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ABSTRACT

Star-forming galaxies have been found to follow a relatively tight relation between stellar mass (M∗) and star formation rate (SFR),
dubbed the “star formation sequence”. A turnover in the sequence has been observed, where galaxies with M∗ < 1010 M� follow a
steeper relation than their higher mass counterparts, suggesting that the low-mass slope is (nearly) linear. In this paper, we characterise
the properties of the low-mass end of the star formation sequence between 7 ≤ log M∗[M�] ≤ 10.5 at redshift 0.11 < z < 0.91. We
use the deepest MUSE observations of the Hubble Ultra Deep Field and the Hubble Deep Field South to construct a sample of 179
star-forming galaxies with high signal-to-noise emission lines. Dust-corrected SFRs are determined from Hβ λ4861 and Hα λ6563.
We model the star formation sequence with a Gaussian distribution around a hyperplane between log M∗, log SFR, and log(1 + z), to
simultaneously constrain the slope, redshift evolution, and intrinsic scatter. We find a sub-linear slope for the low-mass regime where
log SFR[M� yr−1] = 0.83+0.07

−0.06 log M∗[M�] + 1.74+0.66
−0.68 log(1 + z), increasing with redshift. We recover an intrinsic scatter in the relation

of σintr = 0.44+0.05
−0.04 dex, larger than typically found at higher masses. As both hydrodynamical simulations and (semi-)analytical

models typically favour a steeper slope in the low-mass regime, our results provide new constraints on the feedback processes which
operate preferentially in low-mass halos.

Key words. galaxies: star formation – galaxies: formation – galaxies: evolution – galaxies: ISM – methods: statistical

1. Introduction

How galaxies grow is one of the fundamental questions in
astronomy. The picture that has emerged is that a galaxy builds
up its stellar mass mainly through star formation, which is trig-
gered by gas accretion from the cosmic web (e.g. Dekel et al.
2009; Van de Voort et al. 2012), while mergers with other galax-
ies play only a minor role (except for massive systems;
Bundy et al. 2009).

In the past decade, star-forming galaxies have been found
to form a reasonably tight quasi-linear relation between stel-
lar mass (M∗) and star formation rate (SFR; Brinchmann et al.
2004; Noeske et al. 2007b; Elbaz et al. 2007; Daddi et al. 2007;
Salim et al. 2007) over a wide range of masses and out
to high redshifts (Pannella et al. 2009; Santini et al. 2009,
2017; Oliver et al. 2010; Peng et al. 2010; Rodighiero et al.
2010; Karim et al. 2011; Bouwens et al. 2012; Whitaker et al.
? Based on observations made with ESO telescopes at the La Silla

Paranal Observatory under programme IDs ID 060.A-9100(C), 094.A-
2089(B), 095.A-0010(A), 096.A-0045(A), and 096.A-0045(B).

2012, 2014; Stark et al. 2013; Ilbert et al. 2015; Lee et al.
2015; Renzini & Peng 2015; Schreiber et al. 2015; Shivaei et al.
2015; Salmon et al. 2015; Tasca et al. 2015; Gavazzi et al. 2015;
Kurczynski et al. 2016; Tomczak et al. 2016; Bisigello et al.
2018), which is often referred to as the “main sequence of star-
forming galaxies” or the “star formation sequence”. In contrast,
galaxies that are undergoing a starburst or have already quenched
their star formation lie respectively above and below the rela-
tion. This main sequence is close to a similar scaling relation for
halos (Birnboim et al. 2007; Neistein & Dekel 2008; Genel et al.
2008; Fakhouri & Ma 2008; Correa et al. 2015a,b) where the
growth rate increases super-linearly1 with halo mass, and this
has been interpreted as supporting the picture where galaxy
growth is driven by gas accretion from the cosmic web (e.g.

1 There is a tension between the shallow slope of the observed main
sequence with the super-linear slope expected in models, which is set
by the index of the initial dark matter power spectrum (Birnboim et al.
2007; Neistein & Dekel 2008; Correa et al. 2015a,b).
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Bouché et al. 2010; Lilly et al. 2013; Rodríguez-Puebla et al.
2016; Tacchella et al. 2016).

This interpretation is supported by hydrodynamical sim-
ulations of galaxy formation (Schaye et al. 2010; Haas et al.
2013a,b; Torrey et al. 2014; Hopkins et al. 2014; Crain et al.
2015; Hopkins et al. 2016), where a global equilibrium relation
is found between the inflow and outflow of gas and star for-
mation in galaxies. In this picture the star formation acts as a
self-regulating process, where the inflow of gas, through cool-
ing and accretion, is balanced by the feedback from massive
stars and black holes (e.g. Schaye et al. 2010). Furthermore,
semi-analytical models (e.g. Dutton et al. 2010; Mitchell et al.
2014; Cattaneo et al. 2011, 2017) and relatively simple ana-
lytic theoretical models which connect the gas supply (from
the cosmological accretion) to the gas consumption can also
reproduce the main features of the main sequence rather well
(e.g. Bouché et al. 2010; Davé et al. 2012; Lilly et al. 2013;
Dekel et al. 2013; Dekel & Mandelker 2014; Mitra et al. 2015;
Rodríguez-Puebla et al. 2016, 2017)2.

The parameters of the M∗-SFR relation (i.e. slope, normal-
isation, and scatter) are thus important, as they provide us with
insight into the relative contributions of different processes oper-
ating at different mass scales, in particular when comparing
the values of the parameters to their counterparts in dark mat-
ter halo scaling relations. The normalisation of the star for-
mation sequence is governed by the change in cosmological
gas accretion rates and gas depletion timescales. The slope can
be sensitive to the effect of various feedback processes act-
ing on the accreted gas, which prevent (or enhance) star for-
mation. The intrinsic scatter around the equilibrium relation is
predominantly determined by the stochasticity in the gas accre-
tion process (e.g. Forbes et al. 2014; Mitra et al. 2017), but can
also be driven by dynamical processes that rearrange the gas
inside galaxies (Tacchella et al. 2016). The M∗-SFR relation is
observed to be reasonably tight, with an intrinsic scatter of only
≈0.3 dex (Noeske et al. 2007b; Salmi et al. 2012; Whitaker et al.
2012; Guo et al. 2013; Speagle et al. 2014; Schreiber et al. 2015;
Kurczynski et al. 2016, though we caution against a blind com-
parison as different observables probe star formation on differ-
ent timescales). Yet, it has proven to be challenging to place firm
constraints on the intrinsic scatter as one needs to deconvolve the
scatter due to measurement uncertainty (e.g. Speagle et al. 2014;
Kurczynski et al. 2016; Santini et al. 2017).

Observationally, the slope has been difficult to measure, par-
ticularly at the low-mass end, as most studies have been sen-
sitive to galaxies with stellar masses above log M∗[M�] ∼ 10
and often lack dynamical range in mass. In addition, while it is
well known that there is significant evolution in the normalisa-
tion of the sequence with redshift, most studies have measured
the slope in bins of redshift. For a flux limited sample this could
introduce a bias in the slope because overlapping populations at
different normalisations are not sampled equally in mass within
a single redshift bin. The slope may also be mass dependent and
indeed recent studies have observed that the relation turns over
around a mass of M∗ ∼ 1010 M� (Whitaker et al. 2012, 2014;
Lee et al. 2015; Schreiber et al. 2015; Tomczak et al. 2016) and
shows a steeper slope below the turnover mass. In the low-mass
regime, a (nearly) linear slope has generally been expected (e.g.
Schreiber et al. 2015; Tomczak et al. 2016), motivated also by
the fact that there is very little evolution in the faint-end slope

2 For an alternative interpretation, cf. Gladders et al. (2013), Kelson
(2014), and Abramson et al. (2016).

of the blue stellar mass function with redshift (Peng et al. 2014).
Leja et al. (2015) showed that the sequence cannot have a slope
a < 0.9 at all masses because this would lead to a too high num-
ber density between 10 < log M∗[M�] < 11 at z = 1.

In addition to the observational challenges, careful mod-
elling is required to get reliable constraints on the parameters
(slope, normalisation, scatter) of the star formation sequence. It
is important to properly take selection effects into account as
well as the uncertainties on both the stellar masses and star for-
mation rates (and, if spectroscopy is lacking, also on the photo-
metric redshifts). The latter in particular, due to the fact that there
is intrinsic scatter in the relation that needs to be deconvolved
from the measurement errors. Common statistical techniques
do not take these complications into account self-consistently,
which leads to biases in the results.

Putting the existing observations in perspective, it is clear
that a large dynamical range in mass is necessary to measure the
slope of the star formation sequence in the low-mass regime.
Deep field studies, that can blindly detect large numbers of
galaxies down to masses much below 1010 M�, are invaluable
in this regard (e.g. Kurczynski et al. 2016). Yet, such studies are
challenged by having to measure all observables, distances as
well as stellar masses and star formation rates, from the same
photometry. This can lead to undesirable correlations between
different observables. At the same time the measurements suf-
fer from the uncertainties associated with photometric redshifts.
Spectroscopic follow up is crucial in this regard, but can suffer
from biases due to photometric preselection.

With the advent of the Multi Unit Spectroscopic Explorer
(MUSE; Bacon et al. 2010) on the VLT it is now possible to
address these concerns. With the deep MUSE data obtained over
the Hubble Ultra Deep Field (HUDF; Bacon et al. 2017) and
Hubble Deep Field South (HUDF; Bacon et al. 2015), we can
“blindly” detect star-forming galaxies in emission lines down
to very low levels (∼10−3 M� yr−1) and obtain a precise spec-
troscopic redshift estimate at the same time (Inami et al. 2017).
These data provides a unique view into the low-mass regime of
the star formation sequence.

In this paper we present a characterisation of the low-mass
end of the M∗-SFR relation, using deep MUSE observations of
the HUDF and HDFS. We characterise the properties of the M∗-
SFR relation down stellar masses of M∗ ∼ 108 M� and SFR
∼10−3 M� yr−1, out to z < 1, and trace the SFR in individual
galaxies with masses as low as M∗ <∼ 107 M� at z ∼ 0.2. We
model the relation using a self-consistent Bayesian framework
and describe it with a Gaussian distribution around a plane in
(log mass, log SFR, log redshift)-space. This allows us to simul-
taneously constrain the slope and evolution of the star formation
sequence as well as the amount of intrinsic scatter, while taking
into account heteroscedastic errors (i.e. a different uncertainty
for each data point).

The structure of the paper is as follows. In Sect. 2 we first
introduce the MUSE data set and outline the selection criteria
used to construct our sample of star-forming galaxies. We then
go into the methods used to determine a robust stellar mass and
a SFR from the observed emission lines. Before looking at the
results, we discuss the consistency of our SFRs in Sect. 3. We
then introduce the framework of our Bayesian analysis used to
characterise the M∗-SFR relation (Sect. 4) and present the results
in Sect. 5. We discuss the robustness of the derived parameters
in Sect. A.1. Finally, we discuss our results in the context of the
literature and models, and the physical implications (Sect. 6).
We summarise with our conclusions in Sect. 7. Throughout this
paper we assume a Chabrier (2003) stellar initial mass function
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Fig. 1. Redshift distribution of our galaxies plotted against their (dust-
corrected) SFR (1σ error bars are in grey). The colour denotes the stellar
mass. The solid line depicts the lowest uncorrected SFR from Hβ λ4861
we can detect in the HUDF at each redshift (which is effectively deter-
mined by the requirement that S/N(Hγ λ4340) > 3; see Sect. 2.4).

and a flat ΛCDM cosmology with H0 = 70 km s−1 Mpc−1, Ωm =
0.3 and ΩΛ = 0.7.

