

Biotic and abiotic degradation of $\Delta 5$ -sterols in senescent Mediterranean marine and terrestrial angiosperms

Jean-Francois Rontani

▶ To cite this version:

Jean-Francois Rontani. Biotic and abiotic degradation of $\Delta 5$ -sterols in senescent Mediterranean marine and terrestrial angiosperms. Phytochemistry, 2019, 167, pp.112097. 10.1016/j.phytochem.2019.112097. hal-02325614

HAL Id: hal-02325614 https://hal.science/hal-02325614

Submitted on 21 Apr 2020 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

1 2 3 4 5	1	10.1016/j.phytochem.2019.112097
6 7 8 9	2	Biotic and abiotic degradation of Δ^5 -sterols in senescent
10 11 12	3	Mediterranean marine and terrestrial angiosperms
13 14 15 16	4	
17 18 19	5	Rontani Jean-François*
20 21 22	6	
23 24	7	^a Aix Marseille Univ, Université de Toulon, CNRS/INSU/IRD, Mediterranean Institute of
25	8	Oceanography (MIO) UM 110, 13288 Marseille, France
26 27	9	
28 29 30	10	
31 32 33	11	
34 35 36	12	
37 38 39	13	
40 41 42	14	
43 44	15	
45 46	16	* Corresponding author. Tel.: +33-4-86-09-06-02; fax: +33-4-91-82-96-41. <i>E-mail address</i> :
47	17	jean-francois.rontani@mio.osupytheas.fr (JF. Rontani)
48 49 50 51 52 53 54 55 56 57	18	
58 59		1

Abstract. In this work, Δ^5 -sterols and their degradation products have been used to compare the efficiency of biotic and abiotic degradation processes in senescent Mediterranean marine (Posidonia oceanica) and terrestrial (Quercus ilex and Smilax aspera) angiosperms. Type II photosensitized oxidation processes appeared to be more efficient in P. oceanica than in Q. ilex and S. aspera. The low efficiency of these processes in senescent terrestrial angiosperms was attributed to: (i) the fast degradation of the sensitizer (chlorophyll) in these organisms and (ii) the relatively high temperatures observed on ground in Mediterranean regions favoring the diffusion of singlet oxygen outside of the membranes. Senescent leaves of P. oceanica contained highest proportions of photochemically-produced 6-hydroperoxysterols likely due to the presence of trace amounts of metal ions in seawater catalyzing selective homolytic cleavage of 5- and 7-hydroperoxysterols. Bacterial metabolites of sitosterol and of its photooxidation products could be detected in senescent leaves of *P. oceanica* but not in *Q. ilex* and *S. aspera*. These results confirmed that biotic and abiotic degradation processes may be intimately linked in the environment.

Keywords: Posidonia oceanica; Quercus ilex; Smilax aspera; Marine and terrestrial gymnosperms; Type II photosensitized oxidation; Bacterial degradation; Δ^5 -sterols; Hydroperoxides.

1. Introduction

Senescence in plants is a complex deterioration process that can lead to the death of whole organisms or a single organ. It is regulated by internal factors (age, reproductive development, and phytohormone levels) and by environmental signals, including photoperiod, stresses such as drought, ozone, nutrient deficiency, wounding, and shading (Gan et al., 1997). One of the earliest responses of plant cells under abiotic stresses and senescence is the generation of reactive oxygen species (ROS) and notably of singlet oxygen $({}^{1}O_{2})$ (Lee et al., 2012). The chlorophyll pigments associated with the electron transport system are the primary source of ¹O₂. Indeed, senescence extends the half-life of excited singlet chlorophyll (¹Chl), thereby increasing the likelihood that ¹Chl will undergo intersystem crossing to form triplet chlorophyll (³Chl). ³Chl is longer lived than ¹Chl and reacts with ground state triplet oxygen (³O₂) to produce ${}^{1}O_{2}$ (Karuppanapandian et al., 2011). The very high reactivity of ${}^{1}O_{2}$ with numerous membrane components (chlorophyll phytyl side-chain, mono- and polyunsaturated fatty acids, sterols, tryptophan, tyrosine, histidine, methionine, cysteine and guanine bases of DNA) (Rontani, 2012; Devasagayam and Kamat, 2002) mainly results from the loss of the spin restriction that normally hinders reaction of ³O₂ with these biomolecules (Zolla and Rinalducci, 2002). ¹O₂-induced photoreactions (named Type II photosensitized oxidations) afford hydroperoxides, which are prominent non-radical intermediates in lipid peroxidation (Halliwell and Gutteridge, 2000; Devasagayam and Kamat, 2002).

58 Due to its high reactivity and short lifetime (3.1 to 3.9 μ s in pure water) (Krasnovsky, 59 1998), it is generally considered that ${}^{1}O_{2}$ is able to interact with molecules mostly in its nearest 60 environment. While its diffusion distance has been calculated to be up to 10 nm in a 61 physiologically relevant situation (Sies and Menck, 1992), it was also observed that ${}^{1}O_{2}$ 62 produced in the photosynthetic apparatus of *Chlamydomonas reinhardtii* under high light is 63 able of leaving the thylakoid membrane and reaching the cytoplasm or even the nucleus (Fisher et al., 2007). The lifetime of ${}^{1}O_{2}$ seems thus to vary significantly in membranes according to physiological conditions. Interestingly, Ehrenberg et al. (1998) demonstrated that increasing temperatures favored the diffusion of ${}^{1}O_{2}$ from the membranes, where it is generated, into the aqueous medium.

