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Critical properties of cluster size distribution in an asymmetric

diffusion-aggregation model

Jean-Yves Fortin ∗

Department of Physics and Astronomy

Seoul National University, Seoul 08826, South Korea†

We consider a stochastic dynamics for a system of diffusing hard-core particles on

a periodic chain with asymmetric diffusion rules. A given cluster of particles can

diffuse to the right as a whole but the particle located on the left boundary of the

cluster is allowed to break-off from it and diffuse to the left. Clusters of particles can

eventually merge with other clusters. These rules allow for the creation of clusters

of different sizes. We discuss the size distribution of the clusters in the long time

or steady state limit, as a function of the particle concentration c. We consider the

general time dependent master equation based on Smoluchowski’s theory for local

cluster merging or fragmentation and diffusion processes, and study the solutions

using the generating function in the large size limit. We found that there exists a

critical density c∗ =
√
2 − 1 for which the cluster distribution decays like a power

law with exponent 5/2.

PACS numbers: 05.10.Gg,05.20.Dd,05.40.-a,05.50.+q

I. INTRODUCTION

Statistical properties of coalescence and fragmentation processes have been studied in

various fields of physics and chemistry [1–7] where for example chemical constituents react to

form new molecules, or fragment into elementary units. Both aggregation and fragmentation
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reactions are governed by stochastic processes, influenced eventually by two-body collision

properties [8, 9]. The kinetic of such processes is described by a Smoluchowski’s master

equation [10], which is a balance equation for determining the particle distribution in size or

mass in the steady or equilibrium state [11, 12], and can be used for example to determine

the size of interstellar dust grains [13] or even particle size in Saturn rings [14].

The dynamics is usually controlled by reaction rates depending on the size or mass of the

particles, and it is assumed in most of Smoluchowski’s models that both aggregation and

fragmentation rates follow a scaling law: they depend intrinsically on the sum or product of

the individual mass or size of the merging components with some power exponent. Therefore

a general description of the physical properties such as mass or size distribution depends

indeed on the microscopic details of those kernels [5, 11, 15, 16]. For example, in the case

of gravitational systems, the aggregation rate is proportional to the sum of the constituent

masses, with eventually some power law, whereas in the case of branched polymerization they

are proportional to the product of the molecule weights. In particular, the size distribution

when the rate is constant and when a monodisperse source is introduced exhibits, in addition

to an exponential damping factor, a power law with a decay exponent equal to 3/2+ β [11],

β being the weight exponent in the kernel.

In this paper we present a dynamical model of hard-core particles on a periodic chain of

size N and which can diffuse or fragment from or merge with other clusters. We can view

the clusters of particles as polymers confined on a one-dimensional (1D) chain and which can

react with the other neighboring clusters by chemical reaction. The dynamics we consider is

defined more precisely by the following asymmetric and nonlocal rules: We assume that, at

every time step, a particle located at the left boundary of a cluster can break-off from it at

rate 1/τ , and/or eventually aggregate with another cluster. A whole cluster can move to the

right by one elementary step with the same rate, and eventually fuses with a neighboring

cluster if present. The schematic process is displayed in Fig. 1. From these two processes

emerge clusters of small and large sizes. Diffusion of large clusters in one direction allows

them to grow in size by merging with other clusters, whereas their partial fragmentation

on the opposite direction increases the number of small clusters. Overall, we expect that

the size distribution will display a tail that decays like a power law. Also, the structure of

the distribution will depend crucially on the particle concentration. The periodic boundary

conditions are important for the asymmetric dynamics we consider, as they allow for the
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current of particles, due to the asymmetry of the dynamics, to flow along the chain and

particles to be transferred to the other side once they reach a boundary.

The dynamics is microscopically irreversible and does not reach an equilibrium state [17],

but there is a steady state as we will see below from which a well defined size distribution

exists. This is due in particular to the fact that one-particle clusters are formed constantly by

fragmentation of larger clusters, in absence of any source, and therefore there is no absorbing

state. A total aggregation process would otherwise lead to a unique cluster, a phenomena

known as gelation [18–20] where the largest cluster is the final state.

