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19 Abstract. In this work, 5-sterols and their degradation products have been used to compare 

20 the efficiency of biotic and abiotic degradation processes in senescent Mediterranean marine 

21 (Posidonia oceanica) and terrestrial (Quercus ilex and Smilax aspera) angiosperms. Type II 

22 photosensitized oxidation processes appeared to be more efficient in P. oceanica than in Q. ilex 

23 and S. aspera. The low efficiency of these processes in senescent terrestrial angiosperms was 

24 attributed to: (i) the fast degradation of the sensitizer (chlorophyll) in these organisms and (ii) 

25 the relatively high temperatures observed on ground in Mediterranean regions favoring the 

26 diffusion of singlet oxygen outside of the membranes. Senescent leaves of P. oceanica 

27 contained highest proportions of photochemically-produced 6-hydroperoxysterols likely due to 

28 the presence of trace amounts of metal ions in seawater catalyzing selective homolytic cleavage 

29 of 5- and 7-hydroperoxysterols. Bacterial metabolites of sitosterol and of its photooxidation 

30 products could be detected in senescent leaves of P. oceanica but not in Q. ilex and S. aspera.  

31 These results confirmed that biotic and abiotic degradation processes may be intimately linked 

32 in the environment.

33

34 Keywords: Posidonia oceanica; Quercus ilex; Smilax aspera; Marine and terrestrial 

35 gymnosperms; Type II photosensitized oxidation; Bacterial degradation;  5-sterols; 

36 Hydroperoxides. 
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39 1. Introduction

40 Senescence in plants is a complex deterioration process that can lead to the death of whole 

41 organisms or a single organ. It is regulated by internal factors (age, reproductive development, 

42 and phytohormone levels) and by environmental signals, including photoperiod, stresses such 

43 as drought, ozone, nutrient deficiency, wounding, and shading (Gan et al., 1997). One of the 

44 earliest responses of plant cells under abiotic stresses and senescence is the generation of 

45 reactive oxygen species (ROS) and notably of singlet oxygen (1O2) (Lee et al., 2012). The 

46 chlorophyll pigments associated with the electron transport system are the primary source of 

47 1O2. Indeed, senescence extends the half-life of excited singlet chlorophyll (1Chl), thereby 

48 increasing the likelihood that 1Chl will undergo intersystem crossing to form triplet chlorophyll 

49 (3Chl). 3Chl is longer lived than 1Chl and reacts with ground state triplet oxygen (3O2) to produce 

50 1O2 (Karuppanapandian et al., 2011). The very high reactivity of 1O2 with numerous membrane 

51 components (chlorophyll phytyl side-chain, mono- and polyunsaturated fatty acids, sterols, 

52 tryptophan, tyrosine, histidine, methionine, cysteine and guanine bases of DNA) (Rontani, 

53 2012; Devasagayam and Kamat, 2002) mainly results from the loss of the spin restriction that 

54 normally hinders reaction of 3O2 with these biomolecules (Zolla and Rinalducci, 2002). 1O2-

55 induced photoreactions (named Type II photosensitized oxidations) afford hydroperoxides, 

56 which are prominent non-radical intermediates in lipid peroxidation (Halliwell and Gutteridge, 

57 2000; Devasagayam and Kamat, 2002).

58 Due to its high reactivity and short lifetime (3.1 to 3.9 μs in pure water) (Krasnovsky, 

59 1998), it is generally considered that 1O2 is able to interact with molecules mostly in its nearest 

60 environment. While its diffusion distance has been calculated to be up to 10 nm in a 

61 physiologically relevant situation (Sies and Menck, 1992), it was also observed that 1O2 

62 produced in the photosynthetic apparatus of Chlamydomonas reinhardtii under high light is 

63 able of leaving the thylakoid membrane and reaching the cytoplasm or even the nucleus (Fisher 
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64 et al., 2007). The lifetime of 1O2 seems thus to vary significantly in membranes according to 

65 physiological conditions. Interestingly, Ehrenberg et al. (1998) demonstrated that increasing 

66 temperatures favored the diffusion of 1O2 from the membranes, where it is generated, into the 

67 aqueous medium.

68 Autoxidation (free radical reaction of organic compounds with O2) can also act in 

69 senescent plants (Rontani et al., 2017). These processes are not spontaneous but autocatalytic; 

70 once started they are self-propagating and self-accelerating (Schaich, 2005). The mechanisms 

71 of initiation of these processes in senescent plants seem to involve the homolytic cleavage of 

72 photochemically produced hydroperoxides (Girotti, 1998; Rontani et al., 2003). This cleavage 

73 may be induced by heat, light, metal ions and lipoxygenases (Schaich, 2005). 

