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SUMMARY
Joint full waveform inversion (JFWI) aims at building a veloc-
ity macromodel of the subsurface by combining early arrivals
and reflection waveform inversions. JFWI requires an explicit
separation between early-arrivals and reflections, which is ac-
complished by applying time-windows to the data in practice.
The JFWI approach is formulated as a workflow in which one
repeatedly alternates two steps: the velocity macromodel is re-
constructed assuming a known perturbation model, then the
perturbation model is updated using the previously retrieved
velocity as the background model. The perturbation model is
used as an input to build the low-wavenumber sensitivity ker-
nel along the two-way reflection paths. JFWI followed by FWI
can further enrich the high-wavenumber contents of the sub-
surface model. However, JFWI, as FWI, suffers from cycle-
skipping issues because one attempts to fit the data using the
`2 misfit function. Optimal transport (OT) distances have been
recently proposed to mitigate the non-convexity of the `2 mis-
fit function in seismic imaging. Nevertheless, OT is initially
designed to compare probability distributions, which is not the
case for the original seismic data due to the oscillatory and
signed natures. To overcome this difficulty, one possibility is
to compare the discrete graph of data through OT. In this study,
we assess the graph-space OT based JFWI approach for the
inversion of 2D streamer synthetic data with a limited offset
range (6 km) for the Marmousi model. Starting form a 1D lin-
ear model, GSOT-JFWI is less prone to cycle skipping than in
the `2-JFWI case, and consequently provides a sufficient initial
velocity macromodel for subsequent FWI.

INTRODUCTION
Full waveform inversion (FWI) is a powerful tool to build high-
resolution velocity model of the subsurface (Virieux and Op-
erto, 2009), especially for the areas that are properly sampled
by early arrivals such as diving waves and super-critical re-
flections. However, the limited penetration depth of early ar-
rivals prevents an accurate imaging of the structural target at
deep part. Alternatively, to reach such targets, reflection wave-
form inversion (RWI) is a promising technique to build the
velocity macromodel beyond the penetration depths of early
arrivals (Xu et al., 2012; Brossier et al., 2015). It is inspired by
the migration-based traveltime tomography approach (Chavent
et al., 1994). RWI relies on the scale separation which ei-
ther assumes an explicit split between low and high frequency
content of the velocity model (Xu et al., 2012) or introduces
the velocity-impedance parameterization to naturally facilitate
the separation (Zhou et al., 2015). In the latter case, RWI
is alternated with the impedance waveform inversion (IpWI)
of short-offset data, a least-squares migration-like procedure,
that produces an impedance model used as an input of reflec-
tivity information to build the sensitivity kernel along the re-
flection path. For the sake of efficiency, Li et al. (2019) em-

phasize the importance of preconditioning IpWI to reduce the
computational cost of such workflow. Zhou et al. (2015) pro-
pose to extend RWI to joint full waveform inversion (JFWI)
of early arrivals and reflections, which involves two different
wavepaths simultaneously. Consequently, JFWI tends to pref-
erentially sample both the vertical and horizontal components
of the wavenumbers of the subsurface model.

JFWI, as in the FWI case, is prone to the convergence towards
local minima, because one attempts to fit the data by minimiz-
ing the `2 misfit function which is non-convex. To mitigate this
issue, one can exploit an alternative misfit function. Among
others, optimal transport (OT) based functions have been in-
vestigated (Engquist and Froese, 2014; Métivier et al., 2016;
Yang et al., 2018; Métivier et al., 2018) in the context of clas-
sical FWI. Interestingly, OT distance exhibits convexity with
respect to shifted patterns. Nevertheless, OT is initially de-
signed to compare probability distributions such that it is not
directly applicable to seismic data due to its oscillatory and
signed natures.

Among other solutions, Métivier et al. (2018) propose to com-
pare the data represented in the discrete graph-space through
OT (GSOT). Such approach preserves the appealing convex
property of OT, and interestingly, it can be implemented trace-
by-trace for solving realistic size waveform inversion prob-
lems at affordable computational costs (Métivier et al., 2019),
saying it is feasible to be extended to 3D. In this study, we
compare `2 and GSOT approaches in the context of JFWI for
the Marmousi model. We utilize a streamer acquisition with a
limited offset range (0-6 km) to evaluate the robustness of the
method. Starting from a 1D linearly increasing velocity model,
the GSOT based JFWI approach fits the data better than in
the `2 case, and consequently provides better initial model for
subsequent FWI. Moreover, the result supports the theory that
GSOT does not decrease the resolution of the reconstructed
model, as GSOT is a generalization of the `p distance.

