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Abstract

The upwelling hypothesis has been proposed to explain reduced or lack of population struc-

ture in seabird species specialized in food resources available at cold-water upwellings.

However, population genetic structure may be challenging to detect in species with large

population sizes, since variation in allele frequencies are more robust under genetic drift.

High gene flow among populations, that can be constant or pulses of migration in a short

period, may also decrease power of algorithms to detect genetic structure. Penguin species

usually have large population sizes, high migratory ability but philopatric behavior, and

recent investigations debate the existence of subtle population structure for some species

not detected before. Previous study on Humboldt penguins found lack of population genetic

structure for colonies of Punta San Juan and from South Chile. Here, we used mtDNA and

nuclear markers (10 microsatellites and RAG1 intron) to evaluate population structure for 11

main breeding colonies of Humboldt penguins, covering the whole spatial distribution of this

species. Although mtDNA failed to detect population structure, microsatellite loci and

nuclear intron detected population structure along its latitudinal distribution. Microsatellite

showed significant Rst values between most of pairwise locations (44 of 56 locations, Rst =

0.003 to 0.081) and 86% of individuals were assigned to their sampled colony, suggesting

philopatry. STRUCTURE detected three main genetic clusters according to geographical

locations: i) Peru; ii) North of Chile; and iii) Central-South of Chile. The Humboldt penguin

shows signal population expansion after the Last Glacial Maximum (LGM), suggesting that
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the genetic structure of the species is a result of population dynamics and foraging colder

water upwelling that favor gene flow and phylopatric rate. Our findings thus highlight that

variable markers and wide sampling along the species distribution are crucial to better

understand genetic population structure in animals with high dispersal ability.

Introduction

In species with high dispersal ability and no geographical barriers in their distribution, it is

expected found low genetic population structure. For instance, weak or no population genetic

structure has been frequently recorded for seabird species along the Atlantic coast of South

America (e.g. Kelp gull, Larus dominicanus [1,2]; Magellanic penguin, Spheniscus magellanicus
[3]; South-American tern, Sterna hirundinacea [4]), along the Pacific coast of South America

(e.g. Peruvian pelican, Pelecanus thagus [5]), and around Antarctica (Emperor penguin, Apte-
nodytes forsteri, [6, 7]; Adélie penguin, Pygoscelis adelia [8]; P. antarticus Chinstrap penguin

[9]). Therefore, relative importance of factors that influence the population structure of sea-

birds have been under debate, such as the presence of physical or non-physical barriers

[10,11], the foraging ecology of the species [12], and/or their philopatric behavior [13].

The upwelling hypothesis has been proposed to explain reduced or lack of population

genetic structure in seabird species specialized in food resources available at cold-water

upwellings, which are regularly influenced by largescale climatic events [12]. For instance, the

Southeast Pacific coast is characterized by the Humboldt Current System (HCS) of cool sea

surface temperature and high biological productivity. In the HCS, the coastal upwellings pro-

vide more than 10% of global fish catch [14], however, these areas are not temporally continu-

ous or spatially uniform: indeed, El Niño Southern Oscillation (ENSO) reduces the upwellings’

intensity leading to the warming of surface waters, reducing productivity [15, 16, 17, 18], and

affecting the survival and dispersal of fishes, seabirds and marine mammals [19, 20, 21]. Thus,

during El Niño events, adult seabirds disperse long distances to find new productive upwelling

areas to forage and colonize new area, according to the availability of breeding grounds,

increasing gene flow and consequently reducing population genetic structure. The weak popu-

lation genetic structure and high genetic diversity of Humboldt Current endemic seabirds can

be explained by the upwelling hypothesis [5], such as described for Peruvian pelicans, Peruvian

boobies [12], and also for Humboldt penguins [22].

Another hypothesis to explain reduced population genetic structure is the effect of Pleisto-

cene glaciations, which is frequently proposed for seabirds from South America [23] and from

the North Hemisphere [24, 25]. During the Last Glacial Maximum (LGM), the southern por-

tion of the Pacific coast was covered by an ice sheet [26, 27]. However, in Chile, the region

between 33˚S and 46˚S was considered to have been climatically stable [28]. Thus, distinct cli-

mate conditions throughout the Pacific coast could play an important role in defining the

demographic history of populations, affecting species distribution, and leaving a genetic signa-

ture on populations. Therefore, low genetic structure could reflect the signature of population

expansion after the LGM associated with high population size (Ne), thus recent gene flow

would not be easily detected.

Gene flow among populations derives from contemporary and historical factors. However,

detecting population genetic structure in species with large effective population size is a chal-

lenge, since variation in allele frequencies is masked by genetic drift that is inversely propor-

tional to population size [29]. There is also debate on the power of algorithms of clustering to
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detect genetic structure in species with large population [6, 30, 31, 32]. For instance, Chinstrap

penguins showed weak genetic population structure and a pattern of isolation by distance

(IBD) when evaluating four breeding colonies [33] at southernmost Western Antarctic Penin-

sula (WAP), but no differentiation from the distant Bouvet Island and 11 WAP locations [9].

