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Abstract:  

Fish schooling is a phenomenon of long lasting interest in ethology and ecology, widely spread 

across taxa and ecological contexts, and which has attracted much interest from statistical physics 

and theoretical biology as a case of self-organized behaviour. One topic of intense interest is the 

search of the peculiar and specific behavioural mechanisms at stake at the individual level and from 

which the school properties emerges. This is fundamental for understanding how selective pressure 

acting at individual level promotes adaptive properties of schools and in trying to disambiguate 

functional properties from non-adaptive epiphenomena. Decades of studies on collective motion by 

means of individual-based modelling have allowed a qualitative understanding of the self-

organization processes leading to collective properties at school level, and provided insight to the 

behavioural mechanisms that result in coordinated motion. Here we emphasize a set of 

paradigmatic modelling assumptions whose validity remains unclear, both from a behavioural 

point of view and in terms of quantitative agreement between model outcome and empirical 

data. We advocate for a specific and biologically oriented re-examination of these assumptions 

through experimentally-based behavioural analysis and modelling. 

 

Keywords: Fish Schools - Self-organization – Collective Behaviour – Animal groups – Coordination – 

Individual-based model 
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1. Introduction 
 

Collective motion is a widespread phenomenon in biological systems, from the captivating beauty of starlings performing aerial 

displays over their roost at dusk, to the march of cells during wound healing. Such phenomena span all ranges of size, scale and 

number of constituent group members, spread amongst almost all environments. The striking similarities in observed patterns, and 

the finding that under certain conditions very different microscopic mechanisms can lead to the same behaviour at the collective 

level, have paved the way for the theoretical modelling of collective motion and its high-level properties (see for instance [1], [2]). 

These studies have revealed the power of self-organization in creating new forms and facilitating functions as a result of individual 

interactions. Yet, despite this endeavour and a growing interest in collective behaviour, very little is known about the actual 

mechanisms at work in many biological systems, making previous research, which has largely been based on general a-priori 

modelling hypotheses, often inconclusive regarding the mechanisms and the nature, epiphenomenal [62] or functional, of natural 

collective processes. Advocating for an experimentally-based modelling of individual behaviour leading to collective motion, we 

will focus here on fish schooling. After reviewing the extensive literature addressing the question of the functions and behavioural 

mechanisms involved in the formation and maintenance of fish schools, we examine the different types of fish school models that 

have been introduced, and we discuss aspects of these works that give rise to their experimental flaws and success. We then discuss 

some key behavioural unknowns one is facing when trying to construct realistic models, advocating for specific data collection and 

experimental analysis aimed at their resolution.  
 

2 Multi-scale approaches of schooling behaviour 
 

We must first make clear what the term “schooling” refers to. Following Radakov [4], we consider that social aggregations of fish are 

fundamentally polyfunctional and adaptive, highly integrated and conditioned by an ecological context and its necessities [5]. It 

follows that the repertoire of collective behaviours exhibited in vitro may not fully reflect the complexity and diversity of this 

dynamical behaviour in the full context of environmental contingencies. Due to the constant transitions of global behaviour occurring 

in nature for a given population [5], we must clearly separate the broad social phenomenon from its most obvious manifestations (see 

Figure 1). In a modelling and/or experimental context, schooling typically refers to the coordinated swimming of fish, 

independently of factors triggers the synchronicity. This phenomenological definition is oriented by our aim of an accurate and 

experimentally-based understanding of individual behavioural mechanisms involved in synchronized swimming.  
 

Schooling is widely spread amongst fish living in oceans and freshwaters. It has been estimated that 50 percent of fish species school 

as juveniles, and that approximately 25 percent of species school throughout their life [6]. Understanding schooling also has 

important practical implications; a large component of commercially exploited species school, and improvements of fisheries stock 

assessment accuracy and fishing techniques rely on understanding schooling behaviour. Thus schooling is relevant to many research 

fields in biology including ecology, ethology, ichthyology, evolutionary biology and neurosciences, but also in statistical physics and 

computational sciences. 
 

Since the observations of Parr [7], a large number of studies have been carried out to characterize schooling phenomena, addressing 

the question of which schooling patterns are exhibited in natural or experimental conditions, and why. Species that exhibit schooling 

tendencies are found and studied over a wide range of natural environments, e.g. of pelagic fish of the Baltic and Atlantic seas [4], 

coral-reef fish in the Californian Gulf [5] and many freshwater fish. Field observations have primarily been conducted by means of 

aerial observations (In Radakov [4], Chapter 2). These have been supplemented by increasingly accurate sonar techniques allowing 

to access the size, form and density of actual schools: for instance the multi beam sonar of Fréon et al. [8]) and the emergent Ocean 

Acoustic Waveguide Remote Sensing technique allows instantaneous sampling of fish density over huge areas, revealing large-scale 

collective behaviour, i.e. diurnal aggregation and migration of herrings during spawning season (see [9] and Jagannathan [10] for a 

review). A recent work by Handegard et al. [11] used a high frequency sonar imaging technique with a 2cm spatial resolution and 
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24m2 span to track the motion of both schooling prey and group hunting predators in a natural marine environment, demonstrating 

the importance of collective behaviour to the strategies employed by both predators and prey. In large clupeid schools, for example, 

acoustic imaging suggests groups to be highly heterogeneous with vacuoles and nuclei, and irregular frontiers [8], [12]. The degree to 

which such density variations can be explained by individual behavioural rules as opposed to environmental factors such as the 

influence of the recording vessel, oxygen consumption within such large groups [13] and flow features of the aquatic environment, 

are not yet understood. The amoeboid shape, along with elongated form of the school and limited vertical extension seems to be 

shared characteristics of pelagic fish, but the measured mean density greatly vary between species [14]. 
 

