this assignment. Depending on the value of ∆T , the assignment can completely
change. For small values such that ∆T = 0.4 s, the total time being equal to T = 40 s, the particles
are moved only along the amplitude axis. For intermediate values such that ∆T = 4 s, the particles
are displaced both along the time and amplitude axis. For large values such that ∆T = 20 s, the
particles are moved only along the time axis.
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Figure 1: 3D representation of the discrete graph of a reference Ricker function (red points) and
a shifted in time Ricker function (blue points) scaled in amplitude by a factor 0.8. The gray
arrow represent the assignment solution of the LSAP problem, which depends on the value of the
parameter ∆T . Top ∆T = 0.4 s, middle ∆T = 4 s, bottom ∆T = 20 s.

3.3.2. Shot gather configuration Here we consider an observed and a calculated shot gather,
defined as ensembles of Nr observed and calculated traces

dcal =
{
d1
cal(t), . . . , d

Nr
cal(t)

}
, dobs =

{
d1
obs(t), . . . , d

Nr
obs(t)

}
. (97)
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For each trace, we define the quantity Ar (through 88). We define a single control parameter
∆T to be applied to each trace. However, as Ar depends on each trace, the normalization process
amounts to a trace by trace scaling: the weight of each trace in the misfit function fWp [m] becomes
the same. This can be problematic, as the mean amplitude of each trace in a seismogram varies
significantly. This variation is related to the Amplitude Versus Offset (AVO) effect, which is very
important to take into account in the inversion for meaningful reconstruction of the reflectors (see
Hampson, 1991, for instance). To restore the AVO signature in the misfit function, we propose to
scale the contribution of each trace by the energy of the corresponding trace in the observed data.
The misfit function that we finally consider is thus

fWp [m] =

Ns∑
s=1

Nr∑
r=1

ws,robshWp(ds,rcal[m], ds,robs), (98)

where the weights ws,robs ∈ R+ are given by

ws,robs =
1

T

∫ T

0

|ds,robs(t)|
2dt. (99)

3.4. Misfit function profiles

We start here the numerical investigations. To this purpose, we focus here, and in all the remainder
of this study, on the W 2 case. This is a pragmatical choice, as we have observed difficulties to
converge in the case p = 1. We have not investigated intermediate choices 1 < p < 2. This might
be the purpose of further studies. The details about the numerical strategy we employ to solve the
LSAP problems are given in Section 4. For now, we focus on illustrating some properties of the
misfit function fWp and its gradient.

3.4.1. 1D Ricker case It is important to investigate how the graph space OT misfit function
depends on the parameter ∆T . A first illustration based on shifted in time Ricker functions is
proposed here. A reference Ricker function with an additive Gaussian noise is first computed (Fig.
2). The graph space OT misfit depending on the time shift between this reference Ricker function
and a synthetic Ricker function is computed for different values of ∆T (Fig.3). The presence of
noise makes impossible to reduce the mismatch to 0 between the Ricker functions even when for 0
time shift.

Figure 2: Reference Ricker function in solid gray line. Shifted in time Ricker function in solid black
line.

As expected, when ∆T increases (∆T = 40 s), the impact of the amplitude mismatch
dominates the misfit function and its profile depending on time shifts tends to a constant. On
the opposite, when ∆T becomes small (∆T = 0.04 s) the solution of the OT graph space problem
exhibits a profile similar to the least-squares misfit. For intermediate values of ∆T (around 0.4 s),
the misfit function is sensitive to the amplitude mismatch and is convex with respect to the time
shifts.
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Figure 3: Comparison of the graph-space OT misfit function depending on the time shift, for
different values of the parameter ∆T . The reference least-squares misfit is in dashed gray line.
Solid black line: misfit function for ∆T = 0.04 s. Solid blue line: misfit function for ∆T = 0.4 s.
Solid orange line: misfit function for ∆T = 4 s. Solid purple line: misfit function for ∆T = 40 s.

3.4.2. 2D misfit map We also reproduce an experiment initially proposed in Mulder and Plessix
(2008), where a linearly increasing velocity model vP (z) is considered, such that

vP (z) = vP,0 + γz. (100)

A 2D medium 3.5 km deep and 16.9 km long is considered. An initial data set is computed using
references values vP,0 = 2000 m.s−1 and γ = 0.7 s−1. A single source located just below the surface
is used, at x = 8.45 km and z = 0.05 km. An array of 168 receivers is deployed at the same depth,
from x = 0.15 to x = 16.85 km, with a regular spacing of 0.1 km. The time signature of the source
is a Ricker function centered on 5 Hz, high-pass filtered to remove entirely the energy below 3 Hz.
A Gaussian-Noise is added with a signal to noise ratio equal to 10. Misfit function maps are then
computed for values of γ and vP,0 in the range γ ∈ [0.45, 0.95], vP,0 ∈ [1750, 2250] with a sampling
∆γ = 0.0125 s−1, ∆vP,0 = 12.5 m.s−1.

We present first, in Figure 4, the observed data (black and white), together with the synthetic
data in the model corresponding to γ = 0.45 and vP,0 = 1750 (blue and red). This allows estimating
the maximum time shift expected with the slowest model for this experiment. For the largest offset,
this time shift reaches 0.46 s.

The L2 misfit function (Fig. 5a) is compared with the graph-space OT misfit function (98)
for values of ∆T equal to 0.12, 0.23, 0.46 and 2.3 s (Fig. 5b-e). As can be seen, the L2 misfit
function exhibits several local minima. When ∆T is small (∆T = 0.12 s, Fig. 5b), we still observe
the presence of local minima. For ∆T = 0.23 s, ∆T = 0.46 s (Fig. 5c,d), the local minima
eventually disappear, yielding smoother misfit functions. For ∆T = 2.3 s, the misfit function
becomes extremely flat, which is an indication that the amplitude mismatch starts dominating the
time-mismatch, as is already observed in the 1D Ricker function test. The scaling with ∆ = 0.46
s seems to be an adequate choice: the misfit function has no local minima but sill with a narrow
valley of attraction near the global minimum.

