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Abstract 

Collective migration has become a paradigm for emergent behaviour in systems of moving 

and interacting individual units resulting in coherent motion. In biology, these units are cells 

or organisms. Collective cell migration is important in embryonic development, where it 

underlies tissue and organ formation, as well as pathological processes, such as cancer 

invasion and metastasis. In animal groups, collective movements may enhance individuals’ 

decisions, facilitate navigation through complex environments and access to food resources. 

Mathematical models can extract unifying principles behind the diverse manifestations of 

collective migration. In biology, with a few exceptions, collective migration typically occurs 

at a “mesoscopic scale” where the number of units ranges from only a few dozen to a few 

thousands, in contrast to the large systems treated by statistical mechanics. Recent 

developments in multi-scale analysis have allowed to link mesoscopic to micro- and 

macroscopic scales, and for different biological systems. The articles in this theme issue on 

“Multi-scale analysis and modelling of collective migration”, compile a range of 

mathematical modelling ideas and multiscale methods for the analysis of collective 

migration. These approaches (i) uncover new unifying organisation principles of collective 

behaviour, (ii) shed light on the transition from single to collective migration, and (iii) allow 



	

to define similarities and differences of collective behaviour in groups of cells and organisms. 

As common theme, self-organised collective migration is the result of ecological, and 

evolutionary constraints both at the cell and organismic levels. Thereby, the rules governing 

physiological collective behaviours also underlie pathological processes, albeit with different 

upstream inputs and consequences for the group.  

 

1. Introduction 

Collective migration, the coordinated movement of groups of biological units is observed 

across a multitude of scales in living systems (Figure 1). At the cellular scale, it plays an 

essential role in biological development, and the progression of cancer (Friedl and Gilmour, 

2009; Rørth, 2009; Weijer, 2009). In particular, collective migration of cohesive cell groups 

is observed during embryogenesis and is key to the formation of complex tissues and organs. 

Here, multicellular dynamics form the basis of epithelia, vascular and neuronal structures, 

with very different resulting shapes and functions. Similar collective cell behaviour is 

displayed by many invasive cancer types, where detrimental tissue disruption and collective 

metastasis consequently arise (Cheung and Ewald 2016). Collective migration at the 

organismic scale is observed in animal species that typically move over long distances and in 

a periodic manner implying a regular return to the region of departure (Dingle, 1996). The 

Natal sardine run, is without any doubt, one of the most spectacular examples of collective 

migration observed in the wild (van der Lingen et al., 2010). It is the second most important 

animal migration on the planet after that of wildebeest in the Serengeti (Estes, 2014), and it 

takes place every year from the beginning of May to the end of July along the East coast of 

South Africa. Millions of sardines (Sardina pilchardus) leave the cold waters of the Cape 

region to go up north, following the "Benguela" stream which moves up along the coast, to 

join more temperate waters. Schools of sardines can reach sizes of more than 7 km length, 1.5 

km width and 30 meters depth. Collective migrations may be seasonal, but also irruptive and 

linked to the particular context. Thus, in locusts (Schistocerca gregaria), individual insects 

adapt their physiology, morphology and behaviour to gregarious life when environmental 

conditions (rain, abundance of food) become favourable and when their density exceeds the 

threshold of about 65 winged adults per m2 (Kennedy, 1951; Anstey et al., 2009; Topaz et al., 

2012). The adults gather in gigantic swarms with several million insects, which can travel 

thousands of kilometres, fall on the crops and devastate everything on their path. 
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In each of these scenarios, collective movements require a tight behavioural coordination of  

individual units, based on the direct, proximate or indirect, mid- or long-range exchange of 

information between the units (Camazine et al. 2001; Karsenti, 2008; Deutsch et al., 2012; 

Gloag et al., 2013). Information exchange then influences the behaviour of other individuals 

of the group at a later point in time, in support of collective coordination or dispersion. 

Physical and mechanical interactions are also involved in coordinated movements at the 

cellular level in combination with topographic cues (Trepat et al., 2009; Londono et al., 

2014). The fine decoding of the mechanisms governing such collective phenomena has been 

facilitated by the development of new tracking techniques making it possible to reconstruct 

with an increasing level of precision the trajectories of cells and organisms in moving groups 

and over increasingly long periods of time (Oates et al., 2010; Olivier et al., 2010; Dell et al., 

2014). High-precision tracking, combined with mathematical modelling has enabled to 

understand how the non-trivial properties of the collective dynamics emerge at the 

macroscopic scale from the combined interactions between the units at the microscopic level 

(Camazine et al., 2001; Vicsek and Zafeiris, 2012; Méhes and Vicsek, 2014). For a long time, 

conceptually similar research fields evolved independently, i.e., theorizing on how individual 

behaviour influences collective migration (Couzin et al., 2005; Poujade et al., 2007; Petitjean 

et al., 2011; Calovi et al., 2014; 2015) or identifying similar collective phases in migrating 

lymphocyte clusters and fish schools (Calovi et al., 2014; Malet-Engra et al., 2015; Rey-

Barroso, 2018). Recent developments in parameterization, modelling, and multi-scale 

analysis now permit to extract common principles as well as differences between these 

phenomena at cellular and organismic levels. 

The overarching goal of this theme issue is to bring together biologists, physicians, physicists 

and mathematicians in order to meet this challenge. The articles span central facets of 

studying collective migration phenomena both in cellular and behavioural biology. This 

includes methodological advances in data analysis to reconstruct the physical and biological 

interactions between units, integrating strategies to parameterize and quantify collective 

dynamics of cells, tissues and animal groups, and the development of discrete and continuous 

mathematical models of collective migration. It is our intention that this issue will become a 

resource for scientists wishing to learn about the methods and techniques used to investigate 

collective migration in biological systems, to identify the similarities and differences in the 



	

coordination mechanisms at work at the cellular and organismic levels and to shape future 

interdisciplinary research agendas. 

 

2. Methods and key issues 

The general methodology used to study collective migration operates at two levels, to 

monitor and quantify (i) the behaviours of individual units and, in parallel, (ii) the collective 

organisation and behaviours of the group, and then connect both levels at different scales 

(micro: individual, meso: group; and macro: whole population), by means of mathematical 

models (Alt et al., 1997; Cai et al., 2016; Camazine et al., 2001; Chauvière et al., 2010; 

Deutsch and Dormann, 2018; Deutsch et al., 2012, Hatzikirou and Deutsch, 2008; Preziosi 

and Tosin, 2009; Vicsek and Zafeiris, 2012; Weitz et al., 2012). Third, environmental 

heterogeneity guides and modulates the structures, dynamics and forms of collective 

behaviours (Te Boekhorst et al., 2016; Pinter-Wollman et al., 2017). Consequently, the 

experimental work performed under laboratory-controlled conditions has to make it possible 

to identify and quantify the biological and physical interactions between units on the one 

hand and between units and the substrate (i.e., the extracellular matrix in the case of cells, or 

the environment in case of animals), as well as the effects of these interactions on the 

behaviour of the units. To quantify such behaviour, the set of successive units’ positions is 

recorded during a given period of time, usually at some discrete time steps. Where possible, 

observations and measurements on individual and collective scales are also recorded in 

homogeneous environments, to decouple the modulation effects of these environmental 

parameters on individual interactions (Stonko et al., 2015). For studying collective 

movements of animal groups, experimental interventions include, for instance, precisely 

controlling temperature, brightness and humidity of the experimental room (Jost et al., 2007). 

