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INTRODUCTION

Lyman-α (Lyα) emitters (LAEs) are galaxies that are identified through the Lyα line of neutral hydrogen (λ1215.67 Å). Owing to the high cosmic abundance of hydrogen and the large oscilla-tor strength of the 2p -→ 1s transition, Lyα emission has been recognized as an excellent tool to identify galaxies using a variety of techniques, including narrow-band (NB) and medium-band surveys (e.g., Malhotra & Rhoads 2002;Gronwall et al. 2007;Sobral et al. 2018;Shibuya et al. 2018), integral-field-spectroscopy (IFS) surveys (e.g., [START_REF] Wisotzki | [END_REF]Inami et al. 2017;Leclercq et al. 2017;Urrutia et al. 2019), multi-object spectroscopy (e.g., Cassata et al. 2011), and long-slit spectroscopy (e.g., Rauch et al. 2008Rauch et al. , 2016)). LAEs detected via different techniques can probe a diverse galaxy population, however, there is a growing consensus that the majority of LAEs are typically low-mass, star-forming galaxies (e.g., Gawiser et al. 2007;Hagen et al. 2016;Hao et al. 2018).

Though Lyα is an excellent tool to detect galaxies, particularly at high redshift (z > 2), interpreting Lyα emission spectra is challenging because of resonant scattering and susceptibility to dust extinction (e.g., Hayes 2015). The Lyα spectrum emerging from a uniform spherical, static gas cloud with a central Lyα emitting source appears as symmetric double peaked emission with a peak separation that increases with increasing line-center optical depth (e.g., Neufeld 1990;Zheng & Miralda-Escudé 2002;Cantalupo et al. 2005;Verhamme et al. 2006;Dijkstra et al. 2006). Any bulk motion of the gas with respect to the central source, however, makes the peaks asymmetric. For example, outflowing (infalling) gas would enhance the red1 (blue) peak and suppress the blue (red) peak (e.g., Laursen et al. 2009). In fact, the signature of outflowing gas (i.e., a dominant asymmetric red peak and an occasional weaker blue "bump") is ubiquitous in the spectra of high-z LAEs (e.g., Gronke 2017). Composite spectra of high-z LAEs indeed show signatures of metal enriched outflows with outflow velocity increasing with continuum luminosity (Trainor et al. 2015). Owing to resonant scattering, the Lyα emission line does not trace the systemic redshift. In fact, observations have shown that Lyα redshifts are, on average, shifted by ≈ +230 km s -1 (for LAEs; e.g., Shibuya et al. 2014) to ≈ +440 km s -1 (for Lyman break galaxies (LBGs); e.g., Steidel et al. 2010). The Lyα redshifts should, thus, be taken with caution in the absence of non-resonant rest-frame ultraviolet (UV)/optical stellar absorption and/or nebular emission lines which provide the most accurate galaxy redshifts.

Recently, Verhamme et al. (2018) suggested two empirical relations to recover the systemic redshift of galaxies from their Lyα line profile using the observed correlations between (i) the velocity offset (measured from non-resonant UV/optical lines) and the full width at half-maximum (FWHM) of the red peak of the Lyα line; (ii) the velocity offset and the velocity separation between the red peak and the blue bump. Erb et al. (2014) reported > 3σ correlations between velocity offset and R-band magnitude, M UV , and the velocity dispersion of nebular emission lines for a sample of 36 LAEs at z ≈ 2 -3. In addition, a strong anti-correlation (> 7σ) was found between velocity offset and the Lyα equivalent width (EW 0 ). Such empirical relationships are valuable for understanding the physics of the Lyα emitting galaxies, and provide indirect means to obtain the systemic redshifts. Finding and confirming such empirical relations and observational trends using complementary techniques is thus important.

Obtaining accurate systemic redshifts is particularly important for studying the circumgalactic medium (CGM) of galaxies using background quasars, since the association of galaxies with their CGM absorption lines, seen in the quasar spectrum, is based on velocity coincidence. CGM studies in the literature typically adopt 1). This is the first systematic survey of the CGM of LAEs in absorption (Muzahid et al., in preparation). Since, we generally do not have access to stellar absorption and/or non-resonant nebular emission lines for the LAEs in our sample, we must make use of the Lyα redshifts (z peak ; determined from the peak of the Lyα line). Here we adopt the approach proposed by Rakic et al. (2011) to calibrate the Lyα redshifts in a statistical manner using mean/median stacked CGM absorption (H Lyα) profiles, by requiring that the average CGM absorption profiles must be centered on the systemic velocity since the LAEs are randomly oriented with respect to the background quasar. Rakic et al. (2011) applied this technique to a large sample of z ≈ 2.3 LBGs, finding velocity offsets that agreed with the direct measurements from non-resonant nebular lines available for a subset of their sample. This paper is organized as follows: In Section 2 we briefly describe the observations and data reduction procedures. In Section 3 we summarize the properties of our LAE sample. Section 4 presents the main results, followed by a discussion in Section 5. Section 6 concludes the paper. Throughout this study, we adopt a flat ΛCDM cosmology with H 0 = 70 km s -1 Mpc -1 , Ω M = 0.3 and Ω Λ = 0.7. All distances given are in physical units.