Quantitative experimental approaches of fish schooling have been conducted prior to such technological advancements. The seminal 

works of Breder [15], Shaw [16] and Radakov [4] have emphasized the mechanisms of information transfer among individuals 

within schools, suggesting this is as a general, and likely valuable, adaptation arising from social aggregation. Radakov [4] described 

the coordinated movement of fish in a school of Atherinomorus as “waves of agitation” that could reflect against obstacles and 

attenuate and “streams of agitation” where the directional information of one frightened fish is either amplified by social interactions 

to propagate to the whole school, or dies-out. Another series of experiments on various fish species swimming in school in a flow 

channel (Pitcher and Partridge on cods, pollocks, herrings and minnows, [17-19], following the method of Cullen [20]) unveiled the 

structural properties, in a statistical sense, of the school by the means video-recording and analysis of the extracted 3D positions, 

opening the way to modelling studies. The fact that most of these authors focused on structural similarities across taxa and situations 

should not occlude the fact that the mechanisms at work in creating such structures are deeply linked to an adaptive specific 

behaviour and an ecological context. 
 

When trying to get functional (‘ultimate’) explanations for schooling behaviour, schooling appears to be intrinsically adaptive and 

polyfunctional (see Krause and Ruxton [21], for a review). In some cases it can improve foraging activity (mechanisms reviewed in 

[22], chapter 12) such as when information can be obtained from the foraging behaviour of others to improves individual’s own 

exploitation of a patchy resource (when the benefits of increased acquisition outweigh the costs of increased competition among 

group members) [23], or as a consequence of an evolved coordinated hunting technique (e.g. in tunas and Spotted seatrout 

(Handegard et al [11]). It can as well be a cost for the member e.g. under the assumption of homogeneous food distribution leading to 

competition amongst the school, in balance with passive or active anti-predator benefits [22]. In relation to anti-predator benefits, 

increasing group size has been shown experimentally to lower predator per-capita encounter rate, and thus risk [24-27], at least until 

a certain group size beyond which per capita risk can be constant [11]. Furthermore, upon encounter, active predator avoidance can 

be achieved in a prey school via a palette of synchronized escape manoeuvres (fountain effect, herd, vacuole, see Pitcher and Wyche 

[112] and Handegard et al [11]), which efficiency may lie in the inability for a predator to focus its attack on a single fish among the 

identical members of a school (namely the confusion effect, supported by a neural network model [29]). We note that such escape 

manoeuvres can all result from collectives that employ the same, simple, behavioural interactions, as opposed to relying on grouping 

individuals to change interaction types [Couzin & Krause, 2003].  Increased predator vigilance by members of the group is also 

thought to result from their being an increased chance of one, or some, group members detecting cryptic predators (the so-called 

many eyes effect e.g. [30]) and mechanisms allowing fast information transfer across the school (the so-called Trafalgar effect [25]). 

Counterbalancing these benefits, predators may also prefer attacking large groups of fish or detect them more easily, as 

evidenced in recent experimental work [110-111].  

 

Schooling has also been thought to confer hydrodynamic benefits if individuals adopt positions such that they exploit the shedding of 

vortex sheets from those ahead [31]. An elongated diamond-shape pattern and a phase opposition of neighbours tail movements in a 

column are the school features theoretically found to optimize energy recovery from vortices produced by other group-members, and 

fish trying to increase their efficiency would thus behave so as to adopt this configuration. This hypothesis can be tested measuring 

the energy consumption when swimming. Tail beat frequency which has been demonstrated to be positively correlated with oxygen 

consumption for solitary fish [32], is used as a proxy of the effort of the fish. Recent experiments on schools of Roach [33] and 

Seabass [32] found a significant reduction in tail beat frequency of the trailing fish compared to those of the front. However, because 

of the indirect nature of the measurement, there’s still no conclusive proof of an energetic saving when swimming in school, and it is 
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worth mentioning that many previous studies were confounded by the fact that fish in large groups tended to be less stressed, and 

thus may be expected to utilize less oxygen. Furthermore, if gaining a hydrodynamic advantage on large fast-cruising clupeids 

schools that need to migrate between their spawning and feeding sites is obvious, it may not stand for smaller river fish which also 

exhibit schooling, a view supported by experimental studies by Hanke and Lauder [34]. All these examples illustrate more broadly 

how difficult it is to establish a direct link between function and behaviour. 
 

The proximate causes of fish schooling, i.e. the actual behavioural rules followed by individuals of a given species, are still poorly 

understood, although they could be crucial in understanding the evolution of collective motion and the associated functional benefits 

described above. A lack of quantitative data on fish schooling, and that multiple behavioural rules sets that may yield practically-

identical global behaviour [35], raises a serious obstacle for the identification of such rules. With the growing interest in 

methodologies to infer interaction rules, and in experimentally-based modelling, paths are being paved to allow deeper investigations 

of the rules that underlie schooling behaviour in a variety of contexts, such as in open, or more complex, environments [36-39]. 

While they cannot capture the full diversity of behaviours likely seen under natural conditions, laboratory experiments on schooling 

have the advantage of being highly controlled, allowing experimentalists to isolate key features of the social behaviour in schools 

[40]. Thus, they may be used effectively to determine specific behaviours, as well will bring us closer to an understanding of the 

mechanisms of the evolutionary convergence among organisms that exhibit apparently similar collective motion. 
 

