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Abstract We model surface displacements induced by variations in continental water, atmospheric
pressure, and nontidal oceanic loading, derived from the Gravity Recovery and Climate Experiment (GRACE)
for spherical harmonic degrees two and higher. As they are not observable by GRACE, we use at first the
degree-1 spherical harmonic coefficients from Swenson et al. (2008, https://doi.org/10.1029/2007JB005338).
We compare the predicted displacements with the position time series of 689 globally distributed
continuous Global Navigation Satellite System (GNSS) stations. While GNSS vertical displacements are well
explained by the model at a global scale, horizontal displacements are systematically underpredicted and
out of phase with GNSS station position time series. We then reestimate the degree 1 deformation field
from a comparison between our GRACE-derived model, with no a priori degree 1 loads, and the GNSS
observations. We show that this approach reconciles GRACE-derived loading displacements and GNSS
station position time series at a global scale, particularly in the horizontal components. Assuming that they
reflect surface loading deformation only, our degree-1 estimates can be translated into geocenter motion
time series. We also address and assess the impact of systematic errors in GNSS station position time series
at the Global Positioning System (GPS) draconitic period and its harmonics on the comparison between
GNSS and GRACE-derived annual displacements. Our results confirm that surface mass redistributions
observed by GRACE, combined with an elastic spherical and layered Earth model, can be used to provide
first-order corrections for loading deformation observed in both horizontal and vertical components
of GNSS station position time series.

1. Introduction

Global Navigation Satellite System (GNSS) station position time series show strong seasonal signals, in both
horizontal and vertical components (Blewitt et al., 2001). These signals primarily result from surface mass redis-
tribution: nontidal oceanic loading, continental hydrology (Dong et al., 2002; Van Dam et al., 2001), ice and
snow (Grapenthin et al., 2006; Jiang et al., 2010; Matsuo & Heki, 2010), and atmospheric pressure (Kaniuth &
Vetter, 2006).

Vertical displacements induced by surface loading can be well predicted by the response of an elastic
spherical and layered Earth model to mass redistributions derived from the Gravity Recovery and Climate
Experiment (GRACE) (Bettinelli et al., 2008; Chanard et al., 2014; Davis et al., 2004; Fu & Freymueller, 2012;
Fu et al., 2012, 2013; Nahmani et al., 2012). Yet horizontal displacements obtained using the same approach
are unsatisfactory. Discrepancies between observed and modeled time series have been attributed to either
the poor spatial resolution of GRACE loads estimates, resolving loads of wavelengths larger than 400 km
(Fu et al., 2013; Tregoning et al., 2009) or local variations in the Earth’s elastic properties (Chanard et al., 2014;
Drouin et al., 2016).

Providing an accurate global model for horizontal and vertical surface displacements induced by mass
redistribution is of importance. First, there is currently no conventional model recommended to correct non-
tidal loading deformations in, for example, terrestrial reference frame determination. Second, such a model
would help in improving long-term estimates of tectonic velocities (Blewitt, 2007) and detecting transient
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deformation signals such as slow slip events (e.g., Vergnolle et al., 2010). In addition, a better understand-
ing of very large scale variations in hydrology, for which models are not always in agreement, may arise from
accurately modeling the deformation observed at GNSS stations.

Here we investigate how to accurately predict horizontal and vertical seasonal displacements at a global
scale. After a description in section 2 of the GRACE and GNSS data used in this study, we model, in section 3,
the global elastic surface deformation field induced by surface mass variations derived from GRACE, using
the degree 1 spherical harmonics coefficients from Swenson et al. (2008). We show that while vertical GNSS
displacements are well explained by this model, there is a misfit in phase and amplitude in the horizontal
components.

To improve the model, we reestimate, in section 4, the degree 1 deformation field from a global compari-
son between the displacements derived from GRACE, with no degree 1 loads, and the GNSS observations.
Assuming that they reflect surface loading deformation only, the degree 1 coefficients estimated in this
approach can be translated into geocenter motion time series, for example, the motion of the center of mass
(CM) of the whole Earth system with respect to the center of figure (CF) of the solid Earth surface.