The number of molecular markers, loci, sample size, and the number of locations across the

species distribution might be important to fully understand these patterns. Therefore, the

detection of population genetic structure for seabirds from HCS may not only reject the

upwelling hypothesis, but may propose new hypotheses to explain the new patterns of species

across the region.

Penguins are monogamous seabirds, with intense biparental care, philopatric behavior,

high capacity of dispersion, and specialist diet [34]. The Humboldt penguin (Spheniscus hum-
boldti) is an HCS specialist, widely distributed along the Pacific coast of South America, from

La Foca Island (05˚12’S; 81˚12’W) in Peru to Metalqui Island (42˚12’S; 74˚09’W) in Chile [35].

There are records that Humboldt penguins have been seen at Guafo Island (43˚36’S) in a

mixed-species colony, however there is no report of breeding activity [36]. On the southern

limit of its distribution, there is information about hybridization between Humboldt and Mag-

ellanic penguins in mixed-species colonies [37]. The current global population size estimation

is ca. 32,000 to 36,982 breeding adults, and the Humboldt Penguin is listed as Vulnerable by

International Union for Conservation of Nature (IUCN) due to population size reductions

attributed to exploitation or habitat alteration, as well as the effect of ENSO events [38, 39].

Migration rates among colonies are not well known, however there is evidence of individu-

als from Pan de Azucar colony migrating over 600 km, and birds from Puñihuil were found

over 1,000 km northwards from their original colonies [40, 41]. In addition, it was proposed

that during ENSO events, Humboldt penguin abundance and distribution might have been

shifted southward, causing the reduction of populations in the North (e.g. Punta San Juan,

Peru) and an increase in some colonies in Chile, such as Chañaral Island [39]. Intense migra-

tion rate has been corroborated by low genetic structure estimated among some colonies of

Humboldt penguins [22].

The present study aims to evaluate population genetic structure of the Humboldt penguin,

testing upwelling and glaciation hypotheses to explain lack or reduced population structure as

previously proposed for this species, and to investigate the potential contribution of choice of

molecular markers for population genetic structure of the species along the HCS. To achieve

these goals, we (1) characterize the genetic diversity and geographical structure across the

entire species range, (2) determined the effects of historical climate changes over the species

demography, and (3) evaluated if there is sex-biased philopatry and dispersal, bringing light to

the questions about low structure recorded on several seabird´ species.

Material and methods

Ethics statement

This study was carried out in strict accordance with the recommendations in the Guide for the

Care and Use of Animals at research of the National Council of Animal Experiments from Bra-

zil and Bioethics Guideline from CONICYT (Comisı́on Nacional de Investigacion Cientifica y

Tecnologica) del Chile. The protocol was approved by the Committee on the Ethics of Animal

Experiments of the Pontificia Universidade Catolica from Minas Gerais (Protocol Number:

27–2016) and by the Committee on the Ethics of Animal Experiments of the Pontificia Univer-

sidad Catolica del Chile. Samples were obtained under Subpesca—Corporación Nacional For-

estal del Chile (CONAF), Direccı́on General Florestal y de Fauna Silvestre (DGFFS) of the
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Peruvian Nation Protected Areas Agency (SERNANP 001088) and (Instituto Brasileiro do

Meio Ambiente e Recursos Naturais (CITES IBAMA 10BR005149DF; 10BR005120).

Sampling

Blood samples for genetic analysis were collected during penguin breeding seasons between

2005 and 2013. We collected a total of 487 samples from adult Humboldt penguins from 11

breeding colonies distributed along its entire distribution range in Peru and Chile (Fig 1). Pen-

guins were captured quietly with a noose pole 1.5 m in length used to lead the penguins out of

their nests, and they were hold manually. The heads of captured penguins were covered by one

mask to reduce the visual stress. Approximately 500 μl (microliters) of blood samples were

obtained from the internal metatarsal vein or the brachial vein, using a 23G needle and 3 mL

syringe and stored in 96% ethanol P.A. for genetic analysis. To avoid re-sampling, penguins

were marked temporarily with water-resistant color markers, with exception in Punta San

Juan colony where penguins already had flipper bands. DNA was isolated for genetic analysis

using standard phenol-chloroform extraction protocols followed by ethanol precipitation and

DNA resuspension in sterile water [42].

Molecular sexing

Sex was determined by Polymerase chain reaction (PCR), using primer pairs P2 and P8 [43],

prepared to 10 μL volume containing 50 ng of total DNA, 1X of Taq buffer, 200 μM of each

dNTP, 3.5 mM MgCl2, 0.5 μM of each primer, and 0.5 U of Taq DNA polymerase. Amplifica-

tions were performed with an initial step at 94˚C for 4 min, 53–55˚C for 30 s, and 1 min at

72˚C, followed by 40 cycles of 30 s at 92˚C, 50˚C for 30 s, and 45 s at 72˚C, followed by a final

extension of 7 min at 72˚C. The PCR amplifies regions of the CHD1 gene found on the sex

chromosomes [43]. Gender identification was based on the number of bands for a given sam-

ple visualized on 3% agarose gel. Males have a single band that corresponds to the intron on Z

chromosomes, whereas females have two bands, corresponding to introns on the ZW chromo-

somes that showed distinct size.

