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SUMMARY

Uncertainty estimation and quality control are critically missing in most geophysical to-

mographic applications. The few solutions to cope with that issue are often left out in

practical applications when these ones grow in scale and involve complex modeling. We

present a joint full waveform inversion and ensemble data assimilation scheme, allow-

ing local Bayesian estimation of the solution that brings uncertainty estimation to the

tomographic problem. This original methodology relies on a deterministic square root

ensemble Kalman filter commonly used in the data assimilation community: the ensem-

ble transform Kalman filter. Combined with a 2D visco-acoustic frequency domain full

waveform inversion scheme, the resulting method allows to access a low-rank approxima-

tion of the posterior covariance matrix of the solution. It yields uncertainty information

through an ensemble-representation, that can conveniently be mapped across the physi-

cal domain for visualization and interpretation. The combination of ensemble transform

Kalman filter with full waveform inversion is discussed along with the scheme design and

algorithmic details that lead to our mixed application. Both synthetic and field-data results

are presented, along with the biases that are associated with the limited rank ensemble rep-

resentation. Finally, we review the open questions and developments perspectives linked

with data assimilation applications to the tomographic problem.
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1 INTRODUCTION

Geophysical tomography is a set of fundamental techniques in geophysical exploration, allowing to

make sense of physical measurements to characterize subsurfaces properties. Seismic tomography, in

particular, aims at estimating said properties from wavefield measurements. As wavefields behavior

and evolution are imposed by the physical properties of their propagating medium, it is possible to

determine those physical parameters through inverse problem-solving.

Seismic tomographic applications cover a broad spectrum of scales and targets, as they are com-

monly used both, for regional to global scale in the academic community (Aki et al. 1977; Bedle & Lee

2009; Panning et al. 2010; French & Romanowicz 2015) and for crustal-scale exploration industrial

applications (crustal scale imaging, reservoir monitoring, and civil engineering targets). Amongst the

many variants of seismic tomography, Full Waveform Inversion (FWI) (Lailly 1983; Tarantola 1984)

has been growing in popularity in the past decades. As opposed to most variants of seismic tomogra-

phy application, FWI aims at taking advantages of the entirety of the recorded data without discarding

any valuable phase and amplitude measurements, whereas other techniques tend to focus on specific

and small subsets of information (first arrival time, first arrival phase or amplitude). Despite implying

a more complex problem to solve, (as it involves simulating complete wavefield recording instead of

portions of data), its superior resolution power makes it a popular imaging technique both in academic

geosciences and in the exploration industry.

Academic applications of FWI yield results allowing to better understand complex mechanisms

and structures at depth (Fichtner et al. 2009; Tape et al. 2010; Fichtner et al. 2013; Bozdağ et al. 2016),

that seismic ray tomography resolution may not allow. FWI is routinely applied in many industrial

workflows (Plessix 2009; Sirgue et al. 2010; Plessix et al. 2012; Warner et al. 2013; Zhu et al. 2015;

Operto et al. 2015) focused on crustal-scale exploration. In this context, FWI outputs are either used

at later processing stage to perform migration of seismic-reflection data or might be used as a model

on its own for interpretation (Shen et al. 2018). However, one of the main issues of FWI besides cost

and complexity is the scarcity of options for quality control and uncertainty estimation. While such

an ill-posed, non-linear problem would greatly benefit from it, the state-of-the-art methods have not

been massively adopted by the community. Up to now, most of the quality control assessment is either
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conducted by cross-validation with other geophysical techniques or well-log data (in-situ comparison)

which are either costly or impossible to realize past the shallow crustal scale.

The uncertainty quantification research field in the frame of FWI and seismic tomography is quite

recent, as it has been overlooked in favor of a focus on understanding the imaging power and issues

of the FWI concept first, improving the formulation to make it more affordable and improve its out-

comes. Consequently, the whole topic is still regarded as a challenging problem to tackle (Rawlinson

et al. 2014). To deal with the uncertainty shortcoming, we can seek a solution in the Bayesian infer-

ence framework for general inverse problems, as presented by Tarantola (2005), which would allow

expressing uncertainty in a Bayesian and probabilistic formalism, as opposed to FWI deterministic

form. Tarantola (2005) states that the posterior covariance of the minimization problem is equivalent

to the inverse Hessian operator when the solution is close to the global minimum. Hence, access to

the inverse Hessian operator or the posterior covariance might be the solution to achieve uncertainty

estimation that FWI is currently lacking. This is especially true in the case of multiparameter FWI

where inter-parameters cross-talk are involved (Operto et al. 2013). Although recent propositions to

evaluate the effects of the Hessian on a vector through second-order adjoint approaches has proven

valuable in the context of optimization (Fichtner & Trampert 2011a; Métivier et al. 2013, 2014; Math-

aru & Sacchi 2019), computation of the full Hessian and its inverse is out of reach. In order to access

the content of the Hessian operator and estimate the posterior covariance information, the ”Hessian-

based” uncertainty estimation methodologies, are calling on either dimensionality reduction (making

the Hessian size tractable) or evaluating partial information from the operator through various approx-

imations. Although not producing uncertainty estimation, Fichtner & Trampert (2011b) and Fichtner

& van Leeuwen (2015) estimate resolution and physical parameters tradeoffs of the solution through

probing of the Hessian. Du et al. (2012) and later Jordan (2015) are relying on model parameterization

with B-Spline functions, that drastically reduce the number of degrees of freedom, to estimate the

full Hessian in a reduced problem. Bui-Thanh et al. (2013) approximate the Hessian operator at the

solution, with the matrix-free Lanczos method to build a low-rank approximation of the Hessian. The

pseudo-inverse of this approximation then yield an approximate inverse Hessian. Zhu et al. (2016),

Eliasson & Romdhane (2017) and Liu & Peter (2019) are relying on the randomized Singular Value

Decomposition (SVD) to estimate a truncated Hessian in a tractable way. Finally, using the Wave-

field Reconstruction Inversion (WRI) to relax the inverse problem formulation, Fang et al. (2018)

demonstrate that the WRI cost function is particularly suited for the quadratic approximation that is

assumed in all the methods mentioned above and therefore justifies the assumption of Gaussianity

of the posterior distribution. To estimate uncertainty, they approximate the Gauss-Newton Hessian,

from which the square root makes it possible to sample the posterior covariance once the approximate



4 J. Thurin et al.

Gauss-Newton Hessian is computed and stored. However, these methodologies are limited by their

computational cost: their Hessian approximation procedures are based on matrix-free Hessian-vector

prodcuts, that require to solve expensive numerical wavefield simulations. This is also the case for

the evaluation of the Gauss-Newton Hessian. These approximation procedure are also sequential by

nature and therefore prevent scalability of the aformentioned uncertainty estimation method.

Concurrently, the Data Assimilation (DA) community has designed, for several decades, meth-

ods to solve inverse problems with a large number of degrees of freedom, high degree of complexity

and data sparsity, while integrating uncertainty quantification within their inverse problem-solving

schemes. Generally, the overall goal of DA in geophysical applications is to characterize the state

of a dynamic system through time, which can be subjected to non-linear dynamics, by combining

sparse observations and numerical models. DA has notably been successfully implemented at opera-

tional scales in areas such as numerical weather forecasting, oceanography, reservoir characterization

and climatology (Rodell et al. 2004; Navon 2009; Cosme et al. 2010; Lee et al. 2016). Most of the

dynamic models in those fields of applications consist of solving a forward problem based on prior

information on the system state. Unfortunately, the non-linearities inherent to those systems prevent

accurate forecast at long time-scales, as they tend to diverge if integrated for too long. To deal with

this limitation, DA introduces observational knowledge as soon as it is available along the forecast,

to correct the state estimates and thus improve the predictions by taking into account model and data

biases. The first DA assimilation modern tool based on this idea of sequentially providing a forecast

through modeling, and correcting the state estimate with observations, has been introduced by Kalman

(1960), through the Kalman Filter (KF). The KF, however, is a limited tool only providing solutions

to study small-scale, linear systems. Even though the KF can be extended to non-linear problems,

it requires manipulations of covariance matrices and large operators preventing to go beyond a few

hundred to thousands of parameters. A generalization to large-scale problems has been proposed by

Evensen (1994), introducing the Ensemble Kalman Filter (EnKF). It allows avoiding any explicit co-

variance matrices manipulations thanks to a low-rank ensemble representation of system states, from

which the covariances information can be approximated. The EnKF is currently developed at an oper-

ational level and is commonly employed in weather on up to 109 degrees of freedom (as it is the case

for the MOGREPS global assimilation system ran at the Met Office (United-Kingdom) or the ICON

global domain model ran at the Deutscher Wetterdienst (Germany) as part of their numerical weather

prediction routines). As EnKF allows to handle problems non-linearity and is designed to deal with a

large number of parameters, as it is the case with the FWI problem, we might be able to take advantage

of the EnKF formalism to bring a new look at uncertainty estimation in FWI.