 

3. Insights from fish school models 
 

From individual to collective behaviour 

As the description of schooling has progressed in terms of its functions and interplay with ecological constraints, and in terms of 

experimental characterization of emerging patterns, the interest in developing a framework to bridge the gap between individual and 

collective behaviour becomes clear. A major improvement of our understanding of collective motion in fish has thus been reached 

through the effort on modelling fish school behaviour using agent-based models, which has permitted researchers to set hypothetical 

individual rules and test through numerical simulations the resulting behaviour at the school level. The first successful attempts of 

such models [41-45], sometimes coming from unexpected fields such as computer animation [46], demonstrated that despite of some 

methodological flaws (few fishes leading to a dominant border effect [40], poor exploration of initial conditions as pointed out later 

[47]), simple individual behavioural rules often referred to as “traffic rules”, with appropriately tuned parameters, were able to 

reproduce the collective behaviour of a fish school with its main features (cohesion, polarity, shape and structure).  
 

Schooling was thus classified amongst the growing collection of self-organized biological phenomena [1]. An intensification of the 

modelling and simulation effort over the last decades yield an important collection of models and studies, shedding some light on the 

complex interplay between the individual and school levels, and subsequent on methodological and conceptual issues [48]. 
 

We will first present the most common ingredients implemented in individual-based models of collective motion and then categorize 

the existing models by the mean of their mathematical proximity. Through this categorization is evoked the diversity of problems 

tackled by modelling studies. 
 

A typology of individual based models for fish schooling 

An agent-based model of collective motion starts with the mathematical definition at the individual level of the swimming abilities of 

the fish, at least implicitly, and the behavioural algorithms that define its interactions with the other individuals. Although they vary 

much in mathematical complexity and formalism, most are composed of three behavioural rules based on the main functional 

properties observed at school level: collision avoidance, directional orientation (and thus synchronization of direction of travel) and 

finally cohesion. The repulsion rule facilitates collision avoidance and typically is given the highest priority, as inspired by 
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observation on animal groups [38] as well as modelling [49]. The tendency to match behaviour of nearby neighbours, which is also 

termed allelomimetic behaviour [50], is typically expressed in an explicit rule of alignment for an individual trying to match the 

speed and direction of its neighbours. Recent experimental evidence has suggested that it might not be an explicit behavioural 

rule [38-39], but rather that coordinated motion might be achieved using social repulsion and attraction only (as supported 

by theoretical models [114-115, 109]. Finally, an attraction rule mimics a tendency to group with conspecifics in order to produce 

aggregation, a prerequisite of school existence.  
 

Moreover these rules are often completed by a stochastic component to account for the individual intrinsic behavioural 

stochasticity (as Kuhlia Mugil [37]).  This noise corresponds to the intrinsic errors made when acquiring information on 

neighbours,changes in the motivational state of the fish, or local (uncorrelated among individuals) sources of environmental 

noise. In the same spirit, swimming rules have to be supplemented by a stochastic component accounting for the variations in 

swimming abilities of the individuals as well as the fine scale or complex interactions with the water we won’t take into account 

(wake turbulence [31], induced flows [51]) as long as the retroaction between medium and individual is estimated negligible [52].  
 

Synchronous self-propelled particles models 

We arbitrarily put together under this designation all modelling efforts oriented towards the understanding of fish schooling where 

the individuals’ velocity is kept constant or drawn into a probability distribution [41-42] reproducing experimental data [53] and 

doesn’t change as a consequence of interactions with neighbours. An individual fish therefore moves in straight line between 

successive time steps. At each time step, a preferred direction  

r
di (t +1) for the individual is computed according to the direction 

 

r
dj (t)  and position 

 
rrj (t)  of the other fish in a defined neighbourhood Ni with n neighbours. This update can be expressed by 

the following general equation:  
 

 

r
di t +1( ) = 1

n !Ni

wj

r
dj

i!Ni
" t( ) + 1

n !Ni

fij
rrij t( )
rrij t( )i!Ni

" +
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The preferred direction is then normalized to a unit vector. The first right-hand term corresponds to the alignment rule, with a 

fish tending to match the average (simple or weighted) direction of its neighbours. The second right hand term ensures repulsion and 

attraction, and it takes respectively negative or positive values when the neighbours are too close or too far away. The last term 

 
r
!i t( ) is a stochastic component (for the origins and consequences of stochasticity in this context, see [54], [55]). The coefficients 

wj  and fij  are used to define the relative range and weight of attraction and repulsion/alignment (A/R/A). Some models include 

behavioural zones of some extent where a specific rule is applied ([41], [44], [54], [56], on boïds [46]); some adopt functional forms 

for the attraction/repulsion coefficient [59], [57]. Other biologically relevant ingredients are usually added such as a blind sensory 

zone [79], body size and form [58], or fish individual characteristics drawn from field observed distribution [41], [42], so that the 

behaviour of particles is closer to that of real fish.  

 

It is important to notice that the definition of neighbourhood on which each term is calculated is a crucial point to consider because of 

its consequences on the behavioural output. Three main definitions can be found in the literature that lead to very different 

behaviours at large scale: first, the metric neighbourhood [59], [60], where all individuals are taken into account within a 

surrounding area of a defined range. Second, the topological neighbourhood which remains invariant with respect to density 

changes, as first discussed by Ballerini et al. [70] in connection to data gathered on starling flocks. This topological 
neighbourhood has proven to lead to robust cohesion of the school under predation [70], and it may be achieved either by 

considering a fixed number of neighbours according to their proximity (K nearest neighbours) [61], [70] or using the first 

shell of a Voronoï tessellation [108], [37]. This geometrical tessellation defines a zone of danger [103] for the each member of 
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the school, i.e. a zone where a hypothetical predator is closer to this member than any of its neighbours. The selfish herd 

hypothesis assumes that a predator would most likely attack the closest fish, thus making the interest of any fish to reduce the 

area of its zone of danger. The first shell of a Voronoï tessellation contains the neighbours of a focal fish with which their 

respective zones of danger share a border. By monitoring these neighbours, an individual could evaluate its vulnerability. 