Autoxidation (free radical reaction of organic compounds with O₂) can also act in senescent plants (Rontani et al., 2017). These processes are not spontaneous but autocatalytic; once started they are self-propagating and self-accelerating (Schaich, 2005). The mechanisms of initiation of these processes in senescent plants seem to involve the homolytic cleavage of photochemically produced hydroperoxides (Girotti, 1998; Rontani et al., 2003). This cleavage may be induced by heat, light, metal ions and lipoxygenases (Schaich, 2005).

It was previously observed that solar irradiation can increase the bioavailability of the detrital pieces of vascular plants (Vähätalo et al., 1998) by reducing structural barriers hindering bacterial colonization and by degrading phenols (Opsahl and Benner, 1993), which can inhibit bacterial growth (Harrison, 1982). It seems thus clear that in the environment biodegradative, autoxidative and photooxidative degradation processes are inextricably linked, and that an understanding of their interactions, although complex, is fundamental to the precise identification of the balance between degradation and preservation of vascular plant material (Rontani et al., 2017).

Recently, we could observed a very high efficiency of Type II photosensitized oxidation processes in the seagrass *Zostera noltii* strongly contrasting with that observed in terrestrial higher plants (Rontani et al., 2014). In the present work, we carried out analysis of senescent leaves of two Mediterranean terrestrial higher plants (*Quercus ilex* and *Smilax aspera*) and a marine seagrass (*Posidonia oceanica*) with the primary aim of confirming these preliminary results and to study more closely the interactions between biotic and abiotic degradation

processes. For this purpose, we used oxidation products of Δ^5 -sterols known to be excellent biomarkers for tracing diagenetic transformations (Mackenzie et al., 1982).

2. Results and discussion

During plant senescence, Type II photosensitized oxidation processes act on the chlorophyll phytyl side-chain affording photoproducts quantifiable after NaBH₄-reduction and alkaline hydrolysis in the form of 6,10,14-trimethylpentadecan-2-ol and 3-methylidene-7,11,15-trimethylhexadecan-1,2-diol (phytyldiol) (Rontani et al., 1994). Phytyldiol is ubiquitous in the environment and constitutes a stable and specific tracer for photodegradation of chlorophyll phytyl side-chain (Rontani et al. 1996; Cuny and Rontani, 1999). The molar ratio phytyldiol:phytol (Chlorophyll Phytyl side-chain Photodegradation Index, CPPI) was proposed to estimate the extent of chlorophyll photodegraded in natural marine samples (Cuny et al. 2002). The CPPI values measured in lipid extracts resulting from the treatment of senescent leaves of *Q. ilex* and *S. aspera* attested to a complete photooxidation of chlorophyll (Table 1). In contrast, only 20% of chlorophyll seems to be photodegraded in detached leaves of P. oceanica.

As expected, the main sterol detected in lipid extracts of Q. ilex, S. aspera and P. oceanica appeared to be 24-ethylcholest-5-en-3β-ol (sitosterol). Indeed, this C₂₉ sterol constitutes the major sterol of terrestrial vascular plants (Lütjohann, 2004) and seagrasses (Volkman et al., 2008). As previously described (Iatrides et al., 1983), lipid extracts of P. oceanica also contained lesser proportion of 24-ethylcholesta-5,22(E)-dien- 3β -ol (stigmasterol). Type II photosensitized oxidation of Δ^5 -sterols affords Δ^6 -5 α -hydroperoxysterols (which rearrange quickly to Δ^5 -7 α/β -hydroperoxysterols, Smith, 1981) and Δ^4 -6 α/β -hydroperoxysterols (Kulig and Smith, 1973) (Fig. 1). Although produced in lesser proportion than Δ^{6} -5 α -