OBSERVATIONS & DATA REDUCTION

Our MUSEQuBES survey utilizes ≈ 50h of MUSE GTO observations in the wide field mode centered on 8 high-z quasars that have high quality (S/N > 50 per pixel) optical spectra obtained with the Very Large Telescope Ultraviolet and Visual Echelle Spectrograph (VLT/UVES) and/or Keck HIgh Resolution Echelle Spectrometer (Keck/HIRES). The details of the quasar fields are given in Table 1. The MUSE and UVES/HIRES observations and data reduction procedures will be presented in Muzahid et al., (in preparation). The MUSE data for four of the eight quasar fields (Q0055-269, Q1317-0507, Q1621-0042, and Q2000-330) were reduced using the standard MUSE pipeline v1.6 [START_REF] Weilbacher | Software and Cyberinfrastructure for Astronomy II[END_REF]) and post-processed with the tools in the CubExtractor package (CubEx v1.6; Cantalupo in preparation; see Cantalupo et al. 2019, for a description) to improve flat-fielding and sky subtraction as presented in Marino et al. (2018). The remaining fields were reduced using the MUSE pipeline software (v2.4) and post-processed with CubEx v1.6 following the same procedures.

The optical spectra of the quasars were obtained primarily using VLT/UVES with resolution, R ≈ 45000. The final coadded and continuum normalized spectra were downloaded from the SQUAD database (Murphy et al. 2019) for all but Q1422+23. The spectrum of the quasar Q1422+23 was reduced using the Common Pipeline Language (CPL v6.3) of the UVES pipeline. After the standard reduction, the custom software UVES Popler2 was used to combine the extracted echelle orders into single 1D spectra. The coadded spectrum was continuum normalized by low-order spline interpolation to the absorption line free regions determined by iterative sigma-clipping. Keck/HIRES data are available for four quasars: BRI1108-07, PKS1937-101, QB2000-330, and Q1422+23. We used the HIRES spectra of PKS1937-101 and Q1422+23 from the KODIAQ data release (O'Meara et al. 2015) to fill in the gaps in the UVES spectra. We combined the continuum normalized UVES and HIRES spectra using inverse-variance weighting. Air-to-vacuum conversion was done for both the MUSE and UVES spectra before performing any measurements.

For the CGM spectral stacking analysis we have first used the pixel optical depth method (Cowie & Songaila 1998;Aguirre et al. 2002;Schaye et al. 2003;Turner et al. 2014) using the python module PODPy developed by Turner et al. (2014). PODPy iteratively examines whether the optical depth of a given pixel in a quasar spectrum is consistent with being the transition of interest (e.g., Lyα, C ). PODPy corrects for contamination by flagging the pixels whose optical depths are not consistent with the expectation. For multiplets, it uses all available transitions (up to Lyη for H ) leading to a larger dynamic range in the "recovered" optical depth. We refer the reader to Appendix A of Turner et al. (2014) for more details. The optical depth recovered by PODPy was then converted to flux before stacking the quasar spectra.

THE LAE SAMPLE

We used CubEx v1.6 (Cantalupo et al. 2019) for automatic extraction of emission line sources in the MUSE datacubes. CubEx uses a 3D extension of the connected-component labeling algorithm. The source extraction and classification procedure will be presented in detail in Muzahid et al., (in preparation). Briefly, after spatially smoothing (by 2 pixels radius) the datacubes and the corresponding variances at each wavelength layer, we require three conditions to be satisfied for a detection: (i) S/N per voxel > 4.0, (ii) number of connected voxels N vox > 40, and (iii) a spectral S/N > 4.5 measured on the 1D Lyα emission line spectrum. All the extracted objects are then visually inspected (both 1D spectra, extracted using the segmentation maps produced by CubEx, and pseudo-NB images around the emission features) and classified by two members of the team (SM and RAM) independently.

