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Abstract:  

The basal ganglia (BG) are a collection of interconnected subcortical nuclei that 

participate in a great variety of functions, ranging from motor programming and 

execution to procedural learning, cognition and emotions. This network is also the 

region primarily affected by the degeneration of midbrain dopaminergic neurons 

localized in the substantia nigra pars compacta (SNc). This degeneration causes cellular 

and synaptic dysfunctions in the BG network, which are responsible for the 

appearance of the motor symptoms of Parkinson’s disease. Dopamine (DA) 

modulation and the consequences of its loss on the striatal microcircuit have been 

extensively studied, and because of the discrete nature of DA innervation of other BG 

nuclei, its action outside the striatum has been considered negligible. However, there 

is a growing body of evidence supporting functional extrastriatal DA modulation of 

both cellular excitability and synaptic transmission. In this review, the functional 

relevance of DA modulation outside the striatum in both normal and pathological 

conditions will be discussed. 
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1. Introduction 

The basal ganglia (BG) participate in a great variety of functions including motor 

programming and execution, procedural learning, cognition and emotions [1,2]. 

Dopaminergic innervation provided by mesencephalic dopamine (DA) neurons from 

the substantia nigra pars compacta (SNc) plays an essential role in the control of BG 

functions by modulating cellular and synaptic properties at each stage of the BG 

network. DA modulation of the striatal microcircuit has been extensively studied 

over the past decades and has been instrumental to better understand striatal 

function in health and disease states (for reviews, [3,4]). The degeneration of midbrain 

DA neurons and the subsequent loss of DA in the BG trigger cellular and synaptic 

alterations, which are believed to be responsible for the appearance of the motor 

symptoms of Parkinson’s disease (PD). Dopaminergic innervation of the striatum 

(STR) is acknowledged to be by far denser than in the rest of the BG. Nevertheless, 

there is a growing body of evidences supporting the existence of discrete, functional 

dopaminergic innervation of extra-striatal nuclei (ESN), namely the subthalamic 

nucleus (STN), the internal and external segments of the globus pallidus (GPi and 

GPe, respectively) and the substantia nigra pars reticulata (SNr) [5]. In line with this 

evidence, the action exerted by DA on ESN has been investigated only recently and is 

the focus of the present review. After a brief description of BG network organization 

we will discuss recent discoveries supporting a functional role of DA outside the 

striatum in both healthy and disease conditions.  

The STR is the main entry structure of the BG and the principal recipient of cortical 

inputs. This GABAergic nucleus consists of 95% projection neurons, recognizable by 

their small soma and their dendrites covered by spines – therefore called spiny 

projection neurons (SPN). The remaining 5% of the STR is composed of several 

classes of GABAergic and cholinergic interneurons [6,7]. SPNs give rise to two 

pathways which propagate cortical information directly or indirectly to the output of 

the BG. SPNs of the direct pathway (dSPNs) express dopamine D1 receptors (D1Rs) 

and primarily innervate BG output neurons of the SNr and GPi (called the 
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entopeduncular nucleus in rodents, EPN) in a monosynaptic manner. On the other 

hand, SPNs of the indirect pathway (iSPNs) express dopamine D2 receptors (D2Rs) 

and project to BG outputs via a polysynaptic route involving the GPe (called the 

globus pallidus in rodents, GP) and the STN. As predicted by the anatomical-

functional model of the BG [8], it has been shown experimentally that these two 

pathways exert opposite control over motor execution [9] (Fig. 1). However, this view 

of opposite functions of the direct and the indirect pathways has been challenged by 

a study showing that both iSPNs and dSPNs are co-activated before movement 

initiation [10]. This coordinated activity has been interpreted as dSPN activation 

representing a process of selection/activation of a desired movement, while 

simultaneously activating iSPNs provides global suppression of 

alternative/unwanted actions [11]. In addition to these two pathways, multiple loops 

within the BG network, such as the hyperdirect cortico-subthalamic pathway [12], the 

reciprocally-connected GP-STN loop [13], the pallido-striatal pathway [14,15] and 

bridging collaterals from dSPNs in the GP [16,17] certainly contribute to normal and 

pathological operations of the BG network (Fig. 1). 

 

2. Extra-striatal nuclei neurons share specific features 

2.1. ESN neurons are fast-spiking autonomous pacemakers 

A striking feature of ESN neurons compared to SPN is their ability to fire action 

potentials in a completely autonomous manner (i.e. in absence of excitatory synaptic 

inputs). While several voltage-dependent and -independent conductances contribute 

to maintaining the membrane potential of ESN neurons depolarized, persistent 

sodium and Kv3-family potassium channels appear to play a critical role in the 

capability of GP, STN, EPN and SNr neurons to perpetually fire action potentials at a 

high rate [18-23]. Because of their very hyperpolarized potential [24,25], SPNs need to 

receive convergent excitatory inputs to fire APs and convey information downwards 

through the BG network [26-29]. In contrast, because ESN are autonomous 

pacemakers, their spiking activity is instead independent of excitatory inputs [30]. 
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Therefore, information encoding and transfer by these neurons relies more on 

changes in their firing rate and pattern rather than on spiking activity per se.  

 

2.2. GABAergic transmission efficiently sculpts the activity of ESN neurons 

Another interesting advantage of pacemaking for neurons is the emerging properties 

related to action potential timing relative to incoming afferent inputs [31-33]. Most of 

the ESN except for the STN, the only glutamatergic nucleus of the network, are 

inhibitory nuclei. Therefore, GABAergic transmission, through the activation of 

ionotropic GABAA and metabotropic GABAB receptors, is certainly the most efficient 

system to control the firing of neurons and induces profound changes in their firing 

rate and pattern [34,35]. Hyperpolarization of the membrane potential resets ESN 

neuron pacemaking activity and engages voltage-gated channels. Activation or 

deactivation of those channels will transiently modify the intrinsic excitability of ESN 

neurons following the inhibition [21,36-38], leading to complex sequences of activity. 

These interactions between synaptic inhibitory inputs and voltage-gated channels 

can contribute to the emergence of transiently correlated and synchronous activity 

within and among the different nuclei, both in healthy and pathological states (see 

section 7).  