Applying Data Assimilation or ensemble-based methods to geophysical tomography has already
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started being investigated. Indeed Jin et al. (2008) propose using the EnKF to solve 1D prestack FWI.

Gineste & Eidsvik (2017) and later Gineste et al. (2019) proposed to used the Ensemble Kalman

Smoother (Evensen & Van Leeuwen 2000) and the Iterative Ensemble Kalman Smoother (Bocquet &

Sakov 2014) to inverse 1D velocity profiles. Liu & Grana (2018) propose to use the Ensemble Kalman

Smoother to inverse jointly elastic and petrophysical rock properties in the context of reservoir mon-

itoring. In this study, we wish to suggest an original DA-FWI scheme adapted to take advantage of

both worlds, by combining a classical FWI quasi-Newton solver and an ensemble filtering, to charac-

terize the uncertainty of the solution. We expect that including quasi-Newton optimization will speed

up the convergence of the filter, while also linearizing the least squares analysis step. It is also worth

mentioning that our proposition is also different from other Bayesian methodologies such as Martin

et al. (2012); Bardsley et al. (2014); Biswas & Sen (2017) who propose different approaches based

on Markov chain Monte Carlo instead of DA. Other methods directly involving Ensemble Kalman

Filters as Iglesias et al. (2013); Schillings & Stuart (2017) would advocate for solving the FWI with

the EnKF as the minimization technique itself, rather than relying on quasi-Newton methods.

In this study, we will develop the theoretical aspects of DA by reviewing the Ensemble Transform

Kalman Filter (ETKF) used in our application. Following by a brief review of the FWI problem we

will expose the structure of our mixed ETKF-FWI scheme in details, before presenting applications

on both synthetic and field-data. Issues associated with ensemble rank-limited uncertainty estimation

will be discussed along with the importance of prior information, advantages and shortcomings of our

methodology.

2 INTRODUCING DATA ASSIMILATION TO THE TOMOGRAPHIC PROBLEM

Characterization of systems subject to non-linear dynamics, numerical weather forecasting for exam-

ple, is significantly different from the general tomographic problem. It generally relies on computa-

tionally intensive forecast modeling operators evolving the system state through time, giving access to

prediction possibilities. However, natural systems non-linearities will most certainly cause the forecast

to diverge at some point, limiting predictions through modeling at brief timescales (Fletcher 2017).

The forecast, or modeling task, is also made difficult by the mismatch between the physical world,

and its mathematical description; The correct set of equations governing a physical process may not

be known, or one might only afford to compute their approximations. Besides, estimating the bound-

ary conditions in limited space simulations, or defining correct and accurate initial conditions, is of-

ten challenging (Evensen 2009). Therefore, modeling is not enough to accurately study systems like

Earth’s atmosphere or oceans dynamics. The role of DA is to make use of the state’s measurement and
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integrate data to correct for the imperfect forecast by connecting modeling and observations into an

optimal analysis state.

Data assimilation can also be viewed as inverse modeling in some fields of research (Fletcher

2017), and is used to perform retrieval, which consists of combining prior state statistical insights,

with observations. Thus, the DA problem is merely a matter of estimating the model parameters, con-

sidered as a set of random variables, from the previous or current state of the system (prior statistical

knowledge) (van Leeuwen et al. 2015). As DA schemes and tools have been developed for non-linear

problems at large operational scales, and because of the retrieval capacity of such schemes, we believe

DA can be a solution to consider, as for the FWI uncertainty estimation problem. To that extent, we in-

troduce the DA principles that allow us to expand the FWI formulation to an ensemble representation

and unlock uncertainty assessment in the next subsections.

2.1 Ensemble Kalman Filter

The Ensemble Transform Kalman Filter (ETKF) (Bishop et al. 2001; Ott et al. 2004) is a ”square-root”

version of the Ensemble Kalman Filter (EnKF) proposed by Evensen (1994), which addresses several

biases that were included in Evensen’s original formulation. It allows large-scale dynamic system

study, thanks to an ensemble representation. By assuming that model and data errors are Gaussian, the

state estimate and uncertainty are represented by first and second order Gaussian moments (mean and

variance). From an ensemble of system state vectors, we can compute the relevant metrics involved in

the original KF formulation, which makes extension of the KF scheme toward large scale problems

affordable.

We adopt the following notations: P designates a generic covariance matrix while Pf and Pa

denote the forecast and analysis covariances respectively. Subscript e in Pe, Pf
e and Pa

e stands for

the ensemble representation of said covariance matrices. Furthermore we will denote matrices by bold

letters, vectors with a standard font, and use caligraphic letters to define non-linear operators.

Defining an ensemble m as a n×Ne matrix whose columns contain Ne state vectors m(i) ∈ Rn

with n parameters:

m = {m(1),m(2), . . . ,m(Ne)}, (1)

the system state estimate (first gaussian moment) is given by

m̄ =
1

Ne

Ne∑
i=1

m(i). (2)

The ensemble covariance Pe provides an approximation of the true covariance P (second gaussian
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moment) provided Ne is sufficiently big. It is computed according to

Pe =
1

Ne − 1
MMT , (3)

where M is the perturbation matrix defined as M (i) = (m(i) − m̄) and the superscript T is the

transpose operator. By construction, M is at best of rank Ne − 1 and thus the ensemble covariance

matrix is rank limited.

The ETKF cycle is conducted in two successive steps: The modeling is performed on each ensem-

ble members independently (forecast step) until data corresponding to the forecast, dobs ∈ Rd with

d observables, is available (analysis step). In that case, the analysis corrects the ensemble forecast,

based on forecast uncertainties and observations uncertainties. The analyzed ensemble then becomes

the initial conditions for the next ETKF cycle, and the process can be repeated.

Considering first the forecast step in the ensemble formalism, the forecast ensemble from a step k

to k + 1 is given by

mf
k+1

(i)
= Fk(mk

(i)) + ηk i = 1, 2, . . . , Ne, (4)

where F is a non-linear forecast operator generally evolving a dynamic system, ηk is a zero-mean

normal noise vector which covariance properties (generally denoted Q) describe the uncertainties

associated to F . The superscript f denotes the forecast state. In practice, ηk might not be known, as

evaluating the statistics of the sources of errors in the modeling is a challenge on its own.

The analysis step is given as an approximation of the linear KF analysis (the subscript k is dis-

carded in the following, as all operation are done within step k+ 1). Following the original formalism

and considering for now a linear measurement operator H : Rn → Rd projecting the model space into

the observation space, the analysis mean m̄a is given by,

m̄a = m̄f + K(dobs −Hm̄f ), (5)

and the analysis covariance Pa by

Pa = (I−KH)Pf =
1

Ne − 1
(I−KH)Mf (Mf )T , (6)

where dobs are observations, I the identity operator and K is the Kalman gain matrix (Kalman 1960):

K = PfHT (HPfHT + R)−1, (7)

where R is the measurement noise matrix which contains the uncertainty information related to data.

The Kalman gain acts as a weighting factor over the residual term (dobs −Hm̄f ), based on a ratio of

forecast uncertainty over observation uncertainty.

The analysis equation of the KF can also be written into its variational formulation, where the
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analysis state is given by the minimization of

J (m) =
1

2
(m− m̄f )TPf−1(m− m̄f )+

1

2
(dobs −Hm̄f )TR−1(dobs −Hm̄f ).

(8)

Implementing equations (6) and (7) would require to compute Pf−1, which is in practice too large

to be directly invertible. However, using the ensemble representation of equation (3) in equations (7),

yields

K =
1

Ne − 1
Mf (Mf )THT

[
1

Ne − 1
HMf (Mf )THT + R

]−1
, (9)

where Mf is the forecast perturbation matrix, allows to express equation (6) as

Pa
e =

1

Ne − 1
(I−KH)Mf (Mf )T

=Mf

[
1

Ne − 1
I + (Mf )THTR−1HMf

]−1
(Mf )T .

(10)

Note that each time the observation operator appears in the final expression of Pa
e , it is applied to

the ensemble perturbation matrix Mf . In addition, HMf is the first order Taylor approximation of

H(mf (i)) −H(m̄f ), with H a non-linear observation operator (Harlim & Hunt 2005). This develop-

ment can be written as a linearization of the general non-linear case over the ensemble representation.

Let us consider any non-linear observation operator H by introducing the ensemble observation per-

turbation matrix Yf , such that each column is defined as

Y f (i) = HMf (i) ≈ H(mf (i))−H(m̄f ). (11)

We can then consider the analysis as an update of the perturbation matrix from Mf to Ma such

that Ma satisfies

Pa
e =

1

Ne − 1
MaMaT . (12)

Given equation (12), the analysis takes as an input the whole forecast ensemble {mf = m̄f + Mf},

and its output is its analyzed version, {ma = m̄a + Ma} (Harlim & Hunt 2005), allowing to circum-

vent any unecessary covariance manipulation.