74 It was previously observed that solar irradiation can increase the bioavailability of the 

75 detrital pieces of vascular plants (Vähätalo et al.,1998) by reducing structural barriers hindering 

76 bacterial colonization and by degrading phenols (Opsahl and Benner, 1993), which can inhibit 

77 bacterial growth (Harrison, 1982). It seems thus clear that in the environment biodegradative, 

78 autoxidative and photooxidative degradation processes are inextricably linked, and that an 

79 understanding of their interactions, although complex, is fundamental to the precise 

80 identification of the balance between degradation and preservation of vascular plant material 

81 (Rontani et al., 2017).

82 Recently, we could observed a very high efficiency of Type II photosensitized oxidation 

83 processes in the seagrass Zostera noltii strongly contrasting with that observed in terrestrial 

84 higher plants (Rontani et al., 2014). In the present work, we carried out analysis of senescent 

85 leaves of two Mediterranean terrestrial higher plants (Quercus ilex and Smilax aspera) and a 

86 marine seagrass (Posidonia oceanica) with the primary aim of confirming these preliminary 

87 results and to study more closely the interactions between biotic and abiotic degradation 
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88 processes. For this purpose, we used oxidation products of 5-sterols known to be excellent 

89 biomarkers for tracing diagenetic transformations (Mackenzie et al., 1982).

90

91 2. Results and discussion

92 During plant senescence, Type II photosensitized oxidation processes act on the 

93 chlorophyll phytyl side-chain affording photoproducts quantifiable after NaBH4-reduction and 

94 alkaline hydrolysis in the form of 6,10,14-trimethylpentadecan-2-ol and 3-methylidene-

95 7,11,15-trimethylhexadecan-1,2-diol (phytyldiol) (Rontani et al., 1994). Phytyldiol is 

96 ubiquitous in the environment and constitutes a stable and specific tracer for photodegradation 

97 of chlorophyll phytyl side-chain (Rontani et al. 1996; Cuny and Rontani, 1999). The molar ratio 

98 phytyldiol:phytol (Chlorophyll Phytyl side-chain Photodegradation Index, CPPI) was proposed 

99 to estimate the extent of chlorophyll photodegraded in natural marine samples (Cuny et al. 

100 2002). The CPPI values measured in lipid extracts resulting from the treatment of senescent 

101 leaves of Q. ilex and S. aspera attested to a complete photooxidation of chlorophyll (Table 1). 

102 In contrast, only 20% of chlorophyll seems to be photodegraded in detached leaves of P. 

103 oceanica. 

104 As expected, the main sterol detected in lipid extracts of Q. ilex, S. aspera and P. oceanica 

105 appeared to be 24-ethylcholest-5-en-3-ol (sitosterol). Indeed, this C29 sterol constitutes the 

106 major sterol of terrestrial vascular plants (Lütjohann, 2004) and seagrasses (Volkman et al., 

107 2008). As previously described (Iatrides et al., 1983), lipid extracts of P. oceanica also 

108 contained lesser proportion of 24-ethylcholesta-5,22(E)-dien-3-ol (stigmasterol). Type II 

109 photosensitized oxidation of 5-sterols affords Δ6-5-hydroperoxysterols (which rearrange 

110 quickly to Δ5-7-hydroperoxysterols, Smith, 1981) and Δ4-6-hydroperoxysterols (Kulig 

111 and Smith, 1973) (Fig. 1). Although produced in lesser proportion than Δ6-5-
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112 hydroperoxysterols, Δ4-6-hydroperoxysterols were selected as tracers of 5-sterol 

113 photooxidation due to their high specificity and relative stability (Rontani et al., 2009; 

114 Christodoulou et al., 2009). These compounds were quantified after NaBH4 reduction to the 

115 corresponding diols and photooxidation percentage of the parent sterol was obtained from the 

116 equation: photooxidation % = (4-stera-6-diols % × (1+0.3)/0.3) (Christodoulou et al., 

117 2009). 24-Ethylcholest-4-en-36-diols (arising from sitosterol photooxidation) could be 

118 detected in NaBH4-reduced lipid extracts of the three gymnosperms investigated (Fig. 2). In the 

119 case of P. oceanica lipid extracts, the presence of 24-ethylcholest-4,22(E)-dien-36-diol 

120 (arising from stigmasterol photooxidation) could be also noticed (Fig. 2A). On the basis of the 

121 proportion of these diols relative to the parent 5-sterols, the photooxidation state of sitosterol 

122 and stigmasterol could be estimated (Table 1). The strongest photooxidation of 5-sterols 

123 observed in P. oceanica (Table 1) is in good agreement with previous results obtained in the 

124 case of Z. noltii (Rontani et al., 2014). Type II photosensitized oxidation processes thus 

125 appeared to be really more efficient on 5-sterols in seagrasses than in terrestrial angiosperms. 