Finally, in the last part of section 4, we discuss the impact of systematic errors in GNSS station position time
series on the prediction of seasonal observations. We investigate in particular the systematic errors occurring
at the Global Positioning System (GPS) draconitic period and its harmonics, overlaying annual and semiannual
geophysical signals for the first and second harmonic.

2. GRACE and GNSS Data Sets
2.1. Surface Load Mass Variations Derived From GRACE Level 2 Solutions
Measurements collected by the GRACE mission allow estimating global mass redistribution at the Earth’s sur-
face (Tapley et al., 2005). In this study, we make use of the 10 day Level 2 solutions provided by the CNES/GRGS
(http://grgs.obsmip.fr/). Solutions are expressed in terms of Stokes coefficients representing the gravitational
effects of nonmodeled phenomena (continental water, sediments displacements, vegetation, oceanic, and
atmospheric mass variations, etc.), then converted into geoid and surface mass coefficients, expressed in mil-
limeter of equivalent-water height (EWH) (Ramillien et al., 2005). Grids of EWH are computed from surface
mass coefficients and corrected for a time average to express them with respect to the mean surface mass dis-
tribution over the time span of analysis. Among the gravitational contributions corrected in the CNES/GRGS
solutions, atmospheric and nontidal oceanic loads (Carrère & Lyard, 2003) are added back to enable compar-
ison with GNSS station position time series (Figures S1 and S2 in the supporting information). The choice of
the CNES/GRGS processing center is arbitrary but has no significant impact on the results of our study as dif-
ferences between processing techniques for seasonal signals (Figure S3) range within the formal error bounds
of the GRACE solution itself (Sakumura et al., 2014).

We use detrended time series of EWH from February 2002 to August 2012 as an estimate of the space- and
time-varying load, including seasonal signals to first order, with smaller amplitude interannual variability in
some regions. During this time interval, EWH time series are affected by large coseismic and postseismic
gravity changes due to megaearthquakes (Chen et al., 2007; Han et al., 2006, 2008; Ogawa & Heki, 2007). We
empirically model and remove the mass redistribution-induced megaearthquakes and observed in the GRACE
data, as follows:

hs(m, t) = h(m, t) −
∑

i

𝛼i(t − ti) +
∑

i

𝛽i(t − ti) ln
(

1 +
t − ti

𝜏

)
(1)

where hs refers to the EWH at point m at the Earth’s surface, after earthquake contributions have been removed
from the observed EWH h.  is the Heaviside function representing abrupt coseismic changes in the grav-
ity field at time ti , and 𝜏 is a characteristic time of postseismic relaxation proper to each megaearthquake
(Hoechner et al., 2011). The parameters 𝛼i and 𝛽i are constants estimated by a least-squares inversion. The
main signal removed from the EWH is the coseismic offset induced by the 2004 Sumatra-Andaman earth-
quake (Figure S4). Figure 1 shows the peak-to-peak amplitude of the EWH (hs, in mm) over the 2002–2012
time period, once coseismic and postseismic effects have been removed.

As we will be using the Love number formalism to compute the deformation induced by surface mass vari-
ations (section 3.1), the EWH grids corrected for coseismic and postseismic effects are finally expanded into
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 Seasonal Equivalent Water Height (mm)

LHAZ

BRAZ

GOLD

Figure 1. Peak-to-peak surface load variations, expressed in equivalent-water height (in mm), derived from Gravity
Recovery and Climate Experiment for the 2002–2012 period and corrected from detectable coseismic and postseismic
contributions. Red dots show the locations of the continuous Global Positioning System stations used in this study.
LHAZ, GOLD, and BRAZ are highlighted because time series for these three stations are shown as examples later on.

spherical harmonic coefficients from degrees 2 to 80. To insure comparison with GNSS station position time
series, we first account for the degree 1 spherical harmonic load coefficients, not observable by GRACE, using
results from Swenson et al. (2008).