 

2.3. ESN receive functional dopaminergic innervation 

In the brain, the STR is by far the principal recipient of dopaminergic inputs arising 

from the SNc [39]. The dopaminergic modulation of the striatal microcircuit has been 

well characterized, and the subject of many reviews [40,41] and therefore will not be 

covered here. Even if, in comparison, dopaminergic innervation of the ESN can 

appear negligible compared to the STR, there are several lines of evidence supporting 

functional extra-striatal dopaminergic innervation. Dopaminergic fibers and 

synapses have been detected in the GP and the STN using light and electron 

microscopy [42-45]. DA release has also been measured in the STN upon electrical 

stimulation of dopaminergic inputs using fast-scan voltammetry [43]. In addition, DA 
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receptors are expressed in all ESN (for a review see [46]) and local applications of 

dopaminergic receptor agonists and antagonists locally in various ESN affect the 

neuronal activity of these nuclei [47-50]. All these data suggest that DA participates in 

the normal function of the ESN by regulating both cellular excitability and synaptic 

transmission.  

 

3. The globus pallidus 

3.1. Neuronal diversity in the GP 

The GP has long been considered as a simple relay nucleus in the indirect pathway of 

the BG despite anatomical/immunohistochemical and functional/electrophysiological 

studies suggesting a certain degree of diversity in this nucleus [51-57]. More recent 

investigations have revealed the molecular [58,59] and functional complexity [60-62] of 

the GP. Several cell types have been identified based on expression of specific 

molecular markers and electrophysiological properties [63-66]. Even if a unified 

nomenclature is still missing [67], two main clusters of neurons are emerging from 

single-cell RNA profiling [59]. The first cluster is composed of the so-called prototypic 

GP neurons which project to downstream nuclei (the STN, the SNr and the EPN) but 

also to the STR [63,68,69]. These neurons express the transcription factor (TF) Nkx2.1 

and show of a regular fast-spiking discharge ex vivo [63,64]. This population 

represents more than 70% of the total number of neurons in the mouse and the rat 

GP and include of a subgroup, representing approximately ¾ of prototypic GP 

neuron, which also express the calcium binding protein parvalbumin (PV) in 

addition to Nkx2.1 [63,70]. The second cluster is made of arkypallidal GP neurons, 

which were described in the seminal study of Mallet and colleagues [14]. This cell 

type, which represents between 15 to 28% of GP neurons depending on the species 

studied [63,70], is characterized by the selective expression of the TF FoxP2, a low and 

irregular firing discharge. The main distinguishing feature of arkypallidal neurons is 

their exclusive and massive axonal projections to the STR, which certainly constitutes 

the main external source of GABA of this nucleus [14]. It is interesting to note here, 
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that all arkypallidal neurons co-express the TF NPas-1, but this marker is not specific 

to this neuronal population, as it is also found in a small proportion of prototypic GP 

neurons [63,65,70]. 

The activity of prototypic and arkypallidal neurons has been characterized in vivo 

under anesthesia both in the DA-intact (DI) and the DA-depleted (DD) rat [63,71]. In 

anesthetized rodents, prototypic neurons are the population most affected by DD, 

with the appearance of pauses in their activity leading to a reduced mean firing rate 

compared to the DI rat [63]. Several studies suggest that the emergence of these 

pauses is due to an exaggerated drive from iSPNs [72-74], maybe because iSPN 

preferentially send projections to prototypic neurons [75]. Together, these 

observations fit with the hypoactivity of GP neurons predicted by the anatomo-

functional model of the BG [8]. In contrast, arkypallidal neuron activity seems less 

affected by DD, as only their phase-coupling increases without significantly 

changing their firing rate or pattern [63]. These alterations in GP neuron activity in 

vivo can be due either to changes in the intrinsic excitability and/or to changes in 

their afferent synaptic input drive (discussed in sections 3.4 and 3.5).  

 

3.2. Ionic conductances underlying pacemaking in GP neurons 

GP neurons exhibit a large range of firing activity and rates (between 0 to 100 Hz) in 

rodents and non-human primates in vivo [57,76-78]. Recordings of GP neurons in 

dissociated neuron cultures and in brain slices have demonstrated that this 

variability in firing is correlated with the type and density of voltage-gated 

conductances expressed by individual GP neurons [53,79]. Despite these individual 

differences, a subset of voltage-gated channels plays a key role in the autonomous 

pacemaking of GP neurons. Repetitive emission of action potentials by GP neurons 

relies primarily on persistent sodium and hyperpolarization-activated, cyclic 

nucleotide-gated cation (HCN) channels [21,80], which depolarize the membrane 

potential at subthreshold potentials. The regularity and precision of GP neuron firing 

is governed by both calcium-activated SK channels and HCN channels [81], while 
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Kv3-family potassium channels promote spike repolarization in these neurons, 

enabling high frequencies of discharges [22]. 

 

3.3. Dopamine modulation of intrinsic excitability of GP neurons 

DA modulation of the excitability of GP neurons has been suggested by various 

techniques, showing either the presence of dopaminergic fibers and receptors in the 

nucleus [42,44,82], the release of DA [83-85], dopaminergic modulation of voltage-gated 

ion channels [86] and neuronal excitability in vivo [87]. Interestingly, D2 receptor 

mRNA is present in all classes of pallidal neurons, with the pallido-striatal neurons 

expressing higher levels of D2 transcripts than pallido-subthalamic cells [54,55]. This 

suggests a differential modulation by DA of prototypic and arkypallidal GP neurons. 

Thus, it is likely that DD preferentially affects the intrinsic excitability of one 

population of GP neurons. DA modulation of GP neuron excitability is poorly 

understood and so far only one study has shown a direct action of DA on GP neuron 

voltage-gated conductance. In this study, the authors showed that D2Rs inhibit 

CaV2.2 (N-type) channels in a protein kinase C (PKC)-dependent manner [86]. This 

result suggests that D2R activation reduces GP neuron excitability (but see § 4.1). 

Moreover, some GP neurons lose their autonomous pacemaking after DD [88]. The 

mechanism underlying GP neuron pacemaking loss involves a CaV1.3 (L-type) 

calcium channel-dependent downregulation of HCN2 channels [88]. It also seems that 

this alteration of excitability of GP neurons preferentially affects NPas1-expressing 

pallido-striatal neurons. Indeed, the firing rate of the main subpopulation of 

prototypic neurons, PV+ neurons, remains unaffected in DD mice [89]. As a 

consequence, these results suggest that the change in the pattern of activity of PV+ 

GP neurons observed in vivo [63,71] relies on changes in the activity of iSPNs. Indeed, 

the hyperactivity of iSPNs promotes pauses in activity of prototypic cells [72-74]. It is 

interesting to note that while excitability of Npas1 GP neurons is reduced, the 

pallido-striatal GABAergic inhibition provided by these neurons is increased in all 
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subtypes of striatal neurons [89], suggesting the existence of a compensatory 

mechanism (Fig. 4A). 