126 This highest efficiency may be attributed to: (i) the relative persistence of chlorophyll 

127 (photosensitizer) in senescent seagrasses (Pellikaan, 1982; Aubby, 1991) allowing the 

128 production of 1O2 during long periods or (ii) the temperature (Amiraux et al., 2016). Indeed, it 

129 was previously demonstrated that the diffusion rate of 1O2 in biological membranes increases 

130 strongly with temperature (Ehrenberg et al., 1998). The high temperatures observed on land in 

131 Mediterranean regions (notably in summer) could thus strongly favor the diffusion of 1O2 

132 outside of the chloroplasts of terrestrial higher plants decreasing thus strongly the efficiency of 

133 photosensitized processes.

134 Autoxidation (free radical-induced oxidation) of 5-sterols mainly afford -

135 hydroperoxysterols and to a lesser extent 5,6-epoxysterols and -steratriols (Smith, 
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136 1981) (Fig. 1). Due to their production by allylic rearrangement of photochemically-produced 

137 5-hydroperoxysterols (Nickon and Bagli, 1961), -hydroperoxysterols were discarded as 

138 possible markers of autoxidation processes. During the treatment, 5,6-epoxysterols may be 

139 hydrolyzed to -trihydroxysterols. These triols were thus selected as specific and stable 

140 tracers of autoxidation processes (Christodoulou et al., 2009). Only trace amounts of 24-

141 ethylcholestane-36-triol (arising from sitosterol autoxidation) could be detected in the 

142 lipid extracts of Q. ilex, S. aspera and P. oceanica attesting to a weak autoxidation of 5-sterols 

143 in these senescent plants.

144 During singlet oxygen-mediated photooxidation of sterols in biological membranes 

145 (Korytowski et al., 1992) and senescent phytoplanktonic cells (Rontani et al., 1997), the ratio 

146 Δ4-6-hydroperoxysterols / Δ5-7-hydroperoxysterols generally ranges between 0.30 and 0.35. 

147 The lower values observed in lipid extracts of Q. ilex and S. aspera (Table 1) resulted likely 

148 from a slight autoxidation of sitosterol mainly producing Δ5-7-hydroperoxysterols. In contrast, 

149 in the case of P. oceanica this ratio appeared to be very high (Table 1). This high value was 

150 attributed to the involvement of an intense and selective homolytic breakdown of Δ5-7-

151 hydroperoxysterols and Δ6-5-hydroperoxysterols catalyzed by metal ions (Schaich, 2005) 

152 present in seawater. Indeed, according to the stability of the alkyl radicals formed during β-

153 scission of the corresponding alkoxyl radicals, the following order of stability of 

154 hydroperoxysterols was previously proposed: Δ4-6-hydroperoxysterols > Δ5-7-

155 hydroperoxysterols > Δ6-5-hydroperoxysterols (Christodoulou et al., 2009).

156 Treatment of senescent leaves of Q. ilex, S. aspera and P. oceanica (see Section 4.2) 

157 involved NaBH4-reduction (carried out in order to avoid thermal breakdown of hydroperoxides 

158 during the subsequent alkaline hydrolysis). This treatment resulted to the reduction of 

159 hydroperoxides and ketones to the corresponding alcohols. The sum of the corresponding 

160 hydroperoxides, ketones and alcohols was thus quantified under the form of alcohols. 
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161 Application of a different treatment (see Section 4.3) allowed us to specifically quantify 

162 hydroperoxides and their main degradation products: alcohols and ketones in these senescent 

163 plants. The results obtained allowed to confirm the instability of Δ5-7-hydroperoxysterols in P. 

164 oceanica (Fig. 3). In this senescent seagrass the formation of ketonic degradation products 

165 appeared to be highly favored.