2.2. GNSS Station Position Time Series
Our GNSS station position time series are based on the daily combined terrestrial frame solutions from the
International GNSS Service second reprocessing campaign (Rebischung et al., 2016, IGS repro2). Disconti-
nuities related to earthquakes, equipment changes, or other unknown causes were identified as detailed in
Altamimi et al. (2016). Postseismic deformations were parametrically modeled and removed as in the ITRF2014
computation (Altamimi et al., 2016). A long-term stacking of the daily combined IGS repro2 solutions was
then performed (where no daily scale parameters were estimated) where station positions were modeled as
the sum of piecewise linear functions, and annual and semiannual sine waves. The GNSS station position time
series used in the following are the residuals from this stacking, to which the estimated annual and semiannual
signals were added back. They therefore represent nonlinear station motions, corrected for discontinuities
and postseismic deformations with respect to the Center of the IGS08b Network (CN), which can be assumed
to approximate the CF.

Among the 1,220 available station position time series, we select a subset of 689 stations based on the formal
error of the amplitude of an annual signal estimated simultaneously with draconitic signals up to the sixth
harmonic. The selected stations are those with formal errors less than 0.1 mm and 0.3 mm in the horizontal
and vertical components, respectively. This selection criterion is directly correlated with the length of the time
series (Figure S5). Locations of the selected stations are shown in Figure 1, while discarded stations are also
shown in Figure S6.

3. Initial Modeling of Ground Deformation Induced by Surface Load Variations
3.1. Description of the Model
We compute the Earth’s surface deformation induced by surface load variations using a numerical model
based on a spherical harmonics decomposition of the loads and the Love numbers theory. The surface load
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grids 𝜎(t, 𝜙, 𝜆), varying with time (t), longitude (𝜙), and latitude (𝜆) are decomposed into a sum of spherical
harmonic coefficients (𝜎C

lm, 𝜎
S
lm) of degree and order (l,m) for each time t as follows:

𝜎(t, 𝜙, 𝜆) =
∞∑

l=1

l∑
m=0

∑
𝜓∈{S,C}

𝜎
𝜓

lm(t)Y
𝜓

lm(𝜙, 𝜆) (2)

(YC
lm, YS

lm) are defined in terms of Legendre polynomials Plm as(
YC

lm(𝜙, 𝜆)
YS

lm(𝜙, 𝜆)

)
=

√
(2l + 1)(l − m)!

4𝜋(l + m)!
Plm(sin𝜙)

(
cos(m𝜆)
sin(m𝜆)

)
(3)

Surface displacements at a point P induced by the load at a given time t are obtained by solving a system of
equations for the deformation of a self-gravitational spheroidal body, similarly to Farrell (1972). The obtained
surface displacements are expressed as

dE(t, 𝜙, 𝜆) =
4𝜋R3

E

ME

∞∑
l=0

l∑
m=0

∑
𝜓∈{S,C}

l1
2l + 1

1
cos𝜙

𝜎
𝜓

lm(t)
𝜕Y𝜓lm
𝜕𝜆

(𝜙, 𝜆)

dN(t, 𝜙, 𝜆) =
4𝜋R3

E

ME

∞∑
l=0

l∑
m=0

∑
𝜓∈{S,C}

l1
2l + 1

𝜎
𝜓

lm(t)
𝜕Y𝜓lm
𝜕𝜙

(𝜙, 𝜆)

dU(t, 𝜙, 𝜆) =
4𝜋R3

E

ME

∞∑
l=0

l∑
m=0

∑
𝜓∈{S,C}

h1

2l + 1
𝜎
𝜓

lm(t)Y
𝜓

lm(𝜙, 𝜆)

(4)

where (l1, h1) are the tangential and radial load Love numbers, and (l1, h1) depend on the reference frame
considered. ME and RE are the Earth’s mass and radius, respectively. In this study, we use a purely elastic Earth
structure based on the Preliminary Reference Earth Model (Dziewonski & Anderson, 1981), where the top
40 km are replaced by the CRUST 2.0 1-D average continental crust up to 40 km depth (Bassin, 2000).