2. Observations and methods

To study the properties of the galaxy population down to low
masses and star formation rates, deep spectroscopic observations
are required for a large number of sources. We exploit the unique
observations taken with the MUSE instrument over the Hubble
Ultra Deep Field (Bacon et al. 2017) and the Hubble Deep Field
South (Bacon et al. 2015) to investigate the star formation rates
in low-mass galaxies at 0.11 < z < 0.91. We provide a brief
presentation of the observations and data reduction in the next
section, but refer to the corresponding papers for details.

The MUSE instrument is an integral-field spectrograph situ-
ated at UT4 of the Very Large Telescope. It has a field-of-view
of 1′ × 1′ when operating in wide-field-mode, which is fed into
24 different integral-field units. These sample the field-of-view
at 0.2′′ resolution. The spectrograph covers the spectrum across
4650 Å–9300 Å with a spectral resolution of R ≡ λ/∆λ ' 3000.
The result of a MUSE observation is a data cube of the observed
field, with two spatial and one spectral axes, i.e. an image with
spectroscopic information at every pixel.

2.1. Observations, data reduction, and spectral line fitting

The HUDF (Beckwith et al. 2006) was observed with MUSE in
a layered strategy. The deepest region consists of a single 1′ × 1′
pointing with a total integration depth of 31 h. This deep region
lies embedded in a larger 3′×3′ mosaic consisting of 9 individual
MUSE pointings, each of which is 10 h deep. The average full
width at half maximum (FWHM) seeing measured in the data
cubes is 0.6′′ at 7750 Å. For the purpose of this work we use
all galaxies from the mosaic region, including the deep (udf10)
region, which we refer to collectively as the (MUSE) HUDF.

Because of its similar depth, we also include the MUSE
observation of the HDFS (Williams et al. 2000) which was
observed as part of the commissioning activities. These observa-
tions consist of a single deep field (1′×1′) with a total integration
time of 27 h and a median seeing of 0.7′′.

The full data acquisition and reduction of the HUDF is
detailed in Bacon et al. (2017; for a description of the MUSE
data reduction pipeline see Weilbacher et al. in prep.). The data
reduction of the HUDF is essentially based on the reduction of
the HDFS, which is detailed in Bacon et al. (2015), with several
improvements. We use HUDF version 0.42 and HDFS version
1.0, which reach a 3σ-emission line depth for a point source
(1′′) of 1.5 and 3.1× 10−19 erg s−1 cm−2 (udf10 and mosaic) and
1.8×10−19 erg s−1 cm−2 (HDFS), measured between the OH sky-
lines at 7000 Å.

Sources in the HUDF were identified using both a blind and a
targeted approach. The latter uses the sources from the UVUDF
catalogue (Rafelski et al. 2015) as prior information to extract
objects from the MUSE cube. A blind search of the full cube was
also conducted, using a tool specifically developed for MUSE
cubes called ORIGIN (Bacon et al. 2017; Mary et al. in prep.).
A similar approach was already followed for the HDFS. Here
sources were identified based on the Casertano et al. (2000) cat-
alogue and blind emission line searches of the data cube were
done with the automatic detection tools Muselet3 and LSDCat
(Herenz & Wisotzki 2017) as well as through visual inspection,
and cross-correlated with the corresponding photometric cata-
logue, as described in Bacon et al. (2015).

The process of determining redshifts and constructing a full
catalogue from the extracted sources is described in Inami et al.
(2017) for the HUDF (and a similar approach was followed
for the HDFS). In short, redshifts were determined semi-
automatically by cross-matching template spectra with the iden-
tified sources and subsequently inspected and confirmed by at
least two independent investigators. For emission line galaxies
an additional constraint comes from the requirement that the
emission line flux is coherent in a narrow band image around the
line in the MUSE cube. The typical error on the MUSE spectro-
scopic redshifts is σz = 0.00012(1+z) (Inami et al. 2017), which
we will take into account in the modelling (conservatively taking
σlog(1+z) = 0.0005 for all galaxies; Sect. 4).

For all detected sources one dimensional spectra are
extracted using a straight sum extraction over an aperture around
each source (based on the MUSE point spread function con-
volved with the Rafelski et al. 2015 segmentation map, see
Bacon et al. 2017). From the extracted 1D spectra emission
line fluxes are fitted in velocity space, using an updated ver-
sion of the Platefit code described in Tremonti et al. (2004)
and Brinchmann et al. (2004, 2008). Platefit assumes a Gaus-
sian line profile for all lines, with the same intrinsic width and
velocity. The result is a measurement of the flux and equiva-
lent width of all emission lines present, with the uncertainties
obtained from propagating the original pipeline errors. We define
the signal-to-noise (S/N) in a particular spectral line as the line
flux over the line flux error. We also determine the strength of
the 4000 Å break, Dn(4000), measured over 3850−3950 Å and
4000−4100 Å (Kauffmann et al. 2003). We note that the stellar
absorption underlying the emission lines is taken into account
by Platefit.

2.2. Sample selection

From the HUDF and HDFS catalogues we construct our sample
of star-forming galaxies using the following constraints:
1. We use Hβ λ4861 or Hα λ6563 to derive the SFR (see

Sect. 2.4) and in either case we always need Hβ λ4861 (to
directly probe the SFR or to correct for dust extinction in

3 http://mpdaf.readthedocs.io/en/latest/muselet.html
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Hα λ6563). As a result, we are limited to the range of red-
shifts where Hβ λ4861 falls within the MUSE spectral range.
Subsequently, we only take objects into account that have a
redshift z < (9300/4861) − 1 = 0.913.

2. In order to derive a robust SFR and dust correction, we only
allow objects with a signal-to-noise ratio > 3 in the relevant
pair of Balmer lines. This means S/N > 3 in either Hβ λ4861
and Hγ λ4340 (for Hβ λ4861 derived SFRs) or Hα λ6563
and Hβ λ4861 (for Hα λ6563 derived SFRs).

Included in the above criteria are some galaxies that are not
actively star-forming and lie on the “red-sequence”. Since these
galaxies are not expected to lie on the M∗-SFR relation, we
exclude them from the analysis based on their spectral features:
3. We remove 12 galaxies with a strong 4000 Å break by only

allowing galaxies with a Dn(4000) < 1.5.
4. We omit galaxies with a rest-frame equivalent width in either

Hα λ6563 or Hβ λ4861 of <2 Å4. This removed an additional
7 and 5 objects, respectively.

In addition, three sources were removed from the sample due to
severe artefacts in their emission lines (see Sect. 3). All sources
selected based on the MUSE data are detected in the HST imag-
ing. However, four sources were removed because there photom-
etry was severely blended, prohibiting a mass estimate.
5. We remove potential AGN from our sample in the HUDF

by cross-matching our sources with the Chandra Deep Field
South 7Ms X-ray catalogue (Luo et al. 2016). We also con-
firm the location of the sources in the star-forming region of
different emission line diagnostic diagrams.

A total of 16 galaxies with z < 0.913 from the MUSE cata-
logue are detected in X-rays. Five of these sources (including
one AGN) show passive spectra without emission lines and did
not pass the previous criteria. Cross-matching our star-forming
sample (after applying criteria 1 through 4) left 11 galaxies that
were detected in X-rays. Five of these sources (ID#855, 861,
863, 895, and 902) are in the Hα-subsample and six (ID#867,
869, 874, 875, 884, and 905) are in the Hβ-subsample. All of
these sources were classified as “Galaxy” in the Luo et al. (2016)
catalogue (according to their 6 criteria based on X-ray luminos-
ity, spectral index, flux-ratios and previous spectroscopic iden-
tification), except for ID# 875 which was classified as an AGN
and which we subsequently removed from the sample. Luo et al.
(2016) caution however that sources classified as “Galaxy” may
still host low-luminosity or heavily obscured AGN.

We plot all sources from our Hα λ6563-subsample for which
we have a measurement of [N ii] λ6584 in the BPT-diagram
(Baldwin et al. 1981) in Fig. 2. We include sources for which
we have a low S/N(< 3) measurement of [N ii] λ6584 as open
circles. While we can only put a subsample of our sources on
this diagram, all are in the star-forming region, including the
5 galaxies which have an X-ray detection. None of the X-ray
sources classified as “Galaxy” show spectral signatures of AGN
activity. In Fig. 3 we show a similar consistency check for the
Hβ λ4861-subsample. Because we lack access to the BPT dia-
gram at these redshift, we instead use the diagnostics from both
Lamareille et al. (2004) and Juneau et al. (2011). Reassuringly,
our sample is overall consistent with star-forming galaxies and
none of the galaxies show line-ratios clearly powered by AGN
activity (including, perhaps surprisingly, the single X-ray classi-
fied AGN). There is only one source which is above the discrim-
inating line in both plots (ID#1114), however, it is consistent
within errors with being dominated by star formation and not
4 Following the convention that emission-line equivalent widths
(EQW) are negative, this translates to excluding EQW > −2 Å.
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Fig. 2. BPT-diagram (Baldwin et al. 1981) of the sources in our
Hα λ6563-subsample for which we measure [N ii] λ6584. All galaxies
fall in the star-forming region of the diagram. The filled and open cir-
cles have S/N([N ii] λ6584) >3 and <3, respectively, and the 5 sources
encircled in red are detected in X-rays (Luo et al. 2016). The solid and
dashed curve show the AGN boundary and maximum starburst line
from Kauffmann et al. (2003) and Kewley et al. (2001), respectively.

detected in X-rays. Furthermore, its high [O iii] flux can very
well be driven by star formation and indeed it is part of the
sample of high-[O iii]/[O ii] galaxies identified by Paalvast et al.
(2018). Hence, except for X-ray detected AGN ID#875, we do
not remove any additional sources from the sample. Finally, we
note that none of the methods to identify AGN are individually
foolproof. Therefore, we check the impact of potential misclassi-
fication of AGN and confirm that excluding (1) the sources that
are above the pure star-forming line in either of the diagnos-
tic diagrams or (2) all galaxies that are detected in X-rays (even
when consistent with star formation) does not significantly affect
the results.

The final sample then consists of 179 star-forming galax-
ies, 147 from the HUDF, all with the highest redshift confidence
(Inami et al. 2017), and 32 from the HDFS, between 0.11 < z <
0.91 with a mean redshift of 0.53 (see Fig. 1).

2.3. Stellar masses

The stellar masses of the galaxies were estimated using the Stel-
lar Population Synthesis (SPS) code FAST (Kriek et al. 2009).
The SPS-templates were χ2-fitted to the broad-band photometry
of the different fields for a range of parameters. For the HUDF,
we rely on the deep HST photometry from the UVUDF cat-
alogue Rafelski et al. (2015; containing WFC3/UVIS F225W,
F275W and F336W; ACS/WFC F435W, F606W, F775W, and
F850LP and WFC/IR F105W, F125W, F140W and F160W)
while for the HDFS we take the WFPC2 photometry from
Casertano et al. (2000; F330W, F450W, F606W, and F814W).
The SPS-templates were constructed from the Conroy & Gunn
(2010; FSPS) models using a discrete range of metallicities
(Z/Z� = [0.04, 0.20, 0.50, 1.0, 1.58]). We assumed a Chabrier
(2003) initial mass function with an exponentially declining star
formation history (SFR ∝ exp(−t/τ) with 8.5 < log(τ/yr) < 10
in steps of 0.2 dex). The redshifts were fixed to the accurate spec-
troscopic values determined from the MUSE spectra. Ages were
allowed to vary between 8 < log Age/yr < 10.2 in steps of
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Fig. 3. AGN diagnostics for the sources in our Hβ λ4861-subsample, including all sources which have S/N > 3 in the relevant emission lines.
Overall, our sample is consistent with star-forming galaxies. We remove one X-ray detected AGN from the sample. Left: [O ii] λ3727/Hβ vs.
[O iii] λ4959, 5007/Hβ diagnostic from Lamareille et al. (2004; solid line, with the uncertainty indicated by the dashed lines). Right: mass-
excitation diagram from Juneau et al. (2011). Galaxies in the region between the dashed and solid lines are on average identified as intermediate
between AGN and SF.