Microsatellite genotyping

We genotyped 13 microsatellite loci developed for Spheniscus [22, 44, 45]. PCR amplification

and genotyping procedures were performed using fluorescently labeled primers (Thermo-

fisher, São Paulo, Brazil). PCR were conducted separately for each locus in a 10 μL volume

containing 20–40 ng of total DNA, 1X of Taq buffer, 200 μM of each dNTP, 0.5 μM of each

primer, and 0.5 U of Taq DNA polymerase. Amplifications were performed with an initial step

at 95˚C for 4 min and 37 cycles of 30 s at 94˚C, 30 s at annealing temperature according to

each locus (S1 Table), and 1 min at 72˚C, followed by a final extension of 10 min at 72˚C. PCR

products were diluted 5X (1:5). A volume of 1.5 μL diluted PCR from FAM labeled and 3.0 μL

from HEX labeled was then suspended in 7.75 μL HiDi Formamide (Applied Biosystems,

Foster City, CA) with 0.25 of GeneScan 500 ROX size standard, and analyzed on ABI 3500

(Applied Biosystems, Foster City, CA). The fragments were genotyped using GeneMapper v.4

software (Applied Biosystems, Foster City, CA).

Genotyping error or null alleles were tested for each colony using the program Micro-

Checker [46]. Hardy-Weinberg and linkage equilibrium for each locus within each colony, as

well as all colonies and all loci together were evaluated in GenAlEx [47]. Allele frequencies,

allelic richness, observed and expected heterozygosity were estimated for each colony using

GenAlEx. Differences in the distribution of genetic variation among colonies were analyzed by

RST between colonies using ARLEQUIN v.3.1 [48].

Population genetic of Humboldt penguin

PLOS ONE | https://doi.org/10.1371/journal.pone.0215293 May 10, 2019 4 / 19

https://doi.org/10.1371/journal.pone.0215293


Fig 1. Map of South America showing sampling locations of the Humboldt penguin: CHI (Chiloé), PUP

(Pupuya), ALG (Algarrobo), CAC (Cachagua), TIL (Tilgo), PAJ (Pajaros), CHO (Choros), CHA (Chañaral), GRA

(Isla Grande), AZU (Pan de Azucar), and PSJ (Punta San Juan).

https://doi.org/10.1371/journal.pone.0215293.g001
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Possible correlations between the indices of genetic differentiation and geographic dis-

tances between all pairs of colonies were tested using the Mantel test, which was performed

with Mantel Non-parametric Test Calculator v.2.0 [49] using 10,000 randomizations. The dis-

tances between the pairwise colonies (islands) were calculated from geographic coordinates by

the program GPS coordinate (https://gps-coordinates.org/distance-between-coordinates.php)

considering a Euclidean distance.

Bayesian clustering analyses was performed to estimate the optimal number of genetic clus-

ters (K) using STRUCTURE v2.3.3 [50]. To test for population genetic structure without prior

knowledge of sampling locations, we estimated the posterior probability of the data fitting the

hypothesis of K clusters [Pr(X|K)], where K is the number of putative populations. STRUC-

TURE was run using the admixture and noadmixture model, without localities as priors and

assuming uncorrelated allelic frequencies. Preliminary runs, testing from K = 1 to K = 10, were

repeated 10 times, each run had 100,000 cycles of burn-in and 10,000 cycles of MCMC.

STRUCTURE HARVESTER was used to infer the simplest model to genetic population struc-

ture performing Evanno’s method (ΔK) [51]. Also, a Discriminant Analysis of Principal Com-

ponents (DAPC) was carried out to determine the number of cluster of genetically related

individuals, with a non-Bayesian approach. DAPC uses sequential K-means and model selec-

tion to identify genetic cluster [52]. For this, adegenet package in R [53] was used, retaining all

principal components.

Assignment of each individual to their reference putative population was evaluated for

microsatellite data using GeneClass [54], employing the likelihood method based on allele

frequencies [55], as well as a Bayesian approach [56]. The probability that each individual

was assigned to a candidate population was estimated using a Monte Carlo resampling

method [57] (number of simulated individuals = 10,000; type I error = 0.01, applying rejec-

tion threshold of 0.05). The same program was used to detect first generation migrants

employing the Bayesian criterion [56] applying the Monte Carlo resampling method [57]

with 10.000 simulated individuals and an alpha of 0.01. We used the highest likelihood value

among all available populations (L = L_home/L_max). Philopatric rate and migrate rate dif-

ference between sexes were tested by Mann-Whitney non-parametric test using Bioestat Soft-

ware [58]. Gene flow between population also were estimated through coalescence-based

maximum likelihood (LMAX) method implemented in MIGRATE-n 3.2.6 [59], considering

geographical distance. MIGRATE assumes an n-island model at mutation migration-drift

equilibrium with values of M and θ constant over time. The Brownian motion model was

used as an approximation of the stepwise mutation model, and 10 following initial trials,

search criteria for the MCMC sampler were set to 20 short chains of 20 000 steps and 3 long

chains of 200 000 steps.