3.2. Initial Model Results
Using equation (4), we compute the horizontal and vertical surface displacements at the 689 selected GNSS
stations previously described. Figure 2 shows the east, north, and vertical detrended daily station position
time series with 1𝜎 error bars (gray) and their 10 days moving averages (black crosses) for three stations: LHAZ,
Tibet (Bundesamt fuer Kartographie) GOLD, California, and BRAZ, Brazil (Jet Propulsion Laboratory). We refer
the reader to Figure 1 for their locations. We show the predictions of our initial GRACE-derived model, where
degree 1 coefficients from Swenson et al. (2008) have been used, in blue. While the model explains reasonably
well the observed vertical seasonal displacements, the horizontal prediction is unsatisfactory in both phase
and amplitude.

To quantify how well the model explains the GNSS observations at a global scale, we compute the WRMS at
station i, for component j with Ni observations, between the observations d with associated errors 𝜎 and the
model prediction m as follows:

WRMSd−m
i,j =

√√√√√√√
∑Ni

k=1

(
di,j,k−mi,j,k

𝜎i,j,k

)2

∑Ni
k=1

1
𝜎2

i,j,k

(5)

and the WRMS reduction (WRMSr), which compares the WRMS results for the model m with the null model:

WRMSri,j =
WRMSd−0

i,j − WRMSd−m
i,j

WRMSd−0
i,j

(6)

Figures 3a, 3c, and 3e show the WRMSr values obtained by comparing observations at the selected 689 GNSS
stations with our initial model for the north, east, and vertical components, respectively. The initial model
shows a significant disagreement with horizontal observations at a global scale, while the vertical component
is fairly well predicted. We also report in Table 1 mean WRMSr values and the percentages of stations at which
the WRMS is reduced by our initial model, confirming the discrepancy between the horizontal and vertical
predictions of the observed GNSS signals.
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Figure 2. Daily detrended Global Navigation Satellite System station position time series and associated 1 𝜎 error bars (gray), for stations (a) LHAZ, China (Tibet),
(b) BRAZ, Brazil, and (c) GOLD, USA (California) (see locations in Figure 1). Black crosses are 10 days moving average of the daily observations. The blue and red
lines show the displacements derived from Gravity Recovery and Climate Experiment, where the degree 1 contribution is either taken from Swenson et al. (2008)
(blue) or estimated from the Global Navigation Satellite System deformation field (red).
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Figure 3. Weighted root mean square (WRMS) reductions (equation (6) obtained for the east, north, and vertical components of 689 globally distributed
continuous Global Navigation Satellite System stations using Gravity Recovery and Climate Experiment-derived displacements, where the degree 1 contribution
is either taken from Swenson et al. (2008) (a, c, e) or estimated from the Global Navigation Satellite System deformation field (b, d, f ).

A common argument to explain this discrepancy is the spatial resolution of GRACE (Fu et al., 2013), a larger
part of horizontal displacements being attributed to high spherical harmonics degree loads, that is, short
wavelength loads, that GRACE cannot resolve. However, while the amplitudes of horizontal and vertical dis-
placements in response to unit loads significantly differ for low spherical harmonic degrees, they evolve
asymptotically in a similar manner for spherical harmonic degrees higher than 50 (loading wavelengths
≤ 800 km) as shown by Figure 4, indicating that a spatial resolution issue would affect both horizontal and
vertical components similarly.