From a functional point of view, the behavioural mechanisms should be selected so as to minimize the zone of danger in case 

of a predator attack (see for instance [104]). The third notable approach of neighbourhood is derived from visual processing 

considerations discuss below and it corresponds to a dynamical selection of the neighbourhood [98] based on selective 

attention to motion.  

 

To make a connection between individual behaviour with schooling patterns, numerous synthetic studies have been carried out, 

systematically varying individual parameters and measuring their influence on observables at local level (nearest neighbour distance, 

preferred positions of neighbours), group level (polarity, group momentum, shape, structure) and population levels (group-size 

distribution) [3]. The outcome of various hierarchies between the A/R/A rules as been studied on the motion of small groups of fish 

[57], [63] and on the equilibrium structure (i.e. under no influence of randomness) at collective level [64]. A crucial point is presence 

the sharp transitions in collective behaviour that were observed for little parameter changes. For example a slight change in the radius 

of orientation (if near the critical point) yielded drastic changes at the school level in terms of polarization and structure, such as 

between alternative collective states: swarming, milling and schooling, as shown in Couzin et al. [56]. 

 

This algorithmic simplicity at individual level, witnessed by a limited number of parameters, and yet, the presence of a diversity of 

patterns at collective levels (swarming, milling, synchronised swimming), provide the opportunity to conceptualize general emergent 

properties through mathematical modelling [65]. The complexity can be reduced to an explanatory and predictive ideal mechanism, 

under logical or mathematical form, referred as a self-organization principle [1], [66], bringing some amount of generality into 

collections of case studies. Nevertheless the goal of such models isn't to capture the precise behaviour of an individual fish but rather 

to identify the minimal general components required for schooling. 

 

 

Asynchronous self-propelled particles models 

A typical feature of models of collective motion is a competition between a stochastic component and a tendency to order, although it 

is important to note that stochastic effects may also facilitate the instatement of collective motion [67]. However, there’s a different 

way to implement stochasticity which has been recently investigated by Bode et al. [68]. Instead of updating in synchronous way the 

position and velocity of all agents and add to the set of rules a random component, the agent updates are made through a 

deterministic set of rules in a random order. Interestingly this asynchronous update yields a topological-like behaviour [69], very 

similar to what has been deduced from analyses on starling flocks [70]. 

 

Even though this behaviour is reminiscent of the schools of Paracheirodon innesi [71], where the continuous motion of the school is 

composed of the sum of individual bouts and pauses with no apparent synchronicity (see Figure. 2a), Bode et al. emphasize that 

there’s no direct link between the updating frequency and the actual locomotors events. Yet, this new approach has an interesting 

ability to match experimental data [68]: a simple variation of update frequency can reproduce the speed distributions observed in 

groups of three spine sticklebacks under various level of agitation as they are frightened, hungry or steady. 

 

 
Social forces models 

Besides their success in linking functional properties at the school level to behavioural mechanisms at the individual scale and some 

experimental success [72], [73], it is unlikely that the self-propelled particles framework, as we defined it, has the ability to lead to 

models accurately reproducing experimental data of species, notably in explaining the experimental speed distributions and 

consequently the mechanisms responsible for speed synchronisation. In particular, a series of simulation studies have shown that the 

mean speed of an individual could be considered as an emergent property as well [3], [48], [74] . In self-propelled particles models, 
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fixed speed implies a direct proportionality between polarisation and mean speed of the school. Viscido et al. performed experiments 

on groups of 4 and 8 fish over periods of ten minutes exhibiting large deviations to this property. 
 

The social forces framework considers a school as Newtonian particles submitted to “social forces” (attraction and repulsion [57], 

orientation, random force accounting for intrinsic stochasticity and complexity of animal behaviour [55], [75]) and physical 

forces. The inclusion of explicit physical forces into individual rules of motion is one of the main motivations for these models. 

Indeed, the introduction of drag is found to have a drastic effect on collective behaviour [3]. While it widens the modelling horizon 

and allows some analytical work [55], [75], this framework increases the number of potentially arbitrary factors that have to be 

implemented in the model.  
 

Hopefully it comes along with a number of tools developed for particle physics: methods such as Force-Matching [36] (also 

adaptable to self-propelled particles models) or Force Mapping, further discussed in the next section, allowing to find best fitted 

social forces relatively to a set of data. A recent experimental work [72] brought an evidence of frontal preference in the influential 

neighbours of an assembly of Surf Scoters swimming against the drift currents. A social force model with 

Attraction/Repulsion/Alignment rules supplemented with weak frontal preference (an early modelling hypothesis [45]) has shown a 

good agreement between observed and predicted structure (radial distribution, angular preferred position). However even if the 

model was able to reproduce quite well the observation data, it has been calibrated with the best set of free parameters that optimized 

the simulated patterns towards the observed collective properties (namely the authors made their model fit at the collective scale). In 

such a case, it is well known that several models can be fitted to a data set at the collective scale, simply because the search for the 

best match is unconstrained and can be performed for each model, so that the collective level underdetermines the individual level.  
 

Statistical physics of collective motion 

An intense interdisciplinary work exists over individual-based modelling, particularly with statistical physics, following the seminal 

work of Vicsek [54]. The reader interested in the treatment of the problem by statistical physicists is referred to the reviews of Irene 

Giardina [76] and Tamas Vicsek [77]. Tools initially developed for the study of out of equilibrium physical or chemical systems are 

adapted to the problem of living organisms. These methods aim at investigating possibly universal features of collective motion over 

diffusion, long-range order or presence of high order and high density regions, named “travelling band” at the onset of collective 

motion [84]. They may be analytical, through translations of agent-based models to Eulerian descriptions (in terms of continuous 

velocity and density fields), either phenomenologically [82] or analytically derived [83]. This approach aims at the understanding of 

the general mechanisms by which local rules lead to large-scale synchronization, those mechanisms being thought to be rather 

independent of the detailed nature of the systems’ components. This idea of independence of the large-scale behaviour relative to fine 

behavioural details is inspired by the existence and similarities of collective motion phenomenon in very different species and even in 

non-living systems. We think that for being crucial in the understanding of the ubiquity of collective motion phenomena in biological 

systems, this statistical physics approach does not aim to address the behavioural mechanisms that govern the dynamics of these 

phenomena. Collective motion in biological systems is rather seen in analogy with an out-of-equilibrium phase transition from a 

disordered phase where no global order is found to an ordered phase in which the system (i.e.: the school) is highly polarized [54]. 