0.2 dex. We parameterised the dust attenuation curve according
to the Calzetti et al. (2000) dust law with the dust extinction in
the visual taken to be within 0 < AV < 3 (∆AV = 0.1 mag-
nitudes). For all the parameters error estimates were obtained
through Monte Carlo methods, by re-running the fitting 500
times while varying the input photometry within their photomet-
ric errors (see Kriek et al. 2009 for details).

Stellar masses were determined for all 179 objects in the
final sample. The distribution of masses is shown in Fig. 4.
With these deep MUSE observations we are mainly probing low-
mass (<109.5 M�) galaxies and we can still detect star formation
from emission lines in galaxies with mass ∼107 M�. The mass
estimates with their upper and lower confidence intervals are
shown for the individual objects in Fig. 7. The mean and stan-
dard deviation of the average errors on the mass estimates are
0.19±0.06 dex for the HUDF and 0.22±0.12 dex for the HDFS.

2.4. Star formation rates

The star formation rates are inferred from the flux in the
Hα λ6563 or Hβ λ4861 recombination lines emitted by H ii
regions, which primarily trace recent (∼10 Myr) massive star
formation. Before we can infer a SFR we need to correct the
measured flux in the emission lines for the attenuation by dust
along the line of sight. We do this assuming a dust law accord-
ing to Charlot & Fall (2000; i.e. τ ∝ λ−1.3, appropriate for birth
clouds) and using the intrinsic ratio of the Balmer recombination
lines ( jHα/ jHβ = 2.86 and jHβ/ jHγ = 2.14; Hummer & Storey
(1987), for an electron temperature and density of T = 10 000 K
and ne = 103 cm−3). Hence, to derive an SFR(Hα λ6563)
we also require a measurement of Hβ λ4861 and likewise for
SFR(Hβ λ4861) we also require Hγ λ4340. After the dust cor-
rection we can convert the intrinsic flux to a luminosity using the
measured redshift, given the assumed ΛCDM cosmology.

To determine the SFR we follow the treatment by
Moustakas et al. (2006), which is essentially based on the rela-
tions from Kennicutt (1998). Out of the SFR indicators that
MUSE has access to, the Hα λ6563 line presents the least sys-
tematic uncertainties, but it is only available at low redshifts
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Fig. 4. Histograms of the stellar mass distributions of the MUSE
detected galaxies in the HUDF and the HDFS. The deep 30 h obser-
vations allow us to detect and subsequently infer a stellar mass and SFR
for galaxies down to ∼107 M�.

(z <∼ 0.42 for MUSE at 9300 Å; 47 galaxies). We convert the
Kennicutt (1998) relation from a Salpeter to a Chabrier IMF
(0.1 < M[M�] < 100) by multiplying by a factor 0.62 (which is
derived by computing the difference in total mass in both IMFs,
while assuming the same number of massive (>10 M�) stars):

SFR(Hα λ6563) = 4.9 × 10−42 L(Hα λ6563)
erg s−1 M� yr−1, (1)

where L(Hα λ6563) is the dust-corrected luminosity. We note
that this calibration assumes case B recombination and solar
metallicity.

Because Hα λ6563 moves out of the optical regime at z >
0.42, the Hβ λ4861 luminosity is the primary tracer of SFR for
the majority of our sample (132 galaxies). Given the intrinsic
flux ratio between Hα λ6563 and Hβ λ4861, we can convert
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Eq. (1) into a SFR for L(Hβ λ4861):

SFR(Hβ λ4861) = 1.4 × 10−41 L(Hβ λ4861)
erg s−1 M� yr−1, (2)

where L(Hβ λ4861) is corrected for dust. We note that
the Hβ λ4861 derived SFR inherits all the uncertainties
from SFR(Hα λ6563), including variations in dust reddening
(Moustakas et al. 2006).

We also investigate the SFR using the [O ii] λ3727 nebular
emission line. Here we use the calibration for the Hα λ6563
SFR (Eq. (1)), where we assume an intrinsic flux ratio
between [O ii] λ3727 and Hα λ6563 of unity (Moustakas et al.
2006). Since [O ii] λ3727 is closest to Hβ λ4861, we use the
Hβ λ4861/Hγ λ4340 ratio to determine the dust correction,
scaled to the appropriate wavelength. The consequence of this
is that the addition of the [O ii] λ3727 line as a tracer of SFR will
not add any new objects to the sample. Instead, it can be used as
a useful comparison, which will be discussed in Sect. 3.

To estimate the uncertainty in the SFR estimates (and dust
corrections), we use Monte Carlo methods to derive a confidence
interval on the SFR of every individual galaxy. We create a pos-
terior distribution on the SFR by doing 1000 draws from a Gaus-
sian distribution centred on the measured flux, with the variance
set by the measurement error squared. The median posterior SFR
can then be determined, as well as the ±1σ confidence intervals,
by taking the 50th, 16th and 84th percentile from the derived
posterior distribution.

3. Consistency of SFR indicators

Before turning to the results, we first consider the consistency of
the derived SFRs, by comparing the SFR estimates from differ-
ent tracers for the same galaxies. In the remainder of the paper
we only use the dust-corrected Balmer lines as tracers of star
formation.

For a significant fraction of our galaxies (≈40%) we find
that the Balmer line ratios are below their case B values
(as stated in Sect. 2.4), indicative of a negative dust correc-
tion. While this might seem surprising, this is not uncom-
mon and similar ratios have been seen in spectra from, e.g.
the SDSS (Groves et al. 2012), MOSDEF (Reddy et al. 2015),
KBSS (Strom et al. 2017) and ZFIRE (Nanayakkara et al. 2017).
While “unphysical”, these ratios are not entirely unexpected and
can have several causes.

First, these deviations can be caused by noisy spectra. Most
galaxies in our sample are not very dusty and hence have a ratio
close to case B. In >50% of the cases with deviant ratios, the
case B ratio is indeed within the 1σ error bars. We conserva-
tively apply no dust correction for all these galaxies. The mean
dust correction for all galaxies in our sample is τ(Hβ/Hγ) ≈ 0.6
(setting galaxies with a negative dust correction to zero) or
τ(Hβ/Hγ) ≈ 1 (including only galaxies with a positive dust cor-
rection).

Secondly, there could be a problem with the measurement.
Three objects that were significantly offset from the rest of the
sample showed particular problems in their emission lines. In
one object (ID#971) Hγ λ4340 was severely affected by an emis-
sion line from a nearby source ([O iii] λ4959 from ID#874 at
z = 0.458, another galaxy in our sample, coincidentally almost
exactly at the observed wavelength of Hγ). For five other objects
there was a clear problem with the fit to the Hβ λ4861 (ID#894,
#896, #1027) or Hα λ6563 (ID#2, #1426) emission lines. We
subsequently removed the first four sources from the analysis;

for the latter two we disregarded the Hα λ6563 SFR and use the
Hβ λ4861 SFR.

A third, intriguing option is that theses objects are real.
Indeed, there remains a small number of galaxies which have
high-S/N spectra, but still show Balmer ratio’s below their case
B values5. Similar objects have also been observed in the other
surveys already referenced, such as SDSS (Jarle Brinchmann,
priv. commun., see also Groves et al. 2012). While these are
very interesting objects on their own, a detailed analysis of these
sources is beyond the scope of this paper. To be conservative and
consistent, we apply no dust correction for these sources.

For some objects in the sample we measure multiple emis-
sion lines, which allows us to infer a SFR from different tracers.
In any case a pair of Balmer lines (either Hα/Hβ or Hβ/Hγ) is
available (Sect. 2.2), to allow for a dust correction. The majority
of our sample lies at z > 0.42 for which Hα λ6563 is not avail-
able, but (dust-corrected) [O ii] λ3727 is available as an SFR
indicator. In Fig. 5 we show a comparison for all galaxies that
allowed both Hα λ6563 and Hβ λ4861 (only some galaxies at
z < 0.42) and Hβ λ4861 and [O ii] λ3727 derived SFRs (all red-
shifts). We note that Hβ λ4861 and [O ii] λ3727 derived SFRs
are corrected for dust using the same Hβ/Hγ-ratio.

In the right panels of Fig. 5 we see that the Hβ λ4861 and
[O ii] λ3727 derived SFRs agree remarkably well (standard devi-
ation σ ≤ 0.28 dex), considering that we have not taken into
account the metallicity dependence of the [O ii] λ3727 luminos-
ity in the SFR conversion factor (e.g. Kewley et al. 2004). A few
points scatter quite a bit, most of which have large error bars.
At lower SFRs we do see that [O ii] λ3727 predicts a lower SFR
than Hβ λ4861, which is probably because at low SFR we are
also probing low-mass and low-metallicity galaxies. Stars with a
lower metallicity have a higher UV flux, which causes the ioni-
sation equilibrium for oxygen to shift from [O ii] to [O iii] which
diminishes the observed [O ii] λ3727 flux. Because of the oppo-
site effect [O ii] λ3727 occasionally predicts a higher SFR than
Hβ λ4861 at the high-SFR end.

For a limited number of objects all three Balmer lines are
in the spectral range of MUSE (0.09 < z < 0.42). We compare
the Hα λ6563 and Hβ λ4861 derived SFRs in the left panel of
Fig. 5, where we find reasonable agreement (in the HUDF, where
we have most sources, they have a factor of ∼2 scatter). Most of
the scatter is found at low SFR, where (on average) the S/N is
also the lowest. In the HDFS one object (at low S/N) is a strong
outlier, but removing this source yields a similar scatter to the
HUDF. Intuitively the SFRs from Hα and Hβ should agree very
well, which warrants some deeper investigation into the outliers
at low SFR.

The main uncertainty in the SFR estimate is the amount of
dust attenuation. In Fig. 6 we compare the inferred optical depth
from the Hβ/Hγ-ratio (τ[Hβ/Hγ]) to the optical depth deter-
mined from the Hα/Hβ ratio (τ[Hα/Hβ]). We note though that
Fig. 6 shows the measured optical depth, while we set negative τ
to zero before computing the SFR. Indeed, while many sources
agree well, we see that the amount of dust correction estimated
from the Balmer lines is not consistent for several objects, lead-
ing to a different SFR estimate from Hα λ6563 and Hβ λ4861.