Table 1
Weighted Root Mean Square (WRMS) Reduction Statistics From the Comparison of 689 Globally Distributed GNSS Station
Position Time Series and GRACE-Derived Displacements, Where the Degree 1 Contribution Is Either Taken From Swenson et al.
(2008) or Estimated From the GNSS Deformation Field

East North Vertical

Stations Mean Stations Mean Stations Mean

WRMSr

Initial 46.8% −0.09% 47.4% 1.24% 55.6% 9.02%

Adjusted 82.5% 7.94% 83.4% 14.3% 70.8% 14.7%

Annual WRMSr

Initial 56.6% 3.32% 54.1% 5.73% 88.3% 50.3%

Adjusted 74.4% 16.5% 83.7% 35.0% 90.4% 55.4%

Annual WRMSr-draconitics removed

Initial 52.6% −0.73% 52.7% −1.17% 85.6% 40.4%

Adjusted 72.1% 14.2% 80.1% 30.9% 88.3% 48.7%

Note. The percentages of stations with reduced WRMS and the mean WRMS reductions are given for the full time series
(WRMSr), and for their annual components in the two cases where draconitic errors were estimated and removed (Annual
WRMSr-draconitics removed) or not (Annual WRMSr). GNSS = Global Navigation Satellite System; GRACE = Gravity
Recovery and Climate Experiment.
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Figure 4. Vertical (blue) and horizontal (red) amplitude of surface displacement as a function of spherical harmonic
number, in response to a unit 1 year periodic unit harmonic loading function acting on a spherical and layered model
for Earth, based on the Preliminary Reference Earth model, proposed by Dziewonski and Anderson (1981) but where
the top 40 km have been replaced by a continental crust (Bassin, 2000).

4. Reconciling GRACE-Derived Loading Deformation With GNSS Station Position
Time Series

Understanding differences between the deformation model derived from GRACE and GNSS station position
time series is of importance. Indeed, an accurate loading model for both horizontal and vertical components
would have implications not only for correcting station position time series but could also provide insights on
the nature of seasonal loads and/or help detecting systematic errors in geodetic observations. In this section,
we estimate the degree 1 surface load coefficients from the GNSS deformation field itself, instead of using
degree 1 loads from Swenson et al. (2008).

4.1. Degree 1 Deformation Approach
In the classical approach used to invert degree 1 deformation from a GNSS deformation field (Blewitt, 2003;
Blewitt et al., 2001), degree 1 surface load coefficients are estimated together with a net translation (and a net
rotation) which aims to accommodate misalignments of the GNSS solution to the theoretical reference frame.
The deformation induced by degree 1 surface load coefficients is given by equation (4) as follows:

⎛⎜⎜⎜⎜⎝
dE1(𝜙, 𝜆)

dN1(𝜙, 𝜆)

dU1(𝜙, 𝜆)

⎞⎟⎟⎟⎟⎠
=

4𝜋R3
E

3ME

⎛⎜⎜⎜⎜⎜⎝

l1
cos𝜙

𝜕YC
11

𝜕𝜆
(𝜙, 𝜆) l1

cos𝜙

𝜕YS
11

𝜕𝜆
(𝜙, 𝜆) l1

cos𝜙

𝜕Y10

𝜕𝜆
(𝜙, 𝜆)

l1
𝜕YC

11

𝜕𝜙
(𝜙, 𝜆) l1

𝜕Y10

𝜕𝜙
(𝜙, 𝜆) l1

𝜕Y10

𝜕𝜙
(𝜙, 𝜆)

h1YC
11(𝜙, 𝜆) h1YS

11(𝜙, 𝜆) h1Y10(𝜙, 𝜆)

⎞⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝
𝜎C

11

𝜎S
11

𝜎10

⎞⎟⎟⎟⎟⎠
(7)

where: ⎛⎜⎜⎜⎜⎝
YC

11(𝜙, 𝜆)

YS
11(𝜙, 𝜆)

Y10(𝜙, 𝜆)