hydroperoxysterols, Δ^4 -6 α/β -hydroperoxysterols were selected as tracers of Δ^5 -sterol photooxidation due to their high specificity and relative stability (Rontani et al., 2009; Christodoulou et al., 2009). These compounds were quantified after NaBH₄ reduction to the corresponding diols and photooxidation percentage of the parent sterol was obtained from the equation: photooxidation % = $(\Delta^4$ -stera- $6\alpha/\beta$ -diols % × (1+0.3)/0.3) (Christodoulou et al., 2009). 24-Ethylcholest-4-en-3 β ,6 α / β -diols (arising from sitosterol photooxidation) could be detected in NaBH₄-reduced lipid extracts of the three gymnosperms investigated (Fig. 2). In the case of P. oceanica lipid extracts, the presence of 24-ethylcholest-4,22(E)-dien-3β,6β-diol (arising from stigmasterol photooxidation) could be also noticed (Fig. 2A). On the basis of the proportion of these diols relative to the parent Δ^5 -sterols, the photooxidation state of situation and stigmasterol could be estimated (Table 1). The strongest photooxidation of Δ^5 -sterols observed in P. oceanica (Table 1) is in good agreement with previous results obtained in the case of Z. noltii (Rontani et al., 2014). Type II photosensitized oxidation processes thus appeared to be really more efficient on Δ^5 -sterols in seagrasses than in terrestrial angiosperms. This highest efficiency may be attributed to: (i) the relative persistence of chlorophyll (photosensitizer) in senescent seagrasses (Pellikaan, 1982; Aubby, 1991) allowing the production of ¹O₂ during long periods or (ii) the temperature (Amiraux et al., 2016). Indeed, it was previously demonstrated that the diffusion rate of ¹O₂ in biological membranes increases strongly with temperature (Ehrenberg et al., 1998). The high temperatures observed on land in Mediterranean regions (notably in summer) could thus strongly favor the diffusion of ${}^{1}O_{2}$ outside of the chloroplasts of terrestrial higher plants decreasing thus strongly the efficiency of photosensitized processes.

134 Autoxidation (free radical-induced oxidation) of Δ^5 -sterols mainly afford $7\alpha/\beta$ -135 hydroperoxysterols and to a lesser extent 5,6-epoxysterols and 3β , 5α , 6β -steratriols (Smith,

1981) (Fig. 1). Due to their production by allylic rearrangement of photochemically-produced 5α -hydroperoxysterols (Nickon and Bagli, 1961), $7\alpha/\beta$ -hydroperoxysterols were discarded as possible markers of autoxidation processes. During the treatment, 5,6-epoxysterols may be hydrolyzed to 3β , 5α , 6β -trihydroxysterols. These triols were thus selected as specific and stable tracers of autoxidation processes (Christodoulou et al., 2009). Only trace amounts of 24ethylcholestane- 3β , 5α , 6β -triol (arising from sitosterol autoxidation) could be detected in the lipid extracts of *Q. ilex*, *S. aspera* and *P. oceanica* attesting to a weak autoxidation of Δ^5 -sterols in these senescent plants.

During singlet oxygen-mediated photooxidation of sterols in biological membranes (Korytowski et al., 1992) and senescent phytoplanktonic cells (Rontani et al., 1997), the ratio Δ^4 -6-hydroperoxysterols / Δ^5 -7-hydroperoxysterols generally ranges between 0.30 and 0.35. The lower values observed in lipid extracts of Q. ilex and S. aspera (Table 1) resulted likely from a slight autoxidation of sitosterol mainly producing Δ^5 -7-hydroperoxysterols. In contrast, in the case of *P. oceanica* this ratio appeared to be very high (Table 1). This high value was attributed to the involvement of an intense and selective homolytic breakdown of Δ^5 -7-hydroperoxysterols and Δ^6 -5-hydroperoxysterols catalyzed by metal ions (Schaich, 2005) present in seawater. Indeed, according to the stability of the alkyl radicals formed during β-scission of the corresponding alkoxyl radicals, the following order of stability of Δ^{5} -7hydroperoxysterols previously proposed: Δ^4 -6-hydroperoxysterols was >hydroperoxysterols > Δ^6 -5-hydroperoxysterols (Christodoulou et al., 2009).

Treatment of senescent leaves of *Q. ilex*, *S. aspera* and *P. oceanica* (see Section 4.2) involved NaBH₄-reduction (carried out in order to avoid thermal breakdown of hydroperoxides during the subsequent alkaline hydrolysis). This treatment resulted to the reduction of hydroperoxides and ketones to the corresponding alcohols. The sum of the corresponding hydroperoxides, ketones and alcohols was thus quantified under the form of alcohols.

161 Application of a different treatment (see Section 4.3) allowed us to specifically quantify 162 hydroperoxides and their main degradation products: alcohols and ketones in these senescent 163 plants. The results obtained allowed to confirm the instability of Δ^5 -7-hydroperoxysterols in *P*. 164 *oceanica* (Fig. 3). In this senescent seagrass the formation of ketonic degradation products 165 appeared to be highly favored.

Bacterial degradation of Δ^5 -sterols is initiated by oxidation of the 3 β -hydroxyl moiety and isomerization of the Δ^5 double bond to the Δ^4 position (Sojo et al., 1997). The resulting 4-steren-3-ones are then degraded via hydroxylation at C₂₆ to initiate side-chain degradation, or cleavage of the ring structure (9,10-seco-pathway; Philipp, 2011). It is interesting to note that bacterial hydrogenation of Δ^5 -sterols is also often observed in oxic and anoxic environments, this process involving the well-known sequence: Δ^5 -sterols \rightarrow ster-4-en-3-ones \rightarrow 5 α (H)-stanones $\leftrightarrow 5\alpha$ (H)-stanols (Gagosian et al., 1982; de Leeuw and Baas, 1986; Wakeham, 1989) (Fig. 1). Interestingly, 24-ethylcholest-4-en-3β-ol and 24-ethylcholestan-3β-ol could be detected in lipid extract of P. oceanica (Fig. 2A). Reduction with NaBD₄ instead of NaBH₄ allowed us to demonstrate that 100% of 24-ethylcholest-4-en-3β-ol and 60% of 24-ethylcholestan-3β-ol resulted from the reduction of the corresponding ster-4-en-3-one and stanone, respectively. Bacterial conversion of Δ^5 -sterols to $5\alpha(H)$ -stanols seems thus to act in senescent leaves of seagrasses, but not in terrestrial vascular plants (Fig. 2B).