Deviations from mutation/drift equilibrium were tested with the program BOTTLENECK

[60, 61]. Three models of microsatellite evolution were tested: infinite allele model (IAM),

two-phase model (TPM), and the stepwise mutation model (SMM). The TPM is the most real-

istic model for microsatellite mutation because it assumes mainly stepwise mutations with

some multi-step mutations [62]. Parameters for the TPM were set at 90% single step muta-

tions, as suggested for microsatellite data [60, 61].

Mitochondrial DNA and nuclear DNA sequences

The mtDNA Control region was amplified with primers D-loop C and D [63]. The PCR reac-

tion (10 μL) contained 20 ng of DNA, 1x of Taq buffer, 200 μM of each dNTP, 1.0 μM of each

primer, and 0.5 U of Taq polymerase. Amplifications were performed with an initial step at

94˚C for 2 min and 35 cycles of 30 s at 94˚C, 40 s at 62˚C and 90 s at 72˚C, followed by final
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extension of 10 min at 72˚C. PCR products were cleaned by precipitation using 20% Polyethyl-

ene Glycol with 2.5M NaCl. Sequences were obtained on an ABI 3500.

RAG-1 (Recombination activating gene 1) was amplified with primers RAG17 and RAG22

[64]. The PCR reaction as prepared for 10 μL as before (D-loop) Amplifications were per-

formed with an initial step at 94˚C for 2 min and 35 cycles of 30 s at 94˚C, 40 s at 59˚C and 90

s at 72˚C, followed by final extension of 10 min at 72˚C. PCR products were cleaned and

sequenced as before.

Sequences were visualized using ChromasLite 2.1 (www.technelysium.com.au). The align-

ments were adjusted by manually in Bioedit v.5.06 [65]. A Bayesian approach run with the pro-

gram PHASE [66] was used to identify haplotypes of heterozygotes in the nuclear intron: this

program reconstructs the haplotype as implemented in DNAsp v.5.10.01 software [67].

Descriptive analyses, including haplotype diversity (h), nucleotide diversity (π), and theta

(θ), were done in DNAsp v.5.10.01 [67]. We used the Network software version 4.6 (www.

fluxus-technology.com) with median joining method [68] to draw relationships among haplo-

types. Additionally, we calculated Tajima’s [69] and Fu’s [70] statistics to test bias from neu-

trality in DNAsp v.5.10.01 [67]. We selected these statistical tests due to their power to detect

population expansion scenarios in specific sampling conditions and with specified population

expansion rate, time since the expansion, sample size and number of segregating sites [71].

We used AIC as implemented in the software JModeltest [72], to select the best-fit evolu-

tionary model. The evolutionary model selected for control region was T92+G with a discrete

gamma distribution (α = 0.06), and JC for RAG1 region. These evolutionary models were used

in Bayesian Skyline Plots to analyze population size dynamics through time [73], implemented

in BEAST 1.6.1 [74]. We performed runs of 200,000,000 steps, logged every 5,000 steps, and

burn-in of 20,000,000. For BEAST analysis, we considered the mutation rate of 0.86 substitu-

tion/site/myrs to D-loop (HVRI) described for the Adélie penguin [75] and 1.9 X 10−3 substi-

tution/site/myrs to RAG1 [76]. To evaluate the convergence of parameters between runs and

the performance of analysis (ESS values> 200), we used TRACER 1.7.5 (http://beast.bio.ed.ac.

uk/Tracer) [74]. To check the level of population genetic structure among localities, we per-

formed an analysis of molecular variance (AMOVA) with two hierarchical levels using ARLE-

QUIN 3.5 [46].

Results

Genetic diversity

The Humboldt penguin showed high genetic diversity for all markers in all colonies. For

microsatellites, the number of alleles found in each locus ranged from eight (locus Sh2Ca58) to

23 (both Sh2Ca40), averaging 15.89 over all loci (S1 Table). Private and rare alleles were found

in almost all breeding colonies, except for Pupuya and Isla Grande de Atacama (frequencies of

0.004 to 0.056).

