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� Local Ag distribution, and co-localiza-
tion with Fe, Cu and S, was determined.

� XRF, mXANES, and mPIXE techniques
were used.

� A quarter of all macrophages in the
lumen of the airways contained ENPs.

� A large part of the ENPs was dis-
solved and complexed to thiol-con-
taining molecules.

� Ag, S-rich spots were enriched in Fe
and Cu, suggestive for metallothio-
neins (MTs).
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A B S T R A C T

Large knowledge gaps still exist on the toxicological mechanisms of silver (Ag) engineered nanoparticles
(ENPs); a comprehensive understanding of the sources, biodistribution, toxicity and transformation of Ag
ENPs along their life cycle and after transfer in living organisms is needed. In a previous study, mice were
pulmonary exposed to Ag ENPs and local (lung) and systemic toxic effects together with biodistribution
to organs including heart, liver, spleen and kidney were investigated. Here, Ag lung distribution, local
concentration, co-localization with other elements such as Fe, Cu and S, and speciation were determined
after lung exposure to Ag ENPs using micro X-ray fluorescence (mXRF), micro X-ray absorption near edge
structure spectroscopy (mXANES) and micro proton-induced X-ray emission (mPIXE) techniques. We
found that approximately a quarter of all macrophages in the lumen of the airways contained ENPs. High
local concentrations of Ag were also detected in the lung tissue, probably phagocytized by macrophages.
The largest part of the ENPs was dissolved and complexed to thiol-containing molecules. Increased
concentrations of Fe and Cu observed in the Ag-rich spots suggest that these molecules are
metallothioneins (MTs). These results give more insights on the behavior of Ag ENPs in the lung in
vivo and will help in the understanding of the toxicological mechanisms of Ag ENPs.
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1. Introduction

Due to their antimicrobial properties, silver (Ag) engineered
nanoparticles (ENPs) are one of the most widely used ENPs with
applications in paints and coatings, cosmetics, electronics, water
disinfection, food packaging and textiles (Hanus and Harris, 2013;
Som et al., 2011; Li et al., 2008). Furthermore, Ag ENPs can be found
in biomedical applications including prostheses, wound dressings
and surgical instruments (Chen and Schluesener, 2008; Ahamed
et al., 2010).

The growing use of Ag ENPs in commercial products will
inevitably lead to increased exposure to Ag in the environment and
the general population (Larue et al., 2014). To predict the risk on
human health, a comprehensive understanding of the source,
biodistribution, toxicity and transformation of Ag ENPs along their
life cycle and after transfer into living organisms is needed. The
debate is going on about the source of Ag ENP toxicity and it
remains unclear to what extent Ag ENPs or the released Ag ions are
responsible for the toxic effects (Yu et al., 2013). In particular, Ag
ions released from the ENPs were shown to interact with vital
enzymes and proteins, affecting cellular respiration and ion
transport, finally resulting in the death of bacteria, viruses and
fungi (Levard et al., 2012).

Several studies have been conducted investigating the
dissolution of Ag ENPs in artificial body fluids such as fluids
representing the environment of the stomach, blood and airways
(Stebounova et al., 2011a; Leo et al., 2013). Leo et al. (2013)
studied the effect of a model pulmonary surfactant on Ag ENPs,
and showed a decrease in the kinetics of Ag ENP dissolution
and of their aggregation. Although there are published data on
Ag localization and speciation in plants exposed to Ag ENPs
(Larue et al., 2014), equivalent data on animal cells and tissues
after Ag ENP exposure is lacking. Both in vitro and in vivo toxicity
of Ag ENPs has already been studied; toxic effects such as
glutathione depletion, mitochondrial deviations and damage to
cell membranes were observed in vitro (Wijnhoven et al., 2009).
Long-term or high-dose exposure to Ag ENPs in vivo leads to
inflammation, small granulomatous lesions and changes in lung
function (Sung et al., 2008; Sung et al., 2009; Stebounova et al.,
2011b).