This critical change in global behaviour is obtained by varying the value of a behavioural parameter such as noise [54], [78], blind 

angle size [79], speed [113], alignment tendency [56] or a “strategy parameter” [80], which ponders a behavioural compromise 

between aligning with neighbours and reacting to their direction changes. The validity of this view finds some support in the 

experimental work of Becco [81] that showed that such transition from disorder to order can be obtained by increasing the density of 

Tilapia fish in a shallow water arena. Increasing density, in the Vicsek model is equivalent to decrease noise, as the directional 

information transfers during fish “collisions”, favoured by density, and is corrupted by the noise between each. Interestingly, in an 

equivalent experimental setup on another species, Gautrais et al. [37] found the inverse effect of density on global order, the school 

being unable to form beyond a certain density, underlining that at the intermediate level of size and number of an experimental setup, 

the school can be dominated by fine behavioural details and yield a much different global behaviour than its large-scale statistically 

predicted one. Another rapid transition from disordered to highly synchronized behaviour at a critical density has been found in large 

population of spawning herrings by Makris et al. [9]. 
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Self-organisation and functional properties 

Nevertheless, modelling is crucial to understand how does biological functions emerge from interactions between individual 

components. Among biological functions of long-lasting interest [4], [85] is the transmission of information amongst the school, 

studied and heuristically defined with self-propelled particles and social force systems [77]. In these modelling frameworks, 

transmission of information can be defined e.g. in the terms of time needed for a particle to propagate its influence through a given 

fraction of the population [80], and thus its optimality (i.e.: the maximization of its measured value) associated with a set of 

individual parameters. These works also allow some insights on how collective sensing [23] and decision-making [86] can be 

achieved in the schooling phenomenon. Striking is the demonstration of the possibility of a purely collective memory, the school 

being able to encode in its structure the memory of its previous state, an hysteresis being observed when slowly going from disorder 

to order and back acting on the behavioural parameters of the individuals [56].  

 

Also successfully explained by a modelling approach are the mechanism of self-sorting of individuals in a school in a school 

[56]. Costs and benefits of being part of a school vary as a function of the individual position within the school, a hungry 

individual being more likely to take a risk, but more successfully forage, on the edge [22]. In a large school or when its 

horizon its crowded, the fish cannot direct itself to its area of interest, ignorant of their own position within the school. 

Couzin et al. [56] demonstrated that a by changing behaviour, with respect to neighbours, that individuals can regulate 

(probabilistically) their relative position within the school. The anti-predator benefit of the confusion effect is also optimized 
for an individual being locally non-conspicuous, and this may be achieved by local interactions in the school as shown in 

Kunz et al.  [58] and Ioannou et al. [112]. To sum up, a change in an individual strategy can lead, via self-organization, to a change 

in its position within the group or in the local composition of the group, even if no information about the shape of the group is 

accessible to that fish, in particular if its visual horizon is crowded or if the school is extending beyond its visual range. 

 

 

4. Open issues for the investigation of cognitive and behavioural mechanisms involved in schooling 

 

With several models exhibiting the similar global-collective patterns provided they are appropriately tuned (see the discussion on this 

particular issue in [37] and [35]), conclusions on the particular mechanisms ensuring those different functions in various species are 

still out of reach. A way to reconcile data with models and ensure that we do not predetermine the behavioural rules to get a desired 

schooling behaviour is to proceed with a bottom-up approach on peculiar species. This method is illustrated by a recent experimental 

work which leads to a model reproducing quantitatively the behaviour of fish both at individual and collective levels, based on a fish 

kinematic with interesting long-time diffusive properties [37], [87]. The idea is to build a model incrementally from scratch, 

validating at each step the modelling choices through a specific experimental design. In the past, the very same methodological 

framework has been successfully applied to characterize and model individuals’ interactions that govern collective behaviour in pre-

social and social insects [88-90]. 

 

In this approach, we believe that there exist some key behavioural components that have to be carefully evaluated. A first important 

component is the kinematic which characterizes the motion of a single fish. Depending on its intrinsic features, it may or may not 

facilitate the inference of social interactions at stake in the school. Then, the type of information (i.e the stimuli) gathered by an 

individual to control its movement is also crucial, especially when the perception or the behavioural reaction of a fish change in 

different environmental conditions. Assuming that these stimuli can be somewhat decomposed into a sum of pair interactions, one 

has then to consider which neighbours a fish is going to interact with. If this assumption is wrong, one has to identify the kind of 

information processing a fish is doing, namely how the stimuli are combined and what are the resulting consequences on the fish’ 

motion? Finally a last issue concerns the impact of endogenous physiological and behavioural changes on data collection and 

analysis. 
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Characterizing the spontaneous motion of fish 
Schooling phenomena occur in species that have evolved widely different swimming abilities and behaviours. Constrained by 

biomechanics, the elected swimming mode (see [51] for a review) can lead to a continuous motion, as for most pelagic fish (see 

Figure 2b and c from Khulia Mugil [91] or Cod, Saith and Herring [19]), or to a discontinuous burst-slide swimming (see Figure 2a, 

from [71]) I which the fish propels itself intermittently and then sliding until viscosity stops the motion. In the latter case, individual 

swimming speed is highly variable, in particular for small river fish like zebrafish (Danio rerio) or firehead tetra (see figure 2a 

Hemmigrammus Bleheri from [71]). Most importantly, speed variability acts on the same timescales as the individual updates its 

direction of motion. In addition to the theoretical result that synchronicity in “swimming bursts” deeply influences the global 

schooling behaviour [68], the integration of individual swimming abilities in a model may be a crucial point for its relevance at the 

intermediate-size.   