We can relate this dynamics to a traffic flow problem [21], where for example groups

(clusters) of vehicles coherently move to the right, the last vehicle of the groups being

allowed to slow down and detach from its cluster. A particle current is present and oriented

to the right direction as only one-particle clusters can move to the left. This kind of dynamics

can also be seen as a variation of the TASEP (Totally Asymmetric Exclusion Process) model

[22], with non-local or coherent motion involved as clusters of particles can move collectively.

The exclusion process comes from the fact that there is at most one particle per site (hard

core interaction), and therefore individual particles cannot move if the neighboring sites are

already occupied, like the ASEP model or Asymmetric Simple Exclusion Process.

The aim of this study is to show that this particular asymmetric fragmentation or merging

process induces criticality in the cluster size distribution for a special concentration value.

The master equation that we define in the next section is closely related to a non-linear

differential-integral Smoluchowski’s equation but with the constraint of dimensionality and

space: Distances and therefore concentration between clusters influence the rate of merging.

From a technical point of view, many models based on Smoluchowski’s equation can be

solved exactly using generating functions [11, 23, 24] which are an adequate tool to obtain

distribution moments. However the confinement effect in the present model renders the

analysis more complicated as momentum interaction occurs in the Fourier space.

II. MASTER EQUATION FOR CLUSTER DISTRIBUTION

The stochastic process presented in the Introduction is characterized by a master equa-

tion. We first need to define the local probability for each n-particle cluster at a given time

t and location on the lattice, which is a succession of particles surrounded by two empty
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(a) (b)

FIG. 1: Elementary processes with three particles. (a) Clusters can move to the right only. (b)

The particle located on the left boundary can detach from the cluster and diffuse on the left.

sites:

Pn(r) = Prob(◦ r• · · · r+n−1• ◦) (1)

where the first particle of the cluster is located at site r ∈ {1, · · · , N}. The system is periodic

with Pn(r + N) = Pn(r), the number of clusters of size n is Nn =
∑

r Pn(r), and the total

number of clusters Nc =
∑

nNn. The number of particles is conserved, and equal to

Np =
∑

r

∑

n

nPn(r) (2)

and their concentration is denoted by c = Np/N , with maximum cluster or cutoff size Np.

There are different processes which contribute to the change of probability Pn(r) after a small

time interval ∆t. In the following, we note ∂Pn/∂t the rate of change of the probability when

∆t → 0. The first process (a) is the decay or destruction of the cluster configuration by

breaking-off and diffusion of the leftmost particle or diffusion of the whole cluster to the

right

(

∂Pn

∂t

)

a

= −Prob(
x

◦r• · · · r+n−1• ◦)− Prob(◦ r• · · ·
y

r+n−1• ◦) (3)

Another decay is provided by the aggregation of neighboring clusters on the left, and particles

on the right, processes (b) and (c)
(

∂Pn

∂t

)

b+c

= −Prob(× y•◦ r• · · · r+n−1• ◦)− Prob(◦ r• · · · r+n−1• x◦• ×) (4)

where the symbol (×) represents a site occupied or not by a particle. The positive contri-

butions to Pn come from a series of two-clusters aggregations by avalanches, process (d)

(

∂Pn

∂t

)

d

= Prob(◦
y

r−1• ◦ • · · · r+n−1• ◦) + Prob(◦r−1• y•◦ • · · · r+n−1• ◦) + · · ·

+ Prob(◦ r−1• · · · y•◦ r+n−1• ◦) (5)
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The cluster can also be generated by one-particle diffusion from the right, process (e)
(

∂Pn

∂t

)

e

= Prob(◦ r• · · · r+n−2• x◦• ×) (6)

Process (f) is the avalanche contribution of the same cluster originally located at r− 1 and

moving to the right

(

∂Pn

∂t

)

f

= Prob(◦ r−1• · · ·
y

r+n−2• ◦ ◦) (7)

The last process (g) consists in creating the cluster from a cluster of size n+ 1 from which

the first particle separates by diffusing to the left hand side

(

∂Pn

∂t

)

g

= Prob(◦
x

r−1• · · · r+n−1• ◦)

The analytical expressions of the previous processes are given by products of cluster size

distributions and their convolution, in the case where several clusters are contributing to

the dynamics, and which are detailed in Appendix A. Overall, all the changes in Pn(r) can

be summed up and we obtain for n ≥ 2 the time evolution:

τ
∂Pn

∂t
= −2Pn(r)− Pn(r)

Np−n
∑

m=1

Pm(r −m− 1)− Pn(r)

Np−n
∑

m=1

Pm(r + n+ 1)

+
n−1
∑

m=1

Pm(r − 1)Pn−m(r +m) + Pn−1(r)

Np−n+1
∑

m=1

Pm(r + n)

+ Pn(r − 1)

[

1−
Np−n
∑

m=1

Pm(r + n)

]

+ Pn+1(r − 1) (8)

For the particular case n = 1, there is no (d) process, and the (e) process is replaced by a

new process (e′) which can be written as
(

∂P1

∂t

)

e′
= Prob(◦

x

r◦• ×) =
1

τ
Pr(◦ r◦ •×)

=
1

τ

[

Np
∑

m=1

Pm(r + 1)−
Np−1
∑

m=1

Pm(r + 1)

Np−m
∑

m′=1

Pm′(r −m′)

]

(9)

It is convenient to introduce the generating function in the Fourier space for Eq.(8) and

space average the probability distribution P̄n,

Ĝ(x, k) =
∑

r

e−ikr
∑

n≥1

xnPn(r) =
∑

n≥1

xnP̂n(k), (10)

P̄n =
Nn

N
= N−1P̂n(0)



6

with momenta k = 2πm/N , m = 0, · · · , N − 1. From this definition, we have the relations

Nc = Ĝ(1, 0), Np = ∂xĜ(1, 0) (11)

The generating function satisfies a master equation which incorporates all the previous

processes, as well as the one-particle dynamics. Applying the transformation Eq.(10) to

Eq.(8), we obtain

τ
∂

∂t
Ĝ(x, k) =

[

−2 + (1 + x−1)e−ik
]

Ĝ(x, k)− 1

N

∑

k′

e−i(k−k′)Ĝ(x, k′)Ĝ(e−i(k−k′), k − k′)

+ (x− 1)
1

N

∑

k′

ei(k−k′)Ĝ(xei(k−k′), k′)Ĝ(1, k − k′)

+
1

N

∑

k′

e−ik′Ĝ(xei(k−k′), k′)
[

Ĝ(x, k − k′)− Ĝ(1, k − k′)
]

+ xeikĜ(1, k)− x
1

N

∑

k′

eik
′

Ĝ(1, k′)Ĝ(e−i(k−k′), k − k′)− e−ikP̂1(k) (12)

with P̂1(k) = ∂xĜ(x, k)|x=0. We should notice that we assume N ≫ 1 and that the finite

size cutoff at n = Np in Eq.(8) is not taken into account in the expression for Ĝ(x, k). It

can be checked from the previous equation that the number of particles is conserved, by

computing directly ∂tNp = ∂t∂xĜ(1, 0) = 0. The last term in Eq.(12) corresponds to the

contribution of one-particle clusters by fragmentation of bigger clusters. Since there is a

continuous production of one-particle clusters, we expect the dynamics to reach a steady

state. In particular, the time evolution of the cluster number Nc = Ĝ(1, 0) is equal to

τ
∂

∂t
Ĝ(1, 0) = −2

1

N

∑

k′

eik
′

Ĝ(1, k′)Ĝ(eik
′

,−k′) + Ĝ(1, 0)− P̂1(0) (13)

The dynamics is non-local as Ĝ(1, 0) depends on non-zero momentum contributions. Let us

consider the steady state of Eq.(12). If we assume the dynamics is governed by low momenta

close to zero, we may try to study more precisely solutions given by Ĝ(x, k) = Nδk,0Ĝ0(x)

which is a mean-field approximation. This approximation will be compared later with the

numerical results. The functional equation Eq.(12) can be solved for this solution, which

yields

Ĝ0(x) =
1

8x

[

4(1− x)
√

1− αx+ βx2 − 4 +

(

7− 3

√

1− 8N−1P̂1(0)

)

x

+

(

√

1− 8N−1P̂1(0)− 1

)

x2

]

, (14)

α =
3

2

(

1−
√

1− 8N−1P̂1(0)

)

, β =
1

8

(

1− 8N−1P̂1(0)−
√

1− 8N−1P̂1(0)

