
HAL Id: hal-02325213
https://hal.science/hal-02325213

Submitted on 31 Oct 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

EXPE: An expandable programming language for
on-line psychological experiments

Christophe Pallier, Emmanuel Dupoux, Xavier Jeannin

To cite this version:
Christophe Pallier, Emmanuel Dupoux, Xavier Jeannin. EXPE: An expandable programming lan-
guage for on-line psychological experiments. Behavior Research Methods Instruments and Computers,
1997, 29, pp.322 - 327. �10.3758/BF03200583�. �hal-02325213�

https://hal.science/hal-02325213
https://hal.archives-ouvertes.fr


EXPE: an Expandable Programming Language for On-line
Psychological Experiments

Christophe Pallier
Rutgers University Center for Cognitive Science

Emmanuel Dupoux and Xavier Jeannin
LSCP, EHESS–CNRS, Paris

This is a preprint a paper published inBehavior Research Methods, Instruments and Computer, 1997,
29((3)), 322-327. Consult the latest paper for up-to-date information about Expe 5.1

EXPE is a DOS program for the design and running of experiments that involve the presen-
tation of audio or visual stimuli and the collection of on-line or off-line behavioral responses.
Its flexibility makes it also a very useful tool for the rapid design of protocols for testing neu-
ropsychological patients. EXPE provides a powerful scripting language which allows the user
to specify all the components of an experiment in a human readable file. Subjects’ responses
are saved in a user-specified format, also in readable ASCII files. A remarkable feature of
EXPE is that the user can easily add new commands to the language: all the instructions are
calls to functions written in independent Borland Pascal units. Thus, users can link their own
pascal procedures to EXPE to meet any special need. This makes it possible, for example, to
adapt EXPE to new hardware, such as new sound or video boards.

When one has to make up a psychological experiment us-
ing computerized equipment, there are basically two choices:
a) use a general-purpose programming language (C, Pascal,
etc.), or b) use one of the special software/freeware pack-
ages made for psychological experiments. The first solu-
tion is the most general one, but it has several drawbacks.
Neither C nor Pascal is very well suited to describe exper-
iments: They force the experimenter to focus on many ir-
relevant details. More importantly, these languages require
a level of programming skills that cannot be expected from
the average user, especially if precise timing or synchroniza-
tion is needed. The second solution, using specialized sys-
tems, is simpler and more accessible, especially with sys-
tems that provide a graphic interface for the construction of
experiments. However, such software is often tied to specific
kinds of experiments and imposes rather strict limits on ex-
perimental design, stimulus presentation, feedback, etc. For
example, it is generally impossible to modify the format of
the feedback or to adapt the number or type of trials to the
history of subject responses. Another serious problem with
these programs is that they are not open and are often tied to
a special-purpose hardware (response buttons/audio board).

In this paper, we describe a program that was born five
years ago at the Laboratoire de Sciences Cognitives et Psy-

Correspondance address: Dr. C. Pallier, Center for Cognitive
Science, Rutgers University, New Brunswick, NJ 08903. Email:
pallier@ruccs.rutgers.edu C. Pallier was supported by a post-
doc fellowship from the Fyssen Fondation; part of this work was
also realized while he was a post-doc at the University of Barcelona
supported by a Lavoisier Grant from the French Ministry of For-
eign Affairs. The audio functions rely on modules programmed by
Xavier Jeannin at the LSCP in Paris, and by John Mertus at Brown
University.

cholinguistique (LSCP, Paris) from our efforts to try to cope
with these problems. Our aim was to design a system that
had both the power and expandability of programming lan-
guages and was as easy to use as the more specialized soft-
ware. Power was achieved through a scripting system with
general-purpose data and control structures. Expansibility
was achieved through a modular and open architecture al-
lowing the easy addition of new functions through Borland
Pascal Modules. User ease was obtained by designing the
language with a maximally simplified syntax and many prim-
itive functions tailored to the needs of experimental testing
(trial definition, stimulus presentation, response collection,
timing, data saving, etc.).