⎞⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎝
cos𝜙 cos 𝜆

cos𝜙 sin 𝜆

sin𝜙

⎞⎟⎟⎟⎟⎠
(8)

and (h1, l1) are the spherical harmonic degree 1 load Love numbers appropriate for the reference frame
in which the displacements are measured. Combining equations (7) and (8), the displacement induced by
spherical harmonic degree 1 surface loads can be expressed as follows:

d⃗1(𝜙, 𝜆) =

⎛⎜⎜⎜⎜⎝
dE1(𝜙, 𝜆)

dN1(𝜙, 𝜆)

dU1(𝜙, 𝜆)

⎞⎟⎟⎟⎟⎠
=

4𝜋R3
E

3ME

⎛⎜⎜⎜⎜⎝
−l1 sin 𝜆 l1 cos 𝜆 0

−l1 sin𝜙 cos 𝜆 −l1 sin𝜙 sin 𝜆 l1 cos𝜙

h1 cos𝜙 cos 𝜆 h1 cos𝜙 sin 𝜆 h1 sin𝜙

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝
𝜎C

11

𝜎S
11

𝜎10

⎞⎟⎟⎟⎟⎠
(9)
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Besides, the displacement induced by a net translation T⃗(TX , TY , TZ) at a point (𝜙, 𝜆) of the Earth’s surface can
be expressed as:

d⃗2(𝜙, 𝜆) =

⎛⎜⎜⎜⎜⎝
dE2(𝜙, 𝜆)

dN2(𝜙, 𝜆)

dU2(𝜙, 𝜆)

⎞⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎝
− sin 𝜆 cos 𝜆 0

− sin𝜙 cos 𝜆 − sin𝜙 sin 𝜆 cos𝜙

cos𝜙 cos 𝜆 cos𝜙 sin 𝜆 sin𝜙

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

TX

TY

TZ

⎞⎟⎟⎟⎟⎠
(10)

The sum of both the estimated degree 1 deformation field and net translation (d⃗1 + d⃗2) has a horizontal
component and a vertical component equivalent to those which would be induced by a translation T⃗H and a
translation T⃗V , respectively. T⃗H and T⃗V can be expressed in a geocentric Cartesian frame as follows:

T⃗H =
4𝜋R3

E

3ME
l1𝜎1 + T⃗ (11)

T⃗V =
4𝜋R3

E

3ME
h1𝜎1 + T⃗ (12)

where 𝜎1 = (𝜎C
11, 𝜎

S
11, 𝜎10).

As (T⃗H, T⃗V ) is a linear combination of (𝜎1, T⃗), the classical degree 1 deformation approach (Blewitt, 2003;
Blewitt et al., 2001) is exactly equivalent to estimating two translations from the horizontal and vertical sta-
tion displacements independently. The two approaches being equivalent, we choose to estimate separately a
translation (T V

X , T V
Y , T V

Z ) from the vertical displacements, and a translation (T H
X , T H

Y , T H
Z ) plus a rotation (RH

X , RH
Y , RH

Z )
from the horizontal displacements, rather than using the classical deformation approach, to emphasize the
differences in the degree 1 effects on the horizontal and vertical components.

Although geocenter motion is not the goal of our study, we note that, using equations (11) and (12), degree 1
coefficients can be retrieved from (T⃗H, T⃗V ) by

𝜎1 =
ME

4𝜋R3
E

T⃗V − T⃗H

h1 − l1
(13)

and converted into geocenter motion (Lavallée et al., 2006), for example, the motion of the CM of the whole
Earth system with respect to the CF of the solid Earth surface, assuming that they reflect surface loading
only, by

Δr⃗CM-CF =

(
hCE

1 + 2lCE
1

3
− 1

)
T⃗V − T⃗H

h1 − l1
= 2.53 ×

(
T⃗V − T⃗H

)
(14)

where the difference between degree 1 Love numbers is independent of the reference frame (Blewitt, 2003).