This tension is in part caused by the nature of the experi-
ment, which requires that all three Balmer lines are in the spec-
tral range of MUSE simultaneously. Necessarily then, Hα λ6563
will be at the long wavelength end of the spectrograph where

5 It is important to point out that this is not caused by stellar absorp-
tion in the continuum as this is taken into account when modelling the
emission lines with Platefit.
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Fig. 5. A comparison of the derived star formation rate (SFR) from the Hα λ6563, Hβ λ4861 and [O ii] λ3727 luminosities for the HUDF (top
panels, circles) and the HDFS (bottom panels, triangles). Left panels: logarithm of the SFR from Hα λ6563 vs. the difference between the log
Hβ λ4861 and log Hα λ6563 SFRs. Right panels: same for Hβ λ4861 vs. [O ii] λ3727. In each panel σ indicates the standard deviation (in dex)
around the one-to-one relation. Colour indicates the signal-to-noise ratio (S/N) in the faintest line; Hγ λ4340. Only galaxies that allowed for more
than one SFR indicator are included in the plot. Overall the SFRs from Hβ λ4861 and [O ii] λ3727 agree reasonably well, considering we have not
taken into account the metallicity dependence in SFR([O ii] λ3727). The scatter in Hα λ6563 vs. Hβ λ4861 SFR is largely driven by Hγ λ4340
S/N.

skylines are more prevalent, occasionally adding uncertainty to
its measurement. For the low-SFR sources, however, Hγ λ4340
might not be very bright, adding uncertainty to the dust correc-
tion of SFR(Hβ λ4861) for these sources (as seen at lower SFR
in the left panels of Fig. 5). Indeed, most of the outliers have a
low S/N in Hγ λ4340 (as stated earlier, for the objects with a
negative dust correction from Hβ/Hγ, we leave the often lower
S/N measurement of Hγ λ4340 out of the analysis by setting
τ(Hβ/Hγ) to zero). On the other hand, the converse is not quite
true: for a large number of sources with a low S/N in Hγ λ4340
we do have a consistent SFR estimate. For all objects we use the
highest S/N lines available to infer a dust-corrected SFR, i.e. for
objects which have a measurement of all three Balmer line we
use the Hα λ6563, Hβ λ4861 pair to infer a dust-corrected SFR,
which generally has the highest S/N.

In summary, we have dust-corrected SFR measurement from
the Hα λ6563 and Hβ λ4861 spectral lines for all galaxies at
z < 0.42 and the Hβ λ4861, Hγ λ4340-pair at higher red-
shifts. Comparing Hα λ6563 and Hβ λ4861 SFRs, we conclude
that the dust correction is the largest uncertainty on the derived

SFR. We always use the highest S/N line-pair available to com-
pute a dust-corrected SFR. Comparing the Hβ λ4861 SFRs with
[O ii] λ3727 at all redshifts, we see a very consistent picture (they
have ≤0.3 dex scatter in both fields). Naturally, some variations
between Hβ λ4861 and [O ii] λ3727 SFRs are expected given the
metallicity dependent nature of [O ii] λ3727.

4. Bayesian model

4.1. Definition

The star formation sequence is commonly described by a power-
law relation between stellar mass (M∗) and star formation rate
(SFR), which evolves with redshift (z):

SFR ∝ Ma
∗ (1 + z)c, (3)

where a and c are the power law exponents. It has been sug-
gested that the slope (a) becomes shallower in the high-mass
regime (M∗ > 1010 M�). In this work we will focus on the low-
mass regime, for which we assume the slope is constant with
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Fig. 6. Optical depths at the wavelength of Hβ λ4861 as derived
from both the Hβ λ4861/Hγ λ4340 and the Hα λ6563/Hβ λ4861-ratio,
coloured by Hγ λ4340 signal-to-noise (S/N). The dashed line is the one-
to-one relation. Overall the optical depths agree reasonably well, unless
the Hγ S/N is low. Most galaxies actually show little dust (τ close to
zero). The shaded area shows the regions of (unphysical) negative opti-
cal depth for each axis. We set the optical depth to zero for galaxies with
negative τ as this is often consistent with the error bars and the offset is
due to noise in the spectra. We note that some of the high-S/N outliers
actually have discrepant Balmer ratios. If the inferred optical depth is
very different, this will affect the comparison of the dust-corrected SFR
from Hβ λ4861 and Hα λ6563 (see Fig. 5).

mass. We will revisit this assumption in Sect. 5.2. Given the lack
of homogeneous studies with redshift it is still unclear whether
the low-mass slope of the relation evolves with redshift. Here,
we assume that the low-mass slope is independent of redshift
over the range that we probe in this study. Likewise, given the
large uncertainties in (the evolution of) the intrinsic scatter, we
limit the number of free parameters in the model and assume that
the intrinsic scatter does not depend on any of the other model
parameters.

Following this description, we model the star formation
sequence by a plane in (log M∗, log(1 + z), log SFR)-space:

log SFR[M� yr−1] = a log
(

M∗
M0

)
+ b + c log

(
1 + z
1 + z0

)
, (4)

where b is now a normalisation constant. We take M0 = 108.5 M�
and z0 = 0.55 (close to the medians of the data) without the
loss of generality. Galaxies scatter around this relation with an
amount of intrinsic scatter in the vertical (i.e. log SFR) direction,
which we denote by σintr. In the lack of an obvious alternative,
we take the intrinsic scatter to be Gaussian in our model.

In a statistical sense we can then say that our observations
(log M∗, log(1 + z), log SFR) are drawn from a Gaussian distri-
bution around the plane defined by Eq. (4). To recover this dis-
tribution, we need to take a careful approach, taking into account
the heteroscedastic errors of the measurements.

We adopt a Bayesian approach to determine the poste-
rior distribution of the model parameters (a, c, b, σintr) (see
Andreon & Hurn (2010) for a lucid description of the Bayesian
methodology in an astronomical context). Different approaches
to construct the likelihood have been presented in the liter-
ature (see e.g. Kelly 2007 or Hogg et al. 2010). We choose

to adopt a parameterisation of the likelihood following
Robotham & Obreschkow (2015; hereafter R15).

First, we state that our knowledge about galaxy i (determined
by the observations) is encompassed by the probability density
function of a multivariate Gaussian distribution, N(xi,Ci), with
a mean value of:

xi = (log M∗,i, log(1 + zi), log SFRi) (5)

and a diagonal covariance matrix:

Ci =


σ2

log M∗,i
0 0

0 σ2
log(1+z),i 0

0 0 σ2
log SFR,i

 (6)

containing the variance in each parameter. This is justified as
both stellar mass and star formation rate are measured indepen-
dently from different data. The covariance with redshift is negli-
gible as the error on the spectroscopic redshift is very small.

Secondly, we parameterise the model given by Eq. (4) (which
is a plane in three dimensions) in terms of its normal vector n, to
avoid optimisation problems (R15). The galaxies scatter around
this plane with an amount of intrinsic Gaussian scatter, perpen-
dicular to the plane, which we denote by σ⊥. We note that per-
pendicular scatter σ⊥ is distinct from the (commonly reported)
vertical scatter σintr which lies in the log SFR direction. After the
analysis, we can simply transform the parameters (n, σ2

⊥) back
into familiar parameters (a, c, b, σ2

intr) (using R15, Eq. (9)).
Given the above definitions, we can express our log-

likelihood6 as the sum over N data points (see also R15):

lnL = −
1
2

N∑
i=1

[
ln

(
σ2
⊥ +

n>Cin
n>n

)
+

(n>[xi − n])2

σ2
⊥n>n + n>Cin

]
, (7)

where all the parameters have been defined earlier.
Lastly, we have to define our priors on each component of n

and on σ2
⊥. As we want to impose limited prior knowledge, we

express our priors as uniform distributions, with large bounds
compared to the typical values of the parameters (we confirm
that the results are robust, irrespective of the exact choice of
bounds).

n ∼ U3(−1000, 1000) (8)

σ2
⊥ ∼ U(0, 1000),

whereUn is the n-dimensional multivariate uniform distribution
and we take into account the fact that variance is always positive.

4.2. Execution

With the likelihood and priors in hand we determine the posterior
using Markov chain Monte Carlo (MCMC) methods. We use the
Python implementation called emcee (Foreman-Mackey et al.
2013), which utilises the affine-invariant ensemble sampler for
MCMC from Goodman & Weare (2010). emcee samples the
parameter space in parallel by setting off a predefined number
of “walkers”, which we take to be 250.

Following Foreman-Mackey et al. (2013), we first initialise
the walkers randomly in a large volume of parameter space.
We then restart the walkers in a small Gaussian ball around the
6 Throughout this paper we consistently use “log” for the base-10 log-
arithm and “ln” for the base-e logarithm, with one exception: we stick
to standard terminology and call lnL the “log-likelihood”.
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median of the posterior distribution (i.e. around the “best solu-
tion”). We (generously) burn in for a quarter of the total amount
of iterations for each walker which we take to be 20 000 for the
main run (Sect. 5.1; roughly four hundred times the autocorrela-
tion time). We note that for all subsequent runs described below
we follow the same procedure, with similar results.

We take several steps to check whether the emcee algorithm
has properly converged. As an indication, one can look at both
the mean acceptance fraction of the samples as well as the auto-
correlation time (Foreman-Mackey et al. 2013). For the main run
the acceptance fraction that resulted from the modelling (0.45)
was well within range advocated by Foreman-Mackey et al.
(2013; 0.2–0.5). The autocorrelation time was also relatively
short and we let the walkers sample the posterior well over the
autocorrelation time. Furthermore, we confirmed that the walk-
ers properly explored the parameter space.

Combining the results from all walkers then gives the poste-
rior distribution over which we can marginalise to find the poste-
rior probability distributions for the model parameters. We will
discuss the results of the modelling in Sect. 5.

4.3. Model and data limitations

The unique aspect of the likelihood in Eq. (7) is that it captures
both the heteroscedastic errors on the observables as well as the
intrinsic scatter around the plane. Furthermore, it can simulta-
neously describe both the slope of the sequence as well as the
evolution with redshift.

It is important to determine how well we can recover the
“true” parameters with the observed data at hand. Our MUSE
observations are constrained by the fact that we can only detect
galaxies in a certain redshift range and cannot detect galax-
ies below the flux limit of the instrument (see Fig. 1). As the
flux limit varies with redshift, this could introduce a bias in
our inferred parameters. The reason behind this is that the lack
of low-SFR galaxies at higher redshift will bias the posterior
towards shallower slopes, with a steeper redshift evolution (see
Fig. A.1 for an illustration). In order to correct for such a bias,
we analyse a series of simulated observations. We briefly outline
the procedure here, which is described in detail in Appendix A.

In order to characterise the bias in the inferred parameters,
we simulate galaxies from a mock star formation sequence for
a range of values in each parameter, which we call xtrue,k (see
Table A.1). After applying the redshift-dependent flux limit to
the mock data, we model the remaining galaxies as described in
Sect. 4 and recover the parameters, xout,k. We then fit the transfor-
mation between the true and recovered parameters with an affine
transformation (xout,k = Axtrue,k +b) as outlined in Sect. A.2. The
inverse of the best-fit transformation (Eq. (A.3)) can then be used
to correct the posterior density distribution as measured from the
MUSE data. In the following, we provide both the uncorrected
(directly fitted) and the corrected values for reference.

5. Star formation sequence

5.1. Global sample

With a reliable SFR estimate in hand, we can turn to the star
formation sequence between 0.11 < z < 0.91 as observed by
MUSE. Fig. 7 shows a plot of stellar mass (M∗) versus star for-
mation rate (SFR) for all the galaxies in the sample. The figure is
based on two dust-corrected SFR indicators: the Hβ λ4861 and
Hα λ6563 luminosities (Eqs. (2) and (1)). The vertical grey lines
indicate the errors in (log M∗, log SFR) for each of the individual

galaxies. The mean average error on the SFR is ≈0.2 dex in both
the HUDF and the HDFS.