To update the ensemble perturbation matrix, Bishop et al. (2001) propose to use the effective

ensemble uncertainty P̃a spanning the subspace defined by Mf , satisfying equation (12), giving

Pa =
1

Ne − 1
Mf P̃aMf T , (13)

with

P̃a = (
1

Ne − 1
I + Yf TR−1Yf )−1. (14)
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Note that equation (14) generalizes equation (10) to the non-linear case. The symetric matrix P̃a can

be expressed as the product of the square-root matrices P̃a = TTT , where T plays the role of a

transform operator from which the filter takes its name. The square root of P̃a is then used to perform

the transform operation Ma = MfT and with that, Ma satisfies equation (12).

The non-unicity in the choice of the square-root lead to the proposition of several Ensemble Square

Root Filters, with various ways of computing T. Amongst them are schemes referred to as one-sided

unable to prevent biased state estimate, or having the tendency to produce outliers in the ensemble

members (Bishop et al. 2001; Wang & Bishop 2003; Evensen 2004; Leeuwenburgh et al. 2005). For

our methodological development we chose to follow the formalism proposed by Wang et al. (2004)

and Ott et al. (2004), the spherical simplex ETKF, which mitigates the aformentioned problems. The

transform operator is thus defined as

T = CΓ−1/2CT , (15)

where the columns of C are the singular vectors of P̃a and Γ is a diagonal matrix containing the

singular values of P̃a. This allows to update the forecast perturbation matrix following,

Ma =
√
Ne − 1MfCΓ−1/2CT . (16)

Following equations (5) and (7), the analysed mean is then given by

m̄a = m̄f + MfCΓ−1CT (Yf )TR−1
[
dobs −H(mf )

]
, (17)

whereH(mf ) is the mean over the forecast observations. Finally, the analysed ensemble is given by

ma
k+1

(i) = m̄a
k+1 +Ma

k+1
(i) i = 1, 2, . . . , Ne. (18)

In terms of computational cost, the manipulation of large scale covariance matrices is replaced with

the SVD of the Ne × Ne matrix P̃a and operations on Ne × n matrices through equations (16), (17)

and (18). The ETKF formulation satisfies the hypothesis of the original linear KF, while also providing

an unbiased approximation of the KF mean and covariance. Uncertainty estimate is allowed through

the evaluation of the ensemble covariance Pa
e , as a low rank approximation of the true covariance Pa.

While rank reduction allows efficient computation of an approximate of Pa, let us keep in mind that

problems of representativity can arise in the context of ensemble based approximation. In the next

subsection, we succinctly recall the nature of FWI, before introducing the ETKF-FWI scheme.

2.2 Frequency domain FWI

Full Waveform Inversion can be considered as a constrained optimization problem in which one seeks

to generate synthetic wavefield data dcal with a high degree of correspondence with measured data
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dobs (Virieux et al. 2017). In that regard, the object of optimization is the subsurface model, in which

synthetic data are generated. Ideally, reducing the misfit between dcal and dobs to a minimum should

lead the resulting synthetic model toward the real Earth parameters, provided the initial model allows

setting the problem in the correct basin of attraction of the misfit function. Furthermore, to solve the

FWI problem, it is required to be able to model the full wavefield in any physical media accurately. We

will focus on the acoustic frequency-domain formalism in the following, as it is the chosen approach

for the implementation of our proposed ETKF-FWI methodology.

In this framework, it is possible to reduce the wave equation under a compact form (Pratt et al.

1998; Virieux et al. 2009) as a generalization of the Helmholtz equation. In this section we adopt

the matrix representation of the partial-differential operators of the continuous wave equation. The

steady-state wave equation can thus be expressed as the following linear system

B(ω,m)u = s, (19)

with B a complex-valued impedance matrix which values vary according to the frequency ω and the

medium properties m (Pratt et al. 1998; Operto et al. 2006), u is the pressure field (in the acoustic

case), and s is the source term. The favored way of solving the system in (19) is to factorize the

B matrix into a product of lower and upper (LU) triangular matrices, in order to use a direct solver

(Virieux & Operto 2009), to efficiently deal with multiple right hand sides.

Solving equation (19) allows computing the value of the pressure field in the entire medium de-

pending on its physical parameters and a given frequency. The synthetic data dcal are then extracted

from the wavefield at receiver locations with a linear observation operator E. This enables solving the

optimization problem by iteratively minimizing the following misfit function

C(m) =
1

2
∆d†∆d, (20)

with ∆d defined as the misfit vector ∆d = dobs − dcal(m), and where the superscript † denotes the

conjugate transpose. The misfit function in (20) does not contain any prior statistical information such

as a model penalty term and data weighting, to keep the formalism simple. In practice though, these

types of prior information are improving the solution and stability of the inverse problem by better

constraining the initial data and model covariances (Pratt et al. 1998).

One must keep in mind that FWI is a local optimization problem implying that the initial param-

eters model m0 needs to be in the vicinity of the solution for the global minimum. Thus, to achieve

convergence toward the global minimum mG is to assume that the prior knowledge is already a rea-

sonable estimate of the real physical parameters. One basic way to solve the FWI problem is to apply

a gradient descent optimization scheme. Assuming the starting model is adequately defined, the op-

timization will drive the solution toward the global minimum; The model parameters are iteratively
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updated according to

mk = mk−1 − αk−1∇mCk−1, (21)

where α is the step length and the subscript t denote a FWI iteration number. The parameter α is

computed by a line-search strategy.

Let us now introduce compact notation of both the forward and inverse problem embeded in the

FWI process, as these will be used in subsequent sections. The forward modeling is only dependent

on the parameter model, therefore the forward modeling for a given frequency can be expressed as

u = G(m) = B−1(m,ω)s, (22)

where G is a non-linear modeling operator, andm contains the medium physical parameters. Following

computation of the wavefield in the full domain the computed pressure field is extracted at receivers

location by applying a measurement operator E, giving

y = Eu. (23)

Moreover, as the wavefield depends on the model parameters m one can define a non-linear observa-

tion operatorH as,

y = H(m) = EG(m), (24)

such that (24) yields the computed monochromatic wavefield data at the recievers location.

As we conceptually reduce the synthetic data generation to the observation operator H, we can

also define and generalize the complete FWI process as an inversion operator such as

mk = In(mk−1, dobs,k). (25)

Here, we consider In as a non-linear operator encapsulating altogether: the forward simulation, com-

putation of the misfit function, its gradient and gradient descent iteration for any given model m. The

subscript n denotes the number of non-linear optimization iteration performed. Following the brief

exposition of FWI and definition of the FWI operator In, let us review now how the ETKF can be

modified to accomodate a tomographic application into the ETKF-FWI scheme.

2.3 ETKF-FWI Scheme, filter parameters

As geophysical tomography is considered to be a static problem at the considered time scales, applying

the ETKF, designed for dynamic systems, is not straightforward. However, with specific parameteri-

zation of the ETKF, it is possible to take the specificities of the FWI problem into account. We thus

adapt the filter to the FWI requirements and define an ETKF-FWI scheme (Fig. 1) that allows for

uncertainty estimation, combining adjoint-base FWI and the ETKF algorithm.
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As defined earlier in this section, the ETKF requires a forecast step, based on a projection of the

system state ahead of time. In the DA community, it is common to see prediction steps as a forward

modeling engine applied to a system state. In our lack of time dependency, we define a proxy for

temporal evolution. By adopting a frequency continuation strategy, replacing the timesteps of the KF

forecast, by a set of K frequency bands k = 1, 2, ...,K, we can take advantage of the FWI multiscale

approach, commonly used to mitigate cycle skipping issues (Bunks et al. 1995). Such difficulty is

related to the convergence toward local minima when minimizing the FWI misfit functions. These

local minima can be associated with the misinterpretation of the time delay in the recorded trace, with

a phase ambiguity. Thus, working with broader wavelength data allows minimizing a more convex

objective function. Applying FWI from low to high frequency can, therefore, provide a dynamic axis:

FWI is treated as a frequency-dependent dynamic process.

This frequency continuation axis, allows defining the forecast operator as our adjoint-based FWI

solver. This choice differs from most standard DA application as we replace the forward problem by

the resolution of an inverse problem. Consequently, the FWI problem is solved during the forecast by

using the operator In defined in equation (25), on theNe ensemble members, independently, at a given

k from the K frequencies or frequency bands considered. The forecast equation (4) thus becomes

mf
k

(i)
= In(ma

k−1
(i), dobs,k). (26)

Typically, n will be set so that In performs 5 to 10 non-linear iterations. Note that as the correct

statistics of the process noise is missing, the forecast uncertainty Q term cannot be included.