)
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The value of P̂1(0) is determined by the condition of particle conservation Ĝ′
0(1) = c. Solving

this condition leads to the following expressions for P̂1(0) and coefficients α and β as function

of c

P̂1(0) =
c(1− c)(1− c+ 2c2)

(1 + c)2
N, (15)

α =
6c(1− c)

1 + c
, β =

c2(1− c)2

(1 + c)2
,
α2

β
= 36

Therefore Ĝ0(x) depends only on the concentration. The series expansion of the generating

function can then be expressed using the series expansion of (1−αx+ βx)1/2 =
∑

n≥0 Cnx
n

which leads to

Ĝ0(x) = N−1P̂1(0)x+
1

2

∑

n≥2

(Cn+1 − Cn) x
n (16)

from which we can identify the size distribution P̄n = 1
2(Cn+1 − Cn) for n ≥ 2. Expansion

coefficients Cn can be written and rearranged as a double sum (see Appendix B), and we

obtain the formula given in Eq.(B3)

Cn =
(−1)1+[n/2]αn

2n(2[(n+ 1)/2]− 1)
P (−n+1/2,−1)

[n/2] (7/9) (17)

where P (−n+1/2,−1)
[n/2] (z) is the Jacobi polynomial which depends on n only and [.] in the integer

part. We should distinguish between odd and even n values, and study the asymptotic limit

when n → ∞ (see Appendix B for details). In particular we find that

P̄2m =
(−1)mα2m

22m+1

[

P (−2m+1/2,−1)
m (7/9)

2m− 1
− αP (−2m−1/2,−1)

m (7/9)

4m+ 2

]

≃ A0√
πm

(

1− A(c)

2m+ 1
+

2

4m2 − 1

)

exp(2m lnA(c)) (18)

where

A(c) =
c(1− c)

(1 + c)(
√
2− 1)2

, A0 =

√
2− 1

21/4
(19)

and for odd values

P̄2m+1 =
(−1)mα2m+1

22m+2(2m+ 1)

[α

2
P (−2m−3/2,−1)

m+1 (7/9)− P (−2m−1/2,−1)
m (7/9)

]

≃ A0

2
√
π

(

1− A(c)√
m

+
A(c)

2m3/2

)

exp[(2m+ 1) lnA(c)]

2m+ 1
(20)
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FIG. 2: Average number of clusters with their standard deviation as function of time for N = 500

and 103 initial random configurations.

The quantity A(c) is positive and less than unity. P̄n is exponential with a corrective power

law factor n−3/2, except at the value where A(c) = 1, which is achieved at the critical point

c∗ =
√
2 − 1. For this value, P̄n follows a power law with decay exponent 5/2 since the

amplitude 1− A(c) for the n−3/2 contribution vanishes, as seen in the previous expressions

Eq.(18) and (20). In general, 1 − A(c) remains a small quantity around c∗, so that the

apparent exponent is close to 5/2. For example A(0.3) ≃ 0.94, or A(0.5) ≃ 0.97 which

is close to unity. This corresponds to β = 1 in the model [11] since η = 3/2 + β if we

identify the two models, and this is represented by an aggregation kernel equal to the size

product of its constituents. Also, near c∗, lnA(c) ≃ −(1−c/c∗)2/
√
2, which gives a diverging

characteristic cluster size nc =
√
2(1− c/c∗)−2.

Numerically, we simulated the stochastic dynamics using a number of random initial

configurations at fixed concentration and system size. A site is chosen randomly with a

uniform probability and if it is occupied by a particle, this one is allowed to move either

on the left or right by one step with equal probability, provided that the destination site is

empty. If the particle moves to the left, it leaves the cluster where it was attached eventually.

If the particle moves to the right, it moves with all the cluster it is attached to accordingly.
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FIG. 3: Numerical evaluation of the cluster size distribution P̄n for N = 2000 and different

concentrations c. 105 random initial realisations were generated, and averages were performed

after 2x105 time steps. In inset, black dot symbols represent coefficient − lnA(c) of fitted function

P̄n ≃ A(c)−nn−η, and square red symbols are the power law exponent η.