A total of 96 LAEs have been detected in the 8 MUSE cubes. The impact parameters (ρ) of the LAEs from the quasar sight lines are plotted against the Lyα peak redshifts (z peak ) in Fig. 1. The redshifts of the LAEs are determined directly from the peak of the emission lines in the 1D spectra without any modelling. We ensured that z peak is not affected by noise-spikes by visually inspecting the spectra. In case of double peaked emission we used the red peak for the z peak measurement. The minimum z peak (≈2.9) is determined by the lowest wavelength covered by MUSE. Note that we did not use the first 8-10 wavelength layers (≈ 10 Å) in our search, in order to avoid a large number of spurious detections at the very edge of the spectrum. The maximum z peak is determined by the quasar redshift (z QSO ). In order to exclude the quasars' proximity regions (see e.g., Muzahid et al. 2013), we did not use the 3000 km s -1 bluewards of the z QSO . The LAEs in our sample span a redshift range of 2.92-3.82 with a median z peak of 3.33. The maximum and minimum ρ values are determined by the MUSE field-of-view and the quasars' point spread functions (PSFs), respectively. The ρ values span 16-315 kpc with a median of 165 kpc.

The data points in Fig. 1 are color coded by the Lyα luminosity, L(Lyα), calculated from the Galactic extinction corrected line flux, f (Lyα)3 . The f (Lyα) values are measured from pseudo-NB images using the curve-of-growth method following Marino et al. (2018). The f (Lyα) values are found to be in the range 10 -17.7 -10 -16.0 erg cm -2 s -1 with a median value of 10 -17.0 erg cm -2 s -1 . The L(Lyα) spans 10 41.3 -10 42.9 erg s -1 with a median value of 10 42.0 erg s -1 . Following Verhamme et al. (2018), the FWHM (of the red peak for the handful of double peaked profiles) is calculated directly from the 1D spectrum, without any modelling and without correcting for instrumental broadening, as the velocity width of the Lyα emission line with flux above half of the maximum flux value. The FWHM values span the range 120-528 km s -1 with a median value of 240 km s -1 . Here we note that 10 LAEs show FWHM lower than the MUSE spectral resolution of ≈ 166 km s -1 at the median Lyα wavelength of our sample.

The UV continuum fluxes, f UV , and the associated errors are derived by integrating the 1D spectra, extracted from the original cubes (not continuum subtracted) and the corresponding variance cubes using the same segmentation maps used to obtain the 1D Lyα emission spectra. We chose a wavelength range of rest-frame 1410-1640 Å, the same as the wavelength range covering the FWHM of the G ALE X far-UV transmission curve. No f UV are calculated for The zero velocity (V peak ) is defined by z peak , the redshift of peak Lyα emission. The profiles are normalized to the pseudo-continuum estimated far away from zero velocity. The 1σ errors are calculated from 1000 bootstrap realizations of the LAE sample. The best-fitting Gaussian profiles are shown by the smooth red curves. The centroids of the Gaussians (V CGM ), marked by the blue vertical dashed lines, provide the velocity offset, V offset ≡ (V peak -V CGM ). V offset measured for the different stacked profiles are indicated in the corresponding panels. The weighted average of the V offset values is 169 ± 10 km s -1 (178 ± 10 km s -1 ) for the median (mean) stacked profiles.

the 15 LAEs that are contaminated by low-z continuum sources. About 48% (39/81) of the remaining LAEs are detected in UV continuum emission with > 5σ significance. For the 39 continuum detected objects, f UV values (corrected for Galactic extinction) are in the range 10 -17.0 -10 -15.6 erg cm -2 s -1 with a median of 10 -16.4 erg cm -2 s -1 . For the remaining 42 LAEs for which we could place meaningful 5σ upper limits, the f UV values were found to be lower than 10 -16.4 erg cm -2 s -1 . The UV continuum luminosity, L UV , ranges from 10 42.1 -10 43.4 erg s -1 for the continuum detected objects (median 10 42.7 erg s -1 ). For the non-detections, the upper limits on L UV are in the range of 10 41.9 -10 42.7 erg s -1 .

The dust-uncorrected SFRs are calculated from the measured L UV values using the local calibration relation of Kennicutt (1998) corrected to the Chabrier (2003) initial mass function (IMF; see Madau & Dickinson 2014). The SFRs for the continuum detected LAEs span 0.3 -7.1 M yr -1 with a median SFR of 1.3 M yr -1 . For the continuum un-detected LAEs, the SFRs are < 1.5 M yr -1 . The rest-frame equivalent width of the Lyα emission (EW 0 ) is obtained by dividing the Lyα line flux by the continuum flux density and then divided by (1 + z peak ). The continuum flux density is estimated from the extrapolation of the measured continuum at rest-frame 1500 Å assuming a UV continuum slope (β UV ) of -2.0 (Bouwens et al. 2014). The continuum detected objects have EW 0 in the range 9-113 Å with a median EW 0 of 48 Å.