Because we seek to evaluate the parameter’s estimate uncertainty and our choice of forecast oper-

ator, the considered system state are subsurface model parameters. In a standard mono-parameter case,

the ensemble m is thus composed of Ne subsurface velocity models m(i), i = 1, 2, ..., Ne, where we

typically have Ne � n and Ne � d by several orders of magnitude.

The initial ensemble is generated in such a way that it both satisfies the normal distribution hy-

pothesis of the KF and local resolution imposed by the FWI resolution power for a given frequency

band (Devaney 1984; Wu & Toksöz 1987). An ensemble member is built by taking an initial modelm0

suited for convergence, to which we add a perturbation. Perturbations are generated by convolution

of zero-mean, uniformly distributed random vector ui (with i = 1, 2, . . . , Ne) with a non-stationary

Gaussian function G which correlation length and amplitude are varying according to the local velocity

in m0, such that

mi
0 = m0 + Gui, i = 1, 2, . . . , Ne. (27)

Gui produces smooth perturbations which wavenumber is half of the wavefields’ wavelength,
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corresponding to the maximum spatial frequency that can be recovered (Wu & Toksöz 1987). The

initial ensemble is then inspected with an Eikonal solver, to ensure that the initial population of models

will not allow cycle skipping at our starting frequency, that could be provoked by too dramatic initial

perturbations. Even though this test only allows assessing the first arrival cycle skipping, it is deemed

sufficient as a first-order diagnosis of the initial ensemble quality. To further ensure favorable initial

conditions, we verify that the rank of the initial ensemble is equal to Ne.

After applying the forecast operator to the Ne ensemble members, the forecast system state (in

blue, Fig. 1), is a set of Ne optimized velocity models with respect to the considered band limited

data. After the forecast, synthetic wavefield data are computed in the forecast ensemble to generate

the forecast data (grey stars, Fig. 1). To do so, we use the frequency domain forward modeling engine

used in the FWI process, to compute the wavefield in the whole velocity model, and extract the pres-

sure values at receiver locations. It corresponds to applying the observation operator H as defined in

equation (24)

d
(i)
cal,k = H(mf

k

(i)
), (28)

The forecast data allows computing a misfit between the ensemble and the observed data (green

star, Fig. 1), which is required to perform the analysis, calculate the transform operator and then the

analysis ensemble (in red, Fig. 1). The cost of the analysis is negligible compared with the numerous

forward modeling needed for the forecast step.

After the model-wise adjoint-based inversion of the forecast, the analysis allows performing an

additional inversion, ensemble-wise, rearranging the ensemble around the mean solution, and ensur-

ing coherency of the solution. Finally, we justify the compatibility of the Gaussian assumption of the

ETKF, with an application on a FWI problem by the following: provided that all the ensemble mem-

bers are located along the same minimum of convergence (which is the intent of this methodology),

the assumed local convexity of the cost function, necessary to apply a local optimization scheme, is

deemed a good first order approximation of Gaussian probability density function.

The scheme has been tested on synthetic and field-data applications, to study the feasibility of

the approach and evaluate its shortcomings. The experimental setups and results for both cases are

presented and discussed in the next Sections.

3 APPLICATION ON 2D MARMOUSI SYNTHETIC BENCHMARK

We define a framework based on the Marmousi II synthetic model (Martin et al. 2006). As our ap-

proach is intrinsically based on rank reduction, we decide to evaluate its potential effects on our solu-



14 J. Thurin et al.

tion. To that extent, we define three scenarios with increasing ensemble sizes, Ne = 20, 100, 600. We

consider K = 15 ETKF-FWI cycles along with nω = 15 mono-frequency complex-valued data from

3 Hz to 10 Hz, with a 0.5 Hz increment between each ETKF-FWI cycle. The considered domain width

and depth are respectively x = 16.025km and z = 3.250km with vertical and horizontal resolutions

of dx = dz = 25m, for a total of 83300 degrees of freedom.

The exact model, the initial ensemble mean and the acquisition footprint, are displayed in Figure

2. Data are simulated using a fixed spread surface acquisition configuration, with 144 sources and 640

receivers evenly spaced, to mimic realistic marine streamer acquisition, resulting in a data vector dobs

with 92160 entries. The total number of discrete data points is equal to 92160 × nω where nω is the

number of considered frequencies. The modeling/FWI code relies on the open-source TOY2DAC code

developed in the SEISCOPE Consortium, coupled with the non-linear optimization tool-box (Métivier

& Brossier 2016). The solver used for the forward simulations, relies on an optimized finite-difference

discretisation strategy with a compact stencil providing accuracy, equivalent to fourth-order methods

for the applications considered here (Hustedt et al. 2004; Operto et al. 2009). The modeling operation

(22) is solved using the MUMPS sparse solver (MUMPS team 2017). The forecast operator In is

set to perform n = 10 minimization iterations with the l-BFGS optimization scheme (Byrd et al.

1995; Nocedal & Wright 2006; Métivier & Brossier 2016), on each of the Ne velocity models, with

mono-frequency synthetic calculated dcal,k ∈ Cd and observed data dobs,k ∈ Cd at frequency k. The

cost of the methodology is thus linearly linked with the number of ensemble members and non-linear

FWI iterations. In this instance, the number of forward modeling is thus Ne × 10 × 2, as both the

incident and adjoint wavefields are computed at each iteration. Once the forecast state is obtained,

we compute the forecast data at the frequency k with observation operator H. The observed data for

both the forecast inversions and the analysis are set to be the same dobs,k data at step k. With the

same observed data, we are performing two optimizations steps: model-wise first then ensemble-wise.

This pragmatical approach deviates from common ETKF scheme where it is assumed to introduce

new information during the analysis rather than relying on previous data. In our case, using the same

data for both the forecast and the analysis has given us more consistent and stable results in terms of

parameters estimate. We attribute this behavior to the nature of our forecasting operator. Because In
is updating the ensemble of models using dobs,k, the wavenumber content of these updates is closely

tied to the frequency content of dobs,k. The ensemble of optimized models obtained from dobs,k are

likely to lack the higher wavenumber content to explain or ”predict” higher frequency data dobs,k+1.

By using the same objective data, the analysis’ purpose is to reduce the spread of the ensemble and

thus avoid unwanted cycle skipping amongst the ensemble.
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To avoid inverse crime, a complex Gaussian random noise was added to the synthetic observed

data (Eikrem et al. 2019):

dnoisy = d+
‖d‖√

r ∗ E(‖w‖2)
w (29)

with dnoisy the noisy signal, d the original signal, ‖.‖ indicating the Euclidean norm and E the expec-

tation. The vector w is defined as

w = v1 + iv2, (30)

where v1, v2 ∈ Rd are vectors of normally distributed random numbers and r is defined as the signal

to noise ratio, such that

r =
‖d‖2

‖w‖2
. (31)

In the following experiments, we set up r = 8 as our reference noise value through all the ETKF-FWI

cycles. From equation (29), we can see that the noise added to the data has a variance given by

σ2 =
‖d‖2

r ∗ E(‖w‖2)
(32)

which allows to define the measurement noise matrix such that

R = Idσ
2 (33)

where Id is an identity matrix of size d. This is required as we typically lack information about possible

correlated measurement errors in FWI. While the benefits of taking correlated noise structures into

account have been highlighted (Stewart et al. 2008; Weston et al. 2014), they cannot be taken into

account in our case. Therefore R has to be considered diagonal (which is a reasonable assumption).

Note also that if we could estimate the off-diagonal terms of R, the computation of R−1 during the

analysis step would become computationally challenging.

We review the various outputs constituting the solution of our ETKF-FWI in the next subsections.

3.1 Parameter estimate

We first present the final ensemble means for Ne = 20, 100 and 600 in Figure 3. All three test cases

lead to consistent parameter estimation, as all three results are fairly comparable. Thanks to the careful

design of the initial ensemble, which limits the chances of cycle-skipping occurrences, the whole

ensemble is in a favorable position to converge close to the global minimum. Moreover, because

of the nature of our forecast operator (being an optimization problem), it seems that the ensemble

mean is clear of any drifting or divergence effect, commonly encountered in typical dynamic EnKF
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applications. It is also worth noting that the three results recovered are close to the result of FWI alone

given the same experimental setup (initial model, acquisition design, data noise).

3.2 Ensemble variance

Although the mean of the ensemble corresponds to the parameter estimate as a solution of the inverse

problem, the posterior ensemble covariance Pa
e is holding the uncertainty and resolution information

we are interested in. The full matrix cannot be computed explicitly because of hardware limitations

but computing its diagonal or individual lines are trivial operations when ma is stored. Initial and final

variance maps plotted over the parameter space are displayed in Figure 4 and 5 and reflect the diversity

of solutions for each parameter among the different ensemble members. Final variance values are thus

indicative of the convergence quality of our ensemble of solutions.