METHODOLOGY
We first review the preconditioned IpWI method that we have
introduced in Li et al. (2019) for the efficient impedance recon-
struction, and the JFWI approach for the velocity macromodel
update. Then, we present the GSOT formulation and its as-
sociated adjoint source used in the adjoint-state technique for
computing the gradient (Plessix, 2006).

Preconditioned IpWI approach
Consider u, VP and IP as wavefield, velocity and impedance,
respectively. Density ρ is linked to VP and IP through IP =
ρVP. The perturbations can be expressed as (δ I,δV,δu) =
(IP − I0,VP −V0,u− u0). In the acoustic isotropic medium,
Li et al. (2019) define a shot-dependent parameter ξ (x,s) =
2δ I/(V0I2

0 ), then derive an approximate inverse in the time-
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domain by considering the small scattering angle case, reading

ξ (x,s)≈
∇S(s,x, t)?∇R(s,x, t)+ 1

V 2
0

∂ 2

∂ t2 S(s,x, t)?R(s,x, t)

G0(s,x, t)?G0(s,x, t)
,

(1)

where s, r and x are shot, receiver and imaging positions, re-
spectively, ? the zero lag cross correlation, and G0 the Green’s
function. Incident and adjoint wavefields are defined in the
frequency-domain only for simplicity

S(s,x,ω) =
4

(iω)3
1

Ω∗(ω)
G0(s,x,ω), (2)

R(s,x,ω) =

∫
dr

∂G∗0(r,x,ω)

∂ rz
δu(s,r,ω), (3)

with Ω the source wavelet depending on angular frequency ω .
Equations (1) to (3) are presented only in 3D for simplicity.
In practice, we fix VP and invert for IP with only short-offset
reflections by replacing the gradient of conventional IpWI by
equation (1) with a summation over all shots.

JFWI approach
With IP reconstructed by preconditioned IpWI, we minimize
the following misfit function to update the VP macromodel

C[VP] = f (wed,we p[VP, IP]))+ f (wrd,wr p[VP, IP]) (4)

where d, p denote the observed and predicted data, respec-
tively. we and wr are weighting functions to roughly select
early arrivals and reflections, respectively. f evaluates the dif-
ference between two input data, and refers to the `2 distance in
the conventional case. The gradient of the misfit function with
respect to the VP macromodel reads

∇VPC =
∑
s,r

(u0 ?δλ
r +δu?λ

r
0 +δu?δλ

r +u0 ?λ
e
0 ) , (5)

where λ e
0 and λ r

0 denote the background adjoint wavefields
generated by the difference between observed and predicted
data in the early arrival and reflection cases, respectively. δλ e

and δλ r are the scattered adjoint wavefields associated with
the early arrived and reflected wave differences, respectively.
By difference, we simply refer to the adjoint source, which is
the data residual in the `2 case. See Zhou et al. (2015) for more
details about the JFWI theory.

GSOT strategy
Métivier et al. (2019) propose the GSOT strategy to compare
the discrete graph of the observed and predicted data trace-by-
trace. By graph-space, it means that a seismic trace d(t) is
represented as the ensemble of K discrete points defined by
(t1,d1), ...,(tK ,dK). Assuming predicted data p in model m,
the GSOT misfit function reads

fgsot [m] =
∑

s

∑
r

ws,r
obsh(p[m],d), (6)

h(p,d) =W 2((t, p),(t,d)
)
= min

σ∈S(K)

Nt∑
i=1

ciσ(i)(p,d), (7)

where ws,r
obs scales the contribution of each trace by the en-

ergy of the corresponding trace in the observed data to pre-
serve the amplitudes-versus-offset effect. h corresponds to the

2-Wasserstein (W 2) distance between discrete graphs of pre-
dicted and observed data. S(K) is the ensemble of permuta-
tions of (1 . . .K), and ci j the `2 distance between the discrete
points (ti, p(ti)) and

(
t j,d(t j)

)
ci j(p,d) = |ti− t j|2 +η

2|p(ti)−d(ti)|2. (8)

The scaling parameter η controls the extent to which we em-
phasize time shifts. In practice, it is defined as