Thus, EXPE is an interpreter of scripts which is similar in
spirit to BASIC. It provides variables, expression evaluation,
all the necessary control structures and even subroutines; the
BASIC functions “READ” and “DATA” have been enhanced
in many ways to allow a compact and legible description of
experimental design (more on this subject in the section on
Expe’s scripts). We want to stress however that it is not a very
high level experiment generator in the sense that concepts of
experimental blocks or groups are not “hard wired” primi-
tives of the language. Thus, for example, it will not automat-
ically generate a latin square design: the user will have to
specify the different groups of subjects and the block order.
Nevertheless, most EXPE scripts are usually quite short, and
our experience at the LSCP has shown that students can very
quickly use it to design and run experiments. Indeed, EXPE
has been used extensively in the past four years to prepare
and run auditory and visual experiments. It has also been
used to test neuropsychological patients.

The hardware requirements have been kept to a minimum:
it is a DOS real-mode program, which can run on old PCs
with only 640K of memory (though some experiments may
require a faster PC to handle the presentation of complex au-



2 PALLIER AND DUPOUX

Figure 1. Example of a phoneme categorization script

WithData "Materials"
Listen #1
Save #1 #2 ReadKey
Wait 2000

LoopData

Data "Materials"
stim1.adf P
stim3.adf K
stim7.adf D
stim2.adf P
...

EndData

dio or video events). No complex hardware is required for
timing and response-time measurements: the response but-
tons are simple mechanical switches that can be connected
directly to the parallel port of the computer. The audio func-
tions rely on the Bliss audio drivers, a system designed by
John Mertus at Brown University. This makes EXPE com-
patible with audio boards for which there exist a Bliss driver1;
at the LSCP, we use MediaVision’s ProAudio Spectrum 16.

The paper is divided into two parts: in the first, we de-
scribe the script language and try to convey how easy it is
to program new experimental paradigms with it. In the sec-
ond part, we describe the most unusual aspect of EXPE: the
expandabilty of the language through the linkage of Pascal
units.

Expe Scripts

Two examples with commentary

In Figure 1, we have provided the script of a simple
phoneme categorization experiment: the subject listens to a
list of stimuli, and after each one, has to press the key corre-
sponding to the perceived phoneme (it is just a simple exam-
ple: a real experiment would likely include the instructions
for the subject, a training block, and maybe feedback...)

The core of many experiments consists of a series of tri-
als where the only differences are the actual stimuli played
in each particular trial. It is convenient to separate the code
(i.e., the commands to be executed in each trial) from the data
(the description of the stimuli).

In Figure 1, the first block of lines is the code section;
the commands enclosed between the “withdata...loopdata”
construct will be executed once for each line of data (de-
fined by the “data ... enddata” construct). Within the “with-
data...loopdata” loop, #1 refers to the first column of the cur-
rent line in the data block and hence varies on each pass. So,
in the first pass, #1 corresponds to “stim1.adf”; in the second
pass it corresponds to “stim3.adf” and so on. #2 corresponds
to the second column. If the “database” “Materials” contains
60 lines, the instructions are executed 60 times.

In the example, the whole experiment consists of a single
block of uniform trials; each trial starts by the playing of the
auditory file the name of which is given in the first column
in the current data line (“listen #1”). Then, the file’s name,
the expected answer, and the subject’s response are saved
together in the result file (“save #1 #2 readkey”). Finally,
the computer waits two seconds before starting the next trial
(“wait 2000”).

Once this script is written, say in the text file “phon-
dec.pro”, entering “expe phondec subjcode” on the DOS
command line will launch the experiment. When it is com-
pleted, the raw results will be immediately accessible in an
ASCII file with four columns: the subject code, the file name,
the expected response, and the actual response. Information
about the subject and about the date and time of the run
are also stored in the result file. It is easy to extract statis-
tics from the result file with programs like “count”, “mystat”
and “anova” provided in the EXPE package; alternatively the
ascii file can be imported into a spreadsheet or in a statistical
program.

In data blocks (“databases”) containing lists of stimuli, it
is good practice to add on each line some information about
the category of the stimulus. This information can then be
saved with the response of the subject, facilitating easy ex-
traction of the results. It is important to note that databases
are not limited to storing stimulus lists. The format inside a
database is completely free and the action taken depends on
the code section.

For example, we conducted an experiment in which sub-
jects had to perform a click detection while listening to audi-
torily presented words. Every five to twelve trials, a recogni-
tion test was administrated to force subjects to pay attention
to the words. In order to achieve this, lines with a special
code were interspersed in the stimuli list to instruct Expe to
present the subject with an occasional recognition test. An
instruction in the main loop branched between a click detec-
tion or a recognition test.