 

Numerous agent-based modelling studies already constrain the motion of individuals to realistic values, tuning parameters such as the 

maximum speed, the maximum turning speed, the update frequency in self-propelled particles models or introducing a maximum 

acceleration and a drag force in social forces models. There exists some evidence in the literature showing that manoeuvrability 

constraints are key behavioural factors that determine the ability to perform schooling behaviour. The introduction of drag in a social 

force model [3] yielding an asymptotical limit speed for the fish, i.e. manoeuvrability constraints, has a dramatic impact on individual 

trajectories, in particular the path curvature and also on group-level properties leading to increasing group sizes. Similarly, in a self-

propelled particles model [47], varying the maximum turning rate is a mean of selecting the accessible states of the system. The 

spontaneous motion, i.e. the limit case of a non-interacting fish defined as a constant speed random walk with correlated 

successive orientations in [91] and as a Langevin process for the social force model with drag in [3], generates different large 

scale diffusive properties [87].  

 

Furthermore, when trying to characterize from experimental data the interactions between individuals in a fish school, one must start 

with a “null-model” which adequately characterizes the motion of an isolated individual (see [38] in which the analysis of fish 

interactions is performed under an implicit social force assumption). 
 
Inferring interactions between individuals 

Recently, several studies have explored ways to infer social interactions directly from experimental data rather than trying to test a 

priori rules with the satisfying properties at the collective level. The force-map technique [38] as well as the Bayesian inference 

technique [39] have been used to calculate from experiments with two fish the effective turning and speeding forces experienced by 

an individual, once the relevant variables on which they may depend have been chosen. In the force-map approach, the implicit 

assumption considers that fish are particles on which social and physical forces act. Those effective forces capture the ‘coarse grain’ 

regularities of actual interactions, and thus constitute a powerful tool. But the explained fraction of the variance is low, and its origin 

remains largely unexplained in particular the intrinsic variability of individual behaviour, and the coupling between arbitrarily chosen 

variables. To be more than a powerful visualisation tool, this approach has to demonstrate its ability to lead to a model that would 

reproduce in turn the experimental data. A partial answer is given by the work done by Lukeman [72], that quantitatively reproduces 

at the collective level the behaviour of Surf Scotters thanks to a self-propelled particles model with an additional frontal preference 

hypothesis. However without an agreement of the model at the individual level, it is difficult to evaluate to which extent the extracted 

behavioural algorithm corresponds to the actual behaviour, in this case the value of the frontal preference hypothesis. 

 
A different approach is a bottom-up modelling introduced by Gautrais et al. which has been applied to investigate the schooling 

behaviour in groups of barred flagtails (Kuhlia mugil) [37]. Once the spontaneous motion of an isolated fish is modelled, its 

parameters quantified, a dynamical framework is defined, within which interactions are included. The influence of the tank wall is 

estimated directly from experimental data. Series of two fish experiments are then used to suggest interactions and their functional 

form, in that case attraction and alignment only, and to quantify the parameters of these functions with inversion techniques. The 
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validation of the model is based on the agreement of model predictions with experiments on several observables and with different 

group sizes. This step-by-step procedure ensures that the model properly reproduces the observed data, uncovering the behavioural 

rules at work in school maintenance for the experimental situation. This approach therefore needs to be extended to other 

experimental conditions. It is important to increase the local density of fish to investigate the short-range mechanism of repulsion, 

which is found unnecessary to explain school dynamics and collision avoidance in the experimental setup. Conversely, experiments 

intended to investigate school formation, where inter-individual distance converges towards a statistical equilibrium that is much 

smaller than the initial value, are much needed to characterize and model the attraction among fish. 

 

Acquiring and updating information on neighbours 

 

The main sensory channels involved for school maintain are vision [92] and the lateral line used to detect movement and vibration in 

the surrounding water [93,94] (see von der Emde [95] for physiological and ecological considerations). Both channels have different 

properties (they act respectively at long and short range) vision operates in both the near and far field, whereas the lateral lines is 

limited to the near fields) and dependences to the physical context (light, opacity, water flows). And both seems equally crucial [96], 

as a lateral-line disabled fish won’t be able to school [94] and a blind fish won’t be able to join its school if he loses its wake [93].  

 

More important than the physiological processes involved in the acquisition of information is the kind of information a fish acquires 

and how it maps these estimates to motor control programs. The assumption that a fish acts on the basis of discrete and absolute 

information such as the position and speed of some neighbours may be reconsidered in regards to recent works. We can think of a 

more continuous and global kind information such as those driving the motion of pedestrian crowds [97]. They are found to direct a 

pedestrian towards the locally less crowded area estimated with angular density measure, which is by itself, a continuous and local 

variable. Lemasson et al. [98] have introduced an A/R/A model with neurobiological mechanisms of processing and integrating 

the information. This model goes well beyond the usual modelling hypothesis that mainly consists of a direct calculation using 

the absolute positions and velocities of neighbours. The angular position, speed and direction of the neighbours’ images on 

the retina of the focal fish are integrated to ponder and trigger its behavioural reactions. The model implements a selective 

information processing, using key properties of image detection and motion forecasting to select the set of neighbours 

eliciting each of the three behavioural reactions: attraction, alignment and repulsion. However we are far away from deriving 

behavioural mechanisms from the present understanding of the actual cognitive and sensorimotor processes at work in each 

schooling species. Nonetheless, the insight gained on what information is actually perceived by an individual should allow us to 

make more realistic hypotheses even if its complexity is increased.  