For monitoring cell groups, experimental variables include group size (from cell doublets to 

whole tissues and organisms spanning thousands of cells), chemical signals providing 

directionality (chemokines, cytokines), geometry (2D, 3D), topology (linear, random), 

mechanical properties (stiffness, plasticity) and molecular organisation of the extracellular 

environment (Te Boekhorst et al., 2016). From these experimental data, one can then 

reconstruct the trajectories of all units in a group and calculate different quantities such as 

their instantaneous velocity and acceleration in response to directive cues present in the 

environment, as well as the group cohesion and polarization and, finally, reconstruct and 
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model the functional form of interactions on an individual scale (see in for instance Calovi et 

al., 2018 and Escobedo et al., 2020 in this issue). 

Understanding the non-trivial properties of collective dynamics that emerge at the 

macroscopic scale from interactions between units at the microscopic level requires the 

construction and use of mathematical models. The main function of a model is to predict or 

reproduce experimental results, including how individuals combine the information about the 

behaviour of their neighbours with environmental cues to coordinate their own motion and 

make collective decisions. Precise mathematical modelling (which is definitely not just 

fitting) is recognized as a major and often essential element of all research work in modern 

biology and especially in the research area of collective behaviour in biological systems (see 

for instance Camazine et al., 2001; Sumpter, 2010). A model helps identifying the most 

important processes at play in the system. Thus, a model retains only a few, but highly 

characteristic and decisive components of the real system. The model should consider as few 

parameters as possible so that, if a key component is missing in the model, it should be 

possible to extract particular experimental parameters that would invalidate the model. This 

strongly suggests that the retained minimal parameters jointly comprise and govern the key 

mechanisms underlying collective organisation and decision-making. The qualitative and 

quantitative agreement between the model’s predictions and experimental data contribute to 

our understanding of a system. A model failing at predicting or reproducing qualitatively or 

quantitatively (to some extent) basic experimental results is a sure sign that our understanding 

of the system is very incomplete at best. In an iterative manner, new experiments are also 

commonly designed to try to put a model at fault, in order to test its domain of 

applicability/validity, and to find the minimal set of components that must be integrated to 

improve the model. 

On the other hand, if the mathematical model is able to reproduce in a satisfactory way the 

experimental behaviour of interest, then one can modify the parameters to investigate what 

would happen in an experiment if a biological modification is introduced, prior to performing 

the experiments. Restricted to collective dynamics this theme issue is focusing on, one key 

question one can ask to the model aims at understanding how many changes at the individual 

level one should introduce in order to control the collective behaviour in a desired manner, 

how many leaders are necessary to control a group of uninformed followers, and how 



	

versatile and adjustable should the leadership role be to guarantee a collectively robust 

system. 

Over the past years, a multitude of mathematical models for studying collective migration 

have been developed and are presented in this theme issue. Many of these models are derived 

from physical systems and adapted for the study of collective biological migration. For 

example, the cellular Potts model for interacting cell systems has been derived from a large-Q 

Potts model of interacting spins on a crystalline lattice, and the lattice-gas cellular automaton 

models for migrating cell populations have been adopted from lattice-gas models for 

incompressible fluids (Chopard et al. 2010, Graner and Glazier 1992).  

An important difference between living and non-living systems is the presence of stable 

heterogeneity in biological systems. For example, cells can differ strongly in speed and/or 

adhesivity. Therefore, it is important to quantify dynamic heterogeneity in experiments and in 

models. Only recently, mathematical models for collective dynamics have been developed to 

analyse the effects of heterogeneity (Reher et al. 2017). 

To accommodate the increasing need of complexity and heterogeneity, various modelling and 

simulation platforms for the study of patterning and migration in multicellular systems have 

been introduced (Ghaffarizadeh et al. 2018; Starruß et al. 2014; Swat et al. 2012). It will be 

important to make use of these platforms for the study of collective migration. Moreover, 

they might trigger the development of modelling and simulation platforms also for animal 

populations. 

 

3. Overview of contributed papers 

3. 1 Mathematical models and multi-scale analysis 

After celebrated papers on collective migration of animal groups (Carrillo et al., 2010; 

Cucker and Smale, 2007; D'Orsogna et al., 2006; Vicsek et al., 1995) the number of 

modelling approaches used to describe also the collective dynamics of biological cells has 

expanded considerably. Mathematical models look at collective phenomena from different 

levels: from the microscopic scale, e.g., by lattice-based and/or agent-based models, from the 

mesoscopic scale, e.g., by kinetic models, and from the macroscopic scale by systems of 

partial differential equations. From the mathematical point of view such a burst of models 
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operating at different scales has brought the need of connecting the models highlighting not 

only similarities and differences, but also of clarifying how, in the various models, 

information at the smaller scale can be transferred to the larger scale. This requires the use 

and development of proper multi-scale methods (Lesne et al., 2013). Instead, staying on the 

same modelling level calls for a systematic comparison of different models and for the study 

of how different model terms affect the collective behaviour of the aggregates. 

The most natural approach to describe the coordination of collective movements in groups of 

cells and organisms is the one that describes the behaviour of the single agents using 

individual-based or agent-based models. Such approaches can be split into two classes 

depending on whether a discrete lattice is used to describe space or not. Cellular and lattice-

gas cellular automaton models are examples of on-lattice models (Deutsch and Dormann 

2018). Though on- and off-lattice models operate at the same spatial scale, the fact that space 

is described in different ways might lead to artefacts that need to be quantified. So, it is 

natural to ask whether such models yield similar results and to what extent. This is the aim of 

the contribution by Nava-Sedeño et al (2020). Defining prototypic on- and off-lattice models 

of polar and apolar alignment, they show how to obtain an on-lattice from an off-lattice 

model for collective migration based on velocity alignment. For the purposes mentioned 

above, the macroscopic limits derived from the two model approaches are also compared 

highlighting similarities and differences. 

An important off-lattice model class for the study of collective migration is based on the idea 

of self-propelled particles (SPP), which describe autonomous agents converting energy from 

the environment into directed or persistent motion. Interacting self-propelled particles display 

fascinating collective phenomena. One of the most remarkable examples is the possibility of 

long-range orientational order in two-dimensional SPP models with continuum symmetry. 