4.2. Adjusted Model Results
We invert the differences between the GNSS station position time series and our initial GRACE-derived model
without degree 1 coefficients for translations and rotation parameters, as described in the previous section.
Note that we do not invert for a scale parameter that could bias seasonal signals (Collilieux et al., 2012).
The inversion is performed for all available stations at each time step (Figure S7). The estimated parameters
are shown in Figure 5. Both horizontal and vertical translations include clear annual oscillations, particularly
in the Z component, for which both times series are out of phase. Differences between the horizontal and
vertical translations highlight the distinct effect of degree 1 loads on both components. The estimated rota-
tions remain small. The geocenter motion time series deduced from the estimated translations are shown in
Figure S8. We used a diagonal covariance matrix in our study and not the full network covariance matrix. How-
ever, this choice has little influence on the derived geocenter motion that remain small (Figure S9). The annual
components of geocenter motion derived in this study are within the range of other geodetic estimates (Wu
et al., 2012), with annual amplitudes of 1.4, 2.2, and 6.1 mm in the X , Y , and Z components, respectively. The
annual amplitude in Z is however at the high end of geodetic estimates, which could be due to the esti-
mated degree 1 deformation absorbing other effects besides loading deformation, such as the response of
the bedrock and GNSS monument to seasonal temperature variations.

We then add the effect of the estimated translations and rotations to our initial GRACE-derived model to
account for adjusted degree 1 contributions. Figure 2 shows the north, east, and vertical detrended daily
station position time series with 1 𝜎 error bars (gray) and their 10 day moving averages (black crosses)
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Figure 5. Time series of inverted translation and rotation parameters derived from observations at a subset of 689
Global Navigation Satellite System stations for horizontal (red) and vertical (blue) components. The number of sites
available at each time step is given in Figure S7). Time series of geocenter motion can be derived from the difference
between horizontal and vertical translations (see Figure S8).

for three stations (LHAZ, BRAZ, and GOLD), the predictions of our initial model (blue curve), where degree 1
coefficients from Swenson et al. (2008) have been used, and of our adjusted model (red curve). Compared to
the initial model, the adjusted model significantly improves the fit to the GNSS observations, particularly in
the horizontal components. Figure 3 confirms these local results at the global scale, as the adjusted model
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Figure 6. Histograms of annual WRMS reduction in the (a) east, (b) north, and (c) vertical components obtained with our initial Gravity Recovery and Climate
Experiment-derived model (degree 1 from Swenson et al. (2008); blue) and with our adjusted model (red).

shows significantly better WRMS reductions at most stations compared to the initial model. Mean values of
WRMS reduction and numbers of stations at which the WRMS is reduced are given in Table 1, confirming a
significant global improvement when the degree 1 contribution is adjusted.

We also compare the purely annual signals by fitting a sine function to both the GNSS and GRACE-derived time
series and computing the annual WRMS reduction. Results are given in Table 1 and show that our adjusted
model reduces the annual WRMS at more than 80% of the stations for all three components, with improved
mean values particularly for the horizontal components. Figure 6 shows histograms of the annual WRMS
reduction for all 689 GNSS stations, confirming that the adjusted model predicts the annual component of
the data considerably better than the initial model, particularly for the east and north components.

While the annual WRMS of the vertical signals are reduced by 55.4% by our adjusted model, the east and north
annual signals are only reduced by 16.5% and 35.0%, respectively. The discrepancy between the east and
north WRMS reduction is most likely due to spurious north-south stripes arising from the GRACE processing.