 

3.4. Dopamine modulation of GABAergic transmission in the GP 

GP neurons receive two main sources of GABA: extrinsic inputs coming from iSPNs 

and some collaterals of dSPNs [16,17,90] and intrinsic inputs from local axon 

collaterals [91]. Striato-pallidal inputs are mainly localized on proximal and distal 

dendrites of GP neurons [92] while pallido-pallidal inhibitory synapses are found on 

the soma and proximal dendrites of GP neurons [91]. Regarding their properties, 

striato-pallidal synapses are characterized by short-term facilitation (STF) [93,94] and 

their strength is modulated by a plethora of G protein–coupled receptors (GPCR) [95-

102] including presynaptic D2Rs, which decrease the probability of GABA release 

[93,103]. In contrast, pallido-pallidal synapses are characterized by short-term 

depression (STD) [93,94,104] and are not modulated by presynaptic D2-like receptors 

[93]. GABAergic transmission is also regulated by postsynaptic D4Rs, which reduce 

the amplitude of GABAA-mediated current through the suppression of protein kinase 

A (PKA) activity [105]. The paired-pulse facilitation observed at striato-pallidal 

connection suggests that this synapse has a low initial release probability. However, 

a full characterization of unitary iSPN-GP connections will be required to better 

understand the release dynamics of these synapses. On the other hand, paired-

recordings of GP neurons have revealed that despite the sparse connectivity (~1%; 

[91,104]) and STD, unitary pallido-pallidal transmission is able to reduce the 

postsynaptic firing rate through a combination of chloride driving force, synaptic 

summation and incomplete STD [104]. The sparse connectivity combined with the 

relative efficacy of axon local collaterals certainly contributes to uncorrelated activity 

of GP neurons recorded in vivo under healthy conditions [78].  
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3.5. Astrocyte-dependent alteration of GABAergic inhibition in the GP 

The GP is the nucleus in the BG with the highest astrocyte density [106], suggesting 

an important role of these glial cells in regulating GP motor function. Indeed, 

voluntary exercise in mice triggers astrocyte structural plasticity. This consists of 

elaboration of perisynaptic astrocyte processes (PAP) [107], which are dynamic 

elements thought to regulate synaptic transmission by clearing neurotransmitter and 

releasing gliotransmitter into the synaptic clefts [108-110]. GP astrocytes express GAT-

3 GABA transporters [111,112]), which are primarily localized on PAPs [107]. They also 

express a variety of ionotropic and GPCR receptors including DARs, suggesting that 

DA somehow modulates intracellular signaling. Calcium imaging experiments have 

shown that D3R activation triggers a reduction in intracellular Ca2+ waves under 

control conditions, while DD exerts the opposite effect [113]. We also observed that 

DD is responsible for GP astrocytosis [106], which suggests astrocyte dysfunction in 

PD. Two recent studies have elucidated distinct astrocyte signaling pathway 

impairments that promote an increase in GABAergic transmission in the GP. In the 

first study, the authors demonstrated that after DD, glutamate release from GP 

astrocyte is reduced, which dampens the activity of pre-synaptic mGluR3 and in turn 

increases GABA release at striato-pallidal synapses (Fig. 2) [113]. A second study 

showed that DD also induces a reduction of the expression of GAT-3 in GP 

astrocytes, leading to reduced uptake and elevation of ambient extracellular GABA 

levels promoting the activation of extrasynaptic GABAAR-mediated tonic inhibition 

(Fig. 2) [114]. Both astrocyte glutamate release and GAT-3 uptake activity seem to be 

regulated by D2-like family receptors, suggesting that reduced stimulation of these 

receptors in DD conditions is responsible for the increase of extracellular GABA 

concentrations [115] and GABAergic transmission in GP neurons. Overall, GP neuron 

hypoactivity in vivo seems to be the consequence of several convergent mechanisms: 

at the circuit level, with the hyperactivity of iSPNs (Kita and kita, 2011; Sharrott et al., 

2017), but also locally, with the reduction of GP excitability and the dysregulation of 

GABAergic synaptic and extrasynaptic transmission [92,113,114] (Fig. 4). Restoring 
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autonomous pacemaking in the GP by overexpression of HCN2 fails to re-establish 

motor function in DD animals [88]. Interestingly, because GP astrocytes play a key 

role in the regulation of GABAergic transmission, restoring normal levels of 

inhibition in the GP by manipulating astrocyte function appears to be an attractive 

and promising therapeutic strategy to reduce PD motor symptoms. 

 

4. The subthalamic nucleus 

4.1. Dopamine modulation of STN neuron excitability 

Because the change in the firing pattern of STN neurons is considered an 

electrophysiological hallmark of PD, the modulation of the activity of STN neurons 

by DA has been the focus of many studies. STN neurons mainly express D2/3Rs and 

D5Rs on their membrane [116,117]. Most of our current knowledge about DA action 

on STN neurons comes from exogenous application of DA itself or agonists of the 

D1- and D2-like receptor families in acute brain slices. Application of low 

concentrations of DA or the D2-like receptor agonist quinpirole induces a 

depolarization of the membrane potential and an increase in the spontaneous firing 

rate of STN neurons [43,116,118]. This excitatory action of D2-like dopaminergic 

receptors is mediated inhibition of CaV2.2 (N-type) calcium channel currents by Gi/o 

 subunits. This inhibition reduces CaV2.2 channel functional coupling with small-

conductance Ca2+-dependent K+ (SKCa) channels, promotes membrane depolarization 

and increases firing discharge of STN neurons [116] (Fig. 3A). On the other hand, D5R 

activation targets several conductances depending on the mode of discharge of STN 

neurons [119]. When STN neurons’ membrane potential is hyperpolarized, they fire 

bursts of action potentials and D5R activation potentiates CaV1.3 calcium channel 

currents, prolonging burst duration [120] (Fig. 3A). When STN neurons’ membrane 

potential is depolarized, these neurons fire single action potentials in a tonic fashion 

and D5R increases their firing rate via the activation of cyclic nucleotide gated non-

cationic channels [121]. Therefore, it has been proposed that D2Rs control the pattern 
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of activity (tonic or burst) by setting the level of depolarization of STN, while D5Rs 

reinforce each mode of discharge [118]. 