Contrarily to the state parameter estimate, we observe a substantial lack of result consistency re-

garding the ensemble size. The various ensemble size tested reveal that the ensemble covariance is

strongly affected by what is termed undersampling (Guzzi 2015) in the DA community. Undersam-

pling is an issue arising when a small ensemble fails at being statistically meaningful. In this instance,

it translates to variance underestimation. Nonetheless, it is possible to identify consistent features in

all three final variance maps. The predominant effect is the link between geometrical spreading and

variance, manifested by the net increase toward the depth and lateral limits of the physical domain,

where poor illumination is expected. High variance values also tend to focus along sharp velocity con-

trasts. We might associate high variance at interfaces with the band-limited context of our application:

band-limitation is expected to limit the ability of the optimization scheme to recover sharp discontinu-

ities which will tend to smooth the interfaces because of the lack of high-frequency content. Another

possible source of variability in interface recovering might be the inherent velocity-depth ambiguity in

tomography (Yilmaz 1993). To precisely evaluate how variance changes according to the geological

structure, we are interested in the locations of variance maxima in Figure 6.

To extract those maximum variance peaks, we use a maxium filter of radius 275m. The maximum

filter dilates the variance map, and create local zones of homogeneous values. Peaks (or local maxima)

are defined as parameters located where the variance map and the output of the maximum filter are

equal. Most of the measured variance peaks are consistently located along interfaces where high-

velocity layer are overlaying lower velocity layers. As stated before, band limitation and velocity-depth

ambiguity might explain why most of the structural uncertainty is linked to interfaces reconstruction.

As for the quality of the variance estimate, assuming that the test with ensemble Ne = 600 is the

less affected with variance underestimation, it is possible to make several observations. The Ne = 20

case displayed in Figure 5 exhibit a severe underestimation of the variance values in most of the
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Table 1. Normalized root-mean-square model error (RMSE) reduction with respect to the initial model for

various ensemble sizes. The RMSE values are computed between the final ensemble mean and the true model.

The amount of RMSE reduction is computed with the initial model RMSE as reference.

Ne 20 30 40 50 60 80 100 200 300 600

RMSE reduction 15.4% 15.4% 15.6% 15.0% 15.2% 15.9% 15.7% 15.6% 15.3% 15.6%

physical domain along with non-physical oscillating behavior in the deeper part of the domain. Those

oscillating patterns are a direct result of a small ensemble, and thus a poor covariance approximation.

ForNe = 100 however, the variance map does not exhibit non-physical oscillations, but is still slightly

underestimated. The qualitative aspect of the variance map is at least preserved.

To better understand the results of Figure 5 and go beyond simple qualitative comparison, we

evaluate absolute variance values from a set of ETKF-FWI realizations for Ne =
[
20, 600

]
. We eval-

uate the underestimation of variance by computing the mean variance value for every variance maps.

We plot the averaged variance against ensemble size in Figure 7. As it stands, the trend in absolute

variance values seems to be consistent with the variance underestimation observed Figure 5. It is also

worth noting that variance estimates behave almost asymptotically, which means we can hope to find

a compromise between too small and too big ensembles, even though it seems complicated to esti-

mate this ”optimal” ensemble size in advance, nor it is practical to evaluate it by trial and error. To

complete this analysis, we have computed the root-mean-square-error (RMSE) values of the ensemble

final means, with the true model as reference:

RMSE =

√√√√ 1

n

n∑
i=1

(mn,true − m̄a
n)2, (34)

wheremn,true is the nth parameter of true velocity model, and m̄a
n is the nth parameter of the final

ensemble mean. Values of RMSE reduction between the initial model m0 and final ensemble means

are displayed in Table 1: RMSE reduction is not affected by the ensemble size and all parameters

estimates are nearly identical, which is consistent with the results observed in Figure 3.

3.3 Pa
e off-diagonal terms

Storing the ensemble also allows to examine the off-diagonal terms of the covariance matrix, contain-

ing complementary information regarding local resolution. However, undersampling makes it difficult

to compare the three test cases, as it also impacts the quality of the off-diagonal terms estimates. For

the sake of comparison of various results, we propose to work with the dimensionless correlation

matrix, instead of the covariance matrix that we estimate. The correlation matrix is a dimensionless
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operator that contain correlation coefficients from −1 to +1 (Feller 2008). When the correlation coef-

ficients tend to +1, it reflects a strong positive link between two parameters, implying that they share

similar physical properties and are evolving in a similar fashion. Conversely, a negative correlation co-

efficient of −1 denotes a strong link but expresses an opposite behavior between parameters. Finally,

a correlation coefficient of 0 implies the absence of a physical connection between parameters. To

compute the correlation matrix, we first need to define D as a diagonal matrix containing the variance

terms of Pa. The correlation matrix is then given by,

C = (D)−1/2Pa(D)−1/2. (35)

C is thus a dimensionless, normalized version of the covariance matrix, which diagonal terms are all

equal to 1 (correlation of a parameter with itself). By effectively normalizing the covariance matrices

by their variances, we simplify the comparison of our three results.

We compute local correlation maps for three arbitrary selected points shown in Figure 8. This

allows to evaluate correlation maps in various conditions: A shallow point on a reflector with relative

low ensemble variance (orange), a point extracted from a strong reflector with large relative variance

(red) and a point selected at depth, where the structure is only faintly recovered (black). Figure 8 (A)

illustrate the three parameters location (colored crosses) and the subdomains spanned by their local

correlation maps (colored rectangles). We choose to work with local correlation maps rather than the

full domain as far-field is affected by spurious correlations and is thus of lesser interest. We focus on

local correlation map to evaluate the consistency of local information in the vicinity of the investigated

parameters, as we would do with a point-spread function evalutation.

The shallower point (orange, at z = 1.0 km; x = 13.0 km) located in a low variance area,

displays chaotic and incoherent correlation structures for the case Ne = 20 (Fig. 8 B). Both the layer

dip and thickness informations are mostly lost in spurious correlations : even local information is lost.

Improvements are visible for Ne = 100, 600 (Fig. 8 C, D) where the dipping structure starts to be

visible. A small circular positive correlation zone in the immediate vicinity of the examined parameter

denotes the very high local resolution. Despite the presence of spurious correlations, the geometrical

information can be infered.

For the intermediate depth parameter (red, at z = 1.825 km; x = 13.0 km), we observe on all

three cases (Fig. 8 E, F, G), the polarisation of the positive correlation values along the axis of the

reflector, with correct thickness information. The limits of this geological feature are well defined on

the correlation map. These results are encouraging, implying that despite the undersampling effect

associated with a small ensemble, some coherent dipping information can be retrieved from the final

ensemble.
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Finally, the local correlation maps for the deeper point (red, at z = 2.650 km; x = 13.0 km),

are characterized by a broad zone of strong positive correlation where the local structure is faintly

defined. This broad zone can be interpreted as a low resolution power. It is expected to find such broad

positive correlation areas in the deeper domain, as illumination becomes weak. We also observe that

despite the significant undersampling hinted by variance underestimation, the correlation maps for

Ne = 20 still display the essential qualitative information (polarisation along interfaces, correlation

length radius). The stronger undersampling bias happens in the shallow zone. This leads us to think

that undersampling biases might be decreasing with depth, as the problem is less constrained, and

the ensemble is less likely to ”collapse” toward a unique solution and lose representativity. Those

observations are encouraging, as we expect model parameters along the same interface, or in the same

geological feature, to be defined with similar physical properties and correlation length to increase

with depth.

Overall, this synthetic application showed that the ensemble is sensitive to undersampling when

it comes to the covariance estimate, whereas the parameter estimate remains coherent even with a

meager number of ensemble members. The next Section is dedicated to field-data seismic exploration

FWI application to demonstrate the applicability of the ETKF-FWI scheme, in a less favorable case.

4 FIELD-DATA APPLICATION

This field-data application is also based on 2D Frequency Domain FWI, but this time considering a

VTI anisotropic medium for the modeling. The dataset comes from the Valhall oilfield, located in the

Norwegian North sea and is provided by AkerBP. The specificity of the Valhall oil field is its shallow

water level (70m). It features a reservoir with an anticline cap-rock structure, traping the underlying

hydrocarbon resources at a 2.5 km depth. The advantage of this case study is that it is well documented,

and FWI has already been applied successfully to this dataset (Operto et al. 2015). The domain width

and depth are respectively x = 16.725km and z = 5.025km with vertical and horizontal resolutions

of dx = dz = 25m, for a total of 134469 degrees of freedom.

The dataset is composed of 4 component Ocean Bottom Cable (OBC) recordings. From the full

acquisition which contains 49 954 shots for 2302 receivers, we extract a 2D line containing 192 sources

and 315 receivers (which makes each frequency data vector composed of 60480 entries), the same as

the one used in (Zhou et al. 2018). The total number of discrete data points is equal to 60480 × nω.