The analyses performed by Microchecker showed evidence for null alleles at locus M1-11 in

seven breeding colonies (Algarrobo, Cachagua, Tilgo, Pajaros, Choros, Chañaral and Punta

San Juan) and out of Hardy-Weinberg Equilibrium (HWE), thus it was excluded from popula-

tion analysis. Loci Sh2Ca58, Sh2Ca12 and Sh2Ca9 were also excluded from population analysis

due genotype proportions deviating from H-W expectations (S2 Table). Thus, the population

analysis was conducted with 10 microsatellite loci. Humboldt penguin breeding colonies

through the Pacific coast from South America showed relatively high levels of genetic diversity,

with mean heterozygosity 0.72 ± 0.014 (Table 1). The minimum value observed was from

Algarrobo Island (Ho = 0.66) and the maximum from Tilgo (Ho = 0.76).
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Analysis of the 401 bp fragment of the D-loop HVRI mtDNA from 175 individual Hum-

boldt penguins showed a total of 37 haplotypes, high haplotype diversity (Hd = 0.906) and high

nucleotide diversity (π = 0.008). A RAG1 fragment of 876 bp from 54 individuals showed 23

haplotypes, also high haplotype diversity (Hd = 0.876) and nucleotide diversity (π = 0.002).

These patterns of high genetic diversity were also observed in all colonies analyzed (Table 1).

Population genetics structure

Genetic variability using AMOVA was found mainly within populations rather than among

populations. For microsatellite loci, 96.89% of genetic variability was detected within popula-

tions and only 3.11% among populations (p< 0.001), compared to 98.36% within and only

1.64% among populations for mtDNA (p = 0.10), and 78.51% within and 21.49% among popu-

lations for RAG1 (p< 0.001).

Bayesian structure analyses of microsatellite data suggested that the existing global popula-

tion is composed of 3 groups (K = 3) of Humboldt penguins: 1) Punta San Juan, Peru, 2) Pan

de Azucar and Isla Grande de Atacama and 3) the remaining locations (Fig 2, S4 Fig and

Table 1. Summary statistics of Humboldt penguins based on the 13 microsatellites: Sample size (n), mean number of alleles (Na), Shannon Index (I), expected (He)

and observed (Ho) heterozygosity, inbreeding coefficient (FIS), and mitochondrial DNA control region and nuclear RAG1 intron: sample size (n), haplotype diver-

sity (Hd), nucleotide diversity (π) and Neutrality test of Fu’s Fs (Fs), Tajima’D (D) with respective probability (p). In bold, values that were significant for Fs (p< 0.02)

and D (p< 0.05). Population reference: CHI (Chiloé), PUP (Pupuya), ALG (Algarrobo), CAC (Cachagua), TIL (Tilgo), PAJ (Pajaros), CHO (Choros), CHA (Chañaral),

GRA (Isla Grande), AZU (Pan de Azucar), PSJ (Punta San Juan).

Location Code Geog. Microsatellite D-loop RAG1

position N Na I Ho He FIS N Hd π Fs D N Hd π Fs D

Chiloé CHI 41˚ 92 S

74˚03 W

5 5.07 1.43 0.75 0.71 0 2 1.00 0.00 0.69 0.01 2 0.00 0.00 0.00 0.00

Pupuya PUP 33˚58S

71˚53’W

6 4.23 1.25 0.71 0.76 0 2 1.00 0.01 0.69 0.01 - - - -

Algarrobo ALG 33˚23 S

71˚41’W

9 6.53 1.61 0.66 0.76 0.127 5 1.00 0.00 0.01 0.01 2 0.00 0.00 0.00 0.00

Cachagua Island CAC 32˚35’S

71˚27’W

15 8.23 1.73 0.72 0.78 0.066 - - - - 4 0.66 0.03 3.15 2.12

Tilgo Island TIL 29˚32’S; 71˚20’W 50 10.07 1.82 0.76 0.80 0.177 5 1.00 0.00 0.01 0.01 4 0.00 0.00 1.00 0.00

Pájaros Island PAJ 29˚35’S; 71˚32’W 76 10.84 1.82 0.71 0.80 0.146 18 0.86 0.01 -2.54 -0.93 10 0.80 0.02 0.33 0.02

Choros Island CHO 29˚16’S

71˚32’W

79 11.53 1.89 0.75 0.82 0.147 15 1.00 0.01 0.13 0.01 8 0.85 0.02 -1.00 0.50

Chañaral Island CHA 29˚02’S

71˚35’

55 9.84 1.76 0.75 0.79 0.071 2 - - - - 6 0.80 0.01 -0.08 1.03

Grande Island GRA 27˚14’S

70˚58’

13 6.46 1.43 0.69 0.66 0 13 0.93 0.01 -3.14 -1.06 - - - -

Pan de Azúcar AZU 26˚09’S

70˚41’W

52 8.46 1.6 0.72 0.72 0.003 36 0.91 0.01 -9.31 -1.63 10 0.82 0.01 -1.08 -0.32

Punta San Juan PSJ 15˚22’S

75˚11’W

112 11.84 1.85 0.7 0.77 0.012 70 0.87 0.01 -5.87 -1.34 10 0.91 0.02 -1.86 -0.27

All 463 8.47 1.66 0.73 0.78 0.05 0.89 0.01 -17.02 -1.63 0.87 0.02 -18.91 -2.04

https://doi.org/10.1371/journal.pone.0215293.t001

Fig 2. Bayesian STRUCTURE of the Humboldt penguin, delta K = 3, using admixture model. 1- Punta San Juan; 2- Isla Pan de