 

Together with the issue of which type of information is used, is the coupling between the motion of the individual and the perceptual 

capabilities of fish. In the Lemasson’s model [98], the matching response is defined proportional to the speed of individual 

fish, the displacement of an object on the retina of the individual being proportional to the speed of this object. From an 

ecological point of view, half the species of fish move intermittently [99] and amongst benefits gained from this type of locomotion 

may stand an increased sensitivity to the surrounding while resting. Pauses on the move allow a stabilization of the visual field and 

an increase of the signal/noise ratio from the lateral lines [100]. It is worth mentioning that the dynamic correlation between cruising 

individual speed and school structure, already noted by Aoki [53] has been experimentally captured by the bottom up modelling 

approach of Gautrais et al. [37], through a dependency on swimming speed of the main coefficients controlling interactions between 

fish, namely the weights of positional and directional information, that may have a physiological origin. As it is shown in Figure 3, 

increasing swimming speed leads to an increase of group polarization. 
 

Determining which neighbours a fish is interacting with. 

From the STARFLAG project [101], [102] that mapped the three-dimensional structure of free flying starling flocks emerged strong 

experimental evidence for topological-like interactions [70]. Each bird seems to pay attention to approximately seven nearest 

neighbours [70], suggesting how cohesiveness can be maintained in groups that exhibit such density variability. The 

neighbourhoods defined a priori in a modelling study can be justified by physical sensory arguments (e.g.: range of vision 
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through diffusive medium, rapid attenuation of pressure waves) or by neurobiological arguments as in the selective attention 

model [98]. But considering the tremendous effects of the chosen neighbourhood on the outputs of the simulations in terms of 

cohesiveness, structure and dynamics of a school, the ultimate test should be a confrontation with experiments, i.e. with the 

behaviour of actual species. In a bottom-up modelling approach, provided that the interactions among fish have been 

correctly described, it is theoretically possible to quantitatively discriminate various neighbourhood choices through 

simulation and data collection across various scales (see figure 4). But so far these effects are hard to observe in experiments 

because of the geometrical constraints due to the finite sized arena [37].  

 

The quantitative observation of a free-swimming school being uneasily achieved, we might consider designing experimental and 

analytical techniques allowing us to discriminate between competing hypotheses. The necessity of an adequate experimental design, 

relative to an analysis tool is stressed by the recent development of Bayesian inference methods [28]. In these conditions, a Bayesian 

methodology is shown to have the ability to validate a model against experimental data that covers sufficiently different 

configurations, i.e. experimentally sampling a transitory rather than static evolution. Reproducible experiments have to be designed 

in order to study such transitory phases. One could think of provoking the dispersion of a school with a device simulating an attack, 

allowing us to record the transitory phase of grouping from an initial dispersed condition. A recent work by Herbert-Read et al 

[39] using a Bayesian methodology with a classical experimental setup, has shown that the social force most representative of 

the data was acting essentially on a single nearest neighbour, constituting an evidence for a single nearest neighbour 

interaction for this species. Unfortunately with this methodology, the inferred social force is machine-learned and has no 
analytical translation. As such it is thus unable to lead to a model formulation. 

 

Determining which ways are used by the individual to integrate information. 

An individual may take into account information from various neighbours to control its next move. It may be expressed in a 

modelling framework as a combination of pair interactions, e.g. by summing [61] or averaging [47]. The limited cognitive abilities at 

work nonetheless make suspect some utterly complex calculations over a large number of influential individuals. Recent 

experimental work by Katz et al [38] suggests that integration of information cannot be seen as additive social forces, and rather 

points towards synergetic or averaging combination of respectively speeding and turning forces. While modelling the motion of 

another species, school motion was best fitted when averaging the influences, the overall intensity roughly equalling the intensity of 

random influences.  

 

In pedestrians, it has been shown that simple heuristics applied by an individual to the whole sensorial environment may match both 

requirements of low cognitive complexity and high efficiency at the collective level [97]. In that case, individuals are found to direct 

their motion toward the less crowded angular direction. This rule is equivalent to finding the minimum of a local density 

landscape; a pedestrian, through visual information processing, may easily find an approximate solution but the rule is 

intrinsically hard to describe as a combination of pair interaction. We may stay aware that the reaction behaviour can be based 

upon a global stimulus that cannot be decomposed further, thus making the leap from pair interactions to whole school interactions 

reciprocally hard to achieve formally. A similar heuristic rule leading to a global herding has also been used in a theoretical 

model [104] illustrating how the Selfish Herd hypothesis [103] could work efficiently. In this so-called Local Crowded 

Horizon mechanism, each individual evaluates the density of the herd along all directions and direct its motion toward the 

angular direction in which the crowd density is the highest. Doing so each individual considers the presence of all neighbours 

pondered by a “visual function” that decreases according to the distance. This approach could be refined by taking into 

account only the influence of visible neighbours, through integrating the shape characteristics of school members, thus 
making the definition of the local crowded horizon compatible with what the fish can actually perceive. 

  

Determining group size effects and their influence on the reactional state of fish. 

Adaptive properties at the collective level emerge from the behaviours of the interacting individuals that react to biological 

cues such as predators, food resources or physical cues such as light intensity, temperature that can be controlled in a laboratory 

experiment. These stimuli may elicit punctually a stereotyped response (such as C-start elicited by water flows similar to a predator 
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suction) but may also affect the internal state of the individual, leading to midterm changes in behaviour. Several studied tried to 

capture this behavioural switch with some success either with data analysis only [106] or in a self-propelled particles framework. 