 

4.2. Alteration of STN autonomous pacemaking in DA depleted rodents 

It is widely accepted that the STN is hyperactive in PD and that STN neuron activity 

is composed of rhythmic and synchronous bursts of action potentials [122]. This 

pathological activity can have several origins, such as DA loss in the STN, leading to 

altered excitability of STN neurons, or alterations in the BG network. Ex vivo studies 

suggested that the excitability of STN neurons is strongly downregulated in DD 

rodents [123,124], but the underlying mechanisms were unknown until recent work 

confirming that STN neuron autonomous pacemaking is lost in neurotoxic and 

genetic mouse models of PD [125]. This loss of excitability seems to have a network 

origin, as it is triggered by the increased drive of iSPNs onto GP neurons, leading to 

disinhibition of STN neurons and excessive activation of NMDAR, which finally 

increases KATP channels [125]. Indeed, the expression of these channels has been 

reported to be increased after DD [126], which produces sufficient hyperpolarization 

of the membrane potential to silence STN neurons [125]. Another study suggests that 

DD alters the expression profile of HCN2 channels in the STN and also contributes to 

pathological activity in the BG in experimental PD [127]. 

 

4.3. Augmentation of pallido-subthalamic transmission in experimental Parkinson’s disease 

models 

The GP provides the STN’s principal source of GABA. Single GP axons make sparse 

clusters of synaptic boutons distributed in distinct functional domains of the STN 

[128]. On average, a GP axon makes at least 6 synaptic contacts on the soma and the 

proximal dendrites of STN neurons. Thus, each GP neuron provides potent somatic 

inhibition, which is highly efficient to reset the autonomous activity of STN neurons 

[128]. GP neurons fire action potentials at a high rate [70,129] and this elevated activity 

influences, in an activity-dependent manner, the efficacy of GP-STN inputs that are 
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characterized by STD [130,131]. GP-STN inputs are modulated by presynaptic D2/3Rs, 

which decrease the release probability of GABA and thus reduce the strength of this 

connection. It is also interesting to note, that DA converts GP-STN synapses from 

low-pass filters to band-pass filters [131] favoring information transfer [132]. Under 

DD conditions, GP-STN GABAergic transmission is greatly augmented due to 

structural modifications of GP-STN synapses, which make more active zones per 

bouton [133] (Fig. 3B). Recently, Chu and colleagues [134] have unraveled the 

mechanisms underlying this proliferation of GABAergic synapses. In this study, they 

showed that GABAergic long term potentiation (LTP) involves the excessive 

activation of NMDA receptors, which triggers: 1) nitric oxide synthesis and release 

by STN neurons, which activates presynaptic protein kinase G (PKG) and increases 

GABA release probability; and 2) an increase in intracellular Ca2+ concentrations that 

activate a CaMKII pathway, which augments GABAA receptor insertion on the 

post-synaptic side of GABAergic GP-STN synapses [134] (Fig. 3B). 

 

4.4. Loss of the cortico-subthalamic pathway in experimental Parkinson’s disease models 

The cortico-subthalamic (Cx-STN) projection is well described anatomically. Cx-STN 

synapses are mainly found on the distal part of STN neurons’ dendrites [135,136]. The 

functional properties of Cx-STN glutamatergic synapses have been described 

recently. Around the resting potential of STN neurons, Cx-STN post-synaptic 

excitatory currents (EPSC) are mainly composed of AMPAR-mediated currents with 

a small NMDA component [134,137]. Interestingly, it has been shown that the strength 

of the Cx-STN inputs is under the control of DA and more specifically, of post-

synaptic D5Rs which depress AMPAR-mediated EPSC through a PKA-dependent 

intracellular pathway [137]. Another study has also shown that pre-synaptic D2Rs 

modulate AMPA currents by decreasing glutamate release [138]. Together, these data 

suggest that Cx-STN synaptic transmission is modulated by DA and hence that this 

pathway may be altered in PD. Indeed, it has been shown that in DD rodents, Cx-

STN innervation is reduced [139-141] but the mechanisms underlying this loss of Cx-
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STN glutamatergic inputs remain to be determined. It has been proposed that the 

alleviation of motor symptoms by M1 motor cortex deep brain stimulation [142,143] 

relies on the restoration of Cx-STN functional connectivity of the remaining Cx-STN 

afferent inputs [141].  

 

5. The substantia nigra pars reticulata 

5.1. Neuronal diversity in the substantia nigra pars reticulata 

Together with the EPN, the SNr is one of the output nuclei in the basal ganglia. Like 

other BG nuclei, the SNr has been classically considered a homogeneous nucleus and 

cell differences were based more on topographical innervation patterns than on 

neuronal diversity. Although it is well known that the main target of SNr is the 

thalamus [144], up to four neuron types have been identified based on the axonal 

projection targets. Type I cells project specifically to the thalamus; type II neurons 

target the thalamus, superior colliculus and pedundulopontine tegmental nucleus; 

type II cells project to the periaqueductal gray matter and thalamus; and type IV 

neurons send projections to the deep mesencephalic nucleus and the superior 

colliculus [145,146]. In addition to this long axonal arborization, SNr neurons are also 

highly collateralized [145,147] and most neurons receive robust inhibitory synaptic 

inputs even in the present of strong activation [148,149]. 

In the SNr, GABAergic projection neurons are the largest cell population, but discrete 

clusters of dopaminergic neurons are also present in the caudomedial region of the 

nucleus [150]. The majority of GABAergic neurons in the SNr express PV [151,152] and 

a small subset of cells express calretinin [153,154], nitric oxide synthase or 

acetylcholine transferase [150,155]. These cells differ not only in their neurochemical 

content but also topographical and morphological profiles. Thus, in the rostrolateral 

SNr, GABAergic cells are large and contain PV and nitric oxide synthase; in 

caudomedial positions, most of them are small and express only PV; and in 

rostromedial portions, they are predominantly small and contain either calretinin, 

nitric oxide synthase or PV [150]. As for receptor expression, the vast majority of PV-
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positive neurons also display GABAA receptors 1 subunits and at least one 

(GABABR2) of the heteromeric subunits of the GABAB receptor [156,157]. Moreover, 

cells with colocalized PV and calbindin also express purinergic receptor P2 [158].  