In a previous study, we evaluated the local (lung) and systemic
toxic effects along with biodistribution to organs including heart,
liver, spleen and kidney after lung exposure to Ag ENPs in mice
(Smulders et al., 2014). We observed some toxic effects as seen by
an increased neutrophil count and a 2-fold increase in the pro-
inflammatory cytokines keratinocyte chemoattractant (KC) and
interleukin-1ß (IL-1ß) in the lung tissue, with no systemic toxicity.
Moreover, extrapulmonary distribution of Ag to the liver, spleen
and kidney was seen. In this study, mice were exposed to Ag ENPs
by oropharyngeal aspiration. Ag lung distribution, local concen-
tration, co-localization with other elements such as Fe, Cu and S,
and speciation were determined using several techniques includ-
ing micro X-ray fluorescence (mXRF), micro proton-induced X-ray
emission (mPIXE), Rutherford backscattering spectroscopy (RBS)
and micro X-ray absorption near edge structure (mXANES)
spectroscopy. This study gives more insights on the behavior of
Ag ENPs in the lung in vivo and will help in the understanding of the
toxicological mechanisms of Ag ENPs.

2. Materials and Methods

2.1. Materials

Ag ENPs were provided by industrial project partners involved
in the European FP7 project Nanohouse. The same Ag ENPs were
already used in nanotoxicological studies (Smulders et al., 2014;
Kaiser et al., 2013), ecotoxicological studies (Larue et al., 2014) and
a study assessing the release of Ag ENPs from nano-containing
paints (Zuin et al., 2013). Isoflurane (Forene1) was obtained from
Abbott Laboratories (S.A. Abbott N.V., Ottignies, Belgium) and
pentobarbital (Nembutal1) from Sanofi Santé Animale (CEVA,
Brussels, Belgium).

2.2. Particle characterization

Dynamic light scatteringand zeta potential measurement
were performed with a nanoZS instrument (Malvern). Ag ENPs
were suspended in saline (0.9% NaCl) at a concentration of
0.8 mg/ml.

2.3. Mice

Male BALB/c OlaHsd mice (6 week old) were obtained from
Harlan (Horst, The Netherlands). The mice were kept in a
conventional animal house with 12-h dark/light cycles. They were
housed in filter top cages and received lightly acidified water and
pelleted food (Trouw Nutrition, Ghent, Belgium) ad libitum. All
experimental procedures were approved by the local Ethical
Committee for Animal Experiments.

2.4. Experimental protocol

On days 0, 7, 14, 21 and 28, mice received under light isoflurane
anesthesia an oropharyngeal aspiration (25 ml) of Ag ENPs
(0.8 mg/ml) or vehicle (saline (0.9% NaCl)), this results in a total
dose of 100 mg per mouse (4 mg/kg). Mice were sacrificed by an
intraperitoneal injection of pentobarbital (90 mg/kg body weight)
2 days after the last exposure (day 30) and an autopsy was
performed.

2.5. Bronchoalveolar lavage

The lung was lavaged, in situ, three times with 0.7 ml sterile
saline (0.9% NaCl), and the recovered fluid was pooled. The
bronchoalveolar lavage (BAL) fluid was centrifuged (1000 g,
10 min) and 250 ml of the resuspended pellets (100,000 cells/
ml) were spun (300 g, 6 min) (Cytospin 3, Shandon, TechGen, Zellik,
Belgium) onto microscope slides, air-dried and stained (Diff-Quik1

method, Medical Diagnostics, Düdingen, Germany) for macro-
phage and neutrophil cell counts. After taking BAL fluid, the lungs
were instilled with 4% formaldehyde until full inflation of all lobes,
as judged visually, for further analyses.

2.6. mXRF and mXANES

mXRF and Ag LIII-edge mXANES measurements were performed
on the scanning X-ray microscope on ID21 beamline at the ESRF
(European Synchrotron Radiation Facility, France) in cryo-con-
ditions using a vibration-free cryo- stage, passively cooled by a
liquid nitrogen dewar.