In our redshift range of interest (z ≈ 3-4), the presence of the non-resonant C ] λλ1907,1909 doublet in the MUSE spectra is an excellent means to obtain the systemic redshift. We detect the C ] λλ1907,1909 doublet for only 3 LAEs, one of them being tentative. Such a low detection rate of the C ] line is consistent with the recent results of Maseda et al. (2017).

RESULTS

The median and mean stacked absorption profiles of H Lyα and C , arising from the CGM of the LAEs, are shown in Fig. 2. For each transition (H λ1215 or C λ1548), we have selected the part of the quasar spectrum covering a velocity range of -3000 to +3000 km s -1 with respect to the z peak for a given LAE. The mean and median fluxes for the full sample are then calculated from the PODPy "recovered" pixel optical depths in bins of 50 km s -1 . We note here that our main conclusions remain valid even if we use the original quasar spectra for stacking instead of using PODPy recovered spectra. However, in that case the stacked profiles become noisier, particularly when we split the sample into different sub-samples. We thus chose to use the PODPy recovered spectra. Fig. 2 shows the first measurements of the CGM of LAEs in absorption for a statistically meaningful sample (see Díaz et al. 2015 andZahedy et al. 2019, for individual examples). We detect absorption signals for H and C with > 5σ significances. a The LAEs with FWHM smaller than the MUSE resolution (< 166 km s -1 ) are excluded.
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b The z peak is matched for these two sub-samples. c The FWHM is matched for these two sub-samples.

d The LAEs that are blended with low-z continuum objects are excluded. Upper/lower limits are considered as detections in the median and percentile calculations.

Note that, none of the stacked absorption profiles are centered on the 0 km s -1 defined by the redshift of peak Lyα emission, z peak . All profiles show velocity offset, V offset > 150 km s -1 . Here

V offset = (V peak -V CGM )
, where V CGM is the velocity centroid of the CGM absorption profile, and V peak is the velocity corresponding to z peak . The V offset measured for the median (mean) stacked H profile is 172 ± 11 km s -1 (176 ± 11 km s -1 ). The velocity offsets and the associated errors are determined from Gaussian fits. Moreover, the median and mean stacked C profiles show V offset of 156 ± 22 km s -1 and 185 ± 23 km s -1 , respectively. Owing to the relative weakness of the C absorption, the estimated errors on the corresponding V offset measurements are larger. Nevertheless, the stacked C profiles provide independent measurements of V offset , and are fully consistent with the H measurements. The weighted average of the V offset values measured from the median and mean stacked profiles are 169 ± 10 km s -1 and 178 ± 10 km s -1 , respectively. Such offsets imply that the z peak values are systematically redshifted with respect to the systemic redshifts, consistent with the results from the observations of non-resonant rest-frame UV/optical nebular emission/absorption lines (e.g., Steidel et al. 2010;Shibuya et al. 2014;Verhamme et al. 2018).

In order to investigate possible trends between V offset and other parameters (e.g., z peak , ρ, FWHM), we generated stacked H and C absorption profiles for several sub-samples corresponding to different parameters, as summarized in Table 2. The velocity offsets and corresponding uncertainties, determined from Gaussian fits to the stacked H and C profiles (as in Fig. 2), for the different subsamples are also listed in the table. The last two columns (columns 11 & 12) provide the combined constraints on V offset , obtained from the inverse variance weighted average of the velocity offsets measured from the H and C profiles, and are illustrated in Fig. 3. We will only use these weighted average V offset values in all further discussions.

It is evident from Fig. 3 that V offset does not show any significant trend with ρ and L(Lyα). The difference in V offset between the corresponding "high" and "low" sub-samples, calculated for both the mean and median stacked profiles, has < 1.5σ significance. There is a 2.3σ (1.0σ) difference between the V offset values measured from the median (mean) stacked profiles of the low-and high-z peak sub-samples. However, we note that the trend is actually driven by FWHM, owing to a 3.4σ anti-correlation between z peak 2. The velocity offsets measured from the median and mean stacked profiles are indicated by the filled squares and open circles respectively. The red and blue points correspond to the "high" and "low" sub-samples (Table 2), respectively. V offset shows significant trends with FWHM, SFR, and EW 0 . and FWHM (Spearman rank correlation coefficient, r s = -0.35)4 . Indeed, the difference reduces to < 2σ when the low-and highz peak sub-samples are matched in FWHM.