The Mermin-Wagner theorem states that equilibrium systems with these characteristics 

cannot exhibit long-range order (Mermin, Wagner, 1966). However, self-propelled particles 

with continuum symmetry and moving in a two-dimensional space, being out of equilibrium 

systems, can develop long-range orientational order, as shown for the first time in the seminal 

work by Vicsek et al. (1995). In this model, velocity alignment of self-propelled agents is key 

for achieving different modes of collective migration. Meanwhile, various types of polar 

(ferromagnetic) and apolar (nematic) alignment have been studied with on- and off-lattice 

models (Bär et al., 2020; Peruani et al., 2006; 2011). In their paper, Bernardi and Scianna 



	

(2020) address the collective dynamics in groups of moving animals with a “deterministic 

SPP approach”. They use a similar modelling approach as in the contribution by Colombi et 

al (2020). The migration of the population is described by a set of first order ordinary 

differential equations for the animal positions which can be formally derived from a second 

order Newtonian approach under the assumption of an over-damped velocity response. 

Extending existing discrete models for collective migration that typically assume constant 

speed of individual migration, the model by Bernardi and Scianna describes animals moving 

with changing speed and orientation, where the individual orientation response results from a 

set of behavioural stimuli. Model simulations capture different types of collective migration 

patterns depending on the particular choice of attractive, repulsive and alignment behavioural 

stimuli. The inclusion of an escape stimulus into the model allows the study of various 

hunting scenarios in a predator-prey system. 

In agent-based and cellular automata models it is straightforward to study the collective 

behaviours of cells or animals emerging from interactions with their spatial neighbours 

(Aoki, 1982; Huth and Wissel, 1992; Couzin et al., 2002; Gautrais et al., 2012; Calovi et al., 

2014). In fact, individual dynamics in such models explicitly take into account the interaction 

of particles located at different points in space. This is not the case in kinetic and continuous, 

e.g. reaction-diffusion models that typically only represent reaction/interaction terms 

evaluated at the same space point. To deal with collective behaviours in partial differential 

equation models that require to take into account point-to-point interactions one can include 

nonlocal operators over the region sensed by the individual that is characterized by a finite 

range and, e.g., a visual angle. The contribution by Chen et al. (2020) summarizes how 

classical reaction-diffusion-transport models need to be transformed in order to take non-

local effects into account. Modelling non-locality usually involves the introduction of 

convolutional operators in space. The focus of this contribution is to study the effect of the 

transport term that is typically in charge of modelling taxis-type migration phenomena. In 

fact, literature has so far mainly focused on the transport aspect, though in principle a similar 

approach could be extended to other model components, to include non-local effects on 

growth and death. Moreover, the contribution also includes a discussion on how macroscopic 

reaction-diffusion-transport models can be obtained from microscopic individual-based 

models. 
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With a similar philosophy, in kinetic models, the tactic and kinetic responses of test 

individuals as a consequence of the non-local sensing of the surrounding environment and of 

the presence and behaviour of other individuals is considered by introducing non-local 

collision (or rather interaction) operators (Eftimie, 2012; Carrillo et al., 2015; Loy, 2020a,b). 

In the kinetic framework, continuous models are recovered by diffusive or hydrodynamic 

limits, introducing respectively a parabolic or hyperbolic scaling of the kinetic model (Arlotti 

et al. 2002; Loy, 2020a). We mention that similar non-local operators should also be present 

in agent-based models when in addition to other organisms, the individual needs to sense the 

environment for other important cues typically chemo-attractants and substrate properties, 

which are usually described by continuous variables. In this theme issue, this feature is for 

instance present in the contribution of Colombi et al. (2020) dealing with the migration of 

neural crest cells forming the posterior lateral line (PLL) of the zebrafish, which is a 

biological model system allowing to study collective cell migration in embryonic 

development and pathological situations. PLL development involves the formation of a 

primordial cell cluster which collectively moves within the animal myoseptum. This process 

depends on the activity of specific diffusive chemicals, which trigger collective chemotactic 

cell migration and patterning. In this case a multi-scale hybrid model is defined that 

integrates a discrete model for the cellular level and a continuous reaction-diffusion model 

for the molecular scale. With respect to previous mathematical models for PLL formation, the 

model developed by Colombi et al. (2020) includes more molecular details, in particular the 

two chemo-attractants FGF10 and SDF1a. Numerical model simulations can reproduce not 

only PLL development of wild-type embryos but also several pathological conditions induced 

by the fragmentation of the primordial cell cluster. 

Another feature that can help classifying models for collective migration is whether they are 

deterministic or stochastic. Certainly, the former is a strong simplifying assumption. 

Stochasticity is present in all behaviours of living organisms and cells. Cell and animal 

collective movement is no exception. Stochasticity might have a strong effect on the overall 

behaviour of the aggregate leading to what is called intrinsic noise at the group level. Theory 

predicts that the strength of intrinsic noise is not a constant but often depends on the 

collective state of the group. For this reason, it is also called a state-dependent noise or a 

multiplicative noise. This effect is discussed in the contribution by Jhawar and Guttal (2020). 

By characterizing the role of stochasticity directly from high-resolution time-series data of 



	

collective dynamics, they argue that the group-level noise may encode important information 

about the underlying processes at the individual scale. 

The difficult step in every model is usually to pass from qualitative to quantitative validation. 

Luckily, the recent development of new tracking techniques allows to provide, in principle, 

large and accurate data sets that can be used for this purpose. Unfortunately, so far data are 

only available for a few systems. In this respect, the contribution by Escobedo et al. (2020) 

presents a general method to extract interaction functions between individuals that are 

required to achieve collective migration. The method is then specifically applied to 

characterize social interactions in two species of shoaling fish, the rummy-nose tetra 

(Hemigrammus rhodostomus) and the zebrafish (Danio rerio), which both  exhibit burst-and-

coast motion. In principle, the method can be extended to other systems when data becomes 

available. 

 

3.2 Collective migration at the cellular level 

The collective migration of cells as a cohesive group depends on both, the interaction 

between neighbouring cells through mechanical cell-cell junctions and/or chemical 

information exchange (Friedl et al., 2012). Intercellular junctions can be weak and transient, 

as in swarming leukocytes or neural crest cells, or very tight and cohesive, as in moving 

epithelia or contracting muscle (Friedl and Mayor, 2017). As result of collective organization 

and dynamics, cells move as sheets, strands, clusters or ducts rather than individually, and use 

similar actin- and myosin-mediated protrusions. In the end, collective polarization, force 

generation and cell decision making eventually result in complex tissue organization. 

 

3.2.1 Embryonic development 

The migration of neural crest cells in the developing embryo has provided a rich resource for 

understanding the balance between adhesive and chemical signal integration between cells 

moving as a loose collective. In their contribution, Shellard and Mayor (2020) provide an 

overview on how moving cells integrate mechanical cell-cell coupling, based on cell-cell 

adhesion provided by cadherin molecules, that is counteracted by cell repulsion mediated by 

ephrins and semaphorins surface receptors (similarly to what is done in the contribution by 

Colombi et al. mentioned above). Accordingly, a balance of adhesion and repulsion is critical 
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in mediating cell alignment and group coordination. They further demonstrate the importance 

of chemotactic cell-to-cell signalling, which directs weakly adherent cells to align with 

neighbours and moving along the joint trail. To recapitulate these principles, they summarize 

how computational modelling using Boïds, which simulates the flocking behaviour of birds 

(Reynolds, 1987), and robotics’ algorithms to simulate the swarm intelligence have 

contributed to identify collective behaviours in the developing embryo as a self-organizing 

system. 