3.5. Adjoint source building: analogy with the cross-correlation misfit function

A better insight on the physical meaning of the adjoint source formula (70) can be obtained through
the analysis of a simple transmission case study. We consider a single source/receiver acquisition
in two 100 m deep boreholes, distant from 50 m. Both the source and the receiver are located
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Figure 4: Observed data in the reference model with γ = 0.7 and vP,0 = 2000 m.s−1 (black and
white). Synthetic data in the model with γ = 0.45 and vP,0 = 1750 m.s−1 (blue and red). We
measure a maximum time shift at the largest offset equal to 0.46 s.

at 50 m depth. The source emits a Ricker pulse centered at 250 Hz. The receiver records the
signal during 0.05 s. We consider a reference homogeneous velocity model at 2500 m.s−1, a faster
homogeneous model at 5000 m.s−1, and a slower homogeneous model at 1500 m.s−1. The three
corresponding recorded signals are presented in Figure 6. The amplitude of the signal propagating
in the slower medium arrives later and has a larger amplitude, while the signal propagating in the
faster medium arrives earlier, with a smaller amplitude. The amplitude variations can be explained
with the energy conservation principle.

We compute the adjoint source of the graph space OT misfit function for the faster and slower
media. For the purpose of the analysis, we select a huge ∆T to enhance the sensitivity to time-
shifts (∆T = 2.5 s). The resulting adjoint sources, normalized in amplitude, are presented in
Figure 7. Interestingly, we see that the adjoint source corresponds to the observed data, shifted to
the position of the calculated data, multiplied by the sign of the travel time difference between the
observed and calculated data. In the case of a slower medium, the travel-time difference is positive,
for a faster medium, this difference is negative, hence the change of polarity of the residuals in
this case. This adjoint source shows strong similarities with the one associated with a well-known
misfit function in the literature: the cross-correlation misfit function proposed by Luo and Schuster
(1991). In their study, they introduce a tomographic misfit function based on the squared travel-
times difference between observed and calculated data, where the travel time difference is estimated
as the maximum of the cross-correlation of the observed and seismic trace. For simple single events
traces, the method from Luo and Schuster (1991) provides a robust estimation of the traveltime
difference and the misfit function is convex with respect to the time shifts.

It is interesting to note that the graph space OT approach exhibits a similar behavior in this
case, while it is based on a completely different approach. The fact that the resulting adjoint
source corresponds to the observed data shifted by the traveltime difference between observed and
synthetic data can be explained by the formula (70). As ∆T is large, the assignment between the
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calculated and observed discrete graph amounts to shift in time the observed data to the calculated.
When building the adjoint source, for each time sample, we subtract to the calculated data the
value of the observed data given by the assignment. In the case of a slower medium, the calculated
data has a larger amplitude compared to the observed data, therefore the remaining function has
still the sign of the original calculated data. In the case of a faster medium, the calculated data
has a lower amplitude compared to the observed data, therefore the polarity of the source function
changes.

The plot of the gradients in Figure 8 confirm the analysis. We can verify that the sign of
the gradient in the first Fresnel zone depends on if the medium is slower or faster, which is the
expected behavior for a tomographic misfit function.
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Figure 5: Misfit function maps for the linearly increasing velocity model. L2 misfit function (a),
graph-space OT misfit function for ∆T = 0.12 s (b), ∆T = 0.23 s (c), ∆T = 0.46 s (d), ∆T = 2.3
s (e).
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Figure 6: Signal recorded for the three considered homogeneous media: reference medium at 2500
m.s−1 (solid black line), slower medium at 1500 m.s−1 (dashed blue line), faster medium at 5000
m.s−1 (dashed orange line).

Figure 7: Reference signal for the medium at 2500 m.s−1 (solid black line). Corresponding graph
space OT adjoint source for the slower medium at 1500 m.s−1 (dashed blue line), faster medium
at 5000 m.s−1 (dashed orange line).

Figure 8: Gradient of the graph-space OT misfit function computed in the slower medium 1500
m.s−1 (left) and in the faster medium at 5000 m.s−1 (right).
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4. Computing the Wasserstein distance between points cloud

The graph space OT misfit function exhibits interesting properties in terms of convexity for the
FWI problem. In the perspectives of realistic size 2D and 3D FWI problems, we need to rely on an
efficient numerical strategy to compute this misfit function. For realistic size acquisition systems,
the number of sources and receivers can reach O(103), leading to O(106) seismic traces. For each
of these seismic traces, a LSAP problem (16) needs to be solved. The size of this problem depends
on the number of points required to discretize the seismic traces. Formally, this number should be
associated with the Nyquist-Shannon sampling criterion: a minimum of two discretization points
per period is necessary to correctly represent the signal. For realistic size FWI problems, the
number of recorded periods is in the order of O(102), leading to the same order for the size of
the LSAP problem. As a consequence, implementing the graph-space OT approach presented in
the last Section should lead to the solution of O(106) LSAP problems of size O(102) per iteration
of the FWI local optimization solver, both to evaluate the misfit function and the adjoint source
required to compute its gradient.