We are able to detect star formation in galaxies down to star
formation rates as low as 0.003 M� yr−1. The galaxies appear to
follow the M∗-SFR trend closely over the complete mass range,
down to the lowest masses we can probe here ∼107 M�. At the
high-mass end it appears we are starting to witness a flattening
off of the trend, although we are primarily sensitive to the inter-
mediate and low-mass galaxies.

We model the M∗-SFR relation with the Bayesian MCMC
methodology described in detail in Sect. 4. We show the result-
ing posterior probability density distribution for the parameters
in Fig. 8. By marginalising over the various parameters, we
recover the posterior probability distributions for the individ-
ual parameters of interest (a, c, b, σintr). These are plotted as his-
tograms above the various axes in Fig. 8. By taking the median
and the 16th and 84th percentile from the posterior distributions
we derive the median posterior value and a 1σ confidence inter-
val for the parameters of interest.

The (uncorrected) best-fit (i.e. median posterior) parameters
of the distribution (with their confidence intervals) that describe
the star formation sequence are:

log SFR[M� yr−1] = 0.79+0.05
−0.05 log

(
M∗
M0

)
− 0.77+0.04

−0.04

+ 2.78+0.78
−0.78 log

(
1 + z
1 + z0

)
± 0.46+0.04

−0.03, (9)

analogous to Eq. (4). The final term represents the intrinsic scat-
ter (σintr = 0.46+0.04

−0.03) in the vertical (log SFR) direction. We note
that while it is a perfectly valid option for the parameterisation of
the likelihood, the posterior distribution does not favour models
with zero intrinsic scatter.

Figure 8 shows that some correlations exist between the dif-
ferent parameters of the model, which is expected. The strongest
correlation exists between slope and redshift evolution as a
less steep slope requires more evolution in the normalisation to
be compatible with the data. The complete covariance matrix
between the different parameters is:

Σ(a, c, b, σintr) =


0.003 −0.019 −0.001 0.000
−0.019 0.620 0.011 0.000
−0.001 0.011 0.002 −0.000
0.000 0.000 −0.000 0.001

 . (10)

We correct the posterior for observational bias, by applying
Eq. (A.3), which is indicated by the red contours in Fig. 8. This
yields a steeper slope, with a significantly shallower redshift evo-
lution:

log SFR[M� yr−1] = 0.83+0.07
−0.06 log

(
M∗
M0

)
− 0.83+0.05

−0.05

+ 1.74+0.66
−0.68 log

(
1 + z
1 + z0

)
± 0.44+0.05

−0.04, (11)

At the same time, the transformation has little effect on the intrin-
sic scatter. The covariance in the corrected posterior is essen-
tially the same as the uncorrected one, with a slight increase in
covariance with intrinsic scatter.

Σ(a, c, b, σintr) =


0.004 −0.016 −0.002 0.002
−0.016 0.459 0.010 −0.003
−0.002 0.010 0.002 −0.001
0.002 −0.003 −0.001 0.002

 . (12)
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Fig. 7. Left panel: sample of 179 star-forming galaxies observed with MUSE, plotted on the M∗-SFR plane. The symbols indicate the field and
colour indicates the redshift. The dashed lines show a constant sSFR, which is equivalent to a linear relationship: SFR ∝ M∗. The red curve shows
the model of the star formation sequence from Whitaker et al. (2014) for 0.5 < z < 1.0. The vertical grey dashed line indicates the selection for
the low-mass fit (Sect. 5.2). Right panel: same as the left panel but with the data points removed, showing (the evolution of) the star formation
sequence as seen by MUSE, according to Eq. (11).

We compare the generative distribution (i.e. Eq. (9)) with
the data in Fig. 9. As the plane is three dimensional, we show a
projection where we have subtracted the evolution with redshift
from the y-axis. Overall, the distribution appears to describe the
data very well and the scatter in the observations has tightened
with respect to Fig. 7. For a more familiar representation we also
show the resulting star formation sequence in the right panel of
Fig. 7, for a number of different redshifts.

5.2. Low-mass sample (log M∗ [M�] < 9.5)

We are primarily interested in the low-mass end of the star for-
mation sequence. Our deep MUSE sample spans a significant
mass range, between log M∗[M�] = 6.5 − 11. As several stud-
ies have suggested different characteristics for the star formation
sequence above and below a turnover mass of M∗ ∼ 1010M� (e.g.
Whitaker et al. 2014; Lee et al. 2015; Schreiber et al. 2015), we
repeat the above analysis excluding galaxies above a certain
mass threshold. To be on the conservative side, we choose this
mass threshold to lie at M∗ = 109.5M�. This excludes 31/179 ≈
17.5% of the sample. We include this threshold as a dashed ver-
tical line in Fig. 7. We then repeat the modelling identically to
what has been described in the previous sections.

The bias-corrected star formation sequence for galaxies that
have a stellar mass below M∗ < 109.5M� is:

log SFR[M� yr−1] = 0.83+0.10
−0.09 log

(
M∗
M0

)
− 0.79+0.05

−0.05

+ 2.22+0.75
−0.76 log

(
1 + z
1 + z0

)
± 0.47+0.06

−0.05. (13)

The result is essentially the same, with the main difference being
a steeper redshift evolution. All parameters are within errors con-
sistent with the relation for our complete sample (also for the
uncorrected values, see Table 1). This reflects the fact that we are
primarily sensitive to the low-mass end of the galaxy sequence.
As this fit utilises only a part of the data we will refer primarily
to the fit based on all the data, Eq. (11), as the main result in the

remainder of the paper. We report the (un)corrected values for
all the fits in Table 1.

5.3. The effect of redshift bins (2D)

Most previous studies have not modelled the redshift evolu-
tion of the star formation sequence directly, but have instead
divided the data into redshift bins and adopted a non-evolving
relation: log SFR = a log M∗ + b. To facilitate the comparison
with the literature, we adapt our model to fit the relation in the
(log M∗, log SFR)-plane, without taking the redshift evolution
into account. This is easily done, by taking a two-dimensional
version of our likelihood, disregarding the second, log(1 + z)-
component in Eqs. (5)–(8) – the rest of the modelling is be iden-
tical. We note that we still take both heteroscedastic errors as
well as intrinsic scatter into account (see Sect. 4.1), however, we
do not apply the bias correction.

We model both the entire redshift range, as well as the 0.1 <
z < 0.5 and 0.5 < z < 1.0 range separately (similar to other
studies). The results are collected in Table 1. For the full sample
the slope is significantly steeper than when we take into account
the redshift evolution, when comparing to our uncorrected fits:

log SFR[M� yr−1] = 0.89+0.05
−0.05 log

(
M∗
M0

)
− 0.82+0.04

−0.04. (14)

This is also the case for the smaller samples in both redshift
bins, although the results are consistent with Eq. (9) within the
error bars (which are larger due to lower number statistics). The
resulting relations are

log SFR[M� yr−1] = 0.86+0.09
−0.08 log

(
M∗
M0

)
− 0.92+0.07

−0.07, (15)

for 0.1 < z ≤ 0.5 and

log SFR[M� yr−1] = 0.84+0.07
−0.06 log

(
M∗
M0

)
− 0.73+0.06

−0.06 (16)

for 0.5 < z < 1.0.
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Fig. 8. Projections of the 4D posterior distribution for the model parameters: slope (a), evolution (c), normalisation (b) and intrinsic scatter (σintr).
The histograms on top show the marginalised distributions of the model parameters. The bias-corrected posterior median value and the 16th and
84th percentile are denoted by the dashed lines and by the values above the histograms. The contours show the 0.5, 1, 1.5 and 2σ levels. The
posterior directly from the modelling is shown in black, red indicates the posterior after applying the bias correction (Eq. (A.3)). Figure created
using the corner.py module (Foreman-Mackey 2016).

Given the significant evolution we found in the star forma-
tion sequence with redshift, this result is expected. While inci-
dently these slopes are similar to our corrected fits, we caution
that this does not imply that not modelling the redshift evolution
can circumvent biases introduced by flux-limited observations.

6. Discussion

We have modelled the star formation sequence down to 108 M�
at 0.11 < z < 0.91 using a Bayesian framework (Sect. 4) that
takes into account both the heteroscedastic errors on the obser-
vations as well as the intrinsic scatter in the relation. One major
advantage of our framework is that we simultaneously model
both the slope and the evolution in the M∗-SFR relation, while
most previous studies have modelled these separately by divid-
ing their sample into different redshift bins. As demonstrated in
Sect. 5.3, these results are not necessarily consistent, which can
be attributed to evolution taking place within a single redshift
bin. Another important difference is that we use the Balmer lines
to trace the (dust-corrected) star formation, while most other
recent studies have relied on SFRs derived from UV+IR/SED-
fitting, using different dust corrections (Whitaker et al. 2014;
Lee et al. 2015; Schreiber et al. 2015; Kurczynski et al. 2016).

As described in Sect. 5.1, we have found that the star for-
mation sequence (shown in Figs. 7 and 9) is well described by
Eq. (11) (see also Table 1). We now compare our results to other
literature measurements and discuss each aspect of the star for-
mation sequence separately, i.e. the redshift evolution, intrinsic
scatter and the slope. We focus particularly on the slope, for
which we find the strongest constraints, and continue with a dis-
cussion of the physical implications of our results.

6.1. Comparison with the literature

6.1.1. Evolution with redshift

We find that the normalisation in the star formation sequence
increases with redshift as (1 + z)c with c = 1.74+0.66

−0.68 (2.22+0.75
−0.76

for M∗ < 109.5M�). The fact that the normalisation of the star
formation sequence increases with redshift is well known and
attributed to the change in cosmic gas accretion rates and gas
depletion timescales. Most studies have probed the higher mass
regime and report values in the range of sSFR ≡ SFR/M∗ ∝ (1 +
z)2.5−3.5 at 0 < z < 3 (e.g. Oliver et al. 2010; Karim et al. 2011;
Ilbert et al. 2015; Schreiber et al. 2015; Tasca et al. 2015). Look-
ing specifically at the low-mass regime, Whitaker et al. (2014)
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Fig. 9. The best-fit star formation sequence for the 179 star-forming
galaxies observed with MUSE. The symbols indicate the dust-corrected
tracer used to infer the SFR. The solid line shows best-fit relation, as
presented in Eq. (11), and the dashed lines show the 1σ intrinsic scat-
ter. We subtract the evolution from the y-axis and scale to the average
redshift of the sample; z = 0.55. After accounting for evolution, the
galaxies clearly follow the star formation sequence, down to the lowest
masses and SFRs. The slightly larger fraction of galaxies that scatter
into the high-mass, low-SFR regime may be a result of the flattening of
the relation above M∗ = 1010 M�.

reports sSFR ∝ (1 + z)1.9, similar to our result. Their more mas-
sive end indeed shows stronger evolution sSFR ∝ (1 + z)2.2−3.5.
Lee et al. (2015) on the other hand, find much steeper evolu-
tion, with sSFR ∝ (1 + z)4.12±0.1. We note that our parameter-
isation assumes a power-law type of evolution of the star for-
mation sequence with redshift. We have decided to stick to this
very common first-order approximation. Still, one should keep
in mind that a more complex evolution with redshift is possible,
both non-linear in time as well as a different evolution in dif-
ferent mass regimes. We do not find strong constraints on the
redshift evolution due to our relatively small redshift range from
z = 0.1 to z = 0.91. Still, the results from Sect. 5.3 show that it
is important to take the redshift evolution into account, in order
to get a robust constraint on the slope.