166  Bacterial degradation of 5-sterols is initiated by oxidation of the 3-hydroxyl moiety 

167 and isomerization of the 5 double bond to the 4 position (Sojo et al., 1997). The resulting 4-

168 steren-3-ones are then degraded via hydroxylation at C26 to initiate side-chain degradation, or 

169 cleavage of the ring structure (9,10-seco-pathway; Philipp, 2011). It is interesting to note that 

170 bacterial hydrogenation of Δ5-sterols is also often observed in oxic and anoxic environments, 

171 this process involving the well-known sequence: Δ5-sterols → ster-4-en-3-ones → 5(H)-

172 stanones ↔ 5(H)-stanols (Gagosian et al., 1982; de Leeuw and Baas, 1986; Wakeham, 1989) 

173 (Fig. 1). Interestingly, 24-ethylcholest-4-en-3-ol and 24-ethylcholestan-3-ol could be 

174 detected in lipid extract of P. oceanica (Fig. 2A). Reduction with NaBD4 instead of NaBH4 

175 allowed us to demonstrate that 100% of 24-ethylcholest-4-en-3-ol and 60% of 24-

176 ethylcholestan-3-ol resulted from the reduction of the corresponding ster-4-en-3-one and 

177 stanone, respectively. Bacterial conversion of Δ5-sterols to 5(H)-stanols seems thus to act in 

178 senescent leaves of seagrasses, but not in terrestrial vascular plants (Fig. 2B). 

179 24-Ethyl--cholestane--diol could be detected in lipid extracts of P. oceanica (Fig. 

180 2A). Reduction with NaBD4 instead of NaBH4 also allowed to demonstrate the additional 

181 presence of: 24-ethylcholest-4-en-6-ol-3-one, 24-ethylcholest-4-en-3,6-dione,  24-ethyl--

182 cholestan-3-ol-6-one, 24-ethyl--cholestan-6-ol-3-one and 24-ethyl--cholestane-3,6-

183 dione in this lipid extract (Fig. 4). The presence of these different compounds attests to the 
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184 bacterial use of the main photooxidation products of sitosterol (i.e. 24-ethylcholest-4-en-3,6-

185 diol and 24-ethylcholest-4-en-3-ol-6-one) (Fig. 1).

186

187 3. Conclusions

188 Degradation products of 5-sterols (mainly sitosterol) were characterized and quantified 

189 in senescent leaves of Mediterranean terrestrial (Q. ilex and S. aspera) and marine (P. oceanica) 

190 angiosperms. The results obtained allowed to confirm the highest efficiency of Type II 

191 photosensitized processes in marine seagrasses. The fast degradation of chlorophyll (sensitizer) 

192 during the senescence and the high temperatures observed on ground (favoring migration of 

193 1O2 outside of biological membranes) seem to be at the origin of the weak efficiency of 

194 photosensitized processes in Mediterranean terrestrial angiosperms. Homolytic cleavage of 

195 photochemically-produced hydroperoxides appeared to be highly favored in seawater likely due 

196 to the presence of metal ions in trace amounts. Bacterial degradation processes, which are more 

197 efficient in senescent leaves of P. oceanica than in these of Q. ilex and S. aspera, acted not only 

198 on sitosterol but also on its photooxidation products. These observations confirm the 

199 complexity of the interactions between biotic and abiotic degradation processes in the 

200 environment.

201

202 4. Experimental

203

204 4.1. Sampling

205 Senescent leaves of Q. ilex and S. aspera (both widespread species in Mediterranean 

206 ecosystems) were collected on the ground near Marseilles (France). Detached leaves of P. 
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207 oceanica were collected on the Catalans beach in Marseilles (France). All the leaves were freeze 

208 dried and then placed in a mortar and intensively ground.

209

210 4.2. Treatment

211 Freeze-dried leaves were reduced in methanol (25 ml) by excess NaBH4 or NaBD4 (70 

212 mg) at room temperature for 30 min (Rontani et al., 2009). This reduction was carried out to 

213 reduce labile hydroperoxides resulting from photooxidation to alcohols that are amenable to 

214 gas chromatography-mass spectrometry (GC-MS). During this treatment, ketones are also 

215 reduced and the possibility of some ester cleavage cannot be totally excluded. After reduction, 

216 25 ml of water and 2.8 g of potassium hydroxide were added and the mixture was directly 

217 saponified by refluxing for 2 h. After cooling, the content of the flask was filtered and extracted 

218 three times with hexane. The combined hexane extracts were dried over anhydrous Na2SO4, 

219 filtered and concentrated by rotary evaporation at 40°C to give the neutral fraction.