4.1. A short overview of existing methods

4.1.1. Generic OT solvers As the LSAP problem (16) originates from the solution of an
OT problem, one might be interested in developments for the numerical solution of generic
OT problems: the Benamou-Brenier approach based on a fluid dynamics interpretation of OT
(Benamou and Brenier, 2000), methods based on the solution of the Monge-Ampère equations
(Benamou et al., 2014), or solvers based on the dual formulation of the 1-Wasserstein distance
(Métivier et al., 2016c). However, these solvers are not adapted to the specificity of the comparison
of point clouds. They rely on a regular mesh discretization which is not satisfied by the point clouds:
their repartition on the amplitude axis depends on the signal variation in time.

In Métivier et al. (2018), we circumvent this difficulty by representing the point cloud as a sum
of Gaussian functions discretized over a 2D mesh. This leads to the solution of a 2D problem of size
O(KM), where M is the number of points associated with the discretization of the amplitude axis.
A trade-off has to be found between a good representation of the signal, for which M is to be large,
and a fast algorithm, which requires as small as possible M . In addition, as the Nyquist-Shannon
sampling criterion assumes a floating point precision for the representation of the signal amplitude,
using a too coarse amplitude discretization will require to increase the discretization in time as
the 2 points per wavelength rule will not hold anymore. In practice, in the examples provided in
(Métivier et al., 2018), it turns out that M is approximately in O(K), with K corresponding to
5 points per wavelength. Using the W1 solver developed in Métivier et al. (2016c), which has a
linear complexity, this strategy ends up with a O(K2) complexity, and an observed computational
times for one gradient 7 times larger than what is required for a conventional Lp misfit function,
for a 2D FWI synthetic example. Besides the discretization, other tuning parameters need to be
set, associated with the representation of the 2D point clouds as a sum of Gaussian functions.
Although interesting for a proof of concept, this strategy seems difficulty suitable for realistic size
problems.

Among generic OT solvers, two other options might be considered. The first is the entropic
regularization approach, based on the introduction of an entropic regularization term in the
standard OT problem (Benamou et al., 2015). The regularized problem can be solved using an
iterative Bregman projection algorithm. The solution is alternatively projected onto two sets of
constraints. Each projection requires a matrix-vector product involving a Toeplitz matrix when
regular meshes are considered. As such, the method is quite powerful, each projection being
done in O(K logK), and the convergence of the method is fast for sufficiently large regularization
parameter. However, on irregular meshes, the matrix loses its Toeplitz structure. Each projection
requires the multiplication of a vector by a dense matrix of size K, yielding a computational
complexity inO(K2). Besides, preliminary tests we have performed show that for FWI applications,
the regularization term needs to be relatively small, which requires the use of multi-level/multi-scale
approaches. As entropic regularization is based on exponential functions, numerical stabilization
steps need also to be enforced (Schmitzer, 2016).
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Finally, semi-discrete strategies might be considered. This approach provides one of the most
promising solvers for dealing with large scale instances of OT problems (Mérigot, 2011; Lévy, 2015).
However, the method is not straightforward to adapt to the comparison of two point clouds as it
relies on the assumption that one of the two probability measures which are compared can be
described as a continuous function. In addition, the graph space OT approach considered in this
study focuses on a large number of small scale dense problems, rather than on the solution of few
large scale problems. For this reason, despite its efficiency for large scale instance OT problems,
the multi-scale approach seems also not adapted to the needs of our application.

4.1.2. Linear programming solvers Instead of considering numerical OT solvers, the other options
consists in considering linear programming solvers. Two classes of generic strategies exist:
those based on the simplex algorithm (Dantzig, 1991) or those based on interior point methods
(Karmarkar, 1984; Megiddo, 1989) (see for instance Gass (1984) for a review on linear programming
algorithms). However, both methods do not fully exploit the specificity of LSAP problems of type
(15).

Numerous economy problems can be modeled as LSAP problems. For this reason, numerous
algorithms have been proposed for its solution during the second half of the twentieth century (see
Bertsekas, 1998; Burkard et al., 2012, for a review). These algorithms can be divided in three main
classes: those based on primal-dual methods (among them the Hungarian algorithm (Kuhn, 1955));
those based on a specification of the simplex algorithm to the solution of LSAP problems, either
based on the primal (Akgül, 1993) or dual (Balinski, 1985) version of the simplex method; and
purely dual algorithms, a category to which belongs the auction strategy introduced by Bertsekas
and Castanon (1989). A benchmarking of all the existing LSAP solver for the cases we are interested
in is beyond the scope of our investigation. From different studies (Bertsekas, 1998; Burkard
et al., 2012), it appears that the auction algorithm, combined with an ε-scaling technique, achieves
one of the best worst-case complexity among specific LSAP solvers. Benchmarking experiments
on different sets of reference problems also show its good performance for the solution of small
scale dense problems. Despite its theoretical cubic complexity, we therefore focus on the auction
algorithm for our graph space OT strategy.

4.2. The auction algorithm

The auction algorithm is easier to interpret in the frame of maximum LSAP problem

max
γij

K∑
ij=1

γijcij ,

γij ≥ 0, i, j = 1, . . . ,K,
K∑
i=1

γij = 1, j = 1, . . . ,K,

K∑
j=1

γij = 1, i = 1, . . . ,K.

(101)

We can always return to the minimization problem considering the identity

max
x

f(x) = −min
x
−f(x), (102)

for a given function f(x).
Considering a set of K persons i = 1, . . .K, a set of K objects j = 1, . . . ,K, and a measure cij

of the profit for the person i given by the object j, solving (101) amounts to assign to each person

i a single object j(i) such that the general profit
∑
i

cij(i) is maximized, and such that each object

is assigned to a different person

i 6= k ⇔ j(i) 6= j(k). (103)
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The problem is easy to solve if, for each person i, the object jmax(i) maximizing the profit defined
by

jmax(i) = arg max
j

cij , (104)

is different from the objects maximizing the profit of the others

i 6= k ⇔ jmax(i) 6= jmax(k). (105)

In this case the solution would be simply

γij = δi,jmax(i), (106)

where δij is the Kronecker symbol such that

δij =

∣∣∣∣ 1 if i = j,
0 else.