5717924-Ethyl-5α-cholestane-3β,6β-diol could be detected in lipid extracts of *P. oceanica* (Fig.58591802A). Reduction with NaBD4 instead of NaBH4 also allowed to demonstrate the additional60181presence of: 24-ethylcholest-4-en-6β-ol-3-one, 24-ethylcholest-4-en-3,6-dione, 24-ethyl-5α-63182cholestan-3β-ol-6-one, 24-ethyl-5α-cholestan-6β-ol-3-one and 24-ethyl-5α-cholestane-3,6-64183dione in this lipid extract (Fig. 4). The presence of these different compounds attests to the

3. Conclusions

bacterial use of the main photooxidation products of sitosterol (i.e. 24-ethylcholest-4-en-3β,6βdiol and 24-ethylcholest-4-en-3β-ol-6-one) (Fig. 1).

Degradation products of Δ^5 -sterols (mainly situaterol) were characterized and quantified

in senescent leaves of Mediterranean terrestrial (*O. ilex* and *S. aspera*) and marine (*P. oceanica*)

angiosperms. The results obtained allowed to confirm the highest efficiency of Type II

photosensitized processes in marine seagrasses. The fast degradation of chlorophyll (sensitizer)

during the senescence and the high temperatures observed on ground (favoring migration of

¹O₂ outside of biological membranes) seem to be at the origin of the weak efficiency of

photosensitized processes in Mediterranean terrestrial angiosperms. Homolytic cleavage of

photochemically-produced hydroperoxides appeared to be highly favored in seawater likely due

to the presence of metal ions in trace amounts. Bacterial degradation processes, which are more

efficient in senescent leaves of *P. oceanica* than in these of *Q. ilex* and *S. aspera*, acted not only

on sitosterol but also on its photooxidation products. These observations confirm the

complexity of the interactions between biotic and abiotic degradation processes in the

4.1. Sampling

environment.

4. Experimental

205 Senescent leaves of *Q. ilex* and *S. aspera* (both widespread species in Mediterranean 206 ecosystems) were collected on the ground near Marseilles (France). Detached leaves of *P.*

oceanica were collected on the Catalans beach in Marseilles (France). All the leaves were freeze dried and then placed in a mortar and intensively ground.

4.2. Treatment

Freeze-dried leaves were reduced in methanol (25 ml) by excess NaBH₄ or NaBD₄ (70 mg) at room temperature for 30 min (Rontani et al., 2009). This reduction was carried out to reduce labile hydroperoxides resulting from photooxidation to alcohols that are amenable to gas chromatography-mass spectrometry (GC-MS). During this treatment, ketones are also reduced and the possibility of some ester cleavage cannot be totally excluded. After reduction, 25 ml of water and 2.8 g of potassium hydroxide were added and the mixture was directly saponified by refluxing for 2 h. After cooling, the content of the flask was filtered and extracted three times with hexane. The combined hexane extracts were dried over anhydrous Na₂SO₄, filtered and concentrated by rotary evaporation at 40°C to give the neutral fraction.

4.3. Estimation of hydroperoxysterols and their alcoholic and ketonic degradation productcontents

Freeze-dried leaves were extracted four times with chloroform-methanol-water (1:2:0.8, v/v/v) using ultrasonication (separation of leave debris and solvents by centrifugation at 3500 G for 9 min). To initiate phase separation after ultrasonication, chloroform and purified water were added to the combined extracts to give a final volume ratio of 1:1:0.9 (v/v/v). The upper aqueous phase was extracted twice with chloroform and the combined extracts were dried over anhydrous Na₂SO₄, filtered and the solvent removed via rotary evaporation. The residue obtained after extraction was dissolved in 4 ml of dichloromethane and separated in two equal subsamples. After evaporation of the solvent, degradation products were obtained for the first

subsample after acetylation (inducing complete conversion of hydroperoxides to the corresponding ketones, Mihara and Tateba, 1986) and saponification and for the second after reduction with NaBD₄ and saponification. Comparison of the amounts of alcohols present after acetylation and after NaBD₄ reduction made it possible to estimate the proportion of hydroperoxysterols and hydroxysterols present in the samples, while after NaBD₄-reduction deuterium labeling allowed to estimate the proportion of ketosterols really present in the samples (Marchand and Rontani, 2003).