Tien et al [105] evidenced a neutral zone and a fall in nearest-neighbour distance when frightening schools of fish swimming in a 

pond. Another study by Hoare et al [73] exhibited the link between group size selection and internal state eliciting anti-predator 

response, hunger and compared it with a control steady state. In these examples, the effect on behaviour of a change in the internal 

state of fish is captured through the modification of the behavioural parameters of the model. As a matter of fact, the accurate 

modelling of fish behaviour allows to measure behavioural switches as variations of the behavioural parameter of the model. This has 

been shown for instance by Gautrais et al. [37] that detected a change in behavioural parameters with increasing density, leading to a 

disordered swimming once a critical density has been reached. It worth noticing that in that particular case, the individuals may 

change their behaviour relative to the density [113]. This additional coupling, namely the influence of the school as a whole on 

the behaviour of its constituent individuals is a topic which we may carefully consider in future investigations. 

 

To limit the impact of the behavioural variations due to non-physical factors such as habituation or any variation in the internal state 

of fish, it is cautious to get an estimation of the behavioural variability on the long term. A series of experiment led by Miller [107] 

on Zebrafish, explored quantitatively the effect of habituation on fish behaviour with the experimental arenas (no effect) as well as 

the effect food presence (lowered density) and exposure to aerial model predator (no habituation, punctual effect).  

 

5. Conclusions 

In trying to understand why do fish school, evolutionary biologists have identified several emergent functional “supra-

organismic” properties that may benefit the individuals that belong to a school. But an accurate knowledge of behavioural 

mechanisms and interactions involved in schooling is also important to understand how these properties emerge. Decades of 

modelling studies and an increasing data collection aimed to understand the connexion between individual interactions and 

school properties. Numerous modelling frameworks have been developed, and shed light on the potential mechanisms driving 

school formation, maintenance and patterns of motion. Most of these models represent idealized a priori behavioural 

algorithms that make their theoretical study easier.  In searching for the actual behavioural mechanisms at work in fish, one 

could make a simple comparison of large-scale data with simulations output. However it is hard to find biologically relevant 
individual mechanisms with such a top-down approach because of the strong coupling between individual behaviour and 

external cues, be they ecological or physical, the internal state of fish and finally the output of the school itself.  

 

We have emphasized a set of major and unknown behavioural components that are likely to play a crucial role in schooling. 

As all these elements are coupled with each other, we suggest a long-term incremental modelling work in direct confrontation 

with experimental data that may result into their characterization. The first component is the motion of a single fish, poorly 

considered up to now because of its lack of generality. It has to be carefully characterized and modelled so as to uncouple its 

consequences on school behaviour from those that result from interactions among fish. These interactions are a second 

important component already investigated through new methods of data analysis that prove their ability in questioning the 

validity of a priori model assumptions for specific fish behaviour. Third, the nature of the stimuli used by an individual to 

control its trajectory is also crucial, as their perception may also depend on the fish motion and the environmental conditions. 

Fourth, the neighbours considered by a fish and from which stimuli are integrated into a behavioural response. Several 

hypotheses, namely metric, topologic or dynamic neighbourhood have emerged from simulation studies that now require 

some experimental validation. Then is the question of the integration of the influence of a discrete number of neighbours. 

This is a rather complex cognitive hypothesis which is in competition with much simpler heuristics based on visual 

processing. Finally, a last issue concerns the impact of endogenous factors such as physiological and behavioural changes that 

may strongly impact data collection and analysis.  

 

The knowledge gained on such behavioural components is relative to a species. But we may hope that, after deciphering 
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several behavioural mechanisms across different taxa, we will be able to identify several classes of models.  
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 Figure Legends 

 

 
Figure 1: Collective motion patterns in fish schools. Individuals interactions give rive to a variety of dynamical structures which can 

be poorly (A) or highly (© agasfer, flickr.com, with permission)) (B) polarized (© breic, flickr.com, with permission)). Other 

configurations of fish schooling include Milling C (© Tammy Peluso) and bait ball (D) structures (© Barry Fackler with permission) 

 

 
Figure 2: Different species of fish use different modes of swimming, ranging from a nearly constant speed to bouts and pauses 

motion (A) Time evolution of individual speeds |vi| for 1 ≤ i ≤ N in a school of Paracheirodon Innesi. Each speed is displayed with a 

vertical shift in order to show the activity of each fish in the swarm. Speed scale is given in the upper left corner. Most of the time, 

fish have a nearly zero speed before suddenly exhibiting high accelerations followed by a speed decrease (legend from [71]). (B) 

Time series (top) of the speed of an individual in a group of four Kuhlia Mugil. The cumulative sum (bottom) yields a linear 

relationship over the experiment’s duration, opening the way for a constant speed modelling. 
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Figure 3: Time series of the alignment between two fish (P) for each experiment (left) and corresponding model simulations (right), 

ordered by increasing fish speed. Speed is expressed in fish body lengths per second. The speed and polarization interrelation is 

captured through speed dependency of the model’s coefficient (Text and figure from [37]). 

 
Figure 4: Impact of various neighbourhoods on group polarization and inter-individual distances in a simulated fish-school model. 

Simulations are from Gautrais et al. model [37] with a speed of 0.54 body-length per second and parameters fitted from data on 

groups of 10 fish. We simulated a school of 100 fish for half an hour in a 100 m diameter arena. Initial orientations of fish are 

randomly chosen and their initial positions are randomly distributed within a circle of 30 m diameter in the centre of the arena. (A) 

Global polarization of the school for various definition of the neighbourhood. Blue: all fish are considered within a 4m range. Red: 

only the fish that belongs to the first shell in a Voronoï tessellation are considered. Black: only the seven nearest neighbours are 

considered. (B) Mean inter-individual distance between fish. The drop in global polarization and the large inter-individual distances 

observed when the seven nearest neighbours are considered are due to the split of the school. 

 