Neurochemical analysis clearly distinguishes three different classes of cellular 

content, however, electrophysiological characterization of GABAergic cells and 

correlation with the neurochemical profile has yet to be fully developed. PV-positive 

cells have been associated with high firing frequency [159] but this characteristic does 

not seem cell-specific. Indeed, calretinin-containing cells show similar projection 

targets, local arborization, morphological and electrophysiological characteristics to 

PV-positive cells [160]. More recent studies describe four subtypes of GABAergic cells 

in the SNr, whose electrophysiological profile is complex and varies according to the 

posture and movement of the animal [161,162]. 

 

5.2. Ionic conductances underlying pacemaking in SNr neurons 

Like other ESN, SNr neurons are autonomously active. This regular spiking conveys 

an efficient tonic inhibitory drive onto motor thalamic nuclei [163-165]. Repetitive 

action potential generation in SNr neurons is primarily supported by subthreshold 

slowly inactivating NaV channels, while SK channels are critical to maintain the 

precision of autonomous pacemaking in these neurons [18]. HCN are also present in 

SNr cells but are not activated in the range of potential associated with pacemaking 

activity. It has also been shown that leak conductances are critical for the 

maintenance of SNr neurons at depolarized potential [166,167]. A molecular and 

electrophysiological study suggested that transient receptor potential channel family 

(TRPC3) channels are expressed in SNr neurons and contribute to their depolarized 

resting potential [167]. However, another study showed that spontaneous firing of 

SNr neurons is unaffected after genetic deletion of these channels [166], questioning 

the participation of these channels in the pacemaking of SNr neurons. This 

discrepancy can be explained by the lack of a specific blocker of non-specific cationic 

channels used by Zhou and colleagues to show the involvement of TRPC3 channels 



Cells – Special Issue "The Molecular and Cellular Basis for Parkinson's Disease" 

17 
 

in the depolarized potential of SNr neurons. In addition, a more recent study has 

discovered that SNr neurons express the sodium leak channel, NALCN, and that 

genetic deletion of NALCN impairs spontaneous firing in these neurons [168]. 

Because the activity of NALCN is strongly dependent upon glycolysis, alterations in 

this metabolic pathway can significantly impair autonomous pacemaking in SNr 

neurons [166,168] and contributes to pathological activity of this nucleus. Like for 

other ESN, Kv3-channels are essential for SNr neurons to fire action potentials at 

high frequency, as they provide rapid repolarization of the membrane potential 

following action potential depolarization [169]. An extensive description of the ionic 

mechanisms governing SNr neurons excitability can be found in the following 

review [170]. 

 

5.3. Dopamine modulation of intrinsic excitability of SNr neurons 

Dopaminergic modulation of SNr is achieved through an unconventional release of 

DA by the dendrites of SNc neurons (for review [171]), which constitutes an ultra-

short dopaminergic pathway. In situ hybridization and immunohistochemistry 

studies have shown that several DARs are expressed in the SNr. The most intense 

labeling is for D1Rs, especially in striato-nigral terminals. D4Rs and D5Rs are present 

in the SNr, but mainly on perikarya [172-176] and D1/D5Rs have been found both on 

SNr neurons and astrocytes [177]. D1-like agonists excite SNr neurons and this 

modulation is mediated by a PKA-dependent enhancement of the constitutively 

active TRPC3 channels, which depolarizes SNr neurons [178]. Interestingly, this effect 

was mimicked by artificially elevating ambient DA levels, which supports its 

physiological and functional relevance [178]. In addition, acute blockade of D1-like 

and D2-like receptors induces hyperpolarization of SNr neurons and a switch from 

tonic regular firing to irregular or burst firing [47]. This pharmacological 

manipulation resembles the activity of SNr neurons recorded in vivo in anesthetized 

[179-182] and awake [183] DD rodents. The cellular mechanisms underlying the 

changes in rate and pattern of SNr under DD have not been explored ex vivo. It will 
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be of great interest to further investigate which intrinsic conductances of SNr 

neurons are directly impacted by the loss of DA. 

 

5.4. Alteration of GABAergic and glutamatergic transmission in SNr neurons in 

experimental Parkinson’s disease models 

Anatomical studies have shown that single SNr neurons receive convergent afferents 

from dSPNs, the GP and the STN (for review [184]), supporting a strong integrating 

function of this output nucleus of the BG. Like in the GP, pallidal and striatal 

GABAergic inputs make symmetric synapses with the soma/proximal dendrites and 

distal dendrites of SNr neurons, respectively [185-187]. In addition to their subcellular 

locations, these two GABAergic synapses have also distinct properties. Striato-nigral 

(STR-SNr) IPSCs exhibit STF while pallido-nigral (GP-SNr) synapses display STD 

[188]. These two synapses are also different regarding the pre-synaptic control exerted 

by DAR. GP-SNr synaptic transmission is reduced by D4R activation [189,190] while 

STR-SNr GABA release is augmented by D1Rs [189,191-193]. Because of its opposite 

action on STR-SNr and GP-SNr synapses, DA maintains a certain equilibrium 

between somatic and dendritic inhibitory inputs received by SNr neurons, whose 

precise function remains to be elucidated. The impact of DD on GP-SNr synaptic 

transmission is unknown, but has been investigated for STR-SNr synapses [194]. In 

their study, the authors report that DD induces a strong increase in STR-SNr IPSC 

amplitude and show that dysfunctional GABAB receptors and loss of presynaptic 

reduction of GABA release probability was responsible for this augmented 

transmission [194]. 