(107)

However, in the general case, the same object j might provide the maximum profit to more than a
single person. A trade-off thus needs to be found between the persons interested in j to determine
who should obtain it. This trade-off takes into account the profit provided by the other objects.

Consider the 2× 2 example where c is such that

c =

(
10 1000
100 1000

)
. (108)

In this case the solution is

γ =

(
0 1
1 0

)
. (109)

To maximize the general profit, the object 2 is assigned to the person 1: the second best object
(object 1) provides him less profit than for to the person 2.

The trade-off to find between persons interested in the same object can be handled by assigning
a price ψj to each object. This is the interpretation which can be given to the dual problem
associated with (101), which can be written as

min
ψj

K∑
i=1

ri(v) +

K∑
j=1

ψj , (110)

where ri(v) is the best possible profit for a person i given a set of prices ψj

ri(v) = max
1≤jK

{cij − ψj} , 1 ≤ i ≤ K (111)

This dual problem states that finding the assignment maximizing the general profit is equivalent
to find a set of prices ψj as small as possible, which minimizes the sum of all individual profits ri.
Intuitively, in a competitive environment, if an individual profit is too large, it is detrimental to the
profits of the others, which explains why the sum of all individual profits needs to be minimized.

The auction algorithm solves this dual problem. It is an iterative procedure based on an
ε-relaxed version of the condition (111) written as

ri = max
1≤j≤K

{cij − ψj} − ε, 1 ≤ i ≤ K (112)

The assignment γij is initialized to 0, as well as the price vector ψ.
Each iteration starts with a bidding phase. A subset I ⊂ 1, . . . ,K of non assigned persons is

selected. For each person i ∈ I, the best ϕ1
i and second best profit ϕ2

i are computed

j(i) = arg max
1≤j≤K

{cij − ψj} ,

ϕ1
i = cij(i) − ψj(i),

ϕ2
i = max

1≤j≤K,j 6=j(i)
{cij − ψj} .

(113)



A graph space OT distance as a generalization of Lp distances: application to FWI 27

From these two values the bid bij(i) proposed by i for object j(i) is computed

bij(i) = ψj + ϕ1
i − ϕ2

i − ε. (114)

The maximum increase of the price proposed by the person i to acquire j(i) is the difference
between the best profit and the second best profit for this person up to the relaxation parameter
ε.

The second phase is the assignment phase. For each object j, we consider the set of persons
P (j) from which j has received a bid. If P (j) is nonempty, the price ψj given to object j is
increased by the best bid

ψj = max
i∈P (j)

bij . (115)

Previously existing assignment implying j are canceled

∀i = 1, . . . ,K, γij = 0. (116)

The object j is assigned to the current best bidder

i(j) = arg max
i∈P (j)

bij , γi(j)j = 1 (117)

The iterations continue until all the objects have been assigned. The termination of the algorithm
is proved in Bertsekas (1998). Furthermore, it can be demonstrated that the computed assignment
γε resulting from this algorithm satisfies∑

ij

γijcij −Kε ≤
∑
ij

γεijcij ≤
∑
ij

γijcij +Kε, (118)

where γ denotes the solution of (101). A multiscale process is thus usually employed, where
a cascade of relaxed problems are solved using decreasing values of ε. The full algorithm is
summarized in Algorithm 1 in the Appendix A.

Note that there is a freedom in how to choose the subset I of unassigned persons at each
bidding phase. The Gauss-Seidel version of the algorithm corresponds to the case where a single
unassigned person is chosen, while the Jacobi version corresponds to the case where all unassigned
persons are selected. Numerical tests we have performed indicate that the Gauss-Seidel version is
more efficient, therefore we focus on this particular approach in this study.

4.3. Computational complexity

We have implemented a version of the Auction algorithm 1 in FORTRAN, which we have validated
with a comparison with the GLPK simplex and interior point solvers (Makhorin, 2017). We
compare the computational time obtained for the comparison of two point clouds associated with
the discrete graph of two shifted Ricker functions. The time discretization varies from 200 to 6400
samples. The corresponding computational times are reported in the Table 1.

In Figure 9, a log-log plot of these computational times depending on the problem size K is
provided, together with expected cubic and quadratic complexities from the same starting point
(K = 200). As can be seen, the general trend is to follow a cubic complexity. However, for small
size problems between 200 and 1000 the complexity is almost quadratic (estimated O(N2.15)), and
the computational time is lower than 1 s. This is the range in which typical exploration scale
case study will belong, with 100 up to 500 recorded periods per seismic trace. For instance, for
a frequency content up to 20 Hz and 10 s recording, this would yield approximately 200 periods,
which leads to K = 400 according to the Nyquist-Shannon sampling criterion.
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K 200 300 400 600 800 1000 1200 1400 1600 2000 3200 6400
time (s) 8e-3 2.8e-2 4.8e-2 0.12 0.24 0.38 0.59 1.28 2.09 3.85 10.7 84.8

Table 1: Observed computational time in seconds for increasing problem sizes K. The computation
has been performed using an INTEL core i7 processor at 2.9 GHz, with 32 GB of RAM.