OBC receivers are evenly spaced (50 m) and lie fixed on the seabed (70 m depth). The selected sources

are also evenly spaced (50 m) at a constant 5 m depth. In this application, we exploit the hydrophone

out of the 4 components recording.

The ETKF-FWI scheme is the same as presented in the previous experiment. To ensure the best-
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case scenario result, we work with an ensemble of Ne = 600 members, as the application size is of

the same order of magnitude as the synthetic test case. We choose to work with K = 6 ordered groups

of frequencies ranging from 3.56 Hz to 7.01 Hz. This frequency selection strategy has been suggested

in preliminary work conducted by Zhou (2016) on this dataset, and have proven to be adequate for

this specific application. Using frequency groups rather than mono-frequency data ensures that each

inversion cycle rely on redundant information which mitigate the risks of cycle-skipping. Contrarily

to the synthetic test case, we are considering several groups of monochromatic data for both our FWI

forecast operator and the analysis, bringing the amount of mono-frequency data pieces to nω = 15.

As in the previous application, the measurement noise matrix R is defined as a scaled Identity

matrix. Because this application is based on groups of frequencies, we evaluated the variance for each

of the monochromatic data to be included in R from their signal to noise ratio according to equation

(32), which makes R block diagonal, each block corresponding to a monochromatic data variance

as given in equation 32. This time, the optimization scheme used during the forecast inversions is

a preconditionned version of the l-BFGS scheme. We review two cases, a monoparameter P-wave

velocity test cases, and a multiparameter {P-wave velocity, density} inversion, to evaluate the cross-

talk between inversion parameters, and the ETKF-FWI behavior with multiparameter inversion.

4.1 P-wave velocity reconstruction

After the 6 ETKF-FWI cycles, we obtain an ensemble of solutions, as with the synthetic case. Focusing

first on the parameter estimate, we compare the initial and final ensemble means in Figure 9. As

expected from the previous experiment, the final mean model provides a net increase in resolution.

Layered structures are well defined in the top half of the domain, and from this result, we can identify

what can be interpreted as hydrocarbon-charged units overlaying the anticline structure. The deep

layered structures are not as sharp as the top section because of the strong impedance contrast between

the upper and lower units of the medium. The strong P-wave velocity contrast between the upper and

lower domain is expected to reduce the illumination power in the depper part of the model, along with

the geometrical spreading effect.

We compare initial and final variance maps in Figure 10. While the initial variance is relatively

large in the entire domain (the water depth is not perturbed), the final variance displays the same two

tendencies as in the synthetic case. The first order uncertainty structure is dominated by the geomet-

rical spreading and the sharp velocity contrast between the upper and lower units at 2.5 km depth.

Second to that are the variance values imposed by the velocity structures estimated in the solution.

Note that we use a non-linear colorscale to underline uncertainty associated to the structure.

To repeat the procedure detailed in the synthetic application and evaluate how the variance aligns



Ensemble-based uncertainty quantification in Full Waveform Inversion 21

with the velocity structure, we computed maximum peak locations in the variance map (Fig. 11). The

search radius has been reduced to 150 m because of the smoothness of the variance map. Despite the

map smoothness and the thin layered structure in the final velocity model, we can confirm that local

uncertainty maxima are preferentially located along structure discontinuities.

Correlation maps are also computed in the final ensemble, following the same procedure as for

the synthetic test, for three parameters denoted as orange, red and black (Fig. 12)

The horizontally layered structures can be observed in all three parameters correlation maps. We

also observe the effect of resolution loss between the orange (located at z = 1.3km and x = 5.0km

and the black parameter (located at z = 2.8km and x = 12.6km), characterized by the increase of the

positive correlation radius around the parameter. We also point out the coherency of the correlation

maps with the recovered structure as visible for the black parameter. Indeed, the broad, circular positive

correlation zone around the parameter is abruptly stopped by the velocity contrast at 2.5 km depth.

Comparing the velocity model computed through the ensemble method to a classical FWI result

(Fig. 13), shows that the ETKF-FWI produces a mean model similar to the corresponding FWI so-

lution. We can, however, notice that the resolution of the mean ETKF-FWI is slightly higher and the

contrasts between the layers velocity appear stronger in the ETKF-FWI result, both in the shallow

and deep parts of the model. This might be due to the effect of the analysis step, which provides

a correction from the estimated covariance matrix. This could have an effect similar to the one of

a preconditioner which approximates the inverse Hessian operator. This is further discussed in the

following multiparameter application.

However, the quality of these results is strongly linked to the initial ensemble parameterization.

Modifying the initial perturbations correlation length or amplitude will result in a different outcome,

or might cause instabilities if incorrectly chosen.

4.2 P-wave velocity and density reconstruction

In the following, we present preliminary multiparameter inversion results to show the potential of

the method for uncertainty estimation and parameter estimation. Multiparameter FWI is known as a

challenging problem, especially because of the presence of cross-talks between parameters (Operto

et al. 2013). Recovering information about the uncertainty linked to these cross-talks is thus crucial,

and might be an important benefice from strategies such as the ETKF-FWI scheme presented here.

We modify the system state vector such that the columns of the ensembles contain both the velocity
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parameter Vp and the density ρ instead of the velocity alone

m
(i)
Vp,ρ

=

Vp
ρ

 . (36)

Considering the joint state m(i)
Vp,ρ

makes it possible to take the changes of density during the forecast

optimization steps into account when the analysis is performed. Note that the extension of the state

vector also implies an extension of the state covariance matrix. It is expected that the cross-talk terms

between Vp and ρ (off-diagonal blocks of the covariance matrix) will play a role in the Kalman Gain

estimate.

The initial density perturbations are derived from the initial perturbed velocity model according

to Gardner’s empirical relationship (in soil only) (Gardner et al. 1974)

ρ = 0.31V 0.25
p . (37)

This way, initial ensemble members’ velocity and density perturbations are physically linked.

The starting ensemble mean veloctiy and density models are displayed in Figure 14. The ETKF-

FWI scheme is applied following the same setup as detailed for the monoparameter test, except for

the forecast that now includes inversion of the density parameter alongside the inverted velocity. The

parameter estimation after 6 ETKF-FWI cycles are shown in Figure 15.

The recovered velocity model is almost identical to the velocity estimate from the monoparameter

case. As for the density inversion, the horizontally layered structures observed in the velocity map, are

closely matching the density estimate. A lower density is seen in the central area where hydrocarbon

charged layers are expected to be located.

The joint covariance matrix for the multiparameter case contains four blocks. Its structure is de-

fined by

P[Vp,ρ] =

PVpVp PVpρ

PρVp Pρρ

 , (38)

where PVpVp and Pρρ are the variance matrices of the marginal distribution of Vp and ρ respectively,

and PVpρ and PρVp are the cross-covariance blocks. Note that since PVp,ρ is symmetric, we have

PρVp = PT
Vpρ

by definition. The PVpVp block is expected to yield results similar to the covariance

matrix in the mono-parameter case, while the Pρρ block is its equivalent for the recovered density.

The cross-covariance blocks are instead a measure of the link between the two parameters, and there-

fore makes it possible to quantify the inversion cross-talk between velocity and density. Starting with

the parameter’s uncertainty and cross-talk, we extract the four diagonal elements of the block joint-

covariance matrix and plot them as variance and cross-covariance maps in Figure 17.

The initial variance maps are displayed in Figure 16. The initial velocity variance distribution
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tends to the monoparameter case starting distribution, while the initial density variance map is very

different. This is a result of the use of Gardner’s law to produce the initial density models from per-

turbed velocity. The cross-covariance maps are symmetric and appear to be a combination of both

velocity and density variances. The final variance maps are displayed in Figure 17. As in the previous

results, the geometrical spreading effect is the prevalent source of uncertainty in the velocity recon-

struction, while structural uncertainty is the dominant effect in the density variance map. Although the

geometrical spreading is not directly visible in the density variance map, the higher variance values are

located in the deeper region of the model nonetheless. The cross-covariance maps seem to indicate that

the cross-talk between parameters is strongly linked to their respective uncertainties. The differences

between the velocity variance map and the density variance map can be linked to wave propagation

theory. The prevalence of the geometrical spreading effect can be associated to the higher sensitivity

of the body-waves to velocity perturbations, while the structural uncertainty in the density map could

be explained by the higher sensitivity of reflected-arrivals toward density changes.

Added to the diagonal elements of the block-covariance matrix, individual parameters resolution

and cross-talk terms of the block-correlation matrix are evaluated. This is achieved by extracting four

corresponding lines out of the different blocks and mapping the correlation coefficients into the phys-

ical domain. This procedure is the extension of the correlation maps computation of the previous

applications, to the block-diagonal structure. We choose a parameter arbitrarily, located at z = 2.0

km; x = 9.6 km and plot its initial correlation maps in Figure 18 followed by their final correlation

maps in Figure 19.