The process is repeated at each time iteration, and the size distribution is evaluated after

the steady state is reached, see Fig. 2, typically after at least 105 time steps for the sizes

considered in simulations. For different concentration values, the averaged size distribution

is displayed in Fig. 3 for N = 2000. The cutoff at n ≃ cN induces a sharp decrease of

the curves at large concentration beyond the power law region for finite N . As discussed

before, this cutoff is not included in the computation of Eq.(14), since we consider the

thermodynamical limit N ≫ 1. In the inset of the figure we have plotted the parameters

for the fitting function P̄n ≃ A(c)−nn−η at different concentrations. Using a polynomial fit,

1−A(c) appears to vanish for c ≃ 0.443, which is close to the theoretical value 0.414 from the

approximation method Eq.(14). The exponent η is close to 3/2 for most of concentrations

around c∗, which is the exponent extracted from the asymptotic values Eq.(18) and (20). We

would normally expect an exponent close to 5/2 in the critical region, due to the smallness
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FIG. 4: Numerical average values of one-particle cluster number N1 and total cluster number Nc.

105 random initial realisations were generated, and averages were performed after 2x105 time steps.

Dotted lines are the approximated values given by the generating function Eq.(14).

of factor 1 − A(c). However the mean-field approximation gives a qualitative explanation

of the dynamics with the possible numerical evidence of a critical point near c∗. At higher

concentrations c > c∗, we observe that large clusters tend to aggregate and dominate the

dynamics since particles are getting closer to each other, and then merge more easily. Indeed,

the finite size effect induces strong contributions to large clustering as P̄n approaches the

singular limit P̄n ≃ δn,cN when c ≃ 1, which is observed in the curves above c = 0.78 of

Fig. 3 by the appearance of a broad peak in the distributions. At low concentrations, the

distribution follows mostly an exponential law with a large amplitude A(c) as the clusters

tend to diffuse and break into small independent particles. In Fig. 4, we have plotted

the average number of clusters Nc and the average number of one-particle clusters N1 as

a function of the concentration. Dotted lines represent the values given by Eq.(14), i.e.

Nc = Nc(1 − c)/(1 + c) and N1 = P̂1(0); see Eq.(15). The agreement is correct for small

values of concentrations, and the behavior of N1 is modified near c ≃ 0.4 above which it
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FIG. 5: Averaged size distribution P̄n for a simple particle dynamics and system size N : particles

can diffuse to the left or right if the final site is unoccupied. The averaging is evaluated after 106

time steps and 103 samples. In inset: decay rate as function of the concentration c.

seems to follow a linear decreasing law.

For comparison, let us consider the simplest symmetric and local dynamics where parti-

cles are allowed to diffuse only on one of the two neighboring sites if these are unoccupied.

The averaged size distribution P̄n of the n-particle clusters can be evaluated naively as

function of the particle concentration c. Indeed a cluster of n particles exists with a prob-

ability proportional to (1 − c)2cn, and the averaged distribution follows therefore a simple

exponential law P̄n = (1 − c)2cn with a decay rate equal to − ln c, as exemplified in Fig. 5.

Moreover the average number of clusters is equal to the semi-circle law Nc = Nc(1 − c).

Any cluster can only fragment by releasing one particle at its edges and the distribution is

purely exponential with no power law contribution. Therefore the asymmetric and non-local

dynamics studied in this paper induces a power law contribution in the distribution. The

asymmetry also induces the presence of an internal current to the right direction, with an

average particle velocity equal to v = N−1
∑

n(1 − n)P̄n = 1 − Nc/N > 0. The velocity

is maximum for states with large clusters or at low concentration. Using the approximate

value for Nc, we find that v = (1 + c2)/(1 + c). The velocity is minimum at the critical

concentration c∗ =
√
2− 1.
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III. DISCUSSION

Stochastic dynamics of clusters with a strong asymmetric kinetic rule displays a critical

behavior at a finite concentration c∗ ≃ 0.414, where the size-distribution becomes a power-

law with a decay exponent equal to 5/2. This critical point can be simply viewed as the

singular point of the square root term in the generating function Eq.(14) at x = 1, where

the quantity 1−αx+ βx2, which is always positive for 0 ≤ x < 1, vanishes. It is interesting

to compare these results with a model of coagulation with single-particle fragmentation