6.1.2. Intrinsic scatter

Constraining the intrinsic scatter in the star formation sequence
has proven to be challenging as one has to separate the
intrinsic scatter from the measurement error (e.g. Noeske et al.
2007b; Salim et al. 2007; Salmi et al. 2012; Whitaker et al.
2012; Guo et al. 2013; Speagle et al. 2014; Schreiber et al.
2015). This challenge in particular motivates our adopted model,
which directly constrains the amount of intrinsic scatter in the
relationship, even in the presence of measurement errors. Mean-
while, our measurements are not affected by binning, e.g. we do
not boost the scatter artificially because of evolution of the star
formation sequence within a single bin.

In our best fit model we find σintr = 0.44+0.05
−0.04 dex,

which is larger than the value of ∼0.2−0.4 dex that is com-
monly found (e.g. Speagle et al. 2014; Schreiber et al. 2015).
Kurczynski et al. (2016) determined an intrinsic scatter ofσintr =
0.427 ± 0.011 in their lowest redshift bin (0.5 < z < 1.0) in the
HUDF, similar to our result, but found significantly smaller scat-
ter at higher redshifts. They determined the intrinsic scatter by

decomposing the total scatter (σTot = 0.525) using the covari-
ance matrix between M∗ and SFR determined from their SED
fitting.

There are several effects that could potentially affect the scat-
ter. Measurement outliers are not a cause of concern for the
intrinsic scatter as they are taken into account by the likeli-
hood approach. However, if galaxies are included in the sam-
ple that are not on the M∗-SFR relation, such as red-sequence
galaxies or starbursts, then these might artificially increase the
scatter. We argue that the former is unlikely as our selec-
tion criteria based on the 4000 Å break and the Hα λ6563
or Hβ λ4861 equivalent width effectively remove all red-
sequence galaxies from the sample. On the other hand, our
sample does include a small number of galaxies that are off-
set from the relation towards high SFRs. We verified how-
ever that removing all galaxies with a sSFR > 10 Gyr−1

from the sample does not significantly increase or decrease the
scatter.

Hypothetically, if the error bars on the SFR are underesti-
mated, this will artificially boost the intrinsic scatter in the rela-
tionship. To determine the influence of the size of the error bars
we redid the modelling while folding in an additional error on
the SFR of 0.2 dex in quadrature (effectively doubling the aver-
age error bars); this decreased the scatter by 20% to ∼0.4 dex.
The sample size does not seem to affect the measurement and
splitting our sample did not yield significantly larger scatter (see
Sect. 5.3).

Assuming our measured scatter is real, it might be that pre-
vious studies have underestimated the amount of intrinsic scat-
ter. One potential danger might lie in the derivation of both
stellar mass and SFR from the same photometry. Especially in
SED modelling this might introduce correlations between M∗
and SFR as both are regularised through the same star formation
history in the model spectrum which could artificially decrease
the scatter.

More physically, the difference could also in part be due to
the fact that the Balmer lines trace the SFR on shorter timescales
(stars with ages ≤10 Myr and masses >10 M�) than the UV does
(ages of ≤100 Myr and masses >5 M�; e.g. Kennicutt 1998;
Kennicutt & Evans 2012). Simulations have indeed found that
SFRs averaged over timescales decreasing from 108 to 106 yr
could be significantly larger (Hopkins et al. 2014; Sparre et al.
2015), particularly if star formation histories are bursty (e.g.
Dominguez et al. 2015; Sparre et al. 2017).

Furthermore, as the recent star formation histories of low-
mass galaxies are more diverse, it can be expected that there
is more scatter in the star formation sequence at low stel-
lar masses. This indeed has been predicted by simulations
(e.g. Hopkins et al. 2014; Sparre et al. 2017) as well as semi-
analytical models (e.g. Mitra et al. 2017). Observing such a trend
requires a large and highly complete sample of galaxies over an
extended mass range and hence evidence has been inconclusive.
Using a large sample of galaxies from the SDSS, Salim et al.
(2007) reported a decrease in the scatter of −0.11 dex−1 from 108

to 1010.5 M�, but such a trend with mass has not been confirmed
by studies at higher masses (Whitaker et al. 2012; Guo et al.
2013; Schreiber et al. 2015; Kurczynski et al. 2016). Recently
though, Santini et al. (2017) have found indications of decreas-
ing scatter with mass in the Frontier Fields, albeit at higher red-
shifts (z > 1.3).

A large and complete sample of galaxies, covering the
(log M∗, log SFR, log(1 + z))-space, with independent stellar
mass and SFR estimates, is required to get a firm handle on the
intrinsic scatter in the star formation sequence.

A27, page 12 of 20

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201833136&pdf_id=9


L. A. Boogaard et al.: Constraining the low-mass end of the M∗-SFR relation at z < 1

Table 1. Star formation sequence parameters for different samples.

Sample Size a b c σintr

3D log SFR[M� yr−1] = a log (M∗/M0) + b + c log (1 + z)/(1 + z0)
Full 179 0.79+0.05

−0.05 −0.77+0.04
−0.04 2.78+0.78

−0.78 0.46+0.04
−0.03

log M∗[M�] < 9.5 148 0.79+0.08
−0.07 −0.73+0.04

−0.04 3.39+0.91
−0.90 0.49+0.04

−0.04
3D – bias corrected (via Eq. (A.3))
Full 179 0.83+0.07

−0.06 −0.83+0.05
−0.05 1.74+0.66

−0.68 0.44+0.05
−0.04

log M∗[M�] < 9.5 148 0.83+0.10
−0.09 −0.79+0.05

−0.05 2.22+0.75
−0.76 0.47+0.06

−0.05
2D log SFR[M� yr−1] = a log (M∗/M0) + b
Full 179 0.89+0.05

−0.05 −0.82+0.04
−0.04 0.49+0.04

−0.04

0.1 < z ≤ 0.5 72 0.86+0.09
−0.08 −0.92+0.07

−0.07 0.57+0.07
−0.06

0.5 < z < 1.0 107 0.84+0.07
−0.06 −0.73+0.06

−0.06 0.46+0.05
−0.05

Notes. For a full description of the different samples, see Sect. 5. M0 = 108.5 M� and z0 = 0.55.

6.1.3. Slope

We find a best-fit (median posterior) slope of the star formation
sequence of a = 0.83+0.07

−0.06 (log SFR ∝ a log M∗). This slope is
determined from galaxies that are more than an order of mag-
nitude lower in mass than most earlier studies at z > 0, i.e. at
108−1010 M�, whereas most previous studies (e.g. Speagle et al.
2014; Lee et al. 2015; Schreiber et al. 2015) have been primarily
sensitive to a higher mass range from 109.5M� to 1011 M�. For
reference, we plot the polynomial fit from Whitaker et al. (2014)
(down to their mass completeness limit, based on stacking) in
Fig. 7.

Recent studies have typically observed a shallower slope
at the high-mass end, i.e. above 1010 M� (e.g. Whitaker et al.
2014). Gavazzi et al. (2015) find a turnover mass of M∗ ∼
109.7 M� at z = 0.55 (after converting their result to a Chabrier
IMF), increasing with redshift. As discussed in Sect. 5.2, exclud-
ing galaxies above M∗ > 109.5M� has no significant effect on
the slope. Only 15/179 ≈ 8.5% of galaxies in our sample have
M∗ > 1010 M� and thus our result is not very sensitive to this
turn-over. In light of this, we limit the following discussion
to studies which specifically probe the mass range below the
turnover of the star formation sequence.

Our best-fit slope of 0.83+0.07
−0.06 is compared to the values

found by other recent studies in Fig. 10 where we focus on stud-
ies with similar redshift ranges (i.e. 0 < z < 1) and which extend
well below M∗ < 1010 M�. The slope in this regime is notably
steeper than the consensus relation from Speagle et al. (2014)
who reported a = 0.6 − 0.7 at our redshifts, due to the fact that
this compilation is for a mass range of log M∗[M�] = 9.7− 11.1,
where the slope is significantly shallower. Our slope is shallower
than the low-mass power-law slope from Whitaker et al. (2014;
a = 0.94 ± 0.03 for M∗ < 1010.2 M�) from the 3D-HST cat-
alogues in CANDELS, but is consistent with the global slope
of a = 0.88 ± 0.06 reported by Lee et al. (2015) in a large
sample of star-forming galaxies in COSMOS. Kurczynski et al.
(2016) have also presented a characterisation of the star forma-
tion sequence in the HUDF, based on the CANDELS/GOODS-
S (Santini et al. 2015) and UVUDF (Rafelski et al. 2015) cata-
logues. In their lowest redshift bin (0.5 < z < 1.0), which goes
down to M∗ ∼ 107.5M� they find a slope of a = 0.919 ± 0.017,
which is also steeper (marginally consistent) compared to what
find. We note that they determined both masses and SFRs from
the SED modelling, taking into account the correlations between
the parameters, as their study was focused particularly on mea-
suring the intrinsic scatter, see Sect. 6.1.2. In the same field

Bisigello et al. (2018) find a slope of 0.9 ± 0.01 (0.5 ≤ z < 1.0),
after selecting galaxies with log sSFR[Gyr−1] < −9.8.

The Sloan Digital Sky Survey (SDSS; York et al. 2000;
Abazajian et al.2009)servesasanatural referenceforBalmer line-
derived SFRs in the local universe and since Brinchmann et al.
(2004) different studies have derived the star formation sequence
slope (e.g. Salim et al. 2007; Elbaz et al. 2007). The most recent
of these is Renzini & Peng (2015), who measure the slope of the
ridge line in the M∗ − N × SFR-plane (where N is the number of
galaxies in every M∗-SFR bin) and find a = 0.76± 0.01, which is
significantly flatter than our results.

Taken at face value, our slope of a = 0.83+0.07
−0.06 is incon-

sistent with a linear slope (a = 1). A value (close to) unity
may have been expected on the basis of simulations (see next
section), which is also evident from the fact that several param-
eterisations of the star formation sequence asymptote to a linear
relation at low mass (e.g. Schreiber et al. 2015; Tomczak et al.
2016). An independent motivation for a near-linear value comes
from the fact that there is very little evolution in the faint
slope of the stellar mass function of star-forming galaxies up
to z = 2 (see, e.g. Tomczak et al. 2014; Davidzon et al. 2017
for recent results). To first order, this may implies self-similar
mass growth for low-mass galaxies (i.e. constant sSFR which
implies a linear slope for the star formation sequence), unless
balanced by mergers (Peng et al. 2014). Leja et al. (2015) inves-
tigated the link between the slope of the star formation sequence
and the stellar mass function. While they do not provide pre-
cise constraints on the low-mass slope at low redshift (due
to the challenge of disentangling growth through star forma-
tion and mergers), their results indicate that a sub-linear low-
mass slope is still consistent with the stellar mass functions at
z < 1.