The database mechanism is quite powerful. The “result

1 Bliss drivers and tools are available at ftp://jam.cog.brown.edu.



EXPE: A FLEXIBLE, EXPANDABLE LANGUAGE 3

Figure 2. Example of a phoneme detection script

Echo " INSTRUCTIONS FOR EXPERIMENT"
Echo "In this experiment, you will be presented first with a target phoneme"
Echo "on the screen, then by a spoken word."
Echo "Your task is to press the right button if the word contains"
Echo "the target phoneme, or the left button if the word does *not* contain it."
Echo
Echo "Respond as soon as you have heard the target phoneme."
readkey

Shuffle trials ;randomizes the trial order

WithData trials
Wait 1000 ;wait one second
Cls ;clear the screen
WriteXY 38 12 #1 ;display the target phoneme
Wait 1000 ;wait another second
Cls ;clear the screen
Wait 500 ;wait 500ms
RtTrial 2000 Listen #2 ;make a timed response trial with

;deadline 2000ms
Save #0 button rt ;save the trial characteristics and responses

;feedback for slow and wrong responses:
If button==’˜’ WriteXY 20 20 "Too Slow !" ;no button press
If button!=’˜’ and (button!=#3) WriteXY 20 20 "Wrong Response"

LoopData

Data trials ;target-phoneme stimulus-file desired-response
P sheep.adf 1
M glop.adf 2
D disk.adf 1
K pump.adf 2
...

EndData

file” itself is actually a database so that it is possible to ac-
cess the history of the responses of the subject inside the ex-
periment (for example to compute the mean reaction time
in a block). Also, in a given script, there can be several
databases, which can be scanned sequentially or in parallel:
“withdata...loopdata” loops can be embedded. For example,
one database can contain the name of others; this can be used
to store the order of experimental blocks: the outer loop con-
trols which list is used, and the inner loops scans through this
list.

As a second example, we propose the script of a speeded
phoneme detection experiment (see Figure 2). First, the in-
structions are displayed on the screen. Then, the order of
stimulus presentation is randomized (for each subject) with
the instruction “shuffle”. Inside the loop, the instruction “rt-
trial 2000 listen...” plays the stimuli and monitors the key-
board and the parallel port for a button or key press dur-
ing 2 seconds (2000 msec). The reaction time can then be
read with the function “rt”, and the code of button pressed is

accessed with the function “button” (if no button has been
pressed, the “button” returns “’̃’). The entire data line is
saved along with the response by the command “save #0 rt
button”. It is a good idea to save as much information as pos-
sible about each trial: it makes things easier for later analy-
ses.

In a given script, several blocks of codes and data can be
interspersed freely. Complex designs can be made by em-
bedding “withdata..loopdata” structures at any depth. Con-
ditionals and control structures allow for feedback or trials
to depend on the subject’s response. A “withdata...loopdata”
loop can be interupted before the end of the list, for example
if the subject’s performance has reached a certain criterion.
The next section gives a quick description of capacities of the
language.

EXPE’s syntax

EXPE’s syntax is deliberately minimalist. A program con-
sists in a series of lines where each can be a command line,



4 PALLIER AND DUPOUX

a data line (appearing between “data” and “enddata”), or a
comment (introduced by a percent-sign).

Typically, command lines are executed sequentially, one
after another, in the order in which they are encountered.
However, some commands allow looping over a block
of instructions until a condition is met (we have already
seen “withdata...loopdata” but there is also while...endwhile,
for...endfor). As in most programming languages, there also
are conditional instructions (if..then.endif) that allow execu-
tion of some instruction only when a condition is met.

Each command line starts with a command, optionally
followed by one or several arguments that can be numbers,
strings of characters, variables or other commands. Assign-
ment (“:=”), standard arithmetic (“+”,“-”, “/”, “*”) and logi-
cal (“and”, “or”, “xor”) operations are special types of com-
mands that take their arguments on their left and right. The
standard operator precedence applies, i.e., 3+4*5=23. Com-
mas for arguments and parentheses for expressions are not
mandatory (minimalist syntax), but they can be used to make
complex expressions more legible.