220

221 4.3. Estimation of hydroperoxysterols and their alcoholic and ketonic degradation product 

222 contents

223 Freeze-dried leaves were extracted four times with chloroform-methanol-water (1:2:0.8, 

224 v/v/v) using ultrasonication (separation of leave debris and solvents by centrifugation at 3500 

225 G for 9 min). To initiate phase separation after ultrasonication, chloroform and purified water 

226 were added to the combined extracts to give a final volume ratio of 1:1:0.9 (v/v/v). The upper 

227 aqueous phase was extracted twice with chloroform and the combined extracts were dried over 

228 anhydrous Na2SO4, filtered and the solvent removed via rotary evaporation. The residue 

229 obtained after extraction was dissolved in 4 ml of dichloromethane and separated in two equal 

230 subsamples. After evaporation of the solvent, degradation products were obtained for the first 
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231 subsample after acetylation (inducing complete conversion of hydroperoxides to the 

232 corresponding ketones, Mihara and Tateba, 1986) and saponification and for the second after 

233 reduction with NaBD4 and saponification. Comparison of the amounts of alcohols present after 

234 acetylation and after NaBD4 reduction made it possible to estimate the proportion of 

235 hydroperoxysterols and hydroxysterols present in the samples, while after NaBD4-reduction 

236 deuterium labeling allowed to estimate the proportion of ketosterols really present in the 

237 samples (Marchand and Rontani, 2003).

238

239 4.4. Derivatization

240 Residues were taken up in 300 μl of a mixture of pyridine and N,O-

241 bis(trimethysilyl)trifluoroacetamide (BSTFA; Supelco) (2:1, v:v) and silylated for 1 h at 50°C 

242 to convert OH-containing compounds to their TMSi-ether derivatives. After evaporation to 

243 dryness under a stream of N2, the derivatized residues were taken up in a mixture of ethyl acetate 

244 and BSTFA (to avoid desilylation of fatty acids) for analysis using GC-EIMS. It should be 

245 noted that under these conditions -trihydroxysterols were only silylated at the 3 and 6 

246 positions and thus need to be analyzed with great care.

247

248 4.5. Gas chromatography-electron ionization mass spectrometry (GC-EIMS) analyses

249 Lipid oxidation products were identified by comparison of retention times and mass 

250 spectra with those of standards and quantified (calibration with external standards) using an 

251 Agilent 7850-A gas chromatograph connected to an Agilent 7010-QQQ mass spectrometer. For 

252 low concentrations, or in the case of co-elutions, quantification was achieved using selected ion 

253 monitoring (SIM). The main characteristic mass fragment ions used to quantify degradation 

254 products of sterols have been described previously (Christodoulou et al., 2009; Rontani et al., 
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255 2009). The following conditions were employed: 30 m x 0.25 mm (i.d.) fused silica column 

256 coated with HP-5MS (Agilent; film thickness: 0.25 μm); oven programmed from 70 to 130 °C 

257 at 20 °C min-1, then to 250 °C at 5 °C min-1 and then to 300 °C at 3 °C min-1; carrier gas (He), 

258 1.0 bar; injector (splitless), 250 °C; electron energy, 70 eV; source temperature, 230 °C; 

259 quadrupole temperature, 150 °C; scan range m/z 40-700; cycle time, 0.2 s. 

260

261 4.6. Standard compounds

262 Phytol, sitosterol and stigmasterol were obtained from Sigma-Aldrich. The synthesis of 

263 3-methylidene-7,11,15-trimethylhexadecan-1,2-diol (phytyldiol) from phytol was described 

264 previously by Rontani and Aubert (2005). 5α- and 6α/β-Hydroperoxides were obtained after 

265 photosensitized oxidation of the corresponding Δ5-sterols in pyridine in the presence of 

266 haematoporphyrin as sensitizer (Nickon and Bagli, 1961). Allylic rearrangement of 5α-

267 hydroperoxides to 7α-hydroperoxides and epimerization of the latter to 7β-hydroperoxides was 

268 carried out at room temperature in chloroform (Teng et al., 1973). Subsequent reduction of 

269 these different hydroperoxides in methanol with excess NaBH4 afforded the corresponding 

270 diols. Hydrogenation of 24-ethylcholest-4-en--diol in acetic acid solution in the presence 

271 of PtO2 as catalyst yielded 24-ethyl-5-cholestane--diol and 24-ethyl-5-cholestane-

272 -diol (Nishimura and Mori, 1963). Oxidation of sitosterol in THF at room temperature 

273 with HIO4 afforded 24-ethylcholestane--triol (Voisin et al., 2014).

274

275 Acknowledgements

276 Financial support from the Centre National de la Recherche Scientifique (CNRS) and the 

277 Aix-Marseille University is gratefully acknowledged. Thanks are due to the FEDER 

278 OCEANOMED (N° 1166-39417) for the funding of the apparatus employed.

650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708



13

279

280 References

281 Amiraux, R., Jeanthon, C., Vaultier, F., Rontani, J.-F., 2016. Paradoxical effects of temperature 

282 and solar irradiance on the photodegradation state of killed phytoplankton. J. Phycol. 52, 

283 475–485.