4.4. Derivatization

Residues were taken up in 300 µl of a mixture of pyridine and N.O-bis(trimethysilyl)trifluoroacetamide (BSTFA; Supelco) (2:1, v:v) and silvlated for 1 h at 50°C to convert OH-containing compounds to their TMSi-ether derivatives. After evaporation to dryness under a stream of N₂, the derivatized residues were taken up in a mixture of ethyl acetate and BSTFA (to avoid desilvlation of fatty acids) for analysis using GC-EIMS. It should be noted that under these conditions $3\beta_{5\alpha,6\beta}$ -trihydroxysterols were only silvlated at the 3 and 6 positions and thus need to be analyzed with great care.

4.5. Gas chromatography-electron ionization mass spectrometry (GC-EIMS) analyses

Lipid oxidation products were identified by comparison of retention times and mass spectra with those of standards and quantified (calibration with external standards) using an Agilent 7850-A gas chromatograph connected to an Agilent 7010-QQQ mass spectrometer. For low concentrations, or in the case of co-elutions, quantification was achieved using selected ion monitoring (SIM). The main characteristic mass fragment ions used to quantify degradation products of sterols have been described previously (Christodoulou et al., 2009; Rontani et al.,

2009). The following conditions were employed: 30 m x 0.25 mm (i.d.) fused silica column coated with HP-5MS (Agilent; film thickness: 0.25 µm); oven programmed from 70 to 130 °C at 20 °C min⁻¹, then to 250 °C at 5 °C min⁻¹ and then to 300 °C at 3 °C min⁻¹; carrier gas (He), 1.0 bar; injector (splitless), 250 °C; electron energy, 70 eV; source temperature, 230 °C; quadrupole temperature, 150 °C; scan range m/z 40-700; cycle time, 0.2 s.

4.6. Standard compounds

Phytol, sitosterol and stigmasterol were obtained from Sigma-Aldrich. The synthesis of 3-methylidene-7,11,15-trimethylhexadecan-1,2-diol (phytyldiol) from phytol was described previously by Rontani and Aubert (2005). 5α - and $6\alpha/\beta$ -Hydroperoxides were obtained after photosensitized oxidation of the corresponding Δ^5 -sterols in pyridine in the presence of haematoporphyrin as sensitizer (Nickon and Bagli, 1961). Allylic rearrangement of 5a-hydroperoxides to 7α -hydroperoxides and epimerization of the latter to 7β -hydroperoxides was carried out at room temperature in chloroform (Teng et al., 1973). Subsequent reduction of these different hydroperoxides in methanol with excess NaBH₄ afforded the corresponding diols. Hydrogenation of 24-ethylcholest-4-en-3β,6β-diol in acetic acid solution in the presence of PtO2 as catalyst yielded 24-ethyl-5β-cholestane-3β,6β-diol and 24-ethyl-5α-cholestane-3β,6β-diol (Nishimura and Mori, 1963). Oxidation of sitosterol in THF at room temperature with HIO₄ afforded 24-ethylcholestane- 3β , 5α , 6β -triol (Voisin et al., 2014).

Acknowledgements

Financial support from the Centre National de la Recherche Scientifique (CNRS) and the Aix-Marseille University is gratefully acknowledged. Thanks are due to the FEDER OCEANOMED (N° 1166-39417) for the funding of the apparatus employed.

709					
710					
711	279				
712					
714	280	Deferences			
715	200	Keierences			
716					
717	281	Amiraux, R., Jeanthon, C., Vaultier, F., Rontani, JF., 2016. Paradoxical effects of temperature			
718					
719	282	and solar irradiance on the photodegradation state of killed phytoplankton. J. Phycol. 52,			
721	283	175_185			
722	200	-Cor C/F			
723	284	Auby I 1991 Contribution à l'étude des berbiers de Zostera Noltii dans le bassin d'Arcachon:			
724		Auoy, 1. 1991. Controlation a retude des herbiers de Zostera Ivolui dans le bassin d'Aleachon.			
725	285	Dynamique, production, dégradation, macrofaune associée. PhD thesis, Université de			
720					
728	286	Bordeaux 1, France, pp. 162.			
729	007	Christedenlar S. Marta I. C. Mirrarl I. C. Wallancer, I.K. Dantani, I. F. 2000 Has affinida			
730	287	Christodoulou, S., Marty, JC., Miquel, JC., Volkman, J.K., Kontani, JF., 2009. Use of lipids			
731	288	and their degradation products as biomarkers for carbon cycling in the northwestern			
733	200	and then degradation products as cromatices for earborn eyening in the northwestern			
734	289	Mediterranean Sea. Mar. Chem. 113, 25–40.			
735					
736	290	Cuny, P., Rontani, JF. 1999. On the widespread occurrence of 3-methylidene-7,11,15-			
737					
739	291	trimethylnexadecan-1,2-diol in the marine environment: a specific isoprenoid marker of			
740	292	chloronhull photodegradation Mar Cham 65, 155, 165			
741	272	emorophyn photodegruddhon. Mar. Chem. 05, 155 165.			
742	293	Cuny, P., Marty, JC., Chiaverini, J., Vescovali, I., Raphel, D., Rontani, JF. 2002. One-vear			
743					
745	294	seasonal survey of the chlorophyll photodegradation process in the Northwestern			
746					
747	295	Mediterranean Sea. Deep-Sea Res. II 49, 1987-2005.			
748	296	De Leeuw I.W. Baas M 1986 Farly-stage diagenesis of steroids. In: Johns R.B. (ed.)			
749 750	270	De Leeuw, J.W., Daus, M. 1966. Durfy suge diagenesis of steroids. In. Johns R.D. (ed.).			
751	297	Biological Markers in the Sedimentary Record, Elsevier, Amsterdam, pp. 101-123.			
752					
753	298	Devasagayam, T., Kamat, J., 2002. Biological significance of singlet oxygen. Indian J. Ex. Biol.			
754					
755 756	299	40, 680-692.			
757	200	Ebranhara P Anderson II Facto CS 1008 Kinotics and viold of singlet avegan			
758	300	Entenberg, D., Anderson, J.L., Foote, C.S. 1998. Kinetics and yield of singlet oxygen			
759	301	photosensitized by hypericin in organic and biological media. Photochem. Photobiol. 68.			
760					
761 762	302	135-140.			
763					
764					
765					
766		13			
101					