Contrary to many programming languages, the user does
not have to pay attention to the argument type: Conversions
between numbers, strings or boolean are performed implic-
itly as needed (”0” is equivalent to 0.0 and to False; however,
improper conversions (e.g.3+"hello") generate a run-time
error.).

EXPE also has variables which can be manipulated just
as easily as constants. Again, variables have no particular
type and can be used as arguments of functions requiring
strings or numbers. Variables are especially useful for count-
ing subjects’ good and bad responses. Several of our exper-
iments involve adaptative training where the training block
ends when a certain performance criterion has been reached.
As described above, inside a “withdata...loopdata” loop, “#i”
refers to the “ith” item on the current database line. In brief,
EXPE takes care of type checking, memory allocation, input-
output, etc., and allows the user to concentrate on the most
important aspect of the research: the execution of the exper-
iment.

Functions for stimulus presentation

We now turn to the specifics of EXPE concerning au-
dio/video output and timing. The simple command “listen
<filename>” allows an audio file to be played. There is no
limit on the size of audio files: EXPE reads them from the
disk and feeds them to the audio board in real-time. Cur-
rently, EXPE handles 16 bits Bliss .adf mono and stereo au-
dio files, raw PCM linear 16 bits files, and Windows .wav
pcm 8 and 16 bits files. Depending on the hard drive on the
computer, loading the file will take a variable amount of time.
If playout must start at a very precise time, it is possible to
decompose this command in “load<filename>” and “play”.
“Load” will fill the audio buffers with the beginning of the
file and “play” will start the playout immediately (fetching
more data on the disk if necessary).

EXPE is not limited to presenting only an entire, pre-
recorded, audio file: it provides a general audio mixing ta-

ble that allows the user to specify millisecond-synchronized
sequences of auditory events. The mixing occurs in real-time
and allows the user to overlap or gate stimuli, or play some
files over the left and others over the right channel. Figure 3
gives a simple example of a stimulus made of two audio
sounds played simultaneously, one in the left channel, and
the other one in the right channel and amplified by a factor 2.
Only the first 1000 msec of each file is played.

By default, the mixing is done in real time. If this exceeds
the capacities of the machine (because the hard drive or the
CPU is too slow), it is possible to mix the sounds off-line
(i.e., before starting playback), into a temporary file, which
can be played afterwards.

The current video functionalities are relatively primitive:
the basic graphic functions of Borland Pascal are accessible,
as is a command to display pictures stored as bitmaps in tiff
files. The drawing is done in a hidden page which can be
swapped rapidly with the page shown on the screen, allow-
ing measurement of reaction time from the onset of the pre-
sentation. However, it is not yet possible to present a visual
stimulus in the middle of the presentation of an audio stim-
ulus; we plan a forthcoming version of EXPE in which vi-
sual events will be incorporated in the audio mixer, allowing
for the possibility of arbitrarily complex sequences of audio-
visual events.

With this basic set of instructions, EXPE can handle many
current psycholinguistic or neuropsychological experiments
that specify a relatively simple sequencing of events. How-
ever, experiments requiring the rapid succession of many vi-
sual frames (e.g. rapide serial visual presentation), or com-
plex synchronization of audio and video events (cross-modal
priming) may not be possible with the basic functions pro-
vided. When such a limit is reached, we recommend pro-
gramming each particular complex stimulus presentation di-
rectly in PASCAL and linking it to EXPE code (see the next
section about expanding the language).

Another feature worth mentioning is the ability of EXPE
to communicate with other hardware or computers through
the parallel port or the serial port. For example, for an
evoked-potential study, we have been able to link through the
parallel port a PC handling the presentation of audio stimuli
to another one recording the EEG. The first PC, programmed
with EXPE, sent to the second computer codes that were
specific and synchronized with each stimulus. In other ex-
periments (head turning), we were able to use the serial port
to drive a videotape recorder. The serial port has also been
programmed to control a digital audio tape recorder during a
naming experiment (the DAT recording the vocal responses
of the subject).