Although our adjusted model is a significant improvement over the initial model, as shown in Figure 6, it still
misses some of the observed annual signal, particularly in the horizontal components. Unmodeled signals
could arise from physical processes not considered in this study, like thermal effects, for example, and also
from systematic errors in GNSS station position time series. In particular, the known systematic errors at the
first and second draconitic harmonics, of periods 351.6 and 175.8 days (Amiri-Simkooei, 2013), and present
in the IGS products (Ray et al., 2008) close to the annual and semiannual periods could explain part of the
unmodeled seasonal signals. The source of the draconitic errors has not been clearly identified yet, but it could
be due to orbit modeling deficiencies, in particular, due to the Sun-satellite interactions or during eclipse
seasons (Hugentobler et al., 2006; Ray et al., 2008; Rodriguez-Solano et al., 2014), aliasing and/or propagation
of site-dependent effects such as multipath or errors in the antenna or radome calibrations (Ray et al., 2008),
mismodeling of diurnal and semidiurnal ocean tides, and neglecting of semidiurnal and diurnal atmospheric
tides (Tregoning & Watson, 2009, 2011). Whatever their origin, the draconitic errors result in spurious periodic
signals that could bias the estimates of seasonal variations of station positions.
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Figure 7. Histograms of annual weighted root mean square (WRMS) reduction in the (a) east, (b) north, and (c) vertical components obtained with our adjusted
model, when estimating and removing draconitic errors from the Global Navigation Satellite System station position time series (green) or not (red).
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To assess the impact of draconitic errors on the comparison of GNSS and GRACE-derived annual displace-
ments, we estimate annual, semiannual, and draconitic signals up to the sixth harmonic from the 689 GNSS
station position time series and remove the estimated draconitic signals from the time series. We then
reestimate the degree 1 contribution using our two translations approach and compute the annual WRMS
reduction of the new adjusted model where the draconitic estimates have been removed from the GNSS sta-
tion position time series. Figure 7 shows histograms of the annual WRMS reduction obtained with the adjusted
model and the new adjusted model where we estimated and removed draconitic errors. We find that estimat-
ing and removing draconitic signals does not improve the fit to observations, indicating that the unmodeled
signals probably arise from other physical processes. Maps of the observed and predicted annual signals are
given in Figure S10, with and without draconitic corrections.

5. Discussion and Conclusions

Based on an elastic Earth model, we derived the horizontal and vertical displacements induced by the surface
mass variations observed by GRACE. These surface mass variations are primarily related to continental water
storage, atmospheric pressure, and oceanic circulation. We then compared the predicted displacements with
the position time series of 689 globally distributed GNSS stations. We showed that estimating the degree 1
deformation field rather than using the degree 1 coefficients from Swenson et al. (2008) significantly improves
the agreement between GNSS and GRACE-derived displacements, particularly in the horizontal components,
although misfits still remain. Several effects may contribute to this remaining misfit. Systematic errors in
geodetic products may explain part of the misfit. Small-scale loads unresolved by GRACE may also affect GNSS
sites at a local scale. Other unmodeled physical effects may finally contribute to explain the remaining dis-
crepancies between GNSS observations and the predictions of our loading model. For instance, the thermal
expansion of bedrock likely contributes to the seasonal signals observed in GNSS station position time series
(Prawirodirdjo et al., 2006; Tsai, 2011), as well as the thermal expansion of the monuments. Regional misfits
may also arise from lateral variations of the Earth’s elastic parameters, although to a lesser extent than pro-
posed by Chanard et al. (2014) once degree 1 contribution has been adjusted. Finally, the hypothesis of a
purely elastic Earth model derived from seismic waves (with periods ≤1 h) may not hold at an annual time
scale. Indeed, elastic Earth models provide accurate predictions of surface displacements or induced gravity
perturbations for periods up to a month, but not for longer periods (Benjamin et al., 2006). At these longer
periods, it is now widely accepted that the mantle must be considered as viscoelastic: for instance, the 2010
IERS conventions (Petit & Luzum, 2010) introduce viscoelasticity through complex, frequency-dependent,
Love numbers. Both Benjamin et al. (2006) and Krásná et al. (2013), however, suggest that the viscoelastic cor-
rections in the IERS conventions might be insufficient and proposed values for the complex degree 2 tidal
Love numbers significantly different. The degree 2 tidal Love numbers are mainly sensitive to the mechani-
cal properties of the lower mantle, while the load Love numbers of higher degrees, which play a major role in
the Earth’s response to nontidal loads, are mainly sensitive to the rheology of the upper mantle. The validity
of using a purely elastic Earth model at an annual time scale, while beyond the scope of this paper, should
therefore be addressed in future studies (Chanard et al., 2018).
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