η =
τ

A
, (9)

where τ is user-defined depending on the maximum expected
time shift between observed and predicted data in the initial
model, and A the maximum amplitude discrepancy between
observed and predicted data. To derive the minimizer σ∗,
we solve the linear sum assignment problem (LSAP) of equa-
tion (6) using the auction algorithm (Bertsekas and Castanon,
1989). The approach is highly efficient for small dense in-
stances of LSAP, which can be satisfied by resampling the
seismic data according to the Nyquist frequency. Once the
minimizer σ∗ for (6) is derived, Métivier et al. (2019) prove
that the adjoint source of fgsot(m) reads

∂h
∂ p(ti)

= 2
(

p(ti)−d(tσ ∗(i))
)
. (10)

The W 2 based GSOT approach can thus be considered as a
generalization of the `2 distance (extendable to `p): the ad-
joint source is equivalent to the difference between calculated
and observed data at time samples connected by the optimal
assignment σ∗. Consequently, besides the convexity, we ex-
pect GSOT to have almost the same resolution as in the `2

case by appropriately choosing τ . In practice, we implement
the GSOT based JFWI by simply integrating equations (6) and
(10) with (4) and (5), respectively.

APPLICATION TO 2D SYNTHETIC STREAMER DATA
To generate the observed data, we trigger 64 shots located at
the surface from 0.1 to 10.18 km in the true Marmousi model
(Figures 1a and 1b). The shot interval is 0.16 km. For each
shot, receivers are deployed on the right side of the shot with
very limited offsets ranging from 0 to 6 km. The source func-
tion is a Ricker wavelet, of which the peak frequency is 4 Hz
and the contents below 2 Hz are filtered out. For initial model,
we generate a linearly increasing VP model with a water layer
on top: the velocity for areas shallower than 0.2 km is 1.5 km/s
and the velocity at bottom is 4.1 km/s (Figure 1c). The ini-
tial impedance model is generated through IP = ρVP where
the density is a two-layer model: 1 g/cm3 above 0.2 km and
2 g/cm3 for the rest part (Figure 1d). With such configura-
tions, we carry out 4 experiments to compare: `2-FWI, `2-
JFWI followed by `2-FWI, GSOT-JFWI followed by `2-FWI,
and GSOT-JFWI followed by GSOT-FWI. Note that such ac-
quisition with limited offsets introduces more difficulties than
in the conventional fixed spread case, as the diving waves only
sample the model until around 1 km depth.

JFWI workflows
The general JFWI workflow consists of the following steps:
(1) reconstruct the perturbation model Ii

P by performing IpWI
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Figure 1: True VP (a) and IP (b) models, and linearly increasing
initial VP (c) and IP (d) models.

for short-offset reflections in (I0
P,V

i−1
P ); (2) update V i

P macro-
model by simultaneously considering the early arrivals and re-
flections with JFWI in (Ii

P,V
i−1
P ); (3) go back to step 1 until

the convergence of step 2 is achieved. Note that IP is reset
to its initial value at the beginning of step 1. We use ”cycle”
to refer to one single loop of such workflow. We design the
time windows for IpWI and JFWI as following: events arrived
at receivers later than the time when direct arrivals stop are
considered as reflections, and the others as early arrivals. The
stopping time can be simply achieved by considering the offset
and water velocity value for every trace.

In this study, we implement the JFWI workflow with specific
strategies. For both `2- and GSOT-JFWI cases, we perform 21
cycles, each of which consists of 3 preconditioned IpWI and 20
JFWI iterations. We always build the IP model with reflections
at offset less than 1 km. For first 5 cycles, we update the VP
macromodel with reflections at offsets between 1-6 km and all
early arrivals. The reason is to honor the idea of Zhou et al.
(2015) that VP and IP are responsible for short and large offset
reflections, respectively. In the following cycles, we update the
VP macromodel with full-offset reflections and early arrivals
for fitting the data overall. In the GSOT-JFWI case, we set
τ to 0.5 s for cycles 1-5, 0.3 s for cycles 6-16, and 0.2 s for
remaining cycles. As for the subsequent GSOT-FWI, τ is set to
0.2 s. Assume the source is known, we perform 400 iterations
of `-BFGS for all subsequent FWI procedures. We always use
all the frequency contents presented in the observed data.