Fischer, B.B., Krieger-Liszkay, A., Hideg, E., Ŝnyrychová, I., Wiesendanger, M., Eggen, R.I.L., 2007. Role of singlet oxygen in chloroplast to nucleus retrograde signaling in Chlamydomonas reinhardtii. FEBS Lett. 581, 5555-5560. Gagosian, R.B., Smith, S.O., Nigrelli, G.E., 1982. Vertical transport of steroid alcohols and ketones measured in a sediment trap experiment in the equatorial Atlantic Ocean. Geochim. Cosmochim. Acta 46, 1163-1172. Gan, Y., Chen, J., Stulen, I., 1997. Effects of nitrogen application at different growth stages on growth, nodulation and yield of soybeans. Soybean Sci. 16, 125-130. Girotti, A.W., 1998. Lipid hydroperoxide generation, turnover, and effector action in biological systems. J. Lipid Res. 39, 1529–1542. Halliwell, B., Gutteridge, J.M.C., 2000. Free radicals in biology and medicine. Oxford University Press, Oxford, UK, Fourth Edition. Harrison, P.G., 1982. Control of microbial growth and amphipod grazing by water-soluble compounds from leaves of Zostera marina. Mar. Biol. 67, 225-230. Iatrides, M.C., Artaud, J., Vicente, N., 1983. Sterol composition of Mediterranean marine plants. Oceanol. Acta 6, 73-77. Karuppanapandian, T., Wang, H.W., Prabakaran, N., Jeyalakshmi, K., Kwon, M., Manoharan, K., Kim, W., 2011. 2,4-Dichlorophenoxyacetic acid-induced leaf senescence in mung bean (Vigna radiata L. Wilczek) and senescence inhibition by co-treatment with silver nanoparticles. Plant Physiol. Biochem. 49, 168-177. Korytowski, W., Bachowski, G.J., Girotti, A.W., 1992. Photoperoxidation of cholesterol in homogeneous solution, isolated membranes, and cells: comparison of the 5α - and 6β -hydroperoxides as indicators of singlet oxygen intermediacy. Photochem. Photobiol. 56, 1-8.

827							
828 829	327	Krasnovsky, A.A.Jr., 1998. Singlet molecular oxygen in photobiochemical systems. IR					
830 831		in the second of					
832	328	phosphorescence studies. Membr. Cell Biol. 12, 665–690.					
834 835	329	Kulig, M.J., Smith, L.L., 1973. Sterol metabolism. XXV. Cholesterol oxidation by singlet					
835 836	330	molecular oxygen. J. Org. Chem. 38, 3639-3642.					
o37 838 820	331	Lee, HJ., Mochizuki, N., Masuda, T., Buckhout, T.J., 2012. Disrupting the bimolecular					
840 841	332	binding of the haem-binding protein 5 (AtHBP5) to haem oxygenase 1 (HY1) leads to					
842 843	333	oxidative stress in Arabidopsis. J Exp. Bot. 63, 5967–5978.					
844 845	334	Lütjohann, D., 2004. Sterol autoxidation: from phytosterols to oxyphytosterols. Br. J. Nutr. 91,					
846 847	335	3-4.					
848 849	336	Mackenzie, A.S., Brassell, S.C., Eglinton, G., Maxwell, J.R., 1982. Chemical fossils: the					
850 851	337	geological fate of sterols, Science, 217, 419-504.					
852 853	338	Marchand, D., Rontani, JF. 2003. Visible light-induced oxidation of lipid components of					
854 855 856	339	purple sulphur bacteria: A significant process in microbial mats, Org. Geochem. 34, 61-					
857 858	340	79.					
859 860	341	Mihara, S., Tateba, H., 1986. Photosensitized oxygenation reactions of phytol and its					
861 862	342	derivatives. J. Org. Chem. 51, 1142-1144.					
863 864	Nickon, A., Bagli, J.F., 1961. Reactivity and geochemistry in allylic systems. I. Stereochemistry						
865 866	344	of photosensitized oxygenation of monoolefins. J. Am. Chem. Soc. 83, 1498-1508.					
867 868	345	Nishimura, S., Mori, K., 1963. Hydrogenation and hydrogenolysis. VI. The stereochemistry of					
869 870	346	the catalytic hydrogenation of some allylic alcohols related to cholest-4-ene. J. Chem.					
872 873	347	Soc. Jap. 36, 318-320.					
874 875	348	Opsahl, S., Benner, R., 1993. Decomposition of senescent blades of the seagrass Halodule					
876 877	349	wrightii in a subtropical lagoon. Mar. Ecol. Progr. Ser. 94, 191-205.					
878 879	350	Pellikaan, G.C., 1982. Decomposition processes of eelgrass, Zostera marina L. Hydrobiol.					
880 881 882	351	Bull. 16, 83-92.					
883 884 885		15					