Figure 9: Observed computational complexity (black line) compared with theoretical cubic (red)
and quadratic (blue) complexities in log-log plot. The shaded blue area focuses on the region of
interest for standard size exploration case FWI case study. The computation has been performed
using an INTEL core i7 processor at 2.9 GHz, with 32 GB of RAM.
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5. 2D Valhall synthetic case study

To evaluate the interest and the feasibility of the graph space OT approach, we consider now the
inversion of a 2D noisy synthetic dataset computed through a visco-acoustic modeling engine, with
variable velocity, density and attenuation factor, and a signal to noise ratio equal to 10. From this
data, only the velocity is reconstructed, the density and attenuation being considered as passive
parameters. This challenging 2D case study is intended to be more realistic than experiments
investigated in previous studies in inverse crime settings (for instance in Métivier et al., 2016c,
2018), where the amplitude of the seismic signal could be estimated with arbitrary accuracy. In
this study, as the density and attenuation models used in the inversion are rough approximation
of the correct ones, and also because of the noise, the amplitude cannot be predicted with perfect
accuracy, as is always the case for the inversion of field data.

5.1. Presentation of the case study

We consider the 2D Valhall synthetic model. The Valhall oil field is a giant gas field located in
the North Sea in a shallow water environment, which has been in production for several decades.
Successful 3D FWI applications on the field data acquired in this area have led to the construction
of accurate 3D velocity, density and attenuation models (quality factor) (Sirgue et al., 2010; Operto
et al., 2015; Amestoy et al., 2016). These models, combined with local geological knowledge, have
led us to the 2D synthetic models presented in Figure 10. The reservoir is located beneath the
strong reflector between 2.5 and 3 km depth. On top of the reservoir, the presence of a layered
gas cloud translates into low velocity horizontal layers, correlated with low density and low quality
factor layers. In the first 500 m, the presence of unconsolidated shales also translates into a low
velocity, low density, low quality factor zone, with thin horizontal layers.

From these 2D models, we first build a realistic synthetic dataset, based on the following
visco-acoustic wave propagation model

∂tvx −
1

ρ
∂xp = 0,

∂tvz −
1

ρ
∂zp = 0,

∂tp− ρv2
P (∂xux + ∂zuz) + ρv2

P

L∑
l=1

Ylξl = ϕ,

∂tξl + ωlξl − ωl(∂xux + ∂zuz) = 0, l = 1, . . . , L.

(119)

In (119), vx(x, z, t) and vz(x, z, t) are the horizontal and vertical velocity displacement, p(x, z, t) is
the pressure wavefield, ϕ(x, z, t) is a pressure source. The P-wave velocity is denoted by vP (x, z)
and the density by ρ(x, z). The memory variables ξl implement the standard linear solid model
to account for the attenuation. Following this model, the coefficients Yl and the frequency ωl are
calibrated through a least-squares optimization to guarantee a frequency constant quality factor
Q(x, z) over a frequency band from 1 Hz to 30 Hz. Here we use three relaxation mechanisms,
setting L to 3. Homogeneous initial conditions are considered. A free surface condition at the
water/air interface is implemented on top. Sponge layers are used to mimic an infinite propagation
medium at the bottom and on the lateral sides of the domain (Cerjan et al., 1985). A 4th order
in space and 2nd order in time staggered grid finite-difference scheme is applied to discretize the
system (119). More details on this modeling engine can be found in Yang et al. (2016a, 2018a).

A fixed spread acquisition system is used, with 128 sources at 50 m depth equally spaced each
130 m, and 169 receivers at 50 m depth equally spaced each 100 m. The sources are localized in
space, such that for a given source location (xs, zs) we have

ϕs(x, z, t) = δ(x− xs)δ(z − zs)r(t). (120)

The source time function r(t) is designed as a Ricker function centered on 5 Hz, low-cut filtered so
that the energy of the signal is equal to 0 below 2.5 Hz. Besides, a Gaussian white noise filtered
in the frequency band 0− 12.5 Hz is added to each shot gather, with a signal to noise ratio equal
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Figure 10: 2D Valhall model for velocity Vp(x, z) (a), density ρ(x, z)(b), and quality factor Q(x, z)
(c).

to 10. The recording time is set to 8 s. The resulting 100th shot gather is displayed in Figure 11
as an example. An automatic gain control using a multiplication by the square root of the time
is applied to enhance later arrivals, for visualization purpose only. As can be seen, the recorded
signal is complex. Destructive interferences with the free surface remove the direct arrival around
x = 6 km and x = 12 km. A strong reflection corresponding to the reflection on the interface at
2.75 km depth is recorded starting at 3.2 s for the receiver at x = 13.5 km. Diving arrival altered
by their travel in the gas cloud regions are visible in the left bottom corner of the figure, from 4 to
8 s and from 0 to 8 km. The presence of noise tend to obscure all of these identifiable events.

The inversion is performed through a preconditioned l-BFGS algorithm, with a memory
parameter l set to 20. The computation of the gradient is performed through a backpropagation
of the incident wavefield from the boundaries to save memory usage, with a control on the
wavefield reconstruction following the CARFS approach (Yang et al., 2016b). The whole gradient
computation is parallelized over sources through MPI communication. The preconditioner
approximates the diagonal of the Hessian operator through the pseudo-Hessian approach (Shin
et al., 2001; Choi and Shin, 2008; Yang et al., 2018a). A regularization strategy based on a non-
stationary smoothing of the gradient is implemented. The smoothing is Gaussian, with a correlation
length equal to 1 time and 0.1 time the local wavelength in the horizontal and vertical directions
respectively. The local wavelength is estimated through a reference frequency at 5 Hz and the local
velocity value in the estimated velocity model.
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Figure 11: 100th shot-gather from the synthetic dataset. An automatic gain control (AGC) is
applied to enhance the late arrivals for visualization purpose only. This AGC uses a multiplication
by the square root of the time.

We consider three different initial models, derived from the exact P-wave velocity model, with
different levels of smoothing. The first model is obtained through a Gaussian smoothing with a
correlation length of 0.5 km, the second with a correlation length of 1 km, and the third with a
correlation length of 1.25 km. For each initial model vP,0(x, z), a smooth density model ρ0(x, z) is
derived using the Gardner law

ρ0(x, z) = 1741 ∗ (10−3vP (x, z))0.25. (121)

We also use a very simple input quality factor model Q0(x, z), which is equal to 1000 in the shallow
water layer on top of the medium, and equal to 100 everywhere else.

