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SUMMARY

Optimal transport (OT) distances have been recently proposed to miti-

gate the non-convexity of the L2 misfit function in FWI. However, OT is

only applicable to positive and normalized data. To overcome this diffi-

culty, we have proposed two strategies, one based on the Kantorovich-

Rubinstein (KR) norm, which extends a specific OT distance to the

comparison of signed data, the other based on the interpretation of the

discrete graph space of the data through OT. In this study, we com-

pare these two approaches for the inversion of 3D OBC data from the

Valhall field, using a visco-acoustic time-domain FWI algorithm. Start-

ing from a crude initial velocity model, both KR and graph space ap-

proaches provide more reliable results than L2, the best results being

obtained with the graph space approach. Thanks to a recently devel-

oped numerical approach, the computational cost increase is limited in

this case to approximately 15 % compared to standard L2 FWI.

INTRODUCTION

Full waveform inversion (FWI) is a high-resolution seismic imaging

data fitting based procedure, now routinely used for exploration and re-

gional scale targets (Fichtner et al., 2010; Plessix and Perkins, 2010;

Stopin et al., 2014; Bozdağ et al., 2016). Despite successful applica-

tions, and its ability to account for an increasingly complex physics

of wave propagation (from simple acoustic to visco-elastic approxima-

tion), one major issue still relies on the non-convexity of the L2 misfit

function which is minimized. This makes FWI strongly dependent on

the accuracy of the initial model, as well as the lowest frequency avail-

able in the data (phase ambiguity/cycle skipping issue) (Virieux and

Operto, 2009).

Among recent attempts to mitigate this issue, optimal transport (OT)

based misfit functions have been proposed (Engquist and Froese, 2014;

Métivier et al., 2016b; Yang et al., 2018b; Métivier et al., 2018) . The

convexity of the OT distance with respect to shifted patterns makes it

a good candidate to improve the convexity of FWI misfit functions.

However, OT theory is founded for the comparison of probability dis-

tributions, hence not directly applicable for the comparison of seismic

data which are oscillatory, non-positive functions.

We have proposed two strategies to overcome this issue. The first con-

sists in considering a specific OT distance, which naturally extends to

the comparison of signed functions, known as the Kantorovich Rubin-

stein (KR) norm (Métivier et al., 2016a,b). The second consists in

comparing the discrete graph of the data through OT rather than the

data itself, referred to as the GSOT approach in the following. While

the KR approach makes it possible to compare directly 2-dimensional

shot gathers and widen the valley of attraction of the misfit function, it

loses the convexity property of OT. The GSOT preserves this convexity

property; however, it is applied trace by trace and requires to solve a

2D OT problem for each trace, yielding possible large computational

cost (Métivier et al., 2018).

We have recently designed a numerical strategy which makes possible

the application of the GSOT strategy to realistic size FWI problems

(Métivier et al., 2019). In this study, we want to compare the KR and

GSOT approach on the 3D OBC Valhall data, to assess their interest

in designing more robust FWI schemes on field data. We apply these

techniques in the frame of time-domain visco-acoustic FWI. Starting

from a crude initial velocity model, the KR and GSOT approach pro-

vide more reliable results than L2, the best results being obtained with

the GSOT approach. The computational cost increase is limited in this

case to approximately 15% compared to L2 FWI.

METHODS

We first review the KR and GSOT misfit function formulations, as well

as their corresponding adjoint sources for the gradient computation fol-

lowing the adjoint state strategy (Plessix, 2006). We denote the ob-

served and calculated data set by dobs(xr,xs, t) and dcal [m](xr,xs, t) re-

spectively, where (xr,xs) denotes the spatial position of the receivers

and sources, t is the time index, and [m] indicates the dependency of

the calculated data with respect to the model parameters m.

KR strategy

The KR misfit function is based on the dual of the 1-Wasserstein dis-

tance, using an ℓ1 ground distance. It is expressed as

fKR[m] =
∑

s

gs(dcal [m],dobs),

gs(dcal ,dobs) = max
ϕs∈Lip1

∫

xr

∫

t

ϕs(xr, t)(dcal(xs,xr, t)−dobs(xs,xr, t))dtdxr,

(1)

where Lip1 is the set of 1-Lipschitz functions for the ℓ1 distance

Lip1 =
{

ϕ(xr, t), |ϕ(xr, t)−ϕ(x′r, t
′)|< |xr − x′r|+ |t − t ′|

}

. (2)

The adjoint source is given by

∂gs

∂dcal

= ϕs(xr, t), (3)

where

ϕs(xr, t) = argmax
ϕs∈Lip1

∫

xr

∫

t

ϕs(xr, t)(dcal(xs,xr, t)−dobs(xs,xr, t))dtdxr.

(4)

The computation of the KR misfit function and its corresponding ad-

joint source thus requires to solve a single constrained maximization

problem per shot gather. This is performed through the proximal split-

ting algorithm ADMM (Combettes and Pesquet, 2011). At each iter-

ation, a Poisson’s problem is solved, for which we use an FFT-based

solver. This yields an O(N logN) algorithm per iteration to be applied

independently to each shot gather, where N = Nr ×Nt with Nr the num-

ber of receivers and Nt the number of time samples.