[18] and using the product form for the aggregation kernel, which leads to gelation after a

finite time. The mass or size distribution displays, when the gelation time is approached

from below, a power law with the same exponent 5/2 at the critical concentration. We can

deduce that the present model might belong to a class of models defined by an aggregation

kernel proportional to the product of individual masses or sizes. A quasi-gelation state exists

if the chain is not periodic and boundary conditions are fixed at both ends, which modifies

the stochastic rules at the boundaries. Indeed the current tends to aggregate all particle to

the right end of the chain where a large cluster forms since no particle can be transferred to

the left hand side of the chain. After a short time, almost all particles belong to the large

cluster, with few small clusters surviving in the steady state. This may be in analogy with

percolation problems in higher dimensions where small clusters persist after the spanning

cluster is formed.

Corrections to the theory of the present model would incorporate finite size cutoff of

the cluster sizes at n = cN in Eq.(14), which would explain the broad contribution of

large clusters at higher concentrations in Fig. 3. Also, we need to take into account the

momenta contributions k 6= 0 in Eq.(12) in order to give more accurate results, for example

by considering fluctuations around the uniform solution: Ĝ(x, k) = Nδk,0Ĝ0(x) + δG(x, k)

with δG(x, 0) = 0. This latter substitution would however not modify the average value of

the cluster number as non-linear effects should be important. We should also ask whether

the critical point is robust when we modify the fragmentation rule. For example Eq.(8) can

be generalized to any fragmentation distribution, for example we could impose than more

that one particle can break-off from the cluster from the left. In this context, there should

be a class of fragmentation rules that allows the existence of the critical point.

This work was supported by Brain Pool Program through the National Research Foun-
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APPENDIX A: BALANCE EQUATIONS FOR THE DIFFERENT PROCESSES

In this section, we derive the explicit expressions for the different processes that contribute

to the master equation Eq.(8). For the process (a), one has simply

Prob(
x

◦r• · · · r+n−1• ◦) = Prob(◦ r• · · ·
y

r+n−1• ◦) = 1

τ
Pn(r) (A1)

For the process (b) one has instead

Prob(× y•◦ r• · · · r+n−1• ◦) = Prob(◦ • ◦ r• · · · r+n−1• ◦) + Prob(◦ • • ◦ r• · · · r+n−1• ◦) + · · ·

=
1

τ
Pn(r)×

[

P1(r − 2) + P2(r − 3) + · · ·+ PNp−n(r −Np + n− 1)
]

(A2)

Process (c) is given by

Prob(◦ r• · · · r+n−1• x◦• ×) = Prob(◦ r• · · · r+n−1• ◦ • ◦) + Prob(◦ r• · · · r+n−1• ◦ • •◦) + · · ·

=
1

τ
Pn(r)×

[

P1(r + n+ 1) + P2(r + n+ 1) + · · ·+ PNp−n(r + n+ 1)
]

(A3)

Process (d) is given by

Prob(◦
y

r−1• ◦ • · · · r+n−1• ◦) + Prob(◦r−1• y•◦ • · · · r+n−1• ◦) + · · ·+ Prob(◦ r−1• · · · y•◦ r+n−1• ◦)

= 1
τ
[P1(r − 1)Pn−1(r + 1) + P2(r − 1)Pn−2(r + 2) + · · ·+ Pn−1(r − 1)P1(r + n− 1)]

Process (e) is given by

Prob(◦ r• · · · r+n−2• x◦• ×) = Prob(◦ r• · · · r+n−2• ◦ • ◦) + Prob(◦ r• · · · r+n−2• ◦ • •◦) + · · ·

=
1

τ
Pn−1(r)×

[

P1(r + n) + P2(r + n) + · · ·+ PNp−n(r + n)
]

(A4)

Process (f) is given by

Prob(◦ r−1• · · ·
y

r+n−2• ◦ ◦) = Prob(◦ r−1• · · · r+n−2• ◦×)− Prob(◦ r−1• · · · r+n−2• ◦ • ×)

=
1

τ
Pn(r − 1)×

[

1− P1(r + n)− P2(r + n)− · · · − PNp−n(r + n)
]

(A5)

And the last process (g) is given by

Prob(◦
x

r−1• · · · r+n−1• ◦) = 1

τ
Pn+1(r − 1) (A6)
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APPENDIX B: EXPANSION COEFFICIENTS Cn

We consider in this appendix the expression of coefficients Cn in Eq.(16), and their

behavior when n is asymptotically large. From Eq.(14), we first have to expand the quantity

√

1− αx+ βx2 =
∑

n≥0

an(−αx+ βx2)n =
∑

n≥0

anx
n

n
∑

k=0

(

n

k

)

(−α)n−kβkxk

an =
(−1)n+1(2n)!