There is a 2.0σ (1.4σ) difference in the V offset for the high-FWHM and low-FWHM sub-samples measured from the median (mean) stacked profiles. However, the difference increases for the FWHM resolved sub-samples, from which we excluded the LAEs with FWHM smaller than the MUSE resolution, to 2.6σ (2.0σ for the mean stack). Since we noted an anti-correlation between z peak and FWHM, it is important to investigate whether the trend between V offset and FWHM remains when the low-and high-FWHM subsamples are matched in z peak . In fact, we do find a 2.9σ (3.3σ for the mean stack) difference in V offset between the low-and high-FWHM sub-samples when they are matched in z peak . In addition, a clear difference, with > 2.5σ significance, is seen in V offset measured for the low-and high-SFR sub-samples, for both the mean and median stacked profiles. Finally, the strongest difference (> 4.5σ) in V offset is seen between the low-and high-EW 0 sub-samples, with higher EW 0 yielding a smaller velocity offset. In the next section we discuss the possible implications of these new results in the context of existing observational and theoretical studies.

DISCUSSION

Simple, idealized models of Lyα radiation transfer with a central ionizing point source surrounded by a homogeneous, spherically symmetric shell of gas with a range of neutral hydrogen column density (N(H )), dust opacity, velocity, and temperature (the so-called "shell model", see e.g., Zheng & Miralda-Escudé 2002; Verhamme et al. 2006) have been surprisingly successful in explaining a large variety of Lyα line profiles (e.g., Hashimoto et al. 2015;Gronke 2017). Using the shell model, Verhamme et al. (2018) found a correlation between FWHM and V offset (see also Claeyssens et al. 2019). The left panel of Fig. 4 shows the weighted average V offset , measured from the median stacked CGM absorption (H and C ) profiles, against the median FWHM of the low-and high-FWHM resolved sub-samples (blue squares). Consistent with the model prediction, the stacked CGM absorption profiles show larger velocity offsets for the high-FWHM resolved sub-sample (Table 2). The dashed line shows the empirical relation between V offset and FWHM obtained by Verhamme et al. (2018) from the sample of LAEs with known systemic redshifts as indicated by the star symbols. Verhamme et al. (2018) used the _ routine of Cappellari et al. (2013), which includes a procedure for the rejection of outliers, and obtained a slope of 0.9 ± 0.14, an intercept of -34 ± 60 km s -1 , and an intrinsic scatter of 72 ± 12 km s -1 . The slope (0.66) and intercept (2 km s -1 ) we obtain from the stacked CGM absorption profiles are broadly consistent with Verhamme et al. (2018). Note that the trend between V offset and FWHM found by Verhamme et al. (2018) was determined via observations of the interstellar medium (ISM) properties (nebular emission lines) whereas we confirm the same trend using CGM observations. 2018) for details). The dashed line and the shaded region represent the best-fit linear relation, V offset = 0.9(±0.14) × FWHM -34(±60) km s -1 , for the star symbols and its 1σ range, respectively, as found by Verhamme et al. (2018). The blue squares represent our weighted average V offset measurements for the FWHM resolved sub-samples as in Table 2. The dotted straight line connecting the blue squares has a slope (0.66) and an intercept (2) that are broadly consistent with the empirical relation of Verhamme et al. (2018). Right: Weighted average V offset , measured from the median stacked profiles, as a function of SFR for our sample (blue squares). The orange filled circle represents the measurement from Rakic et al. (2011) for z ≈ 2.3 LBGs. The best-fit linear relation between log V offset and log SFR (log V offset = (0.16 ± 0.03) log SFR + (2.26 ± 0.02)) for those three points is indicated by the dashed line. The open diamonds and the open triangles represent data points from Shibuya et al. (2014) and Trainor et al. (2015), respectively (see text). The filled diamond and the filled triangle represent the median SFR and the median V offset of the corresponding samples, with the error bars indicating the standard deviations. In both panels, the error bars along the x-axis indicate 68 percentile ranges.

an average velocity offset between Lyα and nebular redshifts of 234±9 km s -1 . The stellar mass (M * ) estimates for the LAEs in their sample range between ≈ 10 9 and 10 10 M . Clearly, the NB-selected LAEs exhibit a smaller velocity offset compared to the broadband-(UV color) selected LBGs (as already noted by Hashimoto et al. 2013Hashimoto et al. , 2015;;Shibuya et al. 2014). Hashimoto et al. (2015) argued that the low V offset of LAEs compared to LBGs are related to smaller N(H ) in LAEs. Note that, both LBGs and NB-selected LAEs show higher velocity offsets (by factors of ≈ 2.6 and ≈ 1.4, respectively) compared to what we measure for the MUSE-detected LAEs.