In contrast to the developing embryo, sperm cell migration occurs in a fluid within body 

cavities, without direct adhesive sperm cell interaction. While only a single sperm cell will 

eventually fertilize the egg, the long-distance travelling of sperm cells towards the egg has 

recently been identified as collective dynamics. Schoeller and coworkers (2020) here 

summarize quantitative analyses on multicellular sperm dynamics, including wavelike 

patterns, multicellular coordination and directionality. Besides experimental observations, 

they describe mechanistic models that link the motion of individual sperm cells and their 

flagella to observed collective dynamics. As an emerging principle, multicellular 

coordination largely depends on the synchronization of the sperms’ flagellae. Lastly, they 

discuss the importance of mucus, which provides a viscous extracellular environment for 

sperm propagation and multicellular coordination. Thus, as in multicellular organisms, an 

interplay between intercellular coordination and an integrating extracellular substrate jointly 

coordinate collective motion.  

The development of a tree-like structure of epithelial branches is the central building block of 

several epithelial organs, including lungs, kidneys and the mammary gland. Their function is 

the secretion or absorption of molecules, coupled to a guiding tube-like duct structure for 

transport. Rens and coworkers (2020) summarize the cellular mechanisms of branching 

morphogenesis, which include directed collective cell migration, oriented cell division, cell 

shape changes, cell differentiation and cell competition. Thereby, the moving epithelium 

interacts and is guided by the surrounding mesenchymal tissues, which ultimately dictates 

geometry and function of the resulting organ. To extract the basic mechanism of autonomous 

branching morphogenesis, Rens et al. propose a simple mechanism, which is mediated by 

collective movement in absence of proliferation and cross-talk with the surrounding 

mesenchymal tissue. Using combined cellular Potts and partial differential equation 

modelling, they show that cell-autonomous autocrine secretion of a morphogen (transforming 



	

growth factor-β, TGF-β) inhibits the formation of cell protrusions, which then leads to 

curvature-dependent inhibition of sprouting and duct formation. The outcome is consistent 

with the experimentally observed tissue geometry-dependent determination of the branching 

sites, and it suffices for the formation of self-avoiding branching structures. 

 

3.2.2 Cancer invasion and wound healing  

Collective cell migration also plays a major role in wound repair and cancer invasion. It may 

lead to the formation of cell clusters, i.e. “multicellular structures” that enable cells to better 

respond to chemical and physical cues, when compared with isolated cells. In particular, 

epithelial cells heal wounds via the migration of large sheets of cells with tight intercellular 

connections. Various mathematical models have been suggested that allow mechanistic 

insights which will benefit the clinical understanding of wound healing (Jorgensen and 

Sanders, 2016). Moreover, cancer invasion is a hallmark of cancer progression (Hanahan and 

Weinberg, 2011). Increasing evidence indicates that metastasis is driven by collective cell 

migration, where clusters of metastatic cells invade collectively into the vasculature and 

lymphatic system of cancer patients (Cheung and Ewald, 2016). Meanwhile, mathematical 

models have been established to analyse potential mechanisms of invasion with a focus on 

glioma invasion (Alfonso et al., 2017). 

The contribution by Kim et al. (2020) focuses on glioblastoma multiforme (GBM) which is 

the most aggressive and malignant brain tumour. GBM is characterised by aggressive 

proliferation and cellular infiltration of healthy brain tissue. The primary treatment option is 

surgery followed by chemo-radiation. Unfortunately, recurrence of the tumour is almost sure 

within a rather short time span, the causes of which are largely unknown. It has been 

speculated that surgery-mediated effects could play a major role. Kim et al. (2020) define a 

mathematical model to study the implications of surgery on the dynamics of reactive 

astrocytes in the tumour microenvironment and test the following hypothesis: Astrocyte 

injury from surgery induces a transition of reactive astrocytes into a stem cell-like phenotype 

which secretes the chemokine Cxcl5. This signal in turn promotes GBM proliferation and 

migration through the miR-451-LKB1-AMPK-OCT1-mTor signalling pathway which is 

known to regulate GBM proliferation and invasion. The resulting multi-scale mathematical 

model couples a differential equation model for the signalling pathway, a reaction-diffusion 

model for glucose, oxygen, and the chemokine with a force-based model for the dynamics of 
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tumour cells and astrocytes after surgery. The model shows how variations in glucose 

availability significantly affect the activity of signalling molecules and, in turn, lead to 

critical cell migration. The model also predicts that microsurgery of a primary tumour can 

induce phenotypical changes in reactive astrocytes and stem cell-like astrocytes promoting 

tumour cell proliferation and migration. Moreover, a novel anti-tumour strategy based on 

Cxcl5-targeting drugs was tested with the help of the model. It shows, that the optimal use of 

anti-Cxcl5 drugs may slow down tumour growth and prevent cell invasion and recurrence. 

The contribution of Vishwakarma et al. (2020) studies the dynamics of collective cell 

migration during epithelial wound closure which bears similarities with a jamming-

unjamming transition in dense granular matter (Angelini et al., 2011; Bi et al., 2016). In this 

process, cells known as “leader cells”, migrate at the tips of cellular cohorts and provide 

directional cues to the followers. Interfacial geometry and bulk mechanical activity play an 

important role in regulating leader cell mediated migration and subsequent collective 

migration. As cell density increases, the spatial distribution of velocities and forces becomes 

more homogeneous. Vishwakarma et al. (2020) suggest the four-point susceptibility to 

characterise the dynamic heterogeneity of the cell population. This susceptibility has been 

previously introduced to quantify correlations between relaxation processes at different points 

in non-biological systems. It is shown that varying the susceptibility, by changing cell 

density, alters the number of leader cells at the wound margin. At a low heterogeneity level, 

wound closure is delayed, with decreased persistence, reduced coordination, and disruptive 

leader-follower interactions. Finally, a microscopic characterisation of cell-substrate 

adhesions illustrates how heterogeneity influences orientations of focal adhesions, i.e. 

affecting coordinated cell movements. Together, these results demonstrate the importance of 

the newly-defined four-point susceptibility as readout of dynamic heterogeneity in epithelial 

wound healing. 

 

3.3 Collective migration at the organismic level 

From the point of view of collective migration of animal groups, a previous theme issue of 

the Philosophical Transactions has already been devoted to behavioural ecology and 

movement ecology (Westley et al., 2018). For this reason this theme issue is not intended to 

cover the whole range of collective migration phenomena observed in groups of organisms. 