Inversion results
We first present the VP and IP models built by two types of
JFWI approaches. The `2-JFWI approach updates the VP model
in a less significant way (Figure 2a) than in the GSOT-JFWI
case (Figure 2b), especially for the deep part of the subsurface.
The reconstructed IP perturbation models illustrate that GSOT-
JFWI better retrieves the kinematic information. For example,
the resulting IP of `2-JFWI cannot distinguish the discontin-
uous event (Figure 2c) as in the GSOT case (Figure 2d), as
illustrated by the black dashed circles. In both cases, the ma-
jor reflected events have been well interpreted. On the other
hand, the `2 approach faces cycle skipping issues for diving
waves, as marked by black arrows in Figure 3a. Indeed, the
GSOT based approach have reduced the ambiguity for fitting
these diving waves (Figure 3b), and thus introduced better ro-

Figure 2: VP models built by `2-JFWI (a) and GSOT-JFWI (b)
using the linearly increasing initial model, and δ I (c,d) recon-
structed in these VP models, respectively.

Offset (km)
0 6 06

a)

b)

Figure 3: Observed and predicted data corresponding to `2-
JFWI (a) and GSOT-JFWI (b) results at xs =7.3 km.

bustness against cycle skipping issues for JFWI.

Then, we present the FWI results by starting from the 1D lin-
ear VP model and from the VP models built by two JFWI ap-
proaches, respectively. Note that we reset the density model to
its initial value during subsequent inversion to put the resolu-
tion back to velocity. The classical FWI approach is severely
cycle skipped (Figure 4a). On the other hand, `2-FWI pro-
cedures starting from JFWI results both provide sufficient VP
models of which the high-wavenumber contents are enriched
(Figures 4b and 4c). Interestingly, GSOT-FWI starting from
the GSOT-JFWI result (Figure 4d) produces almost the same
result as in the GSOT-JFWI+`2-FWI case. It supports the the-
ory that GSOT is a generalization of `2 distance and conse-
quently will not decrease the resolution of results with an ap-
propriate choice of τ . To carefully check the quality of re-
constructed VP models, we extract the vertical and horizon-
tal profiles of different results. `2-JFWI+`2-FWI underesti-
mate the velocity at areas deeper than 2 km compared to the
GSOT-JFWI+`2-FWI and GSOT-JFWI+GSOT-FWI cases, as
presented in Figure 5a. This part is the most well-illuminated
area for the acquisition considered and any inaccuracy can re-
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Figure 4: VP models reconstructed by `2-FWI (a), `2-JFWI
followed by `2-FWI (b), GSOT-JFWI followed by `2-FWI (c),
and GSOT-JFWI followed by GSOT-FWI (d).

sult from the approach adopted. The horizontal profiles (Fig-
ure 5b) are almost identical for both three cases, except that `2-
JFWI+`2-FWI overestimates the velocity at around x =10 km.
In the data calculated for the result of `2 FWI starting from
1D linear model (Figure 6a), it is visible that observed and
predicted early arrivals are not in phase. For the same event
marked by black arrows, `2-JFWI+`2-FWI significantly im-
proves the consistency between two data, but the phase ambi-
guity still exists (Figure 6b). Differently, the two cases strat-
ing from GSOT-JFWI results are immune to cycle-skipping
(Figures 6c and 6d). Consequently, we consider that GSOT-
JFWI+`2-FWI and GSOT-JFWI+GSOT-FWI have provided the
best results in the sense that data are properly interpreted.

The computational cost for a preconditioned IpWI gradient is
1.5 times as in the conventional case. The JFWI gradient re-
quires twice the computational time as in the FWI case. No
additional memory requirements are introduced in both cases.
Considering the same misfit function, the JFWI workflow re-
quires around twice the computational time as in the FWI case
until convergence for our experiment. Thanks to the efficient
GSOT approach developed by Métivier et al. (2019), the com-
putational cost increase for our configurations is limited to ap-
proximately 2.5 % compared to standard `2-JFWI or `2-FWI.

CONCLUSIONS
We apply GSOT to JFWI in this study. With a very limited
offset range of data, GSOT-based JFWI followed by FWI pro-
vides well-reconstructed VP model of subsurface starting from
the 1D linear model. It is remarkable that GSOT significantly
reduces the cycle skipping issues for JFWI but does not de-
crease the resolution of results. Consequently, it is of great
interest for JFWI to adopt GSOT to further improve the ro-
bustness. The proposed workflow can be seamlessly extended
to 3D at affordable numerical costs. The future work consists
of the application of GSOT based JFWI to 3D field data.
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Figure 5: Vertical profiles at x =7.4 km (a) and horizontal pro-
files at z =1.6 km (b) for different final VP models.
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Figure 6: Observed and predicted data at xs =7.3 km corre-
sponding to the models reconstructed by `2-FWI (a), `2-JFWI
followed by `2-FWI (b), GSOT-JFWI followed by `2-FWI (c),
and GSOT-JFWI followed by GSOT-FWI (d).
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