Although the initial correlations are identical in all blocks due to the models’ generation, the final

correlation patterns are entirely different in the final maps. There is a sharp difference of resolution

in velocity and density: velocity correlations are laterally oriented along the structure, while density

correlations are oriented along a vertical axis across the domain. The resolution information is coherent

with theoretical expectations as stated previously; velocity reconstruction is mostly constrained by

diving waves that can explain lateral ambiguity, while density is constrained by short offset reflections

arrivals, which can explain the higher vertical uncertainty.

Besides, correlation cross-talk maps allow evaluating the coupling effect between velocity and

density across the whole domain. In that case, they are negligible with respect to the parameter res-

olution maps which makes the recovered density map believable (as density reconstruction does not

seems to be contaminated by velocity leakage during the inversion).

Finally, we compare the estimated density, with an equivalent multiparameter FWI result, obtained

with a similar inversion setup (data selection and processing, number of minimization steps, initial

model) in Figure 20.
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Contrarily to the velocity estimation, there are significant discrepancies between the density model

recovered by the ETKF-FWI and its FWI equivalent. The density in the hydrocarbon layers is lower

in the FWI estimate, while the ETKF-FWI result is characterized by a high wavenumber content and

sharper density contrasts. Because of these differences, both density estimates have been evaluated

by comparing the synthetic data-fit with the observed common receiver gather data. Time-domain

synthetic common-receiver gathers are plotted in color over the black-and-white observed data after

filtering with a 6 to 8 Hz band-pass filter in Figure 21. On this visualization, synthetic blue arrivals

should overlap white, observed arrivals, while red should be overlapped by black arrivals (and there-

fore not be visible). The blue color is hence indicative of good fit, while visible red is indicative of

phases misalignment.

While the FWI result (center) is significantly improving on the initial models (left), the ETKF-

FWI result (right) is exhibiting an overall better data fit. Late arrival diving waves, as well as near offset

reflections, are improved (see red ellipses). It seems that the analysis step of the ETKF-FWI acts as

a Hessian-like preconditioning term, allowing a better convergence, which might enhance parameter

disambiguation. While these preliminary results are a call for careful investigations, it seems that the

analysis of the joint-space allows for better convergence of the ETKF-FWI scheme, compared to the

classical FWI. These results prompt us to investigate the possibilities of extension of the methodology

beyond mono-parameter inversion in future studies.

5 DISCUSSION

These ETKF-FWI applications raise several points of discussions and questions that are yet to be

answered.

What is the role of the Analysis? In our applications, the Analysis step plays a crucial role in

limiting the ensemble spread and thus prevents the ensemble from splitting over several local minima.

The role of the analysis is essential to rebalance the ensemble around the optimal mean (in the least

squares sense) and lower the variance of the forecast ensemble. We can illustrate this behavior with

the evolution of variance between the forecast and the analysis steps in Figure 22.

After the forecast, we observe a reduction of variance in shallow areas, but also a significant

increase along a sharp velocity contrast (at 1.5km depth). Because we cannot ensure that all of the Ne

models will resolve the interface within the same number of iterations, the variance might increase

in this specific area of the model. The analysis is responsible for a decrease of variance in the whole

map, but its effect is predominant along with this velocity contrast. Therefore the analysis is needed to

improve the chances to sample a single minimum rather than splitting the ensemble. Note also that the

Hessian-like preconditioning effect we have mentioned in the field data application might be related to
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this phenomenon. Given the forecast generates a high variance in some areas (that appear challenging

to recover), most of the Analysis model update will take place in those areas, which should improve

their recovery.

How much of a problem is undersampling ? Regarding undersampling, its effects seem not too

dramatic, as they do not affect the state estimate capabilities of the ETKF-FWI. We attribute this ro-

bustness to the inversion scheme that acts as our forecast, which is not expected to spread-out the

ensemble members. The underestimation of variance and spurious correlations might be more of an

issue, as they have a direct impact on our ability to use and interpret the quantitative covariance data.

Variance underestimation is typically solved through what is referred to as covariance matrix inflation

in the DA community (Anderson & Anderson 1999). The goal of inflation is to artificially increase the

forecast covariance by a factor r to mitigate overconfidence in the forecast. However, due to the ne-

cessity of evaluating an appropriate inflation parameter through trials and errors, its implementation in

our case is limited. We might find a solution in recent DA schemes that enables automatic inflation set-

tings (Miyoshi 2011), or overcome the inflation issue altogether like the finite-size ensemble Kalman

filter (Myrseth & Omre 2010; Bocquet 2011; Myrseth et al. 2013; Bocquet et al. 2015). On the other

hand, our observation operator is strongly non-local, which prevents us from applying covariance lo-

calization, the conventional solution to mitigate spurious correlation terms in the covariance matrix.

Thus we propose to rely mostly on local covariance information, that seems to be preserved most of

the time (as seen in correlation maps) and appears to be a reliable resolution proxy. Ultimately, the

undersampling issues allowed us to address the validity of our low-rank approximation, and evaluate

its associated biases. We think this specific point should be investigated in any methodology proposal

based on rank reduction or Hessian approximation, which is unfortunately not always discussed in

current propositions among the uncertainty estimation literature.

How to characterize prior uncertainty, and define the initial ensemble ? Good practices when it

comes to initial ensemble building may deserve entire research focus on its own. As it stands, we

have adopted a pragmatical approach to generate initial perturbations, but defining ”optimal” and how

an optimal initial ensemble should be built, is an open question. One might advocate for producing

greater variance initial ensembles, to allow further parameter exploration at the cost of stability and

convergence. Another option would be to align with the tests we have set up by limiting the spread

of the initial ensemble to ensure an optimal parameter estimation. To constrain a strict convergence,

one might even choose to add perturbation in limited portions of the model only, to limit the chances

of unphysical updates during the analysis. For instance, in our field-data test case, we could remove

perturbations in the lower half of the domain, constrained by a small portion of data. This would

prevent any unphysical updates driven by the data term during the analysis. With such questions, we



26 J. Thurin et al.

think the initial model building deserves a careful investigation, as the options mentioned above might

be logical choices depending on one’s goals.

How is the quantitative uncertainty estimate reliable? It has to be reminded that uncertainty es-

timates are, at best, expressed both in terms of ”local optimization” uncertainty and in the frame of

finite-frequency wave propagation. As the wave-propagation and the limited coverage act as a filter

over the physical domain, it is not possible to link quantitative uncertainty with absolute physical

parameter uncertainties. We instead think uncertainty should be expressed in terms of the optimal

apparent macro-model as “seen” by the waves, in similar ways as Capdeville & Métivier (2018) sug-

gestion for down-scaling and homogenization problems. Another possibility would be to find a way

to express quantitative uncertainty regarding a reference FWI result. Unfortunately, it is unclear if we

will be able to move toward real physical parameter uncertainty.

Extension and perspectives It is worth noting that the technique might be extended to time do-

main applications to match current industrial standards. Time domain extension, despite requiring a

completely different strategy concerning data management (mainly related to the cost of time domain

FWI), could allow introducing time-based localization to the ETKF-FWI approach. A more global

view of the approach also leads to the question of the variables and observations to consider in the

ETKF-FWI. Up to now, only velocity and density have been introduced as variable, but other multi-

parameters system states could be considered. As an example, including the entire wavefield as an

unknown variable of the ETKF, would allow making some links with the Wavefield Reconstruction

Inversion proposed by van Leeuwen & Herrmann (2013), as both the physical parameter and the wave-

field would be considered as unknowns. Multi-parameter FWI fits well into this type of methodology

extension, as it grants easy access to the cross-talk terms between inversion parameters, which are cur-

rently a challenging issue in multi-parameter inversion. The benefits of the joint-inversion, as shown

by the improvement on data-fit in our multiparameter test case, will have to be thoroughly evaluated.

Cost and Applicability The differences and added values of the proposed approach relying on

ETKF have to be evaluated to other methods from the literature, along with its practicality when

it comes to applications. First, we have not discussed how this methodology compares with global

optimization approaches. Global optimization approaches such as Martin et al. (2012); Biswas & Sen

(2017); Sajeva et al. (2017) are trying to mitigate the non-convexity of the cost function by sampling

the entirety of the solution space, rather than sampling the cost function around the solution as we

performed in the ETKF-FWI. While these methods seem very appealing, they have to rely on tricks

to make this sampling possible and alleviate the curse of dimensionality problem they would face

otherwise. These approaches are thus either limited to small problems (with a low number of unknown

to sample) or rely on clever parameterizations (such as B-spline functions or Voronoi tessellation) to
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reduce the size of the search space. Nonetheless, most of these methodology will require several

thousands of samples (and thus as many partial-differential-equation (PDE) to solve), which makes

them challenging to use as up to now. They also tend to produce very coarse solution to the inverse

problem (which nonetheless makes for great potential starting models for local uncertainty estimation,

as shown in Sajeva et al. (2017)). The philosophy of local and global approaches differs, as they

propose to deal with very different but complementary aspects of uncertainty estimation.