889
 352 Philipp, B., 2011. Bacterial degradation of bile acids. Appl. Microbiol. Biotechnol. 89, 903 890 891
 353
 915.

Rontani, J.-F., Grossi, V., Faure, F., Aubert, C., 1994. "Bound" 3-methylidene-7,11,15trimethylhexadecan-1,2-diol: a new isoprenoid marker for the photodegradation of chlorophyll-a in seawater. Org. Geochem. 21, 135-142.

- Rontani, J.-F., Raphel, D., Cuny, P., 1996. Early diagenesis of intact and photooxidized
 chlorophyll phytyl chain in a recent temperate sediment. Org. Geochem. 24, 825-832.
- Rontani, J.-F., Cuny, P., Aubert, C., 1997. Rates and mechanism of light-dependent degradation
 of sterols in senescent cells of phytoplankton. J. Photochem. Photobiol., A: Chem. 111,
 139-144.
- Rontani, J.-F., Rabourdin, A., Marchand, D., Aubert, C., 2003. Photochemical oxidation and autoxidation of chlorophyll phytyl side chain in senescent phytoplanktonic cells: Potential sources of several acyclic isoprenoid compounds in the marine environment. Lipids 38, 241-254.

918
919366
919Rontani, J.-F., Aubert, C., 2005. Characterization of isomeric allylic diols resulting from
920
921920
921367
921chlorophyll phytyl side chain photo- and autoxidation by electron ionization gas
chromatography/mass spectrometry. Rapid Commun. Mass Spectrom. 19, 637-646.

Rontani, J.-F., Zabeti, N., Wakeham, S.G., 2009. The fate of marine lipids: Biotic vs. abiotic
degradation of particulate sterols and alkenones in the Northwestern Mediterranean Sea.
Mar. Chem. 113, 9-18.

931372Rontani, J.-F., 2012. Photo- and free radical-mediated oxidation of lipid components during the932933373senescence of phototrophic organisms. In: Nagata, T. (Ed.). Senescence. Intech, Rijeka,934935374pp. 3–31.936936934

946					
947 948	375	Rontani, JF., Vaultier, F., Bonin, P., 2014. Biotic and abiotic degradation of marine a			
949 950	376	terrestrial higher plant material in intertidal surface sediments from Arcachon Bay			
951 952 953	377	(France): A lipid approach. Mar. Chem. 158, 69–79.			
953 954 955	378	Rontani, JF., Galeron, MA., Amiraux, R., Artigue, L., Belt, S.T., 2017. Identification of			
956 957	379	and triterpenoid lipid tracers confirms the significant role of autoxidation in t			
958 959	380	degradation of terrestrial vascular plant material in the Canadian Arctic. Org. Geochem			
960 961	381	108, 43-50.			
962 963	³² 382 Schaich, K.M., 2005. Lipid Oxidation: Theoretical Aspects. In: Shahidi, F. (Ed.),				
964 965	383	Industrial Oil and Fat Products. John Wiley & Sons, Chichester, pp. 269-355.			
⁹⁶⁶ ₉₆₇ 384 Sies, H., Menck, C.F., 1992. Singlet oxygen induced DNA damage. Mut. Res. 275, 3					
968 969 970	385	Smith, L.L., 1981. The autoxidation of cholesterol. Plenum Press, New York, pp. 119-132.			
971 972	386	Sojo, M., Bru, R., Lopez-Molina, D., Garcia-Carmona, F., Arguelles, J.C., 1997. Cell-linked			
973 974	and extracellular cholesterol oxidase activities from <i>Rhodococcus erythropoli</i> .				
975 976	388	and physiological characterization. Appl. Microbiol. Biotechnol. 47, 583-589.			
977 978	389	Teng, J.I., Kulig, M.J., Smith, L.L., Kan, G., van Lier, J.E., 1973. Sterol metabolism. XX.			
979 980	Cholesterol 7-hydroperoxide. J. Org. Chem. 38, 119–123.				
 ⁹⁸¹ ⁹⁸² ³⁹¹ Vähätalo, A., Sondergaard, M., Schlüter, L., Markager, S. 1998. Impact of sol 					
983 984 985	392	the decomposition of detrital leaves of eelgrass Zostera marina. Mar. Ecol. Progr. Ser.			
986 987	393	170, 107-117.			
988 989	394	Voisin, M., Silvente-Porot, S., Poirot, M., 2014. One step synthesis of 6-cholestan-3β,5α-diol.			
990 991	395	Biochem. Biophys. Res. Commun. 446, 782-785.			
992 993	396	Volkman, J.K., Revill, A.T., Holdsworth, D.G., Fredericks, D. 2008. Organic matter sources in			
994 995	397	an enclosed coastal inlet assessed using lipid biomarkers and stable isotopes. Org.			
996 997 998 999 1000	398	Geochem. 39, 689-710.			
1001 1002 1003		17			