6.1.4. Evolution of the low-mass slope

Combining results from the local universe out to redshift z ∼ 6,
Speagle et al. (2014) found evidence for an evolving slope at
the high-mass end (M∗ > 109.7 M�), where the slope gets shal-
lower with redshift (cf. Abramson et al. 2016, Fig. 5). Given the
turnover in the star formation sequence at high mass, it is impor-
tant to disentangle to what extent the evolution in the slope is due
to different studies being sensitive to distinct mass regimes. Our
data are too sparse in redshift space to simultaneously constrain
the evolution of the slope (and hence we have adopted a single
power-law slope for the sequence).
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masses. We indicate the field and SFR-tracer in brackets, though note that distinct calibrations for the same tracer may be used in different studies.
In addition, we add the slopes predicted by (semi-)analytical models; Bouché et al. (2010, B10), Mitchell et al. (2014, M14), Mitra et al. (2015,
Mi15), Cattaneo et al. (2017, C17), and hydrodynamical simulations; Sparre et al. (2015, Sp15), Furlong et al. (2015, F15), Sparre et al. (2017,
Sp17).

In light of the potential redshift evolution of the slope, we
plot the slope as a function of redshift in Fig. 10, compared to
literature results which probe the mass range M∗ < 1010 M�
at z < 1.5. Figure 10 provides evidence for evolution of the
low-mass slope with redshift. However, we caution against a too
strong interpretation of such a trend as the literature suffers from
studies probing distinct mass ranges (sometimes including the
turn-over regime). What further complicates a fair comparison is
that different tracers of star formation probe different timescales
and additionally use varying dust corrections, which are not nec-
essarily consistent (e.g. Davies et al. 2016). A consistent analy-
sis of the low-mass galaxy population out to higher redshifts is
important to quantify potential evolution in the low-mass slope.

6.2. The MS slope – a quantitative comparison to models

The galaxy main sequence (MS) is a natural outcome of
hydrodynamical models (e.g. Fig. 1b in Bouché et al. 2005;
Davé 2008; Genel et al. 2014; Torrey et al. 2014; Kannan et al.
2014; Hopkins et al. 2014; Sparre et al. 2015; Furlong et al.
2015) and in semi-analytical models (e.g. Somerville et al. 2008;
Dutton et al. 2010; Cattaneo et al. 2011, 2017; Mitchell et al.
2014; Henriques et al. 2015; Hirschmann et al. 2016). These
models have reported a slope (and scatter) that, in general, is
broadly consistent with observations, but the quantitative details
regarding the slope and/or the evolution of the main sequence
often do not match observations.

Since the pioneering work of Daddi et al. (2007) and
Elbaz et al. (2007), it has been noted that the redshift evolution
of the main sequence normalisation, in particular around z = 2,
is a challenge for models (e.g. Davé 2008; Damen et al. 2009;
Bouché et al. 2010; Dutton et al. 2010; Dekel & Mandelker
2014; Torrey et al. 2014; Genel et al. 2014; Mitchell et al. 2014;
Furlong et al. 2015; Sparre et al. 2015; Abramson et al. 2016;
Santini et al. 2017). Here, we focus on a quantitative compari-
son of the slope of the main sequence (SFR ∝ Ma

∗ ) with various
models, given that our study yields the tightest constraint on this
parameter (compared to the other parameters in the model).

The Illustris simulations (Vogelsberger et al. 2014;
Genel et al. 2014; Sparre et al. 2015) produce a main-sequence
with a slope a that is slightly sub-linear with a / 1.0. In par-
ticular, Genel et al. (2014) noted that sSFR goes as '−0.1 with
stellar mass and using the results from Sparre et al. (2015), we
find that the main sequence in Illustris goes as SFR ∝ M≈0.95

∗ .
The EAGLE simulations (Schaye et al. 2015; Crain et al.
2015) also allow an investigation of the main sequence and
Furlong et al. (2015, their Fig. 5), showed that the sSFR is
constant with M∗ from 108 to 1010 M� at redshifts z = 0.1,
1.0 and 2.0, with a relatively steep decline above 1010 M�.
Quantitatively, below 1010 M�, the slope of the main sequence
a in Furlong et al. (2015) is a ≈ 1.04. The MS slope for the
Illustris and EAGLE simulations are shown in Fig. 10 as the
open circles and triangle symbols, respectively. In the FIRE
simulations (Hopkins et al. 2014), Sparre et al. (2017) focused
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on studying the scatter in the main sequence for different tracers
of SFR and shows a slope of a ≈ 0.98 when using the FUV
(their Fig. 2).

The MS slope has also been a challenge for semi-analytical
models because different (regular) feedback prescriptions do
not alter the MS slope as shown in Dutton et al. (2010) and
discussed in Mitchell et al. (2014; however, it can alter the
slope in hydrodynamical simulations, e.g. Haas et al. 2013a,b;
Crain et al. 2015). Mitchell et al. (2014) performed a detailed
comparison between predictions from the GALFORM semi-
analytical models with observations and their fiducial model
produces a MS slope of a ≈ 0.85 (shown in Fig. 10 as the
down-pointing triangles). Recently, the semi-analytical model of
Cattaneo et al. (2017) using the GALICS2 code was set to repro-
duce the local luminosity function and the local MS slope simul-
taneously. Their MS slope is a ≈ 0.8 (open square in Fig. 10),
but we caution their use of an extreme feedback model, where
the mass loading η is η ∝ V−6, where V is the halo virial veloc-
ity. Such a steep scaling between galaxy mass and wind loading
is not supported by the data (e.g. Schroetter et al. 2016).

Bouché et al. (2010) used a simple toy model for galaxy
(self-)regulation with which they showed that variations in feed-
back prescriptions or in the laws of star formation have no impact
on the MS slope. They argued that while ejective feedback
alone is not sufficient to bring the theoretical slope of the main-
sequence in agreement with observations, preventive feedback
can easily do so as several studies have shown (Davé et al. 2012;
Lu et al. 2015; Mitra et al. 2015, 2017). However, while the MS
slope of Bouché et al. (2010) is sub-linear with a ≈ 0.8, a quan-
titative analysis reveals that the slope varies rapidly with stellar
mass, likely due to the limitations of the model. Indeed, the MS
slope of Bouché et al. (2010) goes from 0.7 at M∗ ∼ 109.5M� to
0.9 at M∗ ∼ 1010.5 M�. The range of values is indicated by the
light grey box in Fig. 10.

Mitra et al. (2015) expanded the self-regulation model of
Bouché et al. (2010), Davé et al. (2012, and others) with phys-
ically motivated parameters and attempted to determine these
parameters using a Bayesian MCMC approach on a set of
observed scaling relations at 0 < z < 2. Their fiducial model
yields a MS with a slope that is quasi-linear with a ∼ 0.95 in our
mass regime, i.e. below 1010 M�. Their MS slope is shown as the
dark grey band in Fig. 10.

Generally speaking, in the low-mass regime below 1010 M�,
hydrodynamical simulations have steeper MS slopes with a ≈
1.0 whereas our estimate (a = 0.83+0.07

−0.06) at z < 1 and recent
observations covering that mass range indicate a < 1.0 (see
Fig. 10). The reason that models tend to predict a steeper main
sequence slope lies in the underlying feature in hydrodynami-
cal simulations and semi-analytical models, where the growth
rate for dark matter halos Ṁh scales with mass as Ṁh ∝ M1.15

h
(Birnboim et al. 2007; Genel et al. 2008; Dekel et al. 2009;
Fakhouri & Ma 2008; Neistein & Dekel 2008), in combination
with rapid gas cooling.

6.3. Implications of a shallow slope

As noted originally by Noeske et al. (2007a) and discussed in
Mitchell et al. (2014) and Abramson et al. (2016), a MS with
a sub-linear slope, SFR ∝ Ma

∗ with a < 1, implies down-
sizing where lower-mass galaxies have longer e-folding time
and a later onset of star formation. This downsizing effect
would be amplified if the MS slope is substantially flatter above
1010 M� as some studies have indicated (Whitaker et al. 2014;
Schreiber et al. 2015; Lee et al. 2015; Tomczak et al. 2016).

This turnover has generally been attributed to either a morpho-
logical transition, such as bulge growth (Abramson et al. 2014;
Lee et al. 2015; Whitaker et al. 2015), or a reduced star forma-
tion efficiency (Schreiber et al. 2016).

Our result, that the slope of the main sequence is sub-linear
in the low-mass regime, implies that there are processes at work
which either: (1) affect the conversion of the accreted gas into
stars through increased (supernova) feedback or a decrease in
the SF efficiency; or (2) prevent the accretion of gas onto low-
mass galaxies. These two processes might conspire with the fact
that the gravitational potential is shallower in low-mass galaxies
(Mitra et al. 2015).

In hydrodynamical simulations low-mass galaxies (up to
halo masses of ∼1011.5 M�) obtain their gas primarily through
“cold”-accretion (Kereš et al. 2005; Van de Voort et al. 2011),
where the gas is never heated to the virial temperature, while
“hot” accretion, where gas is first shock heated to the virial
temperature and then cools and accretes, is dominant for more
massive galaxies. A candidate process is feedback from grav-
itational heating, due to the formation of virial shocks (e.g.
Faucher-Giguère et al. 2011), which becomes more effective at
higher masses, however, can still play a role down to halo
masses of 1010 M�. The heating of gas through winds (from
either supernovae or black hole feedback) can also prevent the
gas from flowing into the galaxy (Oppenheimer et al. 2010;
Faucher-Giguère et al. 2011; Van de Voort et al. 2011), in partic-
ular in low-mass galaxies. However, Schaye et al. (2010) pointed
out that this type of feedback mainly has a regulatory effect on
the gas infall.

As noted by Dutton et al. (2010), Bouché et al. (2010), and
Mitchell et al. (2014), in semi-analytical models, the MS slope
is rather insensitive to the ejective (regular) feedback mecha-
nisms7, such as the heating of gas through winds and/or the
star formation efficiency (Kennicutt 1998) because they act pri-
marily on the gas content. Hence, the SFR and stellar mass are
affected in a similar way, leaving the slope unchanged, unless the
ejective feedback prescription is strongly mass dependent with
η ∝ V−6, as in Cattaneo et al. (2017). In addition, Mitchell et al.
(2014) showed that the slope is also insensitive to the gas re-
incorporation prescription (see also Mitra et al. 2015).

Preventive processes (Blanchard et al. 1992; Gnedin 2000;
Mo et al. 2005; Lu & Mo 2007; Okamoto et al. 2008) that tend
to be mass dependent can more easily impact the MS slope, the
Tully-Fischer relation, and the luminosity function as argued by
Bouché et al. (2010). A preventive process which can prevent
the inflow of gas specifically in low-mass halos is photoion-
isation heating (Quinn et al. 1996). While it has been argued
that this process is primarily effective in dwarf galaxies and
becomes ineffective above halo masses of a few times 109 M�
(e.g. Okamoto et al. 2008), Cantalupo (2010) suggest that pho-
toionisation may still play a role for more massive halos if there
is significant star formation.

7. Summary and conclusions

We have exploited the unique capabilities of the MUSE instru-
ment to investigate the star formation sequence for low-mass
galaxies at intermediate redshift (0.11 < z < 0.91). From the
large number of sources detected with MUSE in the HUDF and
HDFS we have constructed a sample of 179 star-forming galax-
ies down to M∗ ∼ 108 M�, with a number of objects at even

7 With mass loading η ∝ V−1 or η ∝ V−2 for momentum or energy-
driven winds, respectively.
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lower masses (Fig. 4). The accurate spectroscopic redshifts from
MUSE are combined with the deep photometry available over
the HUDF and HDFS to determine a robust mass estimate for
the galaxies in our sample through stellar population synthesis
modelling.