	

In fact, the examples discussed here concern more specifically the experimental analyses of 

behavioural interactions that take place at the individual scale and their impact on collective 

behaviour. In this respect, today, behavioural biologists have access to large volumes of data 

that make it possible to precisely measure social interactions involved in the coordination of 

collective movements in animal groups thanks to methods such as those presented by 

Escobedo et al. (2020) in their article. Therefore, by systematically applying such methods it 

becomes possible to build a map of the different forms of social interactions used by different 

species to coordinate their movements when travelling in groups, according to their mode of 

propulsion, the shape of their body, their sensory and cognitive modalities and their living 

environment. Establishing such a map could bring important insights about the impact of 

these parameters on the various forms of social interactions, and in particular the effect of an 

explicit alignment on the direction of movement of neighbours as observed in the rummy-

nose tetra (Hemigrammus rhodostomus) (Calovi et al., 2018) or a simple combination of 

long-range attraction and short-range repulsion as observed in the mosquitofish (Gambusia 

holbrooki) (Herbert-Read et al., 2011). This information is crucial to understand the evolution 

of coordination mechanisms in moving animal groups. 

Social interactions between organisms do not only allow the coordination of individuals’ 

actions, but also they endow a group with emergent properties such as the ability to 

efficiently escape predator attacks and navigate up noisy and weak thermal or resource 

gradients, even if no individual is capable of estimating the local gradient. The animal group 

as a whole thus functions as an integrated self-organizing sensor network which significantly 

increases the range of effective perception of individuals (Couzin, 2007). It is also well-

known that collective foraging based on indirect interactions in social or pre-social insects or 

based on long-range direct interactions in vertebrates improve the detection and exploitation 

of food sources. In their article, Ding et al. (2020) investigate the foraging strategies in 

Caenorhabditis elegans, a 1mm long nematode which has very limited sensory modalities 

and very short-range social interactions. By combining a computational model and 

experiments carried out on two strains of C. elegans, one social and the other solitary, they 

show that very simple social interactions such as the detection by an individual of a nearby 

worm allows the social phenotype to detect more efficiently patchy food sources in the 

environment. 
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These results suggest that the amount of social information needed by each individual to 

ensure the coordination of collective actions is limited. Still, this question remains widely 

debated. In the case of starlings (Sturnus vulgaris), previous studies have suggested that each 

bird within a flock interacts on average with a limited number of neighbours (typically seven) 

rather than with all neighbours within a fixed metric distance (Ballerini et al., 2008). 

However, several recent studies suggest that in fish, each individual in a school would collect 

only a limited amount of information on its environment thus avoiding cognitive saturation 

(Hinz and de Polavieja, 2017; Lei et al., 2020; Rahmani et al., 2020). In animal groups, it is 

particularly difficult to design experiments to investigate such complex issues. In this respect 

the results reported in the article by Jayles et al. (2020) provide some elements to answer 

these questions. Using an artificial sensory device that filters out and adapts the amount of 

information delivered in real time to the participants in simple segregation task experiments 

with human groups, it is shown that the amount of information collected at the individual 

scale deeply affects the collective separation dynamics. However, they also show that each 

individual must only acquire a minimum amount of information on their first seven nearest 

neighbours to get an optimal level of segregation. In fact, the results show that the acquisition 

of additional information by individuals does not improve the collective performance of the 

group. 

 

4. A path forward: integration of the concepts and methods in future 

research 

Collective migration phenomena observed in cells and animal groups share many similarities 

and their comparative study enriches both cellular and behavioural biology. It is therefore not 

surprising that not only the questions addressed, but also the concepts and tools used to study 

and understand these phenomena, are rather similar in these research fields. 

Thus, in addition to the common use of tracking, trajectory analysis and modelling 

techniques, certain concepts and processes stemming from the analysis of collective 

behaviour in social insects such as stigmergy have been successfully applied to the 

description of the mechanisms underlying collective cell migration. Stigmergy is a process by 

which social insects such as ants or termites coordinate their foraging and nest-building 



	

activities through indirect interactions by depositing pheromone trails on the ground or 

impregnating building materials with chemical compounds (Grassé, 1959; Khuong et al., 

2016). These chemical traces constitute sources of information and stimulation that, once 

perceived by other insects, trigger the execution of specific behaviours leading to the self-

organization of the activities in a colony (Theraulaz and Bonabeau, 1999). It has been shown 

that the self-organised multicellular behaviours that occur during the collective migration of 

the social bacterium Myxococcus xanthus over a surface-solidified nutrient are coordinated, at 

least in part, through stigmergic processes (Gloag et al., 2016). Indeed, the components of the 

extracellular matrix and the furrows produced by vanguard cells facilitate and guide 

subsequent cellular movements. This process leads to the formation of trails that physically 

confine cells and facilitate their motility which further reinforce and deepen the furrows, 

leading to the continued maintenance of the trail network. A similar mechanism has also been 

described in Pseudomonas aeruginosa that coordinates the expansion of its interstitial 

biofilms through the creation and remodelling of an interconnected network within a 

semisolid substratum (Gloag et al., 2013). Thus, stigmergy appears as an important self-

organizing principle in biological systems. The study of collective cell migration could 

therefore benefit from the numerous experimental and modelling studies that have been 

carried out on stigmergic processes in social insects over the past thirty years (Deneubourg et 

al., 1989; Calenbuhr. and Deneubourg, 1992; Calenbuhr et al., 1992; Nicolis and 

Deneubourg, 1999; Theraulaz et al., 2002; Detrain and Deneubourg, 2006). 

The last decade has also seen further improvement in our comprehension of coordination 

processes and the way information pervades biological systems during collective motion 

which has led to the development of new common research themes. One concept that has 

united several works in the recent years is that of criticality (Bak et al., 1987; Muñoz, 2018). 

An increasing number of works has indeed shown that biological systems such as collectives 

of cells, swarms of insects, flocks of birds and herds of sheep behave as though they are near 

the “critical point” of a phase transition, like correlated spins in a magnet on the verge of 

ordering (Begg, 2004; Mora and Bialek, 2011; Bialek et al., 2014; Ginelli et al., 2015; De 

Palo et al., 2017). In flocks of starlings, for example, one can observe “scale-free 

correlations”, which occur on all possible length scales in the flock (Cavagna et al., 2010). 

This hallmark of criticality is characterized by the fact that the velocity fluctuations of two 

distant birds mutually influence each other. The same property has been recently discovered 

in the self-organized aggregation of the social amoeba Dictyostelium discoideum in response 
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to starvation (De Palo et al., 2017). In this species the local coupling between cells via cAMP 

secretion is tuned to a critical value, resulting in emergent long-range communication 

between cells that span the whole group independently of its size. Here, criticality brings 

some adaptive advantage allowing cells to act as a single, coherent unit and to make informed 

decisions to achieve optimal aggregate sizes for the most effective spore dispersal. Criticality 

also endows a group of cells or organisms with an extreme sensitivity to changes in the 

behaviour of a small number of individuals within the group (Attanasi et al., 2014). Thanks to 

the social interactions, the reaction of these individuals can spread to all the other group 

members, allowing them to react more efficiently to external disturbances such as a predator 

attack. In sheep it has been shown that the intensity with which individuals imitate each other 

(i.e. the strength of the coupling between sheep) leads a flock to be in a critical state, while 

optimizing two conflicting needs at the individual scale: the need to explore the maximum 

area of space to avoid inter-individual competition when foraging and the need to keep 

contact with the other group members to ensure cohesion and protection in case of danger 

(Ginelli et al., 2015). These few examples suggest that natural selection operates not only on 

the particular form of social interactions but also on their intensity so that groups of cells or 

organisms have collective adaptive capabilities. Future work should focus on confirming 

these collective properties in a larger number of biological systems. 