284 Auby, I. 1991. Contribution à l'étude des herbiers de Zostera Noltii dans le bassin d'Arcachon: 

285 Dynamique, production, dégradation, macrofaune associée. PhD thesis, Université de 

286 Bordeaux 1, France, pp. 162.

287 Christodoulou, S., Marty, J.-C., Miquel, J.-C., Volkman, J.K., Rontani, J.-F., 2009. Use of lipids 

288 and their degradation products as biomarkers for carbon cycling in the northwestern 

289 Mediterranean Sea. Mar. Chem. 113, 25–40.

290 Cuny, P., Rontani, J.-F. 1999. On the widespread occurrence of 3-methylidene-7,11,15- 

291 trimethylhexadecan-1,2-diol in the marine environment: a specific isoprenoid marker of 

292 chlorophyll photodegradation. Mar. Chem. 65, 155-165.

293 Cuny, P., Marty, J.-C., Chiaverini, J., Vescovali, I., Raphel, D., Rontani, J.-F. 2002. One-year 

294 seasonal survey of the chlorophyll photodegradation process in the Northwestern 

295 Mediterranean Sea. Deep-Sea Res. II 49, 1987-2005.

296 De Leeuw, J.W., Baas, M. 1986. Early-stage diagenesis of steroids. In: Johns R.B. (ed.). 

297 Biological Markers in the Sedimentary Record, Elsevier, Amsterdam, pp. 101-123.

298 Devasagayam, T., Kamat, J., 2002. Biological significance of singlet oxygen. Indian J. Ex. Biol. 

299 40, 680-692.

300 Ehrenberg, B., Anderson, J.L., Foote, C.S. 1998. Kinetics and yield of singlet oxygen 

301 photosensitized by hypericin in organic and biological media. Photochem. Photobiol. 68, 

302 135-140.

709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767



14

303 Fischer, B.B., Krieger-Liszkay, A., Hideg, E., Ŝnyrychová, I., Wiesendanger, M., Eggen, 

304 R.I.L., 2007. Role of singlet oxygen in chloroplast to nucleus retrograde signaling in 

305 Chlamydomonas reinhardtii. FEBS Lett. 581, 5555-5560.

306 Gagosian, R.B., Smith, S.O., Nigrelli, G.E., 1982. Vertical transport of steroid alcohols and 

307 ketones measured in a sediment trap experiment in the equatorial Atlantic Ocean. 

308 Geochim. Cosmochim. Acta 46, 1163-1172.

309 Gan, Y., Chen, J., Stulen, I., 1997. Effects of nitrogen application at different growth stages on 

310 growth, nodulation and yield of soybeans. Soybean Sci. 16, 125-130.

311 Girotti, A.W., 1998. Lipid hydroperoxide generation, turnover, and effector action in biological 

312 systems. J. Lipid Res. 39, 1529–1542.

313 Halliwell, B., Gutteridge, J.M.C., 2000. Free radicals in biology and medicine. Oxford 

314 University Press, Oxford, UK, Fourth Edition.

315 Harrison, P.G., 1982. Control of microbial growth and amphipod grazing by water-soluble 

316 compounds from leaves of Zostera marina. Mar. Biol. 67, 225-230.

317 Iatrides, M.C., Artaud, J., Vicente, N., 1983. Sterol composition of Mediterranean marine 

318 plants. Oceanol. Acta 6, 73–77.

319 Karuppanapandian, T., Wang, H.W., Prabakaran, N., Jeyalakshmi, K., Kwon, M., Manoharan, 

320 K., Kim, W., 2011. 2,4-Dichlorophenoxyacetic acid-induced leaf senescence in mung 

321 bean (Vigna radiata L. Wilczek) and senescence inhibition by co-treatment with silver 

322 nanoparticles. Plant Physiol. Biochem. 49, 168–177.

323 Korytowski, W., Bachowski, G.J., Girotti, A.W., 1992. Photoperoxidation of cholesterol in 

324 homogeneous solution, isolated membranes, and cells: comparison of the 5- and 6-

325 hydroperoxides as indicators of singlet oxygen intermediacy. Photochem. Photobiol. 56, 

326 1-8.

768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826



15

327 Krasnovsky, A.A.Jr., 1998. Singlet molecular oxygen in photobiochemical systems: IR 

328 phosphorescence studies. Membr. Cell Biol. 12, 665– 690.