GSOT strategy

The GSOT strategy compares the discrete graph of the observed and

calculated data for each trace independently. We introduce

scal,s,r[m](t) = dcal [m](xr,xs, t), sobs,s,r(t) = dobs(xr,xs, t). (5)

The corresponding misfit function is formulated as

fGSOT [m] =
∑

s

∑

r

h(scal,s,r[m],sobs,s,r),

h(scal ,sobs) = min
σ∈S(Nt )

Nt
∑

i=1

ciσ(i)(scal ,sobs),
(6)

with ci j the ℓ2 distance between the discrete points of the graph (ti,scal(ti))
and

(

t j,sobs(t j)
)

ci j(scal ,sobs) = |ti − t j|
2 +η2|scal(ti)− sobs(ti)|

2, (7)

and S(Nt) the ensemble of permutations of (1 . . .Nt). The function h

corresponds to the 2-Wasserstein distance between the discrete graph

of the calculated trace scal(t) and the observed trace sobs(t).

The scaling parameter η controls the convexity of the misfit function

fGSOT with respect to time shifts. In practice, we define it as

η =
τ

A
, (8)
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where τ is a user-defined parameter corresponding to the maximum

expected time shift between observed and calculated data in the initial

model, and A is the maximum amplitude discrepancy between observed

and calculated data.

The adjoint source of the misfit function fGSOT [m] is computed from
∂h

∂cal
. We prove in Métivier et al. (2019) the following equality: Denot-

ing σ∗ the minimizer in (6), we have

∂h

∂cal

= 2
(

dcal −dσ∗

obs

)

, (9)

where

dσ∗

obs(ti) = dobs(tσ∗(i)) (10)

The GSOT approach can thus be viewed as a generalization of the L2

distance: The adjoint source is equal to the difference between cal-

culated and observed data at time samples connected by the optimal

assignment σ∗. Similarly as the KR approach, the solution of the prob-

lem (6) provides the information to compute both the misfit function

and the adjoint source.

To solve (6) efficiently, we use the auction algorithm (Bertsekas and

Castanon, 1989), dedicated to the solution of linear sum assignment

problems (LSAP) such as (6). Despite a relatively high computational

complexity in O(N3
t ), it is quite efficient for small dense instances of

LSAP. Resampling the data close to the Nyquist frequency yields such

small scale problems making the GSOT feasible for realistic scale FWI

applications, as we will see in the application presented here.

APPLICATION TO 3D OBC DATA FROM THE VALHALL FIELD

Geological context, data, and preprocessing

The Valhall field is located in the North Sea and has been in production

since 1982 (Barkved et al., 2010).

The Valhall permanent 3-D wide aperture/azimuth seismic array (LoFS)

has been installed in 2003 (Barkved et al., 2004). It covers a surface

of 145 km2. The acquisition is composed of 12 cables laying on the

seafloor at 70 m equipped with approximately 2500 four-component

receivers. Data are acquired by firing a seismic source every 50 m by

50 m at a depth of 5 m. The total recording time is 8 s.

The data have been preprocessed internally (Kamath et al., 2018). The

processing consists of applying source-receiver reciprocity to decrease

the number of sources to 2046, then removing noisy traces, de-spiking,

and filtering the data to a 2.5-5 Hz frequency band.

While the KR approach can be formally applied to the entire 3D shot-

gathers, it is easier, from implementation and computational cost point

of view, to apply it to multiple 2D lines (Poncet et al., 2018). The

Poisson’s solver which is used within the KR approach also requires

to work on a regular discretization of the shot gather. In this multiple

2D strategy, this implies a regular spacing between receivers, which is

not guaranteed by the original acquisition. For this reason, we have

interpolated the dataset on multiple 2D lines. For each time sample

of the data, the interpolation is constructed by triangulating the input

data, and on each triangle performing linear barycentric interpolation.

We use this interpolated dataset with the three methods (L2, KR, and

GSOT) for fair comparison even if it is only required for the KR ap-

proach.

FWI workflow
We consider FWI based on a time-domain VTI visco-acoustic solver

(Yang et al., 2018a). The code is parallelized over shots with MPI and

for finite-difference modeling and OT computations with OpenMP. The

initial model for ε and δ are provided by AkerBP and are derived from

reflection tomography (TOMO). The quality factor Qp model used is

simple: 1000 in the shallow water layer (70 m depth), 200 below. We

consider two initial VP models (Fig.1). The first is derived from TOMO,

the second is a smoothed version of this TOMO model, using a Gaus-

sian smoothing with 500 m correlation lengths in the three spatial di-

rections. The initial density models ρ are derived from these models

using Gardner’s law.

To decrease the computational cost, we rely on source subsampling,

with 120 sources used per cycle, each source being used only once in

the whole process (Warner et al., 2013). Each cycle corresponds to 3

iterations of FWI, 51 iterations are required to use all the 2046 shot-

gather. For a fair comparison between misfit functions, we use the

same selection of sources, keeping a trace of the seed generating the

pseudo-random source selection.