Using the mean H CGM absorption profile of ≈300 UV color selected galaxies in the redshift range 2 -3, Rakic et al. (2011) estimated V offset = 295 ± 35 km s -1 , which is ≈ 1.7 times higher than what we obtained for our sample. The galaxies in Rakic et al. (2011) were drawn from Steidel et al. (2010) with a typical halo mass of ∼ 10 12 M (Rakic et al. 2013). Using clustering properties of LAEs, Khostovan et al. (2018) found a strong, redshift-independent correlation between L(Lyα) normalized by the characteristic line luminosity, L (z), and dark matter halo mass. According to their Eq. 13, the median L(Lyα) of our sample of ≈ 10 42 erg s -1 (L(Lyα)/L (z) = 0.2)5 would correspond to a halo mass of M h ∼ 10 10.8 M , corresponding to a stellar mass of M * ∼ 10 8.0 M (Moster et al. 2013), assuming LAEs are average main sequence galaxies. Additionally, the median SFR (1.3 M yr -1 ) of our sample corresponds to M * ∼ 10 8.6 M (Behroozi et al. 2019) and M h ∼ 10 11.1 M (Moster et al. 2013). Clearly, the MUSE-detected LAEs in our sample are, on average, at least an order of magnitude lower in mass than the LBG sample of Rakic et al. (2011). Higher mass galaxies tend to have higher SFR which, in turn, can drive high velocity, galactic-scale winds causing higher (red) shift of the Lyα emission line.

We find a positive (negative) trend between V offset and SFR (EW 0 ), consistent with the findings of Erb et al. (2014). The anticorrelation between V offset and EW 0 is understood in terms of higher optical depth of gas with near systemic velocity (Steidel et al. 2010;Erb et al. 2014). The right panel of Fig. 4 shows the V offset measured from the median stacked profiles against the median SFRs of the low-and high-SFR sub-samples. In addition, we show the V offset measurement from Rakic et al. (2011) for their sample of z ≈ 2.3 LBGs with a median SFR of ≈ 25 M yr -1 (Turner et al. 2014;Steidel et al. 2014). A positive trend between V offset and SFR is evident in the loglog plot. A linear least-squares fit to the data points results in a slope of 0.16 ± 0.03 and an intercept of 2.26 ± 0.02, indicating a sub-linear relationship V offset ∝ SFR 0.16±0.03 . The relation holds over almost 2 orders of magnitude range in SFR.

Note that the SFRs in our sample are not corrected for dust, whereas the SFRs for the LBG sample of Rakic et al. (2011) are dust-corrected. Using the mean β UV of -2.03 estimated for ∼ 0.1L galaxies at z ≈ 4 by Bouwens et al. (2014) and the relationship between β UV and UV extinction (A 1600 ) from Meurer et al. (1999) 6 , we obtain a mild ≈ 0.15 dex correction in SFR for our sample. Incorporating such a correction factor in SFR provides a consistent best-fitting relationship between V offset and SFR (i.e., a slope of 0.17 The correlation between SFR and V offset can be explained as follows. Galaxies with higher SFRs are likely to drive higher velocity winds. Higher velocity winds will enhance and shift the red Lyα peak to a longer wavelength resulting in a larger velocity offset (see Fig. 8 of Laursen et al. 2009, for example). Using the scaling relations between SFR and M * (SFR ∝ M * at z ≈ 4; see e.g., Fig. 3 of Behroozi et al. 2019), and between M * and M h (M * ∝ M 2 h at z ≈ 4; e.g., Moster et al. 2013), we obtain V offset ∝ V cir , where

V cir (∝ M 1/3 h ∝ M 1/6 * ∝ SFR 1/6
) is the halo circular velocity. It is interesting to note that in models of momentum driven galactic outflows the wind speed scales as V cir (e.g., Murray et al. 2005;Heckman et al. 2015). Moreover, models of Lyα radiative transfer suggest that V offset is twice the shell expansion velocity (e.g., Verhamme et al. 2006). Indeed, Rakic et al. (2011) found that for z ≈ 2.3 LBGs, V offset is about twice the blueshift of the interstellar absorption lines thought to arise in galactic winds. Hence, if the Lyα emission is back scattered off an outflowing medium, we expect V offset ∝ V cir which is consistent with our results. Alternatively, a static medium (or a medium without a clear bulk flow) with higher N(H ) for higher V cir can also explain the correlation.