329 Kulig, M.J., Smith, L.L., 1973. Sterol metabolism. XXV. Cholesterol oxidation by singlet 

330 molecular oxygen. J. Org. Chem. 38, 3639-3642.

331 Lee, H.-J., Mochizuki, N., Masuda, T., Buckhout, T.J., 2012. Disrupting the bimolecular 

332 binding of the haem-binding protein 5 (AtHBP5) to haem oxygenase 1 (HY1) leads to 

333 oxidative stress in Arabidopsis. J Exp. Bot. 63, 5967–5978.

334 Lütjohann, D., 2004. Sterol autoxidation: from phytosterols to oxyphytosterols. Br. J.  Nutr. 91, 

335 3-4.

336 Mackenzie, A.S., Brassell, S.C., Eglinton, G., Maxwell, J.R., 1982. Chemical fossils: the 

337 geological fate of sterols, Science, 217, 419–504.

338 Marchand, D., Rontani, J.-F. 2003. Visible light-induced oxidation of lipid components of 

339 purple sulphur bacteria: A significant process in microbial mats, Org. Geochem. 34, 61-

340 79.

341 Mihara, S., Tateba, H., 1986. Photosensitized oxygenation reactions of phytol and its 

342 derivatives. J. Org. Chem. 51, 1142-1144.

343 Nickon, A., Bagli, J.F., 1961. Reactivity and geochemistry in allylic systems. I. Stereochemistry 

344 of photosensitized oxygenation of monoolefins. J. Am. Chem. Soc. 83, 1498-1508.

345 Nishimura, S., Mori, K., 1963. Hydrogenation and hydrogenolysis. VI. The stereochemistry of 

346 the catalytic hydrogenation of some allylic alcohols related to cholest-4-ene. J. Chem. 

347 Soc. Jap. 36, 318-320.

348 Opsahl, S., Benner, R., 1993. Decomposition of senescent blades of the seagrass Halodule 

349 wrightii in a subtropical lagoon. Mar. Ecol. Progr. Ser. 94, 191-205.

350 Pellikaan, G.C., 1982. Decomposition processes of eelgrass, Zostera marina L. Hydrobiol. 

351 Bull. 16, 83-92.

827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885



16

352 Philipp, B., 2011. Bacterial degradation of bile acids. Appl. Microbiol. Biotechnol. 89, 903-

353 915.

354 Rontani, J.-F., Grossi, V., Faure, F., Aubert, C., 1994. ‘‘Bound’’ 3-methylidene-7,11,15- 

355 trimethylhexadecan-1,2-diol: a new isoprenoid marker for the photodegradation of 

356 chlorophyll-a in seawater. Org. Geochem. 21, 135-142.

357 Rontani, J.-F., Raphel, D., Cuny, P., 1996. Early diagenesis of intact and photooxidized 

358 chlorophyll phytyl chain in a recent temperate sediment. Org. Geochem. 24, 825-832.

359 Rontani, J.-F., Cuny, P., Aubert, C., 1997. Rates and mechanism of light-dependent degradation 

360 of sterols in senescent cells of phytoplankton. J. Photochem. Photobiol., A: Chem. 111, 

361 139-144.

362 Rontani, J.-F., Rabourdin, A., Marchand, D., Aubert, C., 2003. Photochemical oxidation and 

363 autoxidation of chlorophyll phytyl side chain in senescent phytoplanktonic cells: Potential 

364 sources of several acyclic isoprenoid compounds in the marine environment. Lipids 38, 

365 241–254.

366 Rontani, J.-F., Aubert, C., 2005. Characterization of isomeric allylic diols resulting from 

367 chlorophyll phytyl side chain photo- and autoxidation by electron ionization gas 

368 chromatography/mass spectrometry. Rapid Commun. Mass Spectrom. 19, 637-646.

369 Rontani, J.-F., Zabeti, N., Wakeham, S.G., 2009. The fate of marine lipids: Biotic vs. abiotic 

370 degradation of particulate sterols and alkenones in the Northwestern Mediterranean Sea. 

371 Mar. Chem. 113, 9-18.

372 Rontani, J.-F., 2012. Photo- and free radical-mediated oxidation of lipid components during the 

373 senescence of phototrophic organisms. In: Nagata, T. (Ed.). Senescence. Intech, Rijeka, 

374 pp. 3–31.

886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944



17

375 Rontani, J.-F., Vaultier, F., Bonin, P., 2014. Biotic and abiotic degradation of marine and 

376 terrestrial higher plant material in intertidal surface sediments from Arcachon Bay 

377 (France): A lipid approach. Mar. Chem. 158, 69–79.