A source estimation is performed at the beginning of each cycle. The

minimization of the misfit function is performed using the l-BFGS al-

gorithm of the SEISCOPE toolbox (Métivier and Brossier, 2016). The

memory l is set to 3 according to the previous settings.

FWI results
Starting from the TOMO model, we obtain satisfying and comparable

results using the three different misfit functions (Fig.3a-l). This consti-

tutes our reference to compare the improvement gained using optimal

transport approaches. In the first slice at z = 210 m (Fig.3a-c), we

observe the reconstruction of what appears to be channel-like deposits.

We can notice that the imprint of the acquisition is smoothed using both

KR and GSOT approaches, especially with GSOT. The second slice at

z = 980 m (Fig.3d-f) is taken within the low-velocity anomaly. The KR

approach exhibits little more artifacts; this could be related by the ap-

plication of the method line by line. The GSOT results seem less noisy,

the low-velocity anomaly being however less resolved than with the L2

misfit function. In Figure 3g-l, constant x slices for x = 3010 m and

x = 3990 m provide fairly similar results with the three misfit function,

indicating that they have converged towards a similar model.

In Figure 3m-x, we present the VP model obtained starting from the

second initial VP model. We still observe in Figure 3m-o that the im-

print of the acquisition is less visible using OT. In the second slice, at

z = 980 m, the L2 result presents some high-velocity values in the cen-

ter of the low-velocity anomaly (Fig. 3p). In Figure 3q and Figure 3r,

the results from the KR and GSOT approaches do not exhibit this high-

velocity anomaly. Still, both KR and GSOT reconstruct a clearer view

of this low-velocity anomaly at this depth. The constant x slice in Fig-

ure 3s-u exhibits a clear example of local minima by cycle skipping

with the L2 misfit function. Instead of the low-velocity anomaly, the

L2 FWI has wrongly increased the velocity to fit the data (Fig.3s). This

is not the case both with KR and GSOT. Besides, we observe that the

sharp velocity contrast below the low-velocity anomaly is better re-

constructed with GSOT than with KR (Fig. 3t). Figure 3v provides

another view of the cycle skipped L2 reconstruction with the presence

of a high-velocity artifact. Again, both KR and GSOT reconstructions

do not exhibit these artifacts. The anticline interface below the low-

velocity anomaly is better continuously reconstructed with GSOT.

The data fit for final reconstructed VP using L2, KR and GSOT starting

from the second initial VP model are presented in Figure 2. We can

observe an improvement using KR and GSOT compared to L2 in the

area highlighted by the black arrow and the dashed black arrow. Both

KR and GSOT can retrieve the shape of the gap present in the data with

more accuracy than the L2.

From a computational cost point of view, the increase, compared to

L2 is between 15-20 % for KR and 10-15% for GSOT for this low-

frequency application. Note that the OT overhead should decrease with

frequency as the computational complexity for modeling is in ω4 while

being in ω3 for GSOT.

CONCLUSION

The application of both KR and GSOT approaches to the Valhall 3D

field data show how the two strategies help to mitigate the cycle skip-

ping. The best results are obtained using the GSOT approach, which

is expected, as it preserves the convexity property of the OT distance

with respect to time shifts, which is not the case with KR. Besides, the

computational cost increase compared to L2 is limited. This is very en-

couraging and prompts us to investigate the interest of these techniques

for other applications and in other contexts in the future (visco-elastic

FWI, RWI).
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a) b)

c) d)

e) f)

g) h)

Figure 1: Initials VP models. The first column (a,c,e,g) corresponds to TOMO VP. The second column (b,d,f,h) corresponds to the Gaussian

smoothed of TOMO VP. The first line (a,b) in this VP panel corresponds to a horizontal slice at z = 210 m, the second line (c,d) to a horizontal slice

at z = 980 m. The third line (e,f) corresponds to a vertical slice at x = 3010 m and the last line (g,h) to a vertical slice at x = 3990 m.

a) b)

c) d)

Figure 2: Common shot gather panel with recorded traces on the left and mirrored-modeled traces on the right. a) correspond to a CSG for smoothed

TOMO initial model. a-c) correspond to a CSG inside the final reconstructed VP after 51 FWI iterations for respectively L2, KR and GSOT.
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m) n) o)
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Figure 3: Slices of the 5 Hz FWI models for L2 (first column), KR (second column) and GSOT (third column). The first four lines correspond to

TOMO VP initial model. The last four lines correspond to smoothed TOMO VP initial model. a-c) and m-o) correspond to a horizontal slice at

z = 210 m depth, d-f) and p-r) correspond to a horizontal slice at z = 980 m depth across the low-velocity zone. g-i) and s-u) correspond to inline

vertical slices at x = 3010 m that pass through the low-velocity zone, and j-l) and v-y) at x = 3990 m pass near the periphery of the low-velocity

zone.
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