To mimic the framework of a real data inversion, the source time signal r(t) is estimated prior
to inversion directly from the data. This is performed through a least-squares minimization in the
frequency-domain, following the approach from Pratt (1999). The source time signal is estimated
using the initial velocity, density and attenuation models and is not updated afterwards.

To assess the interest of the graph space strategy, the inversion results obtained through
the minimization of the graph space OT misfit function are compared with the L2 approach and
the Kantorovich-Rubinstein misfit function introduced in Métivier et al. (2016c,b), which can be
expressed as

fKR(m) =

Ns∑
s=1

max
ϕ∈Lip1

Nr∑
r=1

∫ T

0

ϕ(xr, t) (dr,scal(t)− d
r,s
obs(t)) dt (122)

where Lip1 is the space of 1-Lipschitz functions on (xr, t). The latter strategy has shown interesting
properties for mitigating the cycle skipping issue in FWI, and also yields the possibility to directly
account for 2D shot-gathers through optimal transport, beyond the trace-by-trace comparison on
which are based other current optimal transport implementations (Qiu et al., 2017; Yang and
Engquist, 2018). The main drawback of the KR approach is the loss of convexity with respect to
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large time shifts due to the direct computation of the W1 distance for non-positive data through
its dual formulation.

Finally, based on the comparison between observed and synthetic shot-gather using the
different initial models, the maximum time shift is estimated to approximately 0.4 s. This is
the value we use to set the control parameter ∆T .

5.2. Inversion results

For each initial velocity model, the models obtained using these three strategies (L2, KR, graph
space OT) and the corresponding data fit for the 100th shot gather are presented in Figures from
12 to 17. For each optimization method, the stopping criterion is based on a maximum number of
iterations set to 500.

For the first initial model, close from the true velocity model, there is no cycle skipping, and
the three methods produce a reasonably accurate velocity model estimation (Fig. 12). The data
fit in the final model is similar for the three strategies: near offset reflections and far-offset diving
waves are correctly interpreted (Fig. 13).

From the second starting model, FWI based on the L2 misfit function is not able to converge
to a correct estimation of the velocity model. There are strong low velocity artifacts on both sides
of the gas layers, and a high velocity artifact appears at shallow depth in the middle of the first
gas layer (Fig. 14a). In comparison, both the KR and graph-space OT approach converge towards
a correct estimation of the velocity model (Fig. 14b,c). The data fit is instructive: cycle skipping
affects later arrivals at large offset, between 4 and 7 s /0 and 6 km distance, in the initial model.
The L2 misfit function does not recover from this time shift in the initial model, while both the
KR and graph space OT misfit function correctly interpret the data (Fig. 15).

Finally, from the third model, FWI based on both the L2 and KR misfit function is not able to
produce a correct velocity estimation. The corresponding results are affected by large low velocity
artifacts on both sides of the gas layers. A large high velocity artifact is visible in the shallow part
of the two models. Low velocity artifacts are also visible on both estimation just below the main
reflector between 2.5 km and 3 km. The KR estimation seems worst than the L2 one, as the lateral
coherency of this deep reflector is lost (Fig. 16a,b). In comparison, the graph space OT estimation
is closer to the true velocity model (Fig. 16c). The imprint of the low velocity artifacts on the
sides of the gas layers is still visible but those artifacts are strongly attenuated. Only the deepest
part below 3.5 km is not properly recovered, but this is consistent with the fact that very weak
information from this zone reaches the data: reflections from there have been strongly attenuated
and reach the noise level. The data misfit in the initial and final models shows that the data is
strongly cycle skipped in the initial model: the arrivals at large offset, from 4 to 7 s and 0 to 6 km
distance are predicted with more than one period shift in the initial model. The L2 and KR misfit
functions are not able to correct the model to put the data in phase, contrary to the graph space
OT misfit function (Fig. 17).
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Figure 12: Initial model 1 (a), and corresponding reconstructed models using the L2 misfit function
(b), the KR misfit function (c), the graph space OT misfit function (d).
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Figure 13: Data fit in the initial model 1 (a), and in the reconstructed model from model 1 using
the L2 misfit function (b), the KR misfit function (c), the graph space OT misfit function (d). The
real data is represented in black and white, while the synthetic data computed in the corresponding
models is represented in red and blue. When the synthetic data predicts correctly the true data,
the blue overlays the white events, while the black overlays the red events.
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Figure 14: Initial model 2 (a), and corresponding reconstructed models using the L2 misfit function
(b), the KR misfit function (c), the graph space OT misfit function (d).
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Figure 15: Data fit in the initial model 2 (a), and in the reconstructed model from model 2 using
the L2 misfit function (b), the KR misfit function (c), the graph space OT misfit function (d). The
real data is represented in black and white, while the synthetic data computed in the corresponding
models is represented in red and blue. When the synthetic data predicts correctly the true data,
the blue overlays the white events, while the black overlays the red events.
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Figure 16: Initial model 3 (a), and corresponding reconstructed models using the L2 misfit function
(b), the KR misfit function (c), the graph space OT misfit function (d).
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Figure 17: Data fit in the initial model 3 (a), and in the reconstructed model from model 3 using
the L2 misfit function (b), the KR misfit function (c), the graph space OT misfit function (d). The
real data is represented in black and white, while the synthetic data computed in the corresponding
models is represented in red and blue. When the synthetic data predicts correctly the true data,
the blue overlays the white events, while the black overlays the red events.