Azucar; 3- Isla Grande de Atacama; 4- Chañaral; 5- Choros; 6- Pájaros; 7- Tilgo; 8- Cachagua; 9- Algarrobo; 10- Pupuya; 11- Chiloé.

https://doi.org/10.1371/journal.pone.0215293.g002
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S8 Table). Despite the large geographical distance, Pupuya from the central coast was grouped

with the locations from the north (i.e. Pan de Azucar and Isla Grande). However, this is proba-

bly due the low sample size from this location. In addition, DAPC estimated the optimal num-

ber of cluster to K = 2, being one included Pan de Azucar and Isla Grande de Atacama and

another included all remaining locations, despite into second group Punta San Juan was slight

differentiation (Fig 3). No isolation by distance was identified between all locations, with

absence of correlations between geographic and genetic distance (Mantel test; r = 0.04,

t = 0.17, p = 0.57).

Population genetic structure with significant RST values for microsatellite were observed

between the majority of pairwise locations, mainly between the groups detected by STRUC-

TURE, with significant RST values ranging between Punta San Juan and the remaining loca-

tions of 0.011 to 0.088, or among Pan de Azucar and Isla Grande and remaining locations of

0.001 to 0.158; and within the third group higher values were found between Algarrobo and

the remaining locations (0.059 to 0.158), except Pupuya and Chiloé (Fig 4, S3 Table).

RAG1 corroborated with high population structure based on significant ϕST for 15 of 36

pairwise comparisons, mainly among Punta San Juan and Pan de Azucar, Chañaral, Choros,

Cachagua and Algarrobo; and among Pan de Azucar and Chañaral, Choros, Cachagua and

Algarrobo (S4 Table). Cachagua is significantly distinct of almost all colonies, except Tilgo. On

the other hand, D-loop region was non-informative, since only one pairwise comparison

showed a significant value (S4 Table). In addition, the assignment test indicated that philopatry

of the Humboldt penguin is higher than 86% (Table 2).

Historical versus recent dispersal

Inference of recent migration indicated low, asymmetric and bidirectional gene flow among

Humboldt penguin colonies (Table 2). In contrast, historical gene flow was observed among

all colonies (Table 3). In total 368 Humboldt penguins were sexed, where 190 were males and

178 were females (S5 Table), with no significant bias from expected 1 male:1 female propor-

tion. However, females showed lower philopatry than males (S6 Table).

Fig 3. DAPC based on 10 microsatellites of the Humboldt penguin (Spheniscus humboldti): CHI (Chiloé), PUP (Pupuya), ALG

(Algarrobo), CAC (Cachagua), TIL (Tilgo), PAJ (Pajaros), CHO (Choros), CHA (Chañaral), GRA (Isla Grande), AZU (Pan de

Azucar), and PSJ (Punta San Juan).

https://doi.org/10.1371/journal.pone.0215293.g003
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Fig 4. Pairwise RST based on 10 microsatellites (a), pairwise ϕST based on RAG1 (b) of the Humboldt penguin (� p

value < 0.05).

https://doi.org/10.1371/journal.pone.0215293.g004

Table 2. Frequency of Humboldt penguin assignment to each population, estimated by maximum likehood based on allele frequencies, where rows represent immi-

grants and columns represent emigrants. Population reference: CHI (Chiloé), PUP (Pupuya), ALG (Algarrobo), CAC (Cachagua), TIL (Tilgo), PAJ (Pajaros), CHO

(Choros), CHA (Chañaral), GRA (Isla Grande), AZU (Pan de Azucar), and PSJ (Punta San Juan).

ALG CAC TIL PAJ CHO CHA GRA AZU PSJ

ALG 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

CAC 0.07 0.86 0.00 0.00 0.00 0.07 0.00 0.00 0.00

TIL 0.00 0.00 0.90 0.00 0.00 0.04 0.06 0.00 0.00

PAJ 0.00 0.05 0.01 0.89 0.00 0.02 0.03 0.00 0.00

CHO 0.03 0.00 0.01 0.00 0.96 0.00 0.00 0.00 0.00

CHA 0.02 0.00 0.00 0.00 0.00 0.98 0.00 0.00 0.00

GRA 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00

AZU 0.02 0.00 0.00 0.00 0.00 0.00 0.04 0.94 0.00

PSJ 0.03 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.95

https://doi.org/10.1371/journal.pone.0215293.t002

Table 3. Inference of theta (θ) of each population and historical migrate number of among Humboldt penguin population, estimated by maximum likelihood

based on allele frequencies on MIGRATE software, where rows represent immigrants and columns represent emigrants. Population reference: CHI (Chiloé), PUP

(Pupuya), ALG (Algarrobo), CAC (Cachagua), TIL (Tilgo), PAJ (Pajaros), CHO (Choros), CHA (Chañaral), GRA (Isla Grande), AZU (Pan de Azucar), and PSJ (Punta

San Juan).