Selection processes also drive cancer progression and support cancer cell heterogeneity, a 

hallmark of cancer. So far, cancer evolution and collective migration have been studied 

separately (Michor, 2004). It will be interesting to include mutations and selection in 

mathematical models for collective cell migration that will shed light on the evolution of 

collective cancer cell migration. 

Originally, the study of collective migration has focused on the implications of inter-

individual interactions. More recently, the importance of the non-cellular environment has 

been studied in cellular systems. In a recent paper (Ilina et al., 2020), the physical geometry 

and available space (confinement) have been identified as key regulators forcing cells 

together, irrespective of their cell-cell adhesion properties. Whereas highly adhesive 

epithelial cells retain strict cell-cell interactions and migrate with strong neighbour 

correlation (like a solid-like state), decreasing cell-cell adhesion provides increasing degrees 

of freedom with diminishing intercellular coordination until near-complete independence of 



	

individual movements is reached in the cell group (“active fluid”). This transition reflects a 

fundamental building principle to physically control unjamming transitions and cancer cell 

invasion irrespective of the composition and stability of cell-cell junctions. The new study 

highlights the importance of the non-cellular microenvironment while previous work has 

focused on the role of cell-cell interactions. Beyond cancer cell invasion, jamming-

unjamming transitions are likely to shed light on the mechanisms of multicellular cooperation 

and collective behaviours in a range of cell models as well as animal migration and 

coordination such as those described in ants and sheep (Dussutour, 2004; Gravish et al., 

2015; Zuriguel et al., 2016). 

 

5. Conclusions  

One of the key properties of life is that it can switch between gas-, fluid-, and solid-like 

states: cells or organisms move independently (gas-state), form lose connections and migrate 

collectively (fluid-state), or aggregate into immobile sheets and clusters (solid or jammed 

state). In the devastating example of malignant tumours, cells switch from a solid-like state to 

an invasive fluid or gas state, ultimately leading to deadly metastases. What are the decision-

making mechanisms that underlie these transitions? Since the celebrated paper by Vicsek et 

al. (1995) who suggested alignment interaction as a simple organisation principle of 

collective migration, we have seen major progress in the study of collective phenomena. This 

theme issue highlights important developments: Quantitative mathematical models and new 

multi-scale methods for their analysis have been introduced and new organisation principles 

have been suggested. 

A general tendency is that models become more and more individualized and heterogeneity 

and variability is considered more and more in various model extensions. Though some 

models presented in this theme issue take into account the variability of response to 

environmental cues, very little has been done in coupling the individual behaviour to the 

internal mechanisms determining that behaviour and the related stochastic response. In the 

context of cell migration, emerging questions focus on how the expression of a protein and 

the triggering of certain pathways determine the collective behaviour and, in particular, 

discriminate between an individual and a social behaviour, between a leading role and a 

follower role. Studying such questions would require nesting a microscopic model into an 
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individual-based model with the ability to include the possibility that not all individuals may 

respond in the same way to the same environmental cues introducing further stochastic 

aspects.  

The presence of anomalous diffusion behaviour at the single cell level with transition from 

random walks to Levi's walks (Klages, 2008) and their social control by the group is also an 

interesting subject that deserves to be addressed in the future. 

In this respect, also in view of applications to crowd and traffic management, what has been 

learned by studying the behaviour of cell and animal groups can be transferred to human 

groups in particular by using the same research methods (see for instance Moussaïd et al., 

2010 and Shiwakoti et al., 2011).  

Looking at animals and cells from a modelling perspective highlights similarities but also 

important differences. Better knowledge about collective decision-making in cell populations 

is highly relevant for medical applications. New cancer therapy ideas will benefit from new 

insights into the control of collective migration that are also relevant for optimising wound 

healing and regeneration since in these systems the controlled switching between single and 

collective migration is a key ingredient. New insights into collective behaviour will also be 

important for tissue engineering and optimization of organoïd systems, and for explaining 

collective polarity, cell sorting and lumen formation. To this end, better knowledge of both 

single-cell behaviours and the resulting effects on the organism will identify currently 

unappreciated types of indirect and long-range information exchange beyond juxtacrine 

cellular mechano-coupling which underlie collective coordination, including deposition of 

information in tissues (chemical memory), swarm intelligence, and jamming transitions 

(Angelini et al. (2011), Bi et al. (2016)).  

5. References  

Alt, W., Deutsch. A. and Dunn, G. (eds.)  (1997). Dynamics of cell and tissue motion. 

Springer, Boston 

Angelini, T.E., Hannezo, E., Trepat, X., Marquez, M., Fredberg, J.J. and Weitz D.A. (2011), 
Glass-like dynamics of collective cell migration, Proceedings of the National Aademy of 
Science U.S.A., 108: 4714-4719. 
 



	

Anstey, M.L., Rogers, S.M., Ott, S.R., Burrows, M. and Simpson, S.J. (2009). Serotonin 

mediates behavioral gregarization underlying swarm formation in desert locusts. Science, 323 

(5914): 627-630. 

Aoki, I. (1982). A simulation study on the schooling mechanism in fish. Bulletin of the 

Japanese Society for the Science of Fish, 48: 1081-1088. 

Arlotti, L., Bellomo, N. and de Angelis, E. (2002). Generalized kinetic (Boltzmann) models: 

mathematical structures and applications. Mathematical Models and Methods in Applied 

Sciences 12 (4): 567-591. 

Attanasi, A., Cavagna, A., Del Castello, L., Giardina, I., Melillo, S., Parisi, L., Pohl, O., 

Rossaro, B., Shen, E., Silvestri, E. & Viale, M. (2014). Finite-Size Scaling as a Way to Probe 

Near-Criticality in Natural Swarms. Physical Review Letters, 113 : 238102. 

Ballerini, M., Cabibbo, N., Candelier, R., Cavagna, A., Cisbani, E., Giardina, I., Lecomte, V., 

Orlandi, A., Parisi, G., Procaccini, A., Viale, M., Zdravkovic., Z. (2008). Interaction ruling 

animal collective behavior depends on topological rather than metric distance: Evidence from 

a field study. Proceedings of The National Academy of Sciences USA, 105(4): 1232-1237. 

Bak, P., Tang, C. and Wiesenfeld, K. (1987). Self-organized criticality: an explanation of the 

1/f noise. Physical Review Letters, 59(4): 381-384. 

Bär, M., Grossmann, R., Heidenreich, S. and Peruani, F. (2020). Self-propelled rods: Insights 

and perspectives for active matter. Annual Review of Condensed Matter Physics, 11: 441–66. 