378 Rontani, J.-F., Galeron, M.-A., Amiraux, R., Artigue, L., Belt, S.T., 2017. Identification of di- 

379 and triterpenoid lipid tracers confirms the significant role of autoxidation in the 

380 degradation of terrestrial vascular plant material in the Canadian Arctic. Org. Geochem. 

381 108, 43-50.

382 Schaich, K.M., 2005. Lipid Oxidation: Theoretical Aspects. In: Shahidi, F. (Ed.), Bailey’s 

383 Industrial Oil and Fat Products. John Wiley & Sons, Chichester, pp. 269-355.

384 Sies, H., Menck, C.F., 1992. Singlet oxygen induced DNA damage. Mut. Res. 275, 367-375.

385 Smith, L.L., 1981. The autoxidation of cholesterol. Plenum Press, New York, pp. 119-132.

386 Sojo, M., Bru, R., Lopez‐Molina, D., Garcia‐Carmona, F., Arguelles, J.C., 1997. Cell‐linked 

387 and extracellular cholesterol oxidase activities from Rhodococcus erythropolis. Isolation 

388 and physiological characterization. Appl. Microbiol. Biotechnol. 47, 583‐589.

389 Teng, J.I., Kulig, M.J., Smith, L.L., Kan, G., van Lier, J.E., 1973. Sterol metabolism. XX. 

390 Cholesterol 7-hydroperoxide. J. Org. Chem. 38, 119–123.

391 Vähätalo, A., Sondergaard, M., Schlüter, L., Markager, S. 1998. Impact of solar radiation on 

392 the decomposition of detrital leaves of eelgrass Zostera marina. Mar. Ecol. Progr. Ser. 

393 170, 107-117.

394 Voisin, M., Silvente-Porot, S., Poirot, M., 2014. One step synthesis of 6-cholestan--diol. 

395 Biochem. Biophys. Res. Commun. 446, 782-785.

396 Volkman, J.K., Revill, A.T., Holdsworth, D.G., Fredericks, D. 2008. Organic matter sources in 

397 an enclosed coastal inlet assessed using lipid biomarkers and stable isotopes. Org. 

398 Geochem. 39, 689-710.

945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003



18

399 Wakeham, S.G., 1989. Reduction of stenols to stanols in particulate matter at oxic-anoxic 

400 boundaries in seawater. Nature 342, 787-790.

401 Zolla, L., Rinalducci, S., 2002. Involvement of active oxygen species in degradation of light-

402 harvesting proteins under light stresses. Biochem. 41, 14391-14402.

403

404

405

406

407

408

409

410

411

412

413

414

1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062



19

415 FIGURE CAPTIONS

416

417 Figure 1. Biotic and abiotic degradation of sitosterol in senescent leaves of P. oceanica. 

418 (Bacterial metabolites are in blue).

419

420 Figure 2.  Partial total ion current (TIC) chromatograms of silylated NaBH4-reduced lipid 

421 extracts of senescent leaves of P. oceanica (A) and S. aspera (B).

422

423 Figure 3. Relative percentages of intact 6- and 7-hydroperoxysitosterols and their ketonic and 

424 alcoholic degradation products measured in senescent leaves of P. oceanica (A) and S. aspera 

425 (B).

426

427 Figure 4. Partial EI mass spectra of silylated 24-ethylcholest-4-en--diol (A) and 24-

428 ethylcholestane--diol (B) obtained after NaBD4-reduction of lipid extract of P. oceanica. 
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Table 1

Efficiency of photooxidation processes in senescent leaves of marine and terrestrial angiosperms

Posidonia oceanica Quercus ilex Smilax aspera L. 

CPPIa 0.012 ± 0.002 60 ± 46 5 ± 4

Chlorophyll photooxidation (%) 20 ± 3b 100 ± 0 100 ± 0

Sitosterol photooxidation (%) 72 ± 17c 49 ± 7 33 ± 5

Stigmasterol photooxidation (%) 69 ± 3c - -

6-diols/7-diolsd 6.28 ± 2.38 0.22 ± 0.02 0.09 ± 0.01

a Chlorophyll Phytyl side-chain Photodegradation Index (molar ratio phytyldiol/phytol) (Cuny et al., 1999)
b Estimated with the equation: Chlorophyll photodegradation percentage = ( 1- (CPPI + 1)-18.5) x 100 (Cuny et al., 1999)
c Estimated with the equation: Sterol photooxidation % = (-dihydroxysterol %) x (1 + 0.3) / 0.3 (Christodoulou et al., 2009)  
d 24-Ethylcholest-4-en-36-diols/24-ethylcholest-5-en-37-diols
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