SUMMARY & CONCLUSIONS

Determining accurate redshifts for LAEs is challenging owing to the resonant scattering of Lyα photons with neutral hydrogen present in the ISM and in the CGM. Here we use CGM absorption lines, detected in the spectra of 8 background quasars, of 96 LAEs at z ≈ 3.3 to calibrate the Lyα redshifts statistically. These LAEs are detected in 8 MUSE fields centered on the 8 bright quasars with redshifts 3.7-3.8. Our method for calibrating Lyα redshifts, which was pioneered by Rakic et al. (2011), relies on the assumption that the average (stacked) CGM absorption profiles of LAEs must be centered on the systemic velocity. This simply follows from the fact that the LAEs are randomly oriented with respect to the background quasars. Therefore, the CGM absorption, originating in outflows/accretion/co-rotating gas-disks, should have no preferred line of sight velocities. We measured V offset = 169 ± 10 km s -1 and 178 ± 10 km s -1 , from the median and mean stacked absorption profiles, respectively. The V offset obtained for the MUSE-detected LAEs in our sample is smaller than that measured for LBGs in the literature, likely due to the lower masses of LAEs compared to LBGs. V offset shows positive trends with FWHM and a negative trend with EW 0 . Finally, a sub-linear relation is obtained between V offset and SFR, which, in turn, suggests that V offset scales as the halo circular velocity.

Stacked CGM absorption profiles, as we obtained here, are a powerful tool to calibrate Lyα redshifts in a statistical manner, which can be applied to samples without systemic redshifts. Nevertheless, obtaining rest-frame optical nebular line diagnostics using future VLT/KMOS, Keck/MOSFIRE, and/or JWST/NIRSpec observations would be extremely useful to determine the systemic redshifts on a galaxy-by-galaxy basis, and to understand the physical properties of these high-z, presumably low-mass galaxies.

Figure 1 .

 1 Figure 1. Scatter plot of impact parameter versus redshift of the 96 LAEs. The data points are color coded by the Lyα luminosity. The median impact parameter and median redshift are indicated by the arrows. The maximum impact parameter allowed by the MUSE FoV is shown by the dashed line on the top.

Figure 2 .

 2 Figure 2. Median (left) and mean (right) stacked CGM absorption profiles of H λ1215 (bottom) and C λ1548 (top).The zero velocity (V peak ) is defined by z peak , the redshift of peak Lyα emission. The profiles are normalized to the pseudo-continuum estimated far away from zero velocity. The 1σ errors are calculated from 1000 bootstrap realizations of the LAE sample. The best-fitting Gaussian profiles are shown by the smooth red curves. The centroids of the Gaussians (V CGM ), marked by the blue vertical dashed lines, provide the velocity offset, V offset ≡ (V peak -V CGM ). V offset measured for the different stacked profiles are indicated in the corresponding panels. The weighted average of the V offset values is 169 ± 10 km s -1 (178 ± 10 km s -1 ) for the median (mean) stacked profiles.

  sub-sample for which V offset is measured. (2) The threshold value of the parameter based on which the sub-sample is made: ρ in kpc, FWHM in km s -1 , L(Lyα) in erg s -1 , SFR in M yr -1 , and EW 0 in Å. (3) The median value of the parameter for the sub-sample. (4) 16 th percentile of the parameter. (5) 84 th percentile of the parameter. (6) Number of LAEs contributing to the stack. (7) The velocity offset in km s -1 measured from the median stacked H profile. (8) The same as (7) but for the mean stacked H profile. (9) The same as (7) but for the median stacked C profile. (10) The same as (7) but for the mean stacked C profile. (11) The weighted average of V offset measured from the median stacked H and C profiles. (12) The same as (11) but measured from the mean stacked H and C profiles.

Figure 3 .

 3 Figure 3. The inverse variance weighted average of the velocity offsets measured from the H and C absorption profiles for the different sub-samples listed in Table2. The velocity offsets measured from the median and mean stacked profiles are indicated by the filled squares and open circles respectively. The red and blue points correspond to the "high" and "low" sub-samples (Table2), respectively. V offset shows significant trends with FWHM, SFR, and EW 0 .

  Steidel et al. (2010) obtained a mean velocity offset of 445 ± 27 km s -1 between Lyα and systemic redshifts defined by the Hα lines for a sample of 41 z ≈ 2.3 LBGs. The total baryonic masses estimated for those LBGs are 10 10 -10 11.5 M . Using a sample of 22 NB-selected (with a typical bandwidth of ≈ 100 Å) LAEs with Lyα equivalent widths > 50 Å,Shibuya et al. (2014) obtained 

Figure 4 .