A small piece of the lung was flash-frozen in liquid nitrogen,
embedded in OCT1 resin and then cut in thin sections (20 mm)
using a cryomicrotome and directly transferred to the cryo-stage.
mXRF maps were recorded with various step sizes (from 0.3 mm x
0.3 mm to 3 mm x 3 mm) with incident energy of 3.42 keV,
and dwell time of 200 ms. mXRF data were processed using
PyMca software (Sole et al., 2007) as in (Larue et al., 2014). Ag
LIII-edge mXANES spectra were recorded in regions of interest of
the maps (Ag-rich regions). mXANES data processing and
linear combination fitting were achieved with Athena software
using reference compounds acquired previously (Larue et al.,
2014).



Fig. 1. Representative image of macrophage without and with Ag ENPs in its
cytoplasm.

S. Smulders et al. / Toxicology Letters 238 (2015) 1–6 3
2.7. mPIXE and RBS

Distribution of endogenous elements (P, S, K, Fe and Cu) and Ag
was mapped by mPIXE coupled to RBS recorded simultaneously on
the AIFIRA nuclear microprobe (Applications Interdisciplinaires de
Faisceaux d’Ions en Région Aquitaine, CENBG, France). A 2.5 MeV
proton beam was focused to 2.5 mm � 2.5 mm with an average
intensity of 1000 pA. Freeze-dried cross-sections cutted from the
samples prepared during the synchrotron experiment were
analyzed. Data were processed using SIMNRA (Mayer, 1999) and
Gupix (Campbell et al., 2000) softwares.

2.8. Statistical analysis

Data in Table 1 are presented as mean and standard deviations
(SD). All data were analyzed using the non-parametric Kruskal–
Wallis test followed by a Dunn’s multiple comparison test
(Graphpad Prism 4.01, Graphpad Software Inc., San Diego, USA).
A level of p < 0.05 was considered significant.

3. Results

Analysis of the ENPs by dynamic light scattering (DLS) showed a
polydisperse suspensie with 3 populations: 130 nm (11% in
number), 506 nm (89% in number), and 5180 nm (0.1% in number).
The particles were negatively charged with a zeta potential of
�31 mV. Inductively coupled plasma optical emission spectrosco-
py (ICP-OES) measurements showed impurities of Ca (216.8 mg/g),
Fe (23.8 mg/g) and Cu (0.6 mg/g). Transmission electron microscopy
(TEM) analysis of Ag ENPs has been published before by (Smulders
et al., 2012) and showed a heterogenous composition with
spherical (25 nm) and rod-shaped (80–90 nm) ENPs (Fig. S1).

Increases in total cells (88.7 (�14.6) � 103 vs 38.2 (�15.4) x103),
macrophages (75.8 (�17.4) � 103 vs 37.9 (�16.6) � 103) and
neutrophils (12.9 (�10.4) � 103 vs 0.3 (�0.3) � 103) in the BAL
fluid were seen in Ag-exposed mice compared to control mice. In
the Ag-exposed group 26% of the BAL macrophages contained ENPs
as judged visually using light microscopy (Fig. 1). Note that this
visual examination detects large agglomerates or precipitates of Ag
only. No incorporation of ENPs was observed in neutrophils of the
BAL fluid.

The elemental distribution of Ag in the lung after lavage was
studied by mXRF on thin sections. No spots of Ag were observed in
non-exposed control animals (Fig. S2). Lung slices of mice exposed
to Ag ENPs showed clear round-shaped hot spots of Ag;
magnification of the Ag-rich regions show spot sizes of around
5 mm (Fig. 2 and Fig. S3). LIII-edge mXANES spectra were recorded
on three Ag-rich spots identified by mXRF and Ag speciation was
determined by linear combination fits (Fig. 3). In two spots, Ag was
still partially present as elemental Ag (spot 2: 37%, spot 3: 55%).
Spot 1 showed 100% oxidative dissolution and recomplexation of
Ag+ ions to thiol-containing molecules. These molecules may
correspond to cysteine, glutathione and/or metallothionein (MT),
Table 1
Elemental concentrations (mg/g dry weight) in lung sections and Ag-rich spots as dete
Rutherford backscattering spectroscopy (RBS). Concentrations of Ag, Cu, Fe, P, S, K and