22nn!2(2n− 1)
(B1)

We can rearrange the terms in the double sum so that

∑

n≥0

anx
n

n
∑

k=0

(

n

k

)

(−α)n−kβkxk =
∑

n≥0

xn

[n/2]
∑

k=0

an−k

(

n− k

k

)

(−α)n−2kβk

=
∑

n≥0

xn(−α)n
[n/2]
∑

k=0

an−k

(

n− k

k

)

36−k =
∑

n≥0

Cnx
n (B2)

For n even or odd respectively, the sums over k have a representation in term of Jacobi

polynomials

C2m =
(−1)m+1α2m

4m(2m− 1)
P (−2m+1/2,−1)

m (z0) ,

C2m+1 =
(−1)m+1α2m+1

4m(4m+ 2)
P (−2m−1/2,−1)

m (z0) (B3)

with z0 = 7/9. For m large, we would like to obtain an expansion of the polynomials

P (−2m±1/2,−1)
m (z0). Although there are asymptotic formulas in the literature for a large pa-

rameter m ≫ 1 [25, 26], there is no result for the value z0 = 7/9 which is outside the

domain of convergence of the asymptotic series. We will use instead an integral representa-

tion of the polynomials in the complex plane and perform a simple saddle point analysis. If

w(z) = (1− z)−2m±1/2(1 + z)−1 is the weight of the Jacobi polynomials in Eq.(B3), we have

P (−2m±1/2,−1)
m (z0) =

(−1)m

2mw(z0)

∮

dz

2iπ

w(z)(1− z2)m

(z − z0)m+1
(B4)

where the contour is a small circle around z0. A change of variable z = z0 − (1− z0)s leads

to

P (−2m±1/2,−1)
m (z0) =

(1 + z0)
m

2m

∮

ds

2iπsm+1

(1 + s)±1/2

1− rs

(

1− rs

1 + s

)m

(B5)

where r = (1− z0)/(1+ z0) and the contour is a small circle around the origin. For m large,

we apply the saddle point method by extremizing the function φ(s) = ln[(1− rs)/s(1 + s)].
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We obtain the relevant solution s∗ = (1 −
√
1 + r)/r and expand φ(s) around s∗ up to the

second order, then compute the resulting Gaussian integral. We obtain

P (−2m±1/2,−1)
m (z0) ≃ −(1 + s∗)±1/2

s∗(1− rs∗)

exp (mφ(s∗) +m ln(1 + z0)−m ln 2)
√

2πmφ′′(s∗)
(B6)

with the values

φ(s∗) = iπ − ln(1 + z0) + 2 ln(
√
2 +

√
1 + z0),

φ′′(s∗) =
21/2(1− z0)

2

(1 + z0)1/2
(3 + z0 − 23/2

√
1 + z0)

(
√
2−

√
1 + z0)4

(B7)

Therefore, the asymptotic behavior of P (−2m+ǫ/2,−1)
m (z0), with ǫ = ±1, and which is valid at

least in the interval 0 < z0 < 1, is equal to

P (−2m+ǫ/2,−1)
m (z0) ≃

(−1)m(
√
2−

√
1 + z0)

1+ǫ/2(1 + z0)
1/4em(2 ln(

√
2+

√
1+z0)−ln 2)

2(5−ǫ)/4(1− z0)ǫ/2
√

3 + z0 − 23/2
√
1 + z0

√
πm

(B8)

where we have, in this limit

P (−2m+1/2,−1)
m (z0) ≃ (1 + s∗)P (−2m−1/2,−1)

m (z0)

≃
√
2(
√
2−

√
1 + z0)

1− z0
P (−2m−1/2,−1)

m (z0)

The asymptotic behavior Eq.(B8) has been checked with c©Maple2018 for z0 = 7/9 with a

relative error of about 0.4% up to m = 80.
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