Beggs, J.M. (2004). The criticality hypothesis: how local cortical networks might optimize 

information processing. Philosophical Transactions of the Royal Society A, 366(1864): 329-

343. 

Bernardi, S. and Scianna, M. (2020). An agent-based approach for modelling collective 

dynamics in animal groups distinguishing individual speed and orientation. Philosophical 

Transactions of the Royal Society of London - Serie B. Special issue: Multiscale Analysis and 

Modelling of Collective  Migration in Biological Systems. 

Bhaskar, D., Manhart, A., Milzman, J., Nardini, J.T., Storey, K.M., Topaz, C.M. and 

Ziegelmeier, L. (2019). Analyzing collective motion with machine learning and topology. 

Chaos, 29: 123125. 



21	
	

Bi, D., Yang, X., Marchetti, M.C. and Manning M.L. (2016). Motility-Driven Glass and 

Jamming Transitions in Biological Tissues. Physical Review X, 6: 021011	

Bialek, W., Cavagna, A., Giardina, I., Mora, T., Pohl, O., Silvestri, E., Viale, M. and 

Walczak, A.M. (2014). Social interactions dominate speed control in poising natural flocks 

near criticality. Proceedings of the National Academy of Sciences USA, 111: 7212-7217. 

Cai, D., Dai, W., Prasad, M., Luo, J. Gov, N.S. and Montell, D.J. (2016). Modeling and 

analysis of collective cell migration in an in vivo three-dimensional environment. 

Proceedings of The National Academy of Sciences USA, 113(15): E2134-E2141. 

Calenbuhr, V. and Deneubourg, J.L. (1992). A model for osmotropotactic orientation (I) 

Journal of Theoretical Biology, 158(3) : 359-393. 

Calenbuhr, V., Chretien, L., Deneubourg, J.L. and Detrain, C. (1992). A model for 

osmotropotactic orientation (II) Journal of Theoretical Biology, 158(3): 395-407. 

Calovi, D.S., Litchinko, A., Lecheval, V., Lopez, U., Pérez Escudero, A., Chaté, H., Sire, C. 

and Theraulaz, G. (2018). Disentangling and modeling interactions in fish with burst and 

coast swimming reveal distinct alignment and attraction behaviors. Plos Computational 

Biology, 14: e1005933. 

Calovi, D.S., Lopez, U., Ngo, S., Sire, C., Chaté, H. and Theraulaz, G. (2014). Swarming, 

Schooling, Milling: Phase diagram of a data-driven fish school model. New Journal of 

Physics, 16: 015026 

Calovi, D.S., Lopez, U., Schuhmacher, P., Sire, C., Chaté, H. and Theraulaz, G. (2015). 

Collective response to perturbations in a data-driven fish school model. Journal of the Royal 

Society Interface, 12: 20141362. 

Camazine, S., Deneubourg, J.L., Franks, N., Sneyd, J., Theraulaz, G. and Bonabeau, E. 

(2001). Self-Organization in Biological Systems. Princeton University Press, Princeton. 

Cavagna, A., Cimarelli, A., Giardina, I., Parisi, G., Santagati, R., Stefanini, F. and Viale, M. 

(2010). Scale-free correlations in starling flocks. Proceedings of the National Academy of 

Sciences USA, 107(26):11865–11870. 



	

Carrillo, J.A., Fornasier, M., Toscani, G., and Vecil, F. (2010). Particle, kinetic, and 

hydrodynamic models of swarming. In Mathematical modeling of collective behavior in 

socio-economic and life sciences (eds. G. Naldi, L. Pareschi & G. Toscani), pages 297–336. 

Carrillo, J., Homann, F., and Eftimie, R. (2015). Non-local kinetic and macroscopic models 

for self-organised animal aggregations. Kinetic & Related Models, 8: 413-441. 

Chauvière, A., Preziosi, L. and Verdier, C. (eds.) (2010). Cell mechanics: from single scale-

based models to multiscale modeling,  Chapman and Hall/CRC, London.	 

Chialvo, D.R. (2010). Emergent complex neural dynamics. Nature Physics, 6(10): 744-750.	 

Chopard, B., Ouared, R., Deutsch, A., Hatzikirou, H., and Wolf-Gladrow, D. (2010). 

Lattice-gas cellular automaton models for biology: From fluids to cells 

Acta Biotheoretica., 58: 329-340. 

Colombi, A., Scianna, M. and Luigi Preziosi (2020). Collective migration and patterning 

during early development of zebrafish posterior lateral line. Philosophical Transactions of the 

Royal Society of London - Serie B. Special issue: Multiscale Analysis and Modelling of 

Collective  Migration in Biological Systems. 

Couzin, I. (2007). Collective minds. Nature, 445(7129): 715-715.	 

Couzin, I.D., Krause, J., James, R., Ruxton, G.D. and Franks, N.R. (2002). Collective 

memory and spatial sorting in animal groups. Journal of Theoretical Biology, 218: 1-11. 

Couzin, I.D., Krause, J., Franks, N.R. and Levin, S.A. (2005). Effective leadership and 

decision-making in animal groups on the move. Nature, 433(7025): 513-516. 

Cucker, F. and Smale, S. (2007). Emergent behavior in flocks. IEEE Transactions on 

automatic control, 52(5): 852–862. 

Cucker, F. and Smale, S. (2007). On the mathematics of emergence. Japanese Journal of 

Mathematics, 2(1):197–227. 

Débarre, D., Bourgine, P., Santos, A., Peyriéras, N. and Beaurepaire, E. (2010). Cell lineage 

reconstruction of early zebrafish embryos using label-free nonlinear microscopy. Science, 

329(5994): 967-971. 



23	
	

Dell, A.I., Bender, J.A., Branson, K., Couzin, I.D., de Polavieja, G.G., Noldus, L.P.J J., 

Perez-Escudero, A., Perona, P., Straw, A.D., Wikelski, M. and Brose, U. (2014). Automated 

image-based tracking and its application in ecology. Trends in Ecology Evolution, 29(7): 417-

428. 

Deneubourg, J.L., Goss, S., Franks, N.R. and Pasteels, J.M. (1989). The blind leading the 

blind: modeling chemically mediated army ant raid patterns. Journal of Insect Behavior 2(5): 

719-725. 

De Palo, G., Yi, D. and Endres, R.G. (2017). A critical-like collective state leads to long-

range cell communication in Dictyostelium discoideum aggregation. PLoS Biology, 15(4): 

e1002602. 

Detrain, C. and Deneubourg, J.L. (2006). Self-organized structures in a superorganism: do 

ants “behave” like molecules? Physics of life Reviews 3(3): 162-187. 

Deutsch, A. and Dormann, S. (2018). Cellular automaton modeling of biological pattern 

formation: characterization, examples, and analysis. Birkhauser, Basel. 

Deutsch, A., Theraulaz, G., and Vicsek, T. (2012). Collective motion in biological systems. 

Interface Focus 2(6): 689–692. 

Ding, S.S., Muhle, L.S., Brown, A.E.X., Schumacher, L.J. and Endres, R.G. (2020). 