5.3. Convergence analysis and computational cost

We focus on the third experiment to get a better insight on the convergence of the different methods
in terms of model error and misfit reduction. The model error between an estimated model vP and
the exact velocity model v∗P is defined as the average relative `1 error

e(vP ) =
100

M

M∑
i=1

|vP,i − v∗P,i|
v∗P,i

(123)

where M is the total number of discretization points for the velocity models. The corresponding
convergence curves are presented in Figure 18. The misfit level is normalized therefore it starts at
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1 for the three methods. It monotonically decreases along the iterations (Fig. 18a). For the three
strategies, two regimes can be observed: a fast misfit decrease during the first 100 iterations, and
then a slow misfit decrease. Interestingly, only the graph space OT approach produces a monotonic
decrease of the model error (Fig. 18b). Both L2 and KR starts increasing the model error. The
lowest level of model error is reached by the graph space OT approach, confirming the qualitative
observation made on Figure 16. The decrease of the model error with respect to the data error
is also monotonic only for the graph space OT approach (Fig. 18c). The L2 and KR approaches
increase regularly the model error during the first phase of fast misfit decrease. The model error
reduction is stronger during the second phase of slow misfit decrease, both for L2 and graph space
OT approaches.

Figure 18: Convergence analysis for the inversion starting from the initial model 3. Misfit function
decrease depending on the number of iterations (a). Model error depending on the number of
iterations (b). Model error depending on the data error (c).

In terms of computational cost, the increase per iteration associated with the graph space OT
approach is limited to approximately 6 % compared to the L2 approach on this 2D Valhall case. The
time discretization is driven by the CFL condition, which leads to 2666 discrete points per seismic
traces. The data is re-sampled according to the Nyquist-Shannon criterion before computing the
graph space OT misfit. In this case, we reduce by a factor 8 the number of time points, leading to
the comparison of point clouds of size 333. The number of receivers is equal to 169. The total time
for the computation of the graph space OT misfit function and its corresponding adjoint source is
4 s, which makes in average 0.02 s per instance of graph space OT problem, consistent with the
complexity analysis in Figure 9. The total computational time for one gradient is approximately 60
s (10 s for the incident wavefield propagation, and 42 s for the adjoint and incident backpropagation
from the boundaries), while approximately 56 s for the L2 approach. The KR approach, in the
settings chosen for this case study, requires approximately twice the same time for the misfit and
adjoint source evaluation, up to 8 s. These results are summarized in Table 2.

To complement this analysis, we can observe that, for a given maximum frequency ω, the
computational complexity for the solution of the wave equation is in O(ω4), while the one for
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Inc. wfld Adj. wfld misfit & adjoint source others Total time ratio
L2 (s) 10.0 42.0 0.4 4.0 56.4 100 %
KR (s) 10.0 42.0 8.0 4.0 64.0 113 %

graph space OT (s) 10.0 42.0 4.0 4.0 60.0 106 %

Table 2: Computational cost analysis for one gradient on the 2D Valhall synthetic case study,
depending on the chosen misfit function. The values are given in seconds (s). The computations
have been performed on Intel Gold-6130 (Skylake) processors at 2.1 GHz. The cluster is composed
of nodes of 16 processors with 192 GB RAM per node.

computing the graph-space OT misfit function would remain in O(ω3), which is a favorable trend
for larger scale/higher resolution applications. In addition, the graph-space OT misfit function
computation is embarrassingly parallel as it is built as a summation over seismic traces of the
graph-space OT cost. This makes the method efficient even for 3D large scale FWI applications.
Preliminary results on 3D marine data containing around 25000 seismic traces per seismic source
have been achieved, yielding computational overcost to the order of 20 percent in the first frequency
band (up to 5 Hz).

5.4. Trace misfit evolution: graph-space OT approach in practice

To get a closer insight on how the graph-space OT approach works, we extract the seismic trace
located at xr = 7 km from the shot gather presented in Figure 11. We compare it with the
corresponding synthetic trace in the initial model, in the models obtained at iteration 10 and 50,
and in the final model in Figure 19. The reference trace is in black, while the synthetic traces
are in blue. We also present the assignment solution of the graph space OT problem attached to
these couple of traces, as orange arrows connecting the reference trace and the synthetic trace. As
can be seen, in the initial model, cycle skipping is visible. The sensitivity of the assignment to
the phase mismatch appears as arrows bending in the horizontal direction. Already in the model
obtained at iteration 10, the largest amplitude events have been put in phase. Further iterations
reconstruct the events before and after the largest amplitude train of events. Of course, this is
only a partial view of the reconstruction, as this seismic trace is interpreted together with more
than 20, 000 others. However this gives an illustration how the graph space OT approach efficiently
reduces the phase mismatch.

5.5. Starting from a smoother medium: hierarchical approach

As is already noted in Métivier et al. (2018), the Figure 3 suggests a hierarchical/multi-stage
approach where one would start the inversion with a large value for ∆T and progressively decrease
it, restarting for each value an inversion starting from the model obtained with the last value of
∆T . We illustrate this possibility starting from an initial model 4, obtained through Gaussian
smoothing with correlation lengths of 2 km in both horizontal and vertical direction.