ALG CAC TIL PAJ CHO CHA GRA AZU PSJ

ALG 0.012 17 20 24 50 43 23 9 13

CAC 12 0.064 24 11 21 23 14 11 34

TIL 17 29 0.089 23 44 50 79 19 92

PAJ 48 70 32 0.004 90 85 56 40 45

CHO 94 49 94 67 0.093 60 8 31 30

CHA 25 39 101 24 158 0.003 45 15 14

GRA 35 95 11 37 28 23 0.011 17 12

AZU 15 62 43 53 70 117 17 0.010 36

PSJ 21 180 64 94 80 63 55 10 0.097

https://doi.org/10.1371/journal.pone.0215293.t003
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Demographic history

Signatures of bottlenecks were detected at Pupuya (IAM p = 0.01), Pajaros (SMM, p< 0.01),

Choros (IAM, p = 0.01; SMM, p< 0.01), Chañaral (IAM, p = 0.01; SMM, p< 0.01), Pan de

Azucar (IAM, p = 0.01), and Punta San Juan (SMM, p = 0.03) (S7 Table). Furthermore, there

is evidence of recent expansion of the Humboldt penguin in Punta San Juan (Fs = -5.87,

p = 0.02) and Pan de Azucar (Fs = -9.31, p = 0.01; D = 1.63, p = 0.03) only with D-loop region

(Table 1). Corroborating this expansion is the network shaped as a star topology, with few hap-

lotypes in high frequency and several in low frequency with few mutations among them (Fig

5). Skyline plots showed coalescence around 145,000 years ago to RAG1 and 25,000 years to

D-loop region (S2 Fig).

Discussion

Our study reveals that the Humboldt penguin exhibits a clear population genetic structure

along the Pacific coast of the South America, as observed in other previous studies on Hum-

boldt penguins [22]. However, our outcome did not corroborate isolation by distance pattern

[22], probably due to a gap of sampling. The present study used of several markers, a higher

sample size, the distribution and the number of breeding colonies sampled throughout the

whole range, and the new methods of data analysis such as the Bayesian methods applied in

this study. The combination of all these appeared to overcome the effects of large population

size and pulses of migration related to climate oscillations (e.g. ENSO) in the Humboldt pen-

guin, which frequently limit the power of detection of population genetic structure. Bayesian

genetic structure analyses revealed three genetic clusters in the Humboldt penguin: 1) Peru

(Punta San Juan), 2) north Chile (region of Pan de Azucar and Isla Grande de Atacama), and

3) Central-South of Chile (Pajaros, Chañaral, Tilgo, Choros, Cachagua, Algarrobo) (Fig 2).

This structure needs to be considered while implementing management and conservation

action plans for the Humboldt penguin along the Southern Pacific coast. Also, taking into

account the population data for Humboldt penguin (numbers of breeding pairs in each col-

ony) that indicate Punta San Juan as a key colony in Peru, supporting around 3,160 breeding

pairs [38]; and Pajaros, Chañaral, Tilgo and Choros together supporting around 21,700

Fig 5. Haplotype network for the D-loop region and RAG1 from Humboldt penguin sequences. Node size corresponds to

haplotype frequency.

https://doi.org/10.1371/journal.pone.0215293.g005
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breeding pairs (14,000 at Chañaral, 1,860 at Choros, 2,640 at Tilgo, and 1,200 at Pajaros), and

Pan de Azucar with 3,000 breeding pairs. These regions need to be monitored to avoid popula-

tion decline.

Although some endemic seabirds from the Humboldt Current show weak population

genetic structure, such as Peruvian pelicans [5]; Peruvian boobies [12], however, other marine

vertebrates, such as the Marine otter (Lontra feline) exhibit higher genetic differentiation from

populations from Peru compared to those distributed along Chile [77]. Despite the population

genetic structure among Humboldt penguin colonies, historical gene flow among several colo-

nies was also observed (Table 3), but recent gene flow was reduced. Gene flow among seabird

colonies can be associated to colder-water upwelling [12]: these areas that retain high produc-

tivity, becoming important forage sites during ENSO years. Along the Chilean coast, several

upwellings have been identified, the main sites being at Antofogasta and Mejilliones,

Coquimbo, and Concepcı́on [16]. Thus, Humboldt penguins travel long distances to find these

highly productive regions [78] to supply their diet necessity, and search main food items such

as the Peruvian anchovy (Engraulis ringens), the Araucanian herring (Strangomera bentincki),
the Silverside (Odontesthes regia), the Common hake (Merluccius gayi), the Inca scad (Tra-
churus murphyi), the Garfish (Scomberesox saurus scombroides), and the South American pil-

chard (Sardinops sagax) [79]. Therefore, the genetic structure that has been observed in the

present study may result of foraging in distinct upwelling regions. It is possible that individuals

from Pan de Azucar and Isla Grande de Atacama forage in Mejilliones’ colder-water upwell-

ings and in Iquique, leading to reduced gene flow with the other colonies. This isolation of Pan

de Azucar is corroborated by a known foraging radius of 35 km during the breeding season

and 640 km to the north (near Iquique) during the winter [40], reducing gene flow with the

other Chilean colonies. Around Isla Choros is also frequent region of colder-water upwellings

favoring intense gene flow and reduced genetic structure among some islands, as Pajaros,