Element Whole lung section Mean
Ag-rich spots

Ag 0.2 � 0.3 14.8 � 12.2*

Cu 0.10 � 0.03 0.23 � 0.04*

Fe 0.97� 0.07 1.18 � 0.06*

P 275 � 40 355 � 27 

S 204 � 40 362 � 60*

K 108 � 33 142 � 41 

* p < 0.05 compared to whole lung section. n.d.: not determined.
although XANES cannot distinguish among them. Spot 2 and
3 showed respectively 63% and 45% dissolution and recomplex-
ation to the same type of ligands.

mPIXE and RBS analyses were used to obtain local concen-
trations of Ag. Three out of eight analyzed regions (approximately
200 mm � 200 mm) in the lung tissue showed the presence of Ag
spots with an average size of 5 mm. Two of these regions are shown
in Fig. S4. The concentration of different elements in Ag-rich spots
were determined and compared to concentrations in the whole
lung section. Significant higher concentrations of Cu, Fe and S were
found in the Ag-rich spots (Table 1). The Cu/Ag, Fe/Ag and S/Ag
ratios were much higher than in the original NPs, so these elements
did not come from the impurities detected in them.

4. Discussion

As for all ENPs, nano-Ag may enter the human body through
inhalation, skin contact and ingestion (food, drinking water), and
have the potential to pass the air–blood and even the blood–brain
barrier (Yang et al., 2010). Inhalation of dust containing Ag ENPs
occurs primarily in occupational settings including manufacturing
and application of Ag-containing products. Inhalation studies
showed distribution of Ag to extrapulmonary organs including
liver, kidney, spleen, brain and heart; however, these studies did
not reveal whether Ag reached these organs as ions or ENPs
(Sung et al., 2009; Takenaka et al., 2001; Ji et al., 2007). Ag ENP
exposure can cause genotoxic effects and cellular damage through
generation of oxidative stress, resulting in inflammation and
apoptotic or necrotic death. These toxic effects strongly depend on
the physico-chemical characteristics of the Ag ENPs.

In this study, we investigated the distribution, speciation,
concentration and co-localization with other elements of Ag ENPs
in the lungs of mice. We observed uptake of Ag ENPs by
approximately a quarter of all macrophages in the lumen of the
airways (BAL fluid), while no neutrophils containing ENPs were
found. Furthermore, Ag was also found in the lung tissue; we
assume that these Ag-rich spots represent macrophages filled with
ENPs present in the lumen (not removed by lavage) and in the lung
tissue. However, uptake by lung epithelial cells cannot be excluded.
rmined by the combination of micro proton-induced X-ray emission (mPIXE) with
 were determined both in whole lung sections and more specific in Ag-rich spots.

Ag-rich spot 1 Ag-rich spot 2 Ag-rich spot 3

27.9 13.0 3.6
0.27 0.19 0.23
1.12 1.22 1.19
325 376 364
365 421 302
121 115 190



Fig. 2. Distribution of Ag in the lungs using micro X-ray fluorescence (mXRF).
mXRF images of Ag and S distributions within lung tissue 2 days after the last oropharyngeal aspiration of Ag ENPs. a) Images of the scanned lung tissue as seen under light
microscope. b) Right map displays mXRF image of the region indicated on image a. Upper maps show distribution of Ag (red) and S (green), lower maps show a heat map of Ag
distribution. The left and middle maps represent magnifications of two spots indicated on the right map.
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Other inhalation and instillation studies already showed that the
largest part of the ENPs were phagocytized by alveolar macro-
phages and transported to the draining lymph nodes or removed
by respiratory mucociliary clearance (Geiser and Kreyling, 2010).
Once removed from the lungs, they can reach the stomach and
gastrointestinal tract, can be taken up in the gut or will finally be
excreted. Depending on the physicochemical properties of the
particles (size, aggregation status, solubility, shape, . . . ), a minor
fraction of the particles that is not cleared from the lung or taken
up by macrophages can translocate through the air–blood barrier
into the circulation and will accumulate in secondary organs (Luyts
et al., 2013). In a previous Ag ENP biodistribution study, we
hypothesized that the Ag ENPs easily dissolve and ions cross the
air–blood barrier (Smulders et al., 2014). Here, mXANES analyses
showed that the administered Ag ENPs were mostly present in
macrophages, either partially or totally dissolved and chelated by
thiol-containing ligands such as cysteine, glutathione or MT. The
increased amount of S observed in these spots was consistent with
the presence of thiol-containing molecules. The persistence of
elemental Ag in macrophages suggests that some (if not all) Ag is
taken up as ENP by these cells, and that dissolution and chelation
occurs hereafter.