The STN is the main provider of excitatory inputs to the SNr and the 

properties of STN-SNr synapses have been well characterized. Electrical stimulation 

of STN axons triggers monosynaptic EPSCs [195,196] while the same type of 

stimulation delivered in the STN itself gives rise to complex EPSCs [197,198] which are 

believed to be generated by the activation of STN local axon collaterals [197,199]. Both 

D1Rs and D2Rs are present on STN-SNr synaptic terminals and activation of D1Rs 
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enhances while activation of D2Rs decreases STN-SNr EPSC amplitude [196]. On the 

other hand, complex EPSCs which have been shown to promote burst-firing in SNr 

neurons [197,200] are reduced by the activation of D2-like receptors [200]. Only long-

term depression (LTD) has been reported at STN-SNr. The induction of LTD requires 

post-synaptic D1R activation and is expressed through NMDAR-dependent 

endocytosis of AMPARs, which depresses EPSC amplitude by almost 50% [195]. This 

mechanism represents a specific feature of this synapse compared to cortico-striatal 

synapses [201], but like in the STR, DD completely abolishes STN-SNr LTD [195], 

supporting the hypothesis that increased synaptic transmission at STN-SNr synapses 

contributes to pathological activity of SNr neurons.  

Overall, there is compelling evidence suggesting that both STR-SNr and STN-SNr 

synaptic transmission strength is regulated by DA and is pathologically-enhanced in 

experimental PD. 

 

6. The entopeduncular nucleus 

6.1. Anatomical organization and cellular diversity in the EPN 

The EPN is, in addition to the SNr, the other output nucleus of the BG. Early 

anatomical studies have suggested that the EPN is subdivided in rostral and caudal 

portions, with the former being enriched in somatostatin-positive (SOM+) neurons 

and the latter being composed of PV-expressing neurons [151,202,203]. More recently, a 

third neuronal population, negative for both SOM and PV, has been described [204]. 

The proportion of these three populations has been estimated as 28% (PV+/SOM-), 

46% (PV-/SOM+) and 25% (PV-/SOM-). Additional molecular profiling has confirmed 

the existence of these three neuronal subtypes and has specified their molecular 

identity [205]. It has also been shown that the EPN is organized in a PV-rich core and 

a PV-poor shell fashion [204]. Retrograde tracing studies have demonstrated that 

SOM+ EPN neurons project to the lateral habenula (Lhb) [206,207], while PV+ EPN 

neurons innervate the motor thalamus [151,206]. Furthermore, Lhb- and thalamic-

projecting EPN neurons are differentially innervated by subclasses of pallidal and 
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striatal neurons [205,206]. EPN-thalamic neurons are innervated by PV+ GP neurons 

and matrix SPNs, while EPN-Lhb neurons receive inputs from PV- GP neurons and 

striosome SPNs, suggesting that these two EPN cell types are part of distinct 

functional networks. Indeed, it has been proposed that thalamic-projecting EPN 

neurons control motor program selection while Lhb-projecting EPN neurons 

participate in the evaluation of the motor outcome [206]. 

 

6.2. Autonomous pacemaking in EPN neurons. 

EPN neurons fire at a high rate in vivo both in anesthetized and awake rodents [208]. 

Like other ESN, it is likely that this elevated discharge relies on intrinsic properties of 

EPN neurons. Indeed, EPN neurons are spontaneously active ex vivo [209] but not 

much is known about the properties of the channels responsible for autonomous 

pacemaking in these neurons and DA modulation of their excitability has never been 

investigated. Based on their firing pattern and properties ex vivo, two types of EPN 

neurons have been described [209,210]. Type I EPN neurons are spontaneously active, 

generate a sag upon membrane hyperpolarization and generate a rebound-burst 

when hyperpolarizing current injection ends, suggesting that they express HCN and 

CaV3-type calcium channels, respectively. Type II EPN neurons are not 

autonomously active; they have low HCN channel expression and potassium A-type 

currents, which generate a slow depolarizing ramp at the end of hyperpolarizing 

pulses of currents [209]. Interestingly, most type I, but not type II EPN neurons exhibit 

GABAergic IPSCs upon electrical stimulation of the striatum [210], which suggests 

differential innervation of these two cell types. Molecular and electrophysiological 

correlative studies would be required to determine if Lhb-projecting and thalamic-

projecting EPN neurons possess specific electrophysiological signatures. To our 

knowledge, neither the modulation exerted by DA nor the direct consequences of DD 

on the excitability of EPN neurons have yet been investigated. 
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6.3. Dopamine modulation of GABAergic and glutamatergic transmission in the EPN 

Like the SNr, the EPN receive convergent inputs from the striatal direct-pathway, the 

GP and the STN [185,211]. Pallido-entopeduncular (GP-EPN) and striato-

endopeduncular (STR-EPN) synapses display the same properties as STR-SNr and 

GP-SNr synapses, i.e. STF and STD, respectively [212]. 

All DAR subtypes have been found in the EPN [213,214]. Their presynaptic 

distribution appears to be very similar to that of the SNr: D2-like receptors are 

present on GP-EPN terminals, while D1Rs are found on STR-EPN synapses [213,214]. 

The modulation exerted by DA on these two pathways seems to also follow the 

principles described in the SNr, as D2-like receptors depress GP-EPN transmission 

whereas STR-EPN inputs are potentiated by D1Rs [213,215]. The impact of DD on 

these synapses has not been tested, but one may speculate that DD will facilitate GP-

EPN synapses and depress the STR-EPN synapses, therefore generating an 

imbalance between direct and indirect pathway GABAergic inputs in the EPN. 

The STN sends glutamatergic projections to the EPN [216]. The STN-EPN synapses 

display spike-timing dependent LTD [217], which, like in the SNr, can be viewed as 

an adaptive mechanism to regulate the impact of the STN on the output of the BG.  

 

 

7. Consequences of cellular and synaptic dysfunctions for abnormal neural 

dynamics in the basal ganglia during Parkinson’s disease 

One critical aspect that remains to be addressed is defining the link between the 

different molecular/synaptic alterations occurring after DA loss and the pathological 

BG activity recorded at the network level. This lack of knowledge raises important 

questions that need to be assessed to better understand how BG activity becomes 

dysfunctional in the DD state. In particular, it seems critical to define if the synaptic 

modifications are the cause of the neuronal network dysfunction present in PD, or if 

it is the other way around. Also, being able to determine the respective contributions 

of the synaptic vs. the network alterations to Parkinson’s motor symptoms might 
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help in designing new therapeutic strategies to target more precisely the 

pathophysiological process in PD. These are not trivial questions to tackle, especially 

considering the difficulty of determining if these changes are truly pathogenic, 

compensatory, or by-products of other (yet to be defined) neuronal changes. Another 

challenge facing the field is the fact that the network abnormalities underlying the 

motor disturbances of PD are still enigmatic. Indeed, while traditional views on the 

pathophysiological organization of BG circuits have highlighted the contribution of 

firing rate alterations to explain the motor impairments present in PD [8,218], other 

neuronal activities, such as changes in the firing pattern [182,219-222], or increases in 

neuronal synchronization [77,78,223,224], have also been associated with the 

Parkinson’s disease condition [225-227]. Whether these changes underlie the 

pathophysiology of PD is not known, but their presence is positively correlated with 

the PD bradykinesia and rigidity score [228], and can be used to distinguish the PD 

state [229]. Here, we will briefly review the principal neuronal network changes 

occurring after DD, the arguments in favor or against their causative contribution to 

the pathophysiology of PD, as well as how these network changes might be affected 

by the synaptic alterations previously described in this review.  