With MUSE we can detect star-forming galaxies down
to SFR ∼10−3 M� yr−1 (Fig. 7). We show that we can deter-
mine robust, dust-corrected SFR estimates from Hα λ6563 and
Hβ λ4861 recombination lines, by comparing the SFRs from
different tracers (Fig. 5). A dust-corrected star formation rate
is inferred from the Hα λ6563 and Hβ λ4861 emission lines
observed with S/N > 3 in the MUSE spectra.

We characterise the star formation sequence by a Gaus-
sian distribution around a plane (Eq. (4)). This methodology is
chosen to maximally exploit the data set taking into account
heteroscedastic errors. We constrain the slope, normalisation,
intrinsic scatter, and evolution with redshift from the posterior
probability distribution via MCMC methods (Fig. 8).

We analyse the robustness of our model and the influence of
the MUSE detection limit on the derived properties of the star
formation sequence, by determining how well we can recover
the parameters from a sample of simulated relations (detailed in
Appendix A). Using the results, we correct our inferred parame-
ters for observational biases.

We report a best-fit description of the low-mass end of the
galaxy star formation sequence of log SFR = 0.83+0.07

−0.06 log M∗ −
0.83+0.05

−0.05 + 1.74+0.66
−0.68 log(1 + z) between 0.11 < z < 0.91, shown

in Fig. 9. The full description of our parameters, including errors
and normalisation, is found in Eq. (11).

The intrinsic scatter around the sequence is found to be
σintr = 0.44+0.05

−0.04 dex (in log SFR). This is notably higher than
the average value reported in literature (∼0.3 dex), which could
be attributed to a combination of the Balmer lines probing star
formation on shorter timescales and the star formation histories
of low-mass galaxies being more diverse.

Excluding massive galaxies (with M∗ > 109.5M�) has
no significant effect on the best-fit parameters, indicating we
are primarily sensitive to low-mass galaxies. Notably though,
we find that the slope steepens when splitting our sample
into one or multiple redshift bins, with the values going up
to log SFR[M� yr−1] = 0.89+0.05

−0.05 log M∗[M�]. This shows the
importance of taking into account the evolution with redshift
when deriving the properties of the star formation sequence.

The slope of the star formation sequence is an important
observable as it provides information on the processes that regu-
late star formation in galaxies. Our slope is shallower than most
simulations and (semi-)analytical models predict, which find a
(super-)linear slope essentially due to the growth rate of dark
matter halos. Feedback processes operating specifically in the
low-mass regime, which affect the accretion of gas onto galax-
ies and/or subsequent star formation, are required to reconcile
these differences. Models suggest that supernova feedback or
a decreased star formation efficiency do not affect the slope of
the star formation sequence. Instead, processes that prevent the
accretion of gas onto low-mass galaxies are thought to play an
important role in determining the slope of the star formation
sequence in the low-mass regime.
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Appendix A: Simulations

A.1. Selection function and completeness

We have selected galaxies based on the signal-to-noise of
their emission lines, without any photometric preselection. This
means the selection function is essentially determined by the
emission line sensitivity. In general, one might expect galaxies
with higher S/N in their emission lines to have a higher SFR
at a fixed mass, or similarly, for galaxies with the same S/N to
have a higher SFR at higher redshift, which potentially intro-
duces biases in our results. Additionally, we can only observe
galaxies that have Balmer lines in the spectral range of MUSE
(z < 0.91).

To investigate the influence of these selections, we determine
how well we can recover the true parameters of the star for-
mation sequence from a set of mock samples of galaxies, after
applying the flux limit from our MUSE observations.

We determine the influence of the selection function on the
inferred parameters by simulating mock data for a range of
“true” parameters. The range of values for each mock param-
eter is listed in Table A.1, which combine to form a grid of
N = 1260 points. The extent of grid is chosen such that it encom-
passes a wide range of possible parameters and we find that the
results are consistent if we enlarge the grid even further (note
that, if the grid is taken too large, non-linearities may arise at
the extreme values which potentially bias the linear transforma-
tion approach of Sect. A.2). We denote each set of parameters as
xtrue,k =

(
â, ĉ, b̂, σ̂intr

)T
with k = 1, ...,N.

We generate realistic mock data for each set of parameters
through the following procedure: We sample 100 galaxies from
a uniform distribution in both mass (7.0 < log M∗[M�] < 10.5)
and redshift (0.1 < z < 1). Given the mass and redshift, we com-
pute the SFR (via Eq. (4)), i.e. assuming a mock main sequence
distribution with slope â and evolution ĉ. We choose our nor-
malisation (b̂) such that a 1010 M� galaxy at z = 0 has a SFR
of 1 M� yr−1, similar to our results and, e.g. the Milky Way
(Chomiuk & Povich 2011), i.e. we take a zero-point of b0 =
−10. We then sample up to boffset = ±0.4 dex above and below
this zero-point. We provide each galaxy with a random offset
from the main sequence (perpendicular to the (log M∗, log SFR)-
relation) drawn from N(0, σ̂intr). Finally, we apply a random
measurement error for each galaxy in both log stellar mass and
log SFR of 0.3 dex (i.e. drawn fromN(0, 0.3)) and in log redshift
of 5 × 10−4 dex (∼N(0, 5 × 10−4)), similar to the observations.

We then apply the same flux limit as our shallowest MUSE
observations, namely in the mosaic with 3 × 10−19 erg s−1 cm−2,
and mark all “observed” galaxies as those that fall above our
detection threshold (we do not take an additional factor for
dust into account as our galaxies are not very dusty on aver-
age). We then fit the observed galaxies above the flux limit.
Repeating this process 30 times for each individual set of
parameters xtrue, and marginalising over the combined posterior
distribution, we determine the corresponding recovered parame-
ters xout,k = (a, c, b, σintr)T .

As an example, we show one the experiment for a particular
set of parameters in Fig. A.1. It is clear that the recovered param-
eters are biased towards a shallower slope and a steeper redshift
evolution. The magnitude of this bias depends on all the param-
eters and becomes more severe for steeper slopes and shallower
redshift evolutions.

To check our methods, we also fit all simulated galaxies
(without discarding any data). Reassuringly, we recover our
input parameters to within the errors, even when simulating only

Table A.1. Grid values for our mock simulations.

Min Max Step

â 0.7 1.1 0.05
ĉ 1.5 4.5 0.5
boffset –0.4 0.4 0.2
σ̂intr 0.3 0.6 0.1

Notes. b̂ = â
(
log(M0) − b0

)
+ ĉ log(1 + z0) + boffset. The normalisation

(b0 = −10) is chosen such that a 1010 M� galaxy at z = 0 has a SFR of
1 M� yr−1.

100 galaxies. Since our actual sample size is 179 galaxies, we are
in principle able to recover the true parameters of the relation,
even in the case of intrinsic scatter and heteroscedastic errors.
One feature that does draw attention is that the redshift evolu-
tion is marginally steeper than the input relation (but admittedly
poorly constrained and still consistent within the error). This can
be explained due to an intricacy of the model, which assumes
that the intrinsic scatter about the relation is along the normal
vector to the plane (σ⊥ in Sect. 4.1), i.e. also in the log(1 + z)-
direction. If the data are truncated and there is a non-zero slope
(|c| > 0) in redshift space, this may introduce an artificial bias
in the corresponding slope (and scatter) as the truncation bound-
aries are not parallel to the normal vector. Given the fact that
our data (and mock sample) are limited in redshift space by the
spectral range of MUSE, this means that we may have slight arti-
ficial bias towards a steeper redshift evolution. For interpreting
the intrinsic scatter this is not a problem as we can project the
scatter along the (physical) log SFR-axis (which is our σintr).

With our simulations in hand however, we are now in place
to apply a correction for both biases identified above.

A.2. Transformation

The simulations show a reasonably well behaved transformation
between the true and recovered slope. We therefore model the
mock data with an affine transformation, to be able to transform
between the measured and true parameters.

We try to find the best transformation matrix A and vector b
between the measured and true parameters. For each set of input
(xtrue,k) and output (xout,k) parameters we have:

xout,k ≈ Axtrue,k + b (A.1)

We minimise the function

S (A, b) =

N∑
k=1

||xout,k − Axtrue,k − b||22 (A.2)

with respect to each component of A and b in order to find the
best-fit transformation A and b (Späth 2004). We note that we
do not take the errors on each point xout, k into account as their
magnitudes are all comparable (essentially adding a constant to
the equation).

With the best-fit A and b in hand, we can then invert the equa-
tion to obtain the relation between the observed and the recov-
ered “true” parameters, which denote as x′true:

x′true ≈ A−1 (xout − b) (A.3)
a′

c′

b′

σ′intr

 =


1.336 0.014 −0.150 0.171
0.638 0.863 0.574 −2.621
−0.178 −0.008 1.175 −0.185
0.285 0.009 −0.044 1.091





a
c
b
σintr

 −


0.293
0.061
−0.194
0.236




(A.4)
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Fig. A.1. Results from the recovery experiment on mock galaxies. The points in the left and centre panels show one of the 30 realisations of 100
galaxies in (log M∗, log(1 + z), log SFR)-space from a mock star formation sequence: log SFR ∝ a log M∗ + c log(1 + z), where in this particular
case a = 0.8 and c = 2.0 with σintr = 0.5 dex. The colour indicates redshift, unless a mock galaxy falls below the solid line in the centre panel,
indicating the flux limit of ∼3 × 10−19 erg s−1 cm−2, in which case it is a black point. The rightmost panels show the marginalised distributions
(slope, redshift evolution, and intrinsic scatter) from combining all 30 realisations for this particular set of parameters. The thin and thick black
lines indicate the results when taking into account all mock data and only the data above the flux limit, respectively, and are compared to the input
values (dashed lines). With all data points (including noise), we can recover the input parameters sequence well. When applying the flux limit a
slight bias towards a shallower slope and steeper redshift evolution appears. We plot all curves in the leftmost panel at the average redshift of the
sample (z0). The red line is obtained after applying the correction to the fit of the data above the limit. These recovered curves are plotted in the
leftmost panel as well and compared to the input mock relation. With our correction, we can recover the true input parameters well, even in the
case of limited data.

For our simulated data, we show the distribution of the dif-
ference between the recovered parameters (x′true) and the true
parameters (xtrue) in Fig. A.2. We recover the input parameters
very well, with no mean offset between the recovered and the
true parameter. This shows that the transformation (i.e. A and
b) are very well determined. Furthermore, the scatter in the dif-
ferences is much smaller than the average uncertainty on each
parameter obtained from the observations (of order ∼1%). As an

illustration, we show the inverse transformation applied to the
simulation by the red lines in Fig. A.1, which are now in good
agreement with the true values (dashed lines).

In summary, the transformation obtained from the best-fit A
and b is a very accurate description of the bias induced by the
flux limit in our simulated data. We use the inverse of this trans-
formation, Eq. (A.3), in Sect. 5 to correct our inferred posterior
density distribution from modelling the MUSE data.
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Fig. A.2. Differences between the recovered parameters, x′true =
(
a′, c′, b′, σ′intr

)T
and the true parameters, xtrue =

(
â, ĉ, b̂, σ̂intr

)T
, for the N =

1260 points from our simulation; see Eq. (A.3). We can recover the input parameters of our simulation very well, with no mean offset and
very small scatter (compared to the uncertainty on each parameter obtained from the observations). Figure created using the corner.py module
(Foreman-Mackey 2016).
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