The local approaches that are more akin to our proposition are based on rank-reduction methods.

These approximations of the inverse Hessian operator in the vicinity of the solution, make sampling

from the posterior covariance matrix affordable. Their low-rank approximation of the inverse Hessian

operator, require to solve several forward and adjoint PDEs, typically several hundred to several thou-

sand per frequencies (for example Bui-Thanh et al. (2013) is evaluating 1400 PDE to estimate the first

700 eigenvalues of their global FWI application with hundreds of thousands of parameters). Fang et al.

(2014) requires to solve approximately 6000 forward modeling problems, with their MCMC sampling

to produce an uncertainty estimate (with most of the cost coming from the sampling strategy). Zhu

et al. (2016) is able to produce an uncertainty estimation along with the solution of the inverse problem

at the minimal cost of 144 PDE resolution thanks to the assumption made on the structure of the Hes-

sian operator. Though this cost is indeed reasonably low, it does not include the computational cost of

the reverse time migration they are using to precondition their sampling. Finally, the number of PDE

solved to sample the posterior covariance in Fang et al. (2018) proposition, is the number of sources

plus the number of receivers per frequencies (not including the number of PDE to solve the inverse

problem). Besides, this method does seem to display challenging memories limitation as it requires

to store the optimal wavefields in memory for each frequency bands, which may become challenging

for large scale 3D application. The extension to uncertainty estimation of multiparameter inversion

also seems to be non-trivial in this extended domain FWI application, as only recent publications are

addressing the multiparameter aspect of wavefield reconstruction inversion (Aghamiry et al. 2019).

Note also that the low-rank approximation methods of the propositions mentioned above (such as ran-

domized Singular-Value-Decomposition, or Lanczos methods) are sequential by nature which makes

these uncertainty methods only as scalable as their PDE solver can get.

In comparison, the cost of ETKF-FWI in our applications ranges from 5000 to 18000 PDE solve

(for the synthetic and field data cases respectively), which might appear to be a daunting number (al-

though convergence tests have shown we could potentially consider smaller ensemble size). However,

unlike the other methods, we are set to solve an embarrassingly parallel problem as all of our ensem-

ble members are evolving independently during the bulk of the computational time (forecast step),

which makes our problem not only scalable on the PDE solver but fully scalable on the ensemble size.
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Thanks to this advantage, and because of the development of hardware capacities towards the exascale

and the current trend toward grid computation, we believe that the ETKF-FWI for uncertainty estima-

tion can be a valuable approach even for large-scale FWI problems, as it is currently the case for DA

applications.

6 CONCLUSION

We have demonstrated in those applications that the ETKF can be paired with a frequency-domain

FWI quasi-Newton solver successfully, and allows for uncertainty estimation of the solution. The re-

sults we have obtained so far are encouraging in several regards. The presented method can produce a

robust state estimation while allowing to recast our inversion problem in a local Bayesian framework.

Variance and correlation maps only require to store the ensemble to be computed. Those maps pro-

vide a straightforward way of evaluating the quality of convergence, the correlation links and tradeoffs

between parameters. It also allows integrating some form of data weighting terms in the whole tomo-

graphic process via the measurement noise matrix R. If R is set properly, the resulting uncertainty

takes into account the physical properties of assimilated data. The extension perspectives offered by

the DA framework and the full scalability of the method makes it a great candidate for uncertainty

estimations.
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21 Datafit evaluated on a common receiver gather between (from left to right), the initial
models, the FWI outcome and the EKTF-FWI outcome. Blue arrivals denote a good data fit
over corresponding white arrivals. Red arrivals overlapping white arrivals are indicative of
misaligned phases. Major improvement areas granted by the ETKF-FWI results have been
marked with red ellipses in all three common-receiver gathers.
22 Evolution of variance between the forecast and the analysis step. These variance maps
have been extracted from the synthetic application during the first ETKF-FWI cycle. They
are respectively the first forecast variance (top) and the first analysis variance (bottom). The
forecast is responsible for both increase and decrease of variance, while the analysis only
reduces the variance.
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Figure 1. Schematic of the ETKF-FWI scheme. Dots represent state vectors, stars represent the measured state,
crosses and ellipses are respectively means and covariances. Blue denotes the forecast system state, red the anal-
ysis, green the observed data and grey the forecast data. The dynamic follows a modeling frequency continuation
axis from low to high frequencies, based on FWI multi-scale approach.
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Figure 2. Numerical experiment setting. Top : True Marmousi II model. Acquisition is denoted by a red line at
the surface. Bottom : Smoothed version of the true model. It is used to build the starting ensemble, being the
initial ensemble mean m0.
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Figure 3. Analyzed ensemble means for ensemble sizes Ne = 600, 100, 20 after 15 ETKF-FWI cycles from
3Hz to 10Hz .
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Figure 4. Initial ensemble variance maps for ensemble sizes Ne = 600, 100, 20.
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Figure 5. Analyzed ensemble variance maps for ensemble sizes Ne = 600, 100, 20 after 15 ETKF-FWI cycles
from 3Hz to 10Hz .
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Figure 6. Variance map (top) and final mean velocity model (bottom). Red points denotes local maximum
variance peaks in both maps.Variance peaks are evaluated with a maximum filter defined with a 275m radius.
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Figure 10. Initial and final variance maps after 6 ETKF-FWI cycles from from 3.56 Hz to 7.01 Hz.with Ne =
600.
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Figure 11. Variance map (top) and final mean velocity model (bottom). Red points denotes local maximum
variance peaks in both maps.Variance peaks are evaluated with a maximum filter defined with a 150 m radius.
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Figure 12. Reference variance map (top) and local correlation maps (botto) forNe = 600. Colored rectangles on
the variance map correspond to the extents of the local correlations subdomains for the 3 considered parameters.
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Figure 13. Comparison of monoparameter ETKF-FWI (top) and FWI (bottom) results with similar inversion
setup (inversion parameters, regularization, acquisition geometry and data frequency groups).



50 J. Thurin et al.

0

1

2

3

4

5
Vp

1500

2000

2500

3000

Ve
lo

cit
y 

(m
/s

)

0 2 4 6 8 10 12 14 16
Distance (km)

0

1

2

3

4

5

De
pt

h 
(k

m
)

1000

1250

1500

1750

2000

2250

De
ns

ity
 (k

g/
m

3 )

Figure 14. Top : Initial ensemble mean velocity model m0,Vp
. Bottom : Initial ensemble mean density model

m0,ρ
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Figure 15. Top : Final ensemble mean velocity model m0,Vp
. Bottom : Final ensemble mean density model

m0,ρ
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Figure 16. Diagonal elements of the initial joint-covariance matrix, plotted in the physical domain arranged
according to their respective position in the block matrix. Top left: P-wave velocity variance in m2/s2. Bottom
right: density variance in kg2/m6. Bottom left and top right: Vp, ρ cross-covariance maps in kg/(s.m2).
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Figure 17. Diagonal elements of the posterior joint-covariance matrix, plotted in the physical domain arranged
according to their respective position in the block matrix. Top left: P-wave velocity variance in m2/s2. Bottom
right: density variance in kg2/m6. Bottom left and top right: Vp, ρ cross-covariance maps in kg/(s.m2).
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Figure 18. Off-diagonal elements of the initial joint-covariance matrix, plotted in the physical domain. The
covariance matrix lines considered are corresponding to the parameter located at z = 2.1 km; x = 9.6 km. Top
left: P-wave velocity correlation coefficient. Bottom right: density correlation coefficient. Bottom left and top
right: correlation cross-talk terms.
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Figure 19. Off-diagonal elements of the posterior joint-covariance matrix, plotted in the physical domain. The
covariance matrix lines considered are corresponding to the parameter located at z = 2.1 km; x = 9.6 km. Top
left: P-wave velocity correlation coefficient. Bottom right: density correlation coefficient. Bottom left and top
right: correlation cross-talk terms.
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Figure 20. Comparison of ETKF-FWI (top) and FWI (bottom) density estimate with similar inversion setup
(inversion parameters, regularization, acquisition geometry and data frequency groups).
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Initial FWI ETKF-FWI

Figure 21. Datafit evaluated on a common receiver gather between (from left to right), the initial models,
the FWI outcome and the EKTF-FWI outcome. Blue arrivals denote a good data fit over corresponding white
arrivals. Red arrivals overlapping white arrivals are indicative of misaligned phases. Major improvement areas
granted by the ETKF-FWI results have been marked with red ellipses in all three common-receiver gathers.
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Figure 22. Evolution of variance between the forecast and the analysis step. These variance maps have been
extracted from the synthetic application during the first ETKF-FWI cycle. They are respectively the first forecast
variance (top) and the first analysis variance (bottom). The forecast is responsible for both increase and decrease
of variance, while the analysis only reduces the variance.