MTs are a family of cysteine-rich proteins that cooperate
with glutathione in maintaining the cellular redox state
(Nordberg and Arner, 2001). Localized in the cell cytoplasm
and in some organelles including mitochondria and lysosomes,
they play a role in a number of functions including (toxic)
metal detoxification and protecting the cell against damage
from reactive oxygen species (ROS) (Sutherland et al., 2010;
Namdarghanbari et al., 2011). In natural conditions, the metal
binding site consisting of 20 cysteine residues is occupied by
Zn ions (Babula et al., 2012). However, these ions can be
substituted for other metal ions such as Ag, Cu, Cd, Hg, Pb and
Fe and protect cells against the toxicity of these metals. It is
known that cysteine, and more generally thiol-containing
molecules, are extremely strong binding ligands for Ag ions
(Adams and Kramer, 1999; Liu et al., 2012).

It has been shown that expression of MTs is induced in
inflammatory lung diseases (Inoue et al., 2008); Kaewamatawong
et al. (2014) demonstrated the expression of MTs after lung
exposure to colloidal Ag ENPs in mice. In a previous study, we
showed the inflammatory effects of pulmonary administered Ag
ENPs, the same ENPs as used in this study, with infiltration of
neutrophils and expression of the pro-inflammatory cytokine
IL-1b (Smulders et al., 2014), a known inducer of MT gene
expression (De et al., 1990). In addition MT production can also be
up regulated via MTF-1 binding to metal-response elements in
the promoter regions of MT genes as shown in the presence of
Ag-ions in Drosophila (Atanesyan et al., 2011) In this study, we
demonstrated that the administered Ag ENPs are partially or
completely dissolved with chelation of the released Ag ions
by MTs or other thiol-containing molecules. Furthermore, higher



Fig. 3. Speciation by Ag LIII-edge micro X-ray absorption near edge structure (mXANES) spectroscopy.
Ag speciation by mXANES of three Ag-rich spots (lower lines) compared to the references (upper lines). For the three analyzed spots, plain lines show experimental data and
dotted lines represent the linear combination fit. Spot 1 and 2 correspond to the indicated spots in Fig. 2; spot 3 corresponds to the indicated spot in Fig. S2.
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concentrations of the metals Fe and Cu were observed in the Ag-
rich spots. Although the Ag ENPs contain impurities of Fe and Cu,
the concentration of these impurities is too low to fully explain the
observed increase. As hypothesized before, we assume that higher
amount of MTs are present in the Ag-rich spots, explaining the
co-localization of other endogenous metals including Fe and Cu.

5. Conclusion

In conclusion, we demonstrated that the administered Ag ENPs
are taken up by macrophages and are partially to completely
dissolved and recomplexed to thiol-containing molecules
Fig. 4. Synthetic scheme of the potential pathways occurring in the lungs after Ag ENP
Lung exposure to Ag ENPs induces an inflammatory response with increases in macropha
will partially to totally dissolve. The Ag+ ions are chelated by thiol-containing molecules s
ions is not representative.
including MTs. A synthetic scheme in Fig. 4 gathers the present
findings in combination with those obtained during our previous
study. These results give more insights on the behavior of Ag ENPs
in vivo and will help in the understanding of the toxicological
mechanisms of Ag ENPs.
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