The inversion is started with ∆T = 0.5 s, to be consistent with the use of this smoother initial
model. We then perform a series of inversion for ∆T equal to 0.4 s, 0.2 s, 0.8 s, 0.4 s and 0.2
s. For each stage, 500 FWI iterations are performed. The final model we eventually obtained is
compared to the initial, L2 and KR models in Figure 20, as well as the data fit in Figure 21. As
can be seen, despite we start from a very simple model with a significant underestimation of the
velocity increase at depth, it is possible, through this multi-scale approach, to reconstruct a quite
meaningful velocity model. Conversely, L2 and KR approaches converge towards non-informative
local minima. The final data-fit show that most of the visible events in the reference shot gather
are interpreted in the final velocity estimation.
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Figure 19: Reference seismic trace at xr = 7 km (solid black line). Corresponding synthetic trace
(solid blue line) in the initial model (a), 10th iteration model (b), 50th iteration model (c), final
model (d). The assignment solution of the graph space OT problem between the synthetic and
reference trace is presented in orange arrows.
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Figure 20: Initial model 4 (a). Corresponding reconstructed models using the L2 misfit function
(b), the KR misfit function (c), the graph space OT misfit function with a hierarchical approach
using decreasing values of ∆T : 0.5 s, 0.4 s, 0.2 s, 0.8 s, 0.4 s and 0.2 s.
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Figure 21: Data fit in the initial model 4 (a), and in the reconstructed models from model 4 using
the L2 misfit function (b), the KR misfit function (c), the graph space OT misfit function within
a hierarchical approach with decreasing values of ∆T : 0.5 s, 0.4 s, 0.2 s, 0.8 s, 0.4 s and 0.2 s
(d). The real data is represented in black and white, while the synthetic data computed in the
corresponding models is represented in red and blue. When the synthetic data predicts correctly
the true data, the blue overlays the white events, while the black overlays the red events.
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6. Conclusion and Perspectives

We present in this study a graph space OT misfit function for the interpretation of seismic data in
the framework of FWI. As initially proposed in Métivier et al. (2018), following the idea by Thorpe
et al. (2017), the discrete graph of the observed and synthetic data is compared through OT, which
amounts to the comparison of point clouds. This ensures the positivity and mass conservation of
the compared quantities, while the resulting misfit function is convex with respect to time and
amplitude shifts.

We show how the resulting misfit function can be interpreted as a generalization of a standard
Lp distance. The computation of its gradient only requires to access the corresponding adjoint
source, which can be computed directly from the solution of the LSAP problem. For practical
FWI applications, the computation of the misfit function and the adjoint source amounts to the
solution of a sequence of small scale dense LSAP problems, which we solve with the auction
algorithm: the computation cost increase compared to Lp distance is limited to few percents for
realistic scale applications.

The investigation of the 2D synthetic Valhall case study exhibits the interesting properties of
this graph space OT misfit function for FWI. The sensitivity to the accuracy of the initial model
is strongly decreased compared to Lp misfit functions or the previously introduced KR approach.

The next step of this investigation will be devoted to its application to a 3D field data from
the Valhall field for which we already have a good expertise. This will make possible to assess the
interest of this graph space OT approach for 3D imaging of field data.

Methodological questions remain still opened regarding the interpretation of the full shot
gather through the graph space approach, instead of considering the trace-by-trace strategy which
is developed here. While it seems natural to account for the coherency of the data in the whole 2D
shot gather space (as would do the eye of a geophysicist), the size of the corresponding problem
would reach O(104), far beyond the zone where the auction algorithm can be used with efficiency.
Two possibilities might be considered to perform this generalization.

The first consists in localizing the auction algorithm, by restraining the total displacement
along the time and receiver axis that might be considered in the solution of the LSAP problem.
This is consistent with the scaling strategy we are already using to balance the influence of time
and amplitude.

The second consists in considering other solvers, dedicated to large scale instance of OT
problems. The semi-discrete approach proposed by (Mérigot, 2011; Lévy, 2015; Kitagawa et al.,
2017) appears to us as the most promising approach in this frame.

Finally, we would like to emphasize that the OT graph space strategy developed here might
be applied to any PDE-constrained optimization problem where signed data is involved, beyond
the application to seismic imaging developed here. Modifying the data misfit measurement to the
proposed graph space OT measurement yields the possibility to account for the geometric structure
of the data in an automatic way, which can potentially bring substantial benefit in the solution of
such inverse problems.
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Appendix A. Auction algorithm

Input: ε > 0, τ > 0, cij
Output: γij
ψj = 0 // Initialization ε scaling loop

while ε > τ do
γij = 0 // Initialization auction loop

U = {1, . . . ,K}
P (j) = ∅, j ∈ {1, . . . ,K}
while U 6= ∅ do

// Bidding phase

for i ∈ I ⊂ U do
ji = arg max

j=1,...,K
{cij − ψj}

ϕ1
i = ciji − ψji

ϕ2
i = max

j=1,...,K,j 6=ji
{cij − ψj}

biji = ψj + ϕ1
i − ϕ2

i − ε
P (ji) = P (ji) ∪ {i}

end
// Assignment phase

for j = 1, . . . ,K do
if P (j) 6= ∅ then

ψj = max
i∈P (j)

bij

for i = 1, . . . ,K do
if γij = 1 then

γij = 0
U = U ∪ {i}

end

end
ij = arg max

i∈P (j)

bij

γijj = 1
U = U/{ij}

end

end

end
ε = ε/4

end
Algorithm 1: Standard auction algorithm for the problem (101).
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Kitagawa, J., Mérigot, Q., and Thibert, B. (2017). Convergence of a Newton algorithm for semi-
discrete optimal transport. ArXiv e-prints.

Kuhn, H. W. (1955). The Hungarian method for the assignment problem. Naval Research Logistics
Quarterly, 2(12):83–97.

Lellmann, J., Lorenz, D., Schönlieb, C., and Valkonen, T. (2014). Imaging with Kantorovich–
Rubinstein discrepancy. SIAM Journal on Imaging Sciences, 7(4):2833–2859.
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Métivier, L., Brossier, R., Mérigot, Q., Oudet, E., and Virieux, J. (2016c). An optimal transport
approach for seismic tomography: Application to 3D full waveform inversion. Inverse Problems,
32(11):115008.
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