First, considering the firing rate modification, it has been shown that the loss of DA 

creates an imbalance in activity in striatal projection neurons that leads to iSPN 

hyperactivity and dSPN hypoactivity [73,230-232]. This increase in iSPN activity 

induces a cascade of firing rate changes along the indirect pathway: notably 

decreased activity of GP neurons [14,71,233,234] and increased activity of STN neurons 

[219,235]. These modifications lead to increased firing of the BG output nuclei 

SNr/EPN [222,236], which translate into over-inhibition of the thalamo-cortical motor 

circuits [237]. The most compelling evidence in favor of a pathogenic contribution of 

the firing rate alterations comes from studies that have used cell-type-specific 

optogenetic [9,238,239] or pharmacogenetics [134,240] manipulations to reproduce the 

firing rate changes present in PD. In particular, specific excitation of iSPNs induced a 

reduction of locomotion mimicking the PD akinetic state [9,134,240], whereas 
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activation of the dSPNs in PD model mice reduced the motor deficit and elicited 

locomotion [9]. In addition, a direct link between the increase in SNr output activity 

and motor suppression has been established consequently to iSPN opto-stimulation 

[238], thus supporting the view that BG outputs exert an inhibitory influence on 

movement control [146]. The timing at which the firing rate of striatal neurons is 

modified after DA loss is not known, but is likely to be fast. Indeed, the expression of 

the messenger RNA for c-fos, a marker of neuronal reactivity often used as a correlate 

of neuronal activity [241], is increased in iSPNs 75 min after 6-OHDA injection; this 

timing parallels the DA loss [242]. Therefore, it seems reasonable to expect that the 

firing rate modifications along the indirect pathway are occurring before the synaptic 

reorganization (which might appear with longer time-scale after DA loss). This 

assumption favors the idea that some of the synaptic changes observed in the DD 

state might thus be corrective by nature, compensating for the abnormal firing rate 

activities established in the indirect pathway. With this in mind, the selective loss of 

glutamatergic synapses in iSPNs [243], the increased connectivity of striatal fast-

spiking interneurons onto iSPNs [244] and the increased in the number [133] and 

strength of GP synapses onto STN neurons [133,134] might represent global 

homeostatic changes of the indirect pathway aiming to counterbalance the increased 

activity of iSPNs. Similarly, the strong synaptic depression of the cortico-STN 

excitatory inputs present both in rodents and monkey PD models [139,140] could also 

be an adaptive change to limit STN hyperactivity and, at the end-stage, the negative 

influence of BG output onto thalamo-cortical and brainstem circuits. However, 

despite all the experimental evidence arguing for an important contribution of BG 

overall firing rate modification in experimental PD, it is still unknown if they 

represent the sole pathogenic cause of Parkinsonism [245-247]. Additionally, many 

experimental findings have directly challenged the predictions of the rate model. For 

example, while recordings in MPTP-treated monkeys have clearly established STN 

firing hyperactivity [219,233], changes in striatal firing activity as described by the rate 

model have been more conflicting. Indeed, while one study described a profound 
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increase in striatal neuronal firing [248], another reported no change [233]. In addition, 

recordings in DD mice have shown a reduction in the autonomous properties of STN 

neurons which, when restored using chemogenetic excitation of STN, improves 

motor dysfunction in DD mice [125]. Considering the fact that motor recovery in PD is 

classically obtained using suppression [249] or reduction [236] of STN neuronal firing, 

these results were totally unexpected, and in contrast with the motor-suppressing 

effect predicted by the rate model when STN increase their activity. Another piece of 

experimental evidence that challenges the rate model is the fact that SNr firing 

output in DD mice is hypoactive and not hyperactive [183]. Taken together, the 

direction of the firing rate changes in various nodes of BG circuits might not be 

consistently present across different animal models of PD (i.e. rats vs. mice vs. 

monkeys), thus raising the possibility that other neuronal changes might more 

reliably contribute to the motor dysfunction of PD.  

Abnormal expression of synchronized oscillatory activity in the beta frequency band 

(12-35 Hz) has been one of the most prominent neuronal changes consistently 

detected in PD patients, and has been related to akinesia/bradykinesia syndromes in 

PD [250,251]. Accordingly, a correlation between the level of beta oscillation 

expression and the motor deficit has been described in the off-medicated state of PD 

[252], but see [253]. In addition, imposing abnormal beta synchronization through 

external stimulation at beta frequency slows down movements both in healthy [254] 

and PD subjects [255], which suggests a pathogenic role (although this stimulation 

protocol likely altered the level of neuronal firing, which was not accounted for in 

the motor perturbation).  What are the neuronal circuits generating this abnormal 

beta synchronization? In theory, any network with delayed negative feedback 

properties can generate oscillatory activity [256], and because the organization of the 

BG is principally composed of parallel feedback loops, many BG circuits could 

potentially generate beta oscillations [257-259]. It was first proposed that the abnormal 

BG synchronization is an emergent property of the GP-STN network [260], but this 

work was performed in organotypic culture and so far, there is no in vivo evidence 
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that the GP-STN network could sustain synchronized rhythmic activity without the 

cortex [220,261]. Other proposed circuit generators of beta oscillations are the cortex 

[262], the striatum [263], the STR-GP network [264], and the hyperdirect loop [265]. One 

influential hypothesis suggests that beta oscillations are generated at the cortex at 

physiological levels, which propagate in BG circuits through the hyperdirect 

pathway where they are abnormally amplified by the reciprocally-connected GP-

STN microcircuits [262,266,267]. There is indeed a strong rationale to suggest that the 