Timing and Responses

Control on inter-trial times, feedback duration, etc., is
achieved by the functions “clock”, “wait” and “waittill”.
“clock” gives back the time elapsed since the beginning of
the experiment. “wait<n>”, waits “n” msec, and “waittill
<n>” waits until the clock reaches the value “n”. For exam-
ple, to program a series of trials of equal durations, say 4 sec,



EXPE: A FLEXIBLE, EXPANDABLE LANGUAGE 5

Figure 3. Mixing two audio files

Defitem
audio "file1.adf" 0 Length 1000ms Gain 1.0 LEFT
audio "file2.adf" 0 Length 1000ms Gain 2.0 RIGHT
Enditem
Playitem

“a:=clock” can be set at the beginning of the trial, and put
“waittill a+4000” at the end.

Turning now to the functions that get input from the
subject, one can distinguish those recording off-time re-
sponses (readkey, readstring, etc.), and those measuring on-
line reaction times. The latter can be achieved with exter-
nal buttons linked to the parallel port (with millisecond ac-
curacy), or through the keyboard (with less accuracy). For
reaction times, the simplest function “RTtrial<deadline>
<command>”. The reaction time is measured from the real
onset of<command> (i.e., first sample output in “listen” or
video retrace for video functions). The functions “RT” and
“Response” can then be used to access respectively the value
of the reaction time and the button (or key) pressed. If no but-
ton is pressed before deadline, RT is set to 0. It is sometimes
useful to decompose the action of “RTtrial” into more ele-
mentary instructions (“EnableResponse”, “rtonset := geton-
set< action>”, “LatchResponse”) to allow more control in
the case of complex sequences of events. By properly con-
necting a voice key to the parallel port, vocal responses can
be used instead of manual ones.

Saving Results

The data recorded by EXPE (subject responses) are saved
using thesave command. It saves all its arguments, in plain
ASCII format, in a memory area which is dumped onto the
disk when the experiment ends. User interruptions or run-
time errors are caught, and the data are saved on disk before
the program exits. Results can be logged onto the same large
result .res file, or onto separate files for each subject. In ad-
dition, much other information regarding the experiment is
saved in the .res file (date, time, experiment duration, type
of machine, version of EXPE, etc.). Note that functions that
perform the saving, like all other EXPE commands, can be
replaced to use different formats.

We now turn to an important feature of EXPE: its capacity
for extension.

Expanding EXPE

The limitations of any experimental package are quickly
reached by ingenious researchers. Limitations are of two
kinds: hardware and software.

As an example of hardware limitation, the user may al-
ready have hooked up 10 computers with a particular kind of
response button, but the package does not allow for read-
ing out these buttons. EXPE has been programmed in a

modular fashion making adaptations to new hardware pos-
sible. The pieces of code dealing with the hardware are kept
in separate Borland Pascal’s units, which means that adapt-
ing EXPE to new hardware only involves local changes to
these units. For video output, we rely on Borland’s BGI
drivers. For the audio output, we use the specifications of
John Mertus’s BLISS drivers, and again EXPE’s code is
device-independent. Adapting EXPE to new audio boards
implies writing up a new BLISS driver (5-6 very low-level
functions)2. Finally, timing and response button are also mod-
ular parts of the code. In short, it is possible to adapt EXPE
to new input boards or ports. For example, we have used it to
command a robot arm (moving objects in a theater designed
for baby experiments), or to synchronize a NeuroScan EGG
recorder with auditory stimulus presentation.

Software limitations concern, for example, the types of
graphic file format the package can display, or the type of
audio file it can play. With most experimental software, there
is nothing the experimenter can do if he wants to use a format
not accommodated by the package. In contrast, EXPE allows
new commands to be added to the language very easily. As-
suming that the user has the source of a Pascal procedure that
does all the necessary work, it is a trivial matter to link this
routine with the other functions, resulting in an extension to
EXPE’s langage.

Consider some examples. If one wants to save the results
in a special format adapted to his analyzing tools, a special
purpose “save” command can be added to the language. If
one has a modular piece of code achieving a very special ef-
fect (e.g., self-paced reading), one can link it to expe without
too much trouble.

All EXPE’s commands are in fact implemented as func-
tions of the type “function myfunction:xvalue;far;” where
“xvalue” is a hybrid type defined that allows for transmis-
sion of numbers or string of characters. In order to add one
(or several) new function(s) to the EXPE language, one must:

1. write a Borland Pascal unit containing the code for this
function.

2. add to the initialization section of the unit a line like the
following:
NewFunc("MYFUNC",myfunction,short-help).
(“NewFunc” is part of the interface of a unit called “xcore”,
which must be included by the unit).