 4 Figure 4. Left: V offset as a function of FWHM of the Lyα line. The star symbols represent LAEs from the literature for which the systemic redshifts are known (seeVerhamme et al. (2018) for details). The dashed line and the shaded region represent the best-fit linear relation, V offset = 0.9(±0.14) × FWHM -34(±60) km s -1 , for the star symbols and its 1σ range, respectively, as found byVerhamme et al. (2018). The blue squares represent our weighted average V offset measurements for the FWHM resolved sub-samples as in Table2. The dotted straight line connecting the blue squares has a slope (0.66) and an intercept (2) that are broadly consistent with the empirical relation ofVerhamme et al. (2018). Right: Weighted average V offset , measured from the median stacked profiles, as a function of SFR for our sample (blue squares). The orange filled circle represents the measurement fromRakic et al. (2011) for z ≈ 2.3 LBGs. The best-fit linear relation between log V offset and log SFR (log V offset = (0.16 ± 0.03) log SFR + (2.26 ± 0.02)) for those three points is indicated by the dashed line. The open diamonds and the open triangles represent data points fromShibuya et al. (2014) andTrainor et al. (2015), respectively (see text). The filled diamond and the filled triangle represent the median SFR and the median V offset of the corresponding samples, with the error bars indicating the standard deviations. In both panels, the error bars along the x-axis indicate 68 percentile ranges.

  ± 0.04 and an intercept of 2.23 ± 0.02). The open diamonds and the open triangles in the right panel of Fig. 4 represent individual LAEs fromShibuya et al. (2014) andTrainor et al. (2015), respectively, for which the SFRs and V offset values, measured from non-resonant nebular lines, are known. The SFRs for theTrainor et al. (2015) sample are calculated from the Hα luminosities usingKennicutt (1998) relation. The SFRs of all these LAEs have been corrected to theChabrier (2003) IMF. The median SFRs and the median V offset values of these samples are indicated by the corresponding filled symbols. If we include these two points in the fit, we obtain a slope of 0.15±0.03 and an intercept of 2.26 ± 0.02, which are fully consistent with what we obtained earlier.

Table 1 .

 1 The data sample

	Quasar Field	RA QSO	Dec QSO	z QSO	t exp	N LAE
	(1)	(2)	(3)	(4)	(5)	(6)
	Q1422+23	14:24:38.1	+22:56:01 3.620	4	8
	Q0055-269	00:57:58.1	-26:43:14 3.655	10	12
	Q1317-0507	13:20:30.0	-05:23:35 3.700	10	22
	Q1621-0042	16:21:16.9	-00:42:50 3.709	9	12
	QB2000-330	20:03:24.0	-32:51:44 3.773	10	14
	PKS1937-101 19:39:57.3	-10:02:41 3.787	3	2
	J0124+0044	01:24:03.0	+00:44:32 3.834	2	4
	BRI1108-07	11:11:13.6	-08:04:02 3.922	2	22
	Notes-(1) Name of the quasar field; (2) Right Ascension (J2000), (3)
	Declination (J2000), and (4) Redshift of the quasar; (5) MUSE exposure
	time of the field in hour; (6) Number of detected LAEs in the redshift range
	of interest.					

a velocity window of ±500 km s -1 around the galaxy redshift to search for associated CGM absorption. It is thus essential to know the galaxy redshifts with an accuracy of ∆z/(1 + z) ≈ 10 -3 or better. Using guaranteed time observations with the Multi-Unit Spectroscopic Explorer (MUSE;

Bacon et al. 2010)

, we conducted the MUSEQuBES (MUSE Quasar-field Blind Emitters Survey) surveya blind search for LAEs in 1 × 1 fields centered on 8 bright z ≈ 3.6-3.8 quasars (see Table

Table 2 .

 2 Velocity offset measurements for different sub-samples

	Sub-sample	Threshold Median	16 th	84 th

The lower energy (higher wavelength) peak.

MNRAS 000, 1-9 (2019)

https://doi.org/10.5281/zenodo.44765

We used the E(B -V) values fromSchlafly & Finkbeiner (2011) and the Fitzpatrick (1999) extinction curve to de-redden the fluxes.MNRAS 000, 1-9 (2019)

The anti-correlation between z peak and FWHM is likely due to the fact that the MUSE resolution improves from ≈ 180 km s -1 to ≈ 150 km s -1 between z ≈ 3.0 and 3.6.

log L (z = 3.3)/erg s -1 = 42.68 +0.07 -0.06 , see Table2ofKhostovan et al. (2018) 

A 1600 = 4.43 + 1.99 × β UV MNRAS000, 1-9 (2019)
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