1004		
1005		
1006	200	Wakeham S.G. 1989 Reduction of stenols to stanols in particulate matter at oxic-apoxic
1007	577	wakehalii, 5.6., 1969. Reduction of stenois to stanois in particulate matter at oxic anoxic
1008	400	boundaries in segurater. Nature 342, 787, 700
1009	400	boundaries in seawater. Nature 542, 787-790.
1010	401	Zalla I. Dinalduari S. 2002 Involvement of active average gradies in degradation of light
1011	401	Zona, L., Kinalducci, S., 2002. Involvement of active oxygen species in degradation of light-
1012	400	hammating unstaine and halight starses. Discharge 41, 14201, 14402
1013	402	narvesting proteins under fight stresses. Biochem. 41, 14391-14402.
1014	400	
1015	403	
1010	404	
1017	404	
1010	405	
1020	405	
1021	404	
1022	400	
1023	407	
1024	407	
1025	100	
1026	400	
1027	100	
1028	-07	
1029	410	
1030	410	
1031	411	
1032	711	
1034	412	
1035	112	
1036	413	
1037	110	
1038	414	
1039		
1040		
1041		
1042		
1043		
1044		
1045		
1040		
1048		
1049		
1050		
1051		
1052		
1053		
1054		
1055		
1056		
1057		
1000		
1060		
1061		18
1062		

1063					
1064					
1065	115	FICUDE CADTIONS			
1066	413	FIGURE CAPTIONS			
1067					
1068	416				
1069					
1070					
1071	417	Figure 1. Biotic and abiotic degradation of sitosterol in senescent leaves of <i>P. oceanica</i> .			
1072					
1073	418	(Bacterial metabolites are in blue).			
1074					
1075	419				
1070	,				
1077					
1079	420	Figure 2. Partial total ion current (TIC) chromatograms of silylated NaBH ₄ -reduced lipid			
1080					
1081	421	extracts of senescent leaves of <i>P. oceanica</i> (A) and <i>S. aspera</i> (B).			
1082					
1083	400				
1084	422				
1085					
1086	423	Figure 3. Relative percentages of intact 6- and 7-hydroperoxysitosterols and their ketonic and			
1087					
1088	424	alcoholic degradation products measured in senescent leaves of P. oceanica (A) and S. aspera			
1089					
1090	425	(B).			
1091					
1092					
1093	426				
1094					
1095	427	Figure 4 Partial FI mass spectra of silvlated 24 ethylcholest A-en-38 68-diol (A) and 24			
1097					
1098	428	ethylcholestane-3B 6B-diol (B) obtained after NaBD,-reduction of lipid extract of P oceanica			
1099	720	entylenolestane 5p,op alor (b) obtained aler Nabb4 reduction of npic extract of r. becamea.			
1100					
1101					
1102					
1103					
1104					
1105					
1106					
1107					
1100 1100					
11109					
1111					
1112					
1113					
1114					
1115					
1116					
1117					
1118					
1119					
1120		19			
1121					

Mineralization

Mineralization

A

Retention time (min)

B

Sitosterol functionalization

⁽m/z)

Table 1

Efficiency of photooxidation processes in senescent leaves of marine and terrestrial angiosperms

	Posidonia oceanica	Quercus ilex	Smilax aspera L.
CPPIª	0.012 ± 0.002	60 ± 46	5 ± 4
Chlorophyll photooxidation (%)	20 ± 3^{b}	100 ± 0	100 ± 0
Sitosterol photooxidation (%)	$72 \pm 17^{\circ}$	49 ± 7	33 ± 5
Stigmasterol photooxidation (%)	$69 \pm 3^{\circ}$	-	-
$6\alpha/\beta$ -diols/ $7\alpha/\beta$ -diols ^d	6.28 ± 2.38	0.22 ± 0.02	0.09 ± 0.01

^a Chlorophyll Phytyl side-chain Photodegradation Index (molar ratio phytyldiol/phytol) (Cuny et al., 1999)

^b Estimated with the equation: Chlorophyll photodegradation percentage = $(1 - (CPPI + 1)^{-18.5}) \times 100$ (Cuny et al., 1999)

^c Estimated with the equation: Sterol photooxidation % = $(\Delta^4 - 3\beta, 6\alpha/\beta - dihydroxysterol \%) \times (1 + 0.3) / 0.3$ (Christodoulou et al., 2009)

^d 24-Ethylcholest-4-en- 3β , $6\alpha/\beta$ -diols/24-ethylcholest-5-en- 3β , $7\alpha/\beta$ -diols