2 However, this does not mean that this is an easy task: the struc-
ture of Bliss drivers requires the use of assembly language. And the
programmer must not be afraid of dealing with the DMA and other
capricious beasts.



6 PALLIER AND DUPOUX

3. add the name of the unit to the list in file named “mod-
ule.pas”

4. run the batch “make” that invokes bpc to recompile
EXPE.

Then, at run-time, keyword “MYFUNC” becomes a new
command in the language that can be used within EXPE
scripts to call for the desired procedure. It is possible, in
a given unit, to add many other commands: the only thing
needed in order to add them to the language, is a “NewFunc”
statement for each of them. In a nutshell,EXPE is a scripting
interface to independently written Pascal functions.

The function written by the user can access the arguments
in the script by using the functions “GetStrArg”,“GetIntArg”
or “GetBoolArg”. These read the next argument in the cur-
rent line and convert it to the relevant Pascal type. Syntax,
expression evaluation, etc., need not be taken into account
since the core of EXPE takes care of such details for the user.

In brief, when the user has written his/her own code into
an independent Borland Pascal unit3, he/she just has to add the
name of this module to the list in the file modules.pas and to
run “make”. This solution has the advantage of allowing the
user to distribute his contributions as independent .tpu files.
Useful contributions could be incorporated in the standard
distribution of EXPE.

Availability

EXPE can be freely downloaded from the internet at the
URL http://ruccs.rutgers.edu/p̃allier. Researchers using it for
their experiments are only requested to cite the present paper
whenever they report on their work. We provide, along with
EXPE, documentation and some tools for preparing experi-
ments and perform data transformations and statistical analy-
ses (including Anovas...). The full package is self-contained
and is sufficient to prepare, run, and analyze many psychol-
ogy experiments.

Conclusion

EXPE provides an expandable, intuitive, but powerful
scripting language for experiment construction. Although we
do not wish to review all existing experimental packages, the
most powerful of these packages (MEL, PSYSCOPE) also
have underlying script-like languages. In these packages,
however, such script-like languages are machine-oriented,
and are normally not programmed directly by the user.
Rather, a menu-driven or graphics interface guides the user
in the specification of the experiment. Such specification is
used to generate the appropriate script code which is then fed
into the experiment engine. This approach has the advantage
that users do not need to do any programming to implement
an experiment.

However, it is typically the case that graphic or menu-
driven interfaces have intrinsic limitations in the complex-
ity and range of designs or protocols that they can express.
For instance, the interface may not allow the user to modify
the format of the feedback messages, or to schedule trials
that depend on the history of subject responses. Indeed, the
user-interfaces are often more restrictive and less powerful

than the underlying scripting language. Yet, when the user
wants to get around these limitations, he/she has to aban-
don altogether the user-interface and cope with an unfriendly
machine-oriented scripting system.

EXPE lacks a “high-level” interface: Users cannot enter,
in menus or through a graphic interface, parameters such as
SOA, or numbers of trials in a block. On the other hand, the
scripting language has been designed to be human readable
and to minimize the burden of programming. Still, the fact
that using EXPE requires a basic understanding of instructive
programming may be a drawback for a certain class of users.
Also, in comparison with the above-mentioned packages, it
should be mentioned that a library of scripts for common ex-
perimental paradigms is not available.

In summary, here are what we conceive as advantages of
EXPE:

1. It provides specialized commands and structures for
stimulus presentation and response recording. The audio
functions are especially powerful, allowing for the playing
of files of unlimited size, and for mixing several files in real
time (which is useful, for example, for dichotic experiments).

2. Compared with languages such as C or Pascal, users
do not have to learn to use a compiler. The language is much
more similar in spirit to BASIC, and is thus simpler to master.
Users can use their favorite word processor to write scripts,
and, at any time, they can get on-line help on expe’s com-
mands by calling “expe -?”.

3. It is open-ended: If necessary, “power users” can add
new functions by programming them in Borland Pascal and
linking them to EXPE.

4. It can be used freely: The license allows users to make
an unlimited number of copies.

3 There is also the possibility to link C code to Pascal, but with
an important restriction: no functions of the C run-time library can
be used. Future use of dll may solve this problem.