Chañaral and Tilgo. Pajaros and Cachagua showed lower philopatry rates (0.89 and 0.86,

respectively), indicating high gene flow with the other colonies. Thus, it is possible that indi-

viduals from Punta San Juan could be forage near Choros and Antofogasta in the North of the

Chile, and breed there leading to gene flow among Peru and northern-central Chilean colo-

nies, corroborating colder-water upwelling hypothesis. Vianna et al. (2014) proposed that

changes in population size might have been the result of irrupt Humboldt penguin to favorable

and productivity areas, moved from Punta San Juan to North of the Chile.

The population genetic structure can be explained by the species philopatric behavior that

reduces gene flow. Philopatry was confirmed by assignment test based on microsatellites for all

colonies of Humboldt penguins, showing individuals assignment the population origin above

86% (Table 2). Ecological data also indicate strong fidelity to natal colonies on Punta San Juan

in Peru [80], and Cachagua and Algarrobo in Chile [40, 81, 82].

The evolutionary history, such as isolation, expansion or retraction of populations, affects

the population genetic structure and the genetic diversity of a species. In the present study in

the Humboldt penguin, the D-loop and RAG1 analyses showed a stability and recent coales-

cence (around 24,917 years ago to D-loop and 145,000 years ago to RAG1). Thus, it is possible

that, during the glaciation when Pacific coast experienced a change in its productivity, leading

to an intense reduction of the global population of the Humboldt penguin, followed by an

expansion of the population after the LGM. However, the population expansion was observed

only in neutrality tests to D-loop region and in network (Table 1, Fig 4). The large population

size of Humboldt penguin can be masked the expansion, being important increase genomic

markers to recovery demographic history. But it is not possible to discard the influence of gla-

ciation in Humboldt penguin. Other penguin species showed the influence of climate effects

on their distribution and speciation, experienced strong demographic fluctuations: during the
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LGM, the Gentoo penguin (Pygoscelis papua) maintained large effective population sizes in

Antarctica and the Scotia Arc followed by an expansion [83, 84, 85], while the Adélie penguin

showed two divergent lineages due to different glacial refugia in Antarctica [86, 87]. The Mag-

ellanic penguin also showed a signal of expansion after the LGM, probably due to increase of

available breeding sites [3].

Penguin species have demonstrated, in general, high genetic diversity, as detected here for

the Humboldt penguin, and recorded for the Magellanic penguin [3, 88], the Gentoo penguin

[83, 84, 85], the Adélie penguin [84, 86, 89], and the Chinstrap penguin [9, 84]. High genetic

diversity resulted from several evolutionary factors, such as large population size, low inbreed-

ing rate, and equal sex ratio. Genetic data showed signature of drastic reduction at Pupuya,

Tilgo, Pajaros, Choros, Chañaral, Pan de Azucar and Punta San Juan, indicating a bottleneck

in these colonies. Despite of these bottlenecks, the Humboldt penguin has maintained high

genetic diversity in all colonies.

Considerations to conservation

Our study shows that the population structure in the Humboldt penguin can be better inves-

tigated and understood by increasing the number of markers and the sampling effort to

cover the whole species’ distribution. Low sampling may not reflect real allele frequencies of

the global population, showing a simplification of the genetic structure. This study of the

Humboldt penguins’ population genetic structure revealed three major regions: 1) Punta San

Juan in Peru, with clear genetic differences from the Chilean colonies, 2) Pan de Azucar and

Isla Grande de Atacama in the North of Chile, which need a special attention as the most

genetically differentiated colonies and 3) the breeding colonies from the Central-South of

Chile.

Based on our results, following recommendations arise in relation to conservation initia-

tives. It is important to expand population genetic studies to cover other breeding colonies in

Peru, to better understand the relationship between the population of Punta San Juan and the

other two genetic groups detected in Chile. Chañaral and Choros are part of the Humboldt

Penguin National Reserve, but the other islands (Tilgo and Pajaros)- should also be consid-

ered into this system to maintain genetic diversity and a more integral form of population

management.

The Humboldt Penguin suffers from the impacts of several factors, such as the interaction

with industrial fisheries (overexploited foraging species, incidental catch), the pressure from

alien species (e.g. rats, Rattus rattus and R. norvegicus, and feral dogs) that predate on unat-

tended eggs and chicks [90, 91], human perturbations due to tourism and guano harvesters

[92], and habitat loss. Furthermore, predictions of the effects of future climate change include

increases in rainfall (locally) and temperature in South America [93]. It is important to have

solid monitoring systems for breeding colonies that could be affected directly by these factors,

especially regarding the reduction of chick survival and reproductive success. Thus, outcomes

this study help to make better decisions regarding conservation actions for this species.
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