GP-STN network is involved in the maintenance and the propagation of oscillatory 

activity both in vivo and ex vivo [13,14,71,268,269]. Nonetheless, the specific contribution 

of these different circuit elements has never been tested with tools that are reversible 

and offer high temporal resolution. One aspect to consider is the timing at which 

abnormal beta synchronization is generated after the DA loss, as it reveals important 

features regarding its contribution and interaction with the firing rate or synaptic 

modifications. Interestingly, beta oscillations are not detected in PD rat models until 

>4 days after the lesion and reach a plateau of expression after 10 days. This slow 

time-scale of generation contrasts with the fast motor deficits that appear within 

hours following the loss or the blockage of DA transmission [235,270,271]. Similarly, 

monkeys and rats present Parkinson’s associated motor symptoms following chronic 

MPTP or 6-OHDA treatment before the emergence of BG synchronous oscillatory 

activity [247,272]. Taken together, this suggests that beta synchronized oscillations 

might arise through long-term adaptive changes that are slower than the changes in 

firing rate, but which could parallel the timing of the synaptic alterations. This 

potentially highlights the relationship between these two kinds of activity, but 

whether one is the consequence of the other is currently not known. Similarly, the 

link between the firing rate modifications and the change in neuronal 

synchronization has never been investigated. We propose here the hypothesis that 

the GP firing rate alterations in PD trigger maladaptive modifications that favor GP 

neuronal synchronization. Indeed, in a normal animal, the firing of GP neurons is 

principally governed by their autonomous pacemaker properties, which are different 
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across neurons due to variability in channel density [53,79]. Active decorrelation 

mechanisms caused by GP neurons’ intrinsic properties and mutual inhibition 

through axon collaterals prevent neuronal synchronization in normal conditions 

[224,273]. This indicates that the intra-GP GABAergic control in normal conditions is 

mainly achieved by GP neurons. In contrast, the loss of DA in PD, which causes the 

increase in iSPN firing, operates a switch in the GP GABAergic control from intrinsic 

(i.e. GP) to extrinsic (i.e. STR) sources. This change of GABA transmission is certainly 

at the origin of maladaptive changes at the molecular and synaptic level that favor 

the generation of synchronized oscillatory activity in GP neurons. Because of the 

critical dichotomous organization of GP neurons into prototypic and arkypallidal 

neurons [14], this abnormal oscillatory activity can then propagates to the whole BG 

circuit. In this scheme, the abnormal network synchronization is caused by 

maladaptive changes occurring at the cellular and synaptic levels and is a 

consequence of the firing rate perturbation in the indirect pathway. It is important to 

mention though that this abnormal beta synchronization has been detected in PD 

animal models, such as 6-OHDA-lesioned rats [235,274-277] and MPTP-treated 

monkeys [233,278], but not in 6-OHDA or -synuclein mice [183,279] which raises the 

question of their contribution to the pathophysiology of PD. Indeed, future studies 

will have to precisely define the specific behavioural contributions of the different 

neuronal activities and how they impact the motor symptoms of PD. 

 

8. Concluding remarks 

In this review of the literature, we have highlighted that every ESN of the BG 

receives a functional DA innervation that controls both the post-synaptic excitability 

as well as the strength of their afferent synaptic inputs. In PD, extrastriatal 

hypodopaminergy provoked by the loss of SNc neurons must participate, in addition 

to the alterations described in the striatum, in the pathophysiological activity of the 

BG network. According to all the evidence accumulated over the past decades, we 
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propose that DA loss induces an imbalance between ESN neuron intrinsic excitability 

and ESN synapses, in favor of the latter. Autonomous pacemaking is reduced in all 

ESN while synaptic transmission is enhanced, leading to a switch from intrinsically-

driven oscillatory activity in ESN to a synaptically-driven pattern of activity which 

promotes hypersynchronous oscillatory activity in the BG network in PD (Fig. 4B). 
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Figure legends 

 

 

 

 

Fig. 1: Basal ganglia circuitry in rodents 

A: Schematic representing the main connections of the basal ganglia network in a 

sagittal section of the rodent brain. 

B: Corresponding anatomical-functional diagram adapted from the Albin model of 

the basal ganglia [8]. 

dSPN: direct-pathway spiny projection neuron; EPN: entopeduncular nucleus; GP: 

globus pallidus; iSPN: indirect-pathway spiny projection neuron SNc: substantia 

nigra pars compacta; SNr: substantia nigra pars reticulata; SIN: striatal interneurons; 

STN: subthalamic nucleus  
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Fig. 2: Mechanisms underlying GABAergic synaptic alterations in the GP in 

experimental PD. 

A: In DA-intact conditions, D2 receptors present on astrocyte membranes elevate 

intracellular calcium levels and promote glutamate gliotransmission. Glutamate 

activates group III mGluR (GluRIII), which reduces GABA release probability at 

striato-pallidal synapses. D2Rs also regulate GAT-3 activity by an unknown 

mechanism, preventing GABA spillover from GABAergic synapses and hence 

activation of extrasynaptic GABAA receptors. 

B: Under DA-depleted conditions, D2Rs are no longer activated, glutamate 

gliotransmission is reduced and mGluRIII-dependent reduction of GABA release is 

lost, leading to an increase in striato-pallidal transmission. The loss of D2R 

modulation of GAT-3 triggers a downregulation of the expression of the transporters, 

and the elevation of extracellular GABA concentrations leads to the activation of 

extrasynaptic GABAA receptors, which favors tonic inhibition. 
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Fig. 3: Cellular and synaptic alterations in the STN in experimental PD. 

A: Schematic of the main post-synaptic and pre-synaptic molecular pathways 

involved in DA-dependent cellular excitability and synaptic plasticity. 

B: Under DD conditions, post-synaptic and pre-synaptic DA modulation is lost. This 

triggers NMDA-dependent M1 cortex synapse pruning, NMDA-dependent and NO-

dependent heterosynaptic LTP (synapse proliferation) at pallido-subthalamic 

GABAergic synapses and NMDA-dependent activation of KATP channels, which 

reduces STN autonomous pacemaking. 
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Fig. 4: Cellular and synaptic alterations in the ESN in experimental PD. 

A: Summary diagram of the main modifications in cellular excitability and synaptic 

transmission observed in the BG network under DA-depleted conditions. 

B: Schematic illustrating the modification in the balance between intrinsic neuronal 

excitability and synaptic strength in ESN as a function of the levels of DA.  
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