Comparison of solitary and collective foraging strategies of Caenorhabditis elegans in patchy 

food distributions. Philosophical Transactions of the Royal Society of London - Serie B. 

Special issue: Multiscale Analysis and Modelling of Collective  Migration in Biological 

Systems. 

Dingle, H. (1996). Migration: The Biology of Life on the Move. Oxford University Press, 

New York. 

Dieterich, P., Klages, R., Preuss, R. and Schwab, A. (2008). Anomalous dynamics of cell 

migration, Proceedings of the National Acadmy of Science USA, 105: 459-463.  

D’Orsogna, M. R., Chuang, Y.-L., Bertozzi, A.L. and Chayes, L S. (2006). Self-propelled 

particles with soft-core interactions: patterns, stability, and collapse. Physical Review Letters, 

96(10):104302. 



	

Dussutour, A., Fourcassié, V., Helbing, D. and Deneubourg, J.L. (2004). Optimal traffic 

organization in ants under crowded conditions. Nature, 428: 70-73 

Eftimie, R. (2012). Hyperbolic and kinetic models for self-organized biological aggregations 

and movement: a brief review. Journal of Mathematical Biology, 65: 35-75. 

Escobedo, R., Lecheval, V., Papaspyros, V., Bonnet, F., Mondada, F., Sire, C.. and 

Theraulaz, G. (2020). A data-driven method for reconstructing and modelling social 

interactions in animal groups. Philosophical Transactions of the Royal Society of London - 

Serie B. Special issue: Multiscale Analysis and Modelling of Collective  Migration in 

Biological Systems. 

Estes, R. (2014). The Gnu's world: Serengeti wildebeest ecology and life history. Berkeley, 

CA: University of California Press. 

Fisher, H.S., Giomi, L., Hoekstra, H.E. and Mahadevan, L. (2014). The dynamics of sperm 

cooperation in a competitive environment. Proceedings of the Royal Society of London Series 

B-Biological Sciences, 281: 20140296. 

Friedl, P. and Gilmour, D. (2009). Collective cell migration in morphogenesis, regeneration 

and cancer. Nature Reviews Molecular Cell Biology, 10: 445–457. 

Friedl, P., Locker, J., Sahai, E. and Segall, J.E. (2012). Classifying collective cancer cell 

invasion. Nature Cell Biology 14: 777-783.  

Friedl, P. and Mayor R. (2017). Tuning Collective Cell Migration by Cell-Cell Junction Regulation. 

Cold Spring Harbor Perspectives in Biology, 9: a029199.  

Ghaffarizadeh, A., Heiland, R., Friedman, S. H., Mumenthaler, S. M. and Macklin, P. (2018). 

PhysiCell: an Open Source Physics-Based Cell Simulator for 3-D Multicellular Systems. 

PLoS Computational Biology ,14 (2): e1005991 

Gautrais, J., Ginelli, F., Fournier, R., Blanco, S., Soria, M., Chaté, H. and Theraulaz, G. 

(2012). Deciphering interactions in moving animal groups. Plos Computational Biology, 8: 

e1002678. 

Ginelli, F, Peruani, F., Pillot, M.H., Chaté, H., Theraulaz, G. and Bon, R. (2015). Intermittent 

collective dynamics emerge from conflicting imperatives in sheep herds. Proceedings of The 

National Academy of Sciences USA, 112: 12729-12734. 



25	
	

Gloag, E.S., Javed, M.A., Wang, H., Gee, M.L., Wade, S.A., Turnbull, L. and Whitchurch, 

C.B. (2013). Stigmergy: A key driver of self-organization in bacterial biofilms. 

Communicative & Integrative Biology, 6: e27331. 

Gloag, E.S., Turnbull, L., Javed, M.A., Wang, H.B., Gee, M.L., Wade, S.A. and Whitchurch, 

C.B., (2016). Stigmergy co-ordinates multicellular collective behaviours during Myxococcus 

xanthus surface migration. Scientific Reports, 6: 26005.	

Graner, F. and Glazier, J. A. (1992). Simulation of biological cell sorting using a two-

dimensional extended Potts model. Physical Review Letters, 69(13):	2013-2016	

Grassé, P.P. (1959). La reconstruction du nid et les coordinations interindividuelles chez 

Bellicositermes natalensis et Cubitermes sp. La théorie de la stigmergie: essai  

d'interprétation du comportement des termites constructeurs. Insectes Sociaux, 6: 41–83. 

Gravish, N., Gold, G., Zangwill, A., Goodismanb, M.A.D. and Goldman, D.I. (2015). Glass-

like dynamics in confined and congested ant traffic. Soft Matter, 11: 6552  

Hatzikirou, H. and Deutsch, A. (2008).  Cellular automata as microscopic models of cell 

migration in heterogeneous environments. Current Topics in Developmental Biology, 81: 

401-434. 

Herbert-Read, J.E., Perna, A., Mann, R.P., Schaerf, T.M., Sumpter, D.J.T. and Ward, A.J.W. 

(2011). Inferring the rules of interaction of shoaling fish. Proceedings of the National 

Academy of Sciences, 108(46): 18726-18731. 

Hinz, R.C. and de Polavieja, G.G. (2017). Ontogeny of collective behavior reveals a simple 

attraction rule. Proceedings of The National Academy of Sciences USA, 114 (9): 2295-2300. 

Huth, A. and Wissel, C. (1992). The simulation of the movement of fish schools. Journal of 

Theoretical Biology, 156: 365-385. 

Ilina, O., Gritsenko, P. G., Syga, S.,  Lippoldt, J., La Porta, C. A. M., Chepizhko, O., Grosser, 

S.,  Vullings, M.,  Bakker, G.-J., Starruß, J., Bult, P., Zapperi,S.,  Käs, J. A., Deutsch,A. and 

Friedl, P. (2020). Cell-cell adhesion and 3D matrix confinement determine jamming 

transitions in breast cancer invasion. Nature Cell Biology (in press). 



	

Jayles, B., Escobedo, R., Pasqua, R., Zanon, C., Blanchet, A., Roy, M., Tredan, G., 

Theraulaz, G. and Sire, C. (2020). Collective information processing in human phase 

separation. Philosophical Transactions of the Royal Society of London - Serie B. Special 

issue: Multiscale Analysis and Modelling of Collective  Migration in Biological Systems. 

Jhawar, J. and Guttal, V. (2020). Noise-inducedEffects in Collective Dynamics and Inferring 

Local Interactions from Data. Philosophical Transactions of the Royal Society of London - 

Serie B. Special issue: Multiscale Analysis and Modelling of Collective  Migration in 

Biological Systems. 

Jost, C., Verret, J., Casellas, E., Gautrais, J., Challet, M., Lluc, J., Blanco, S., Clifton, MJ., 

Theraulaz, G. (2007). The interplay between a self-organized process and an environmental 

template: corpse clustering under the influence of air currents in ants. Journal of the Royal 

Society Interface, 4: 107-116 

Karsenti, E. (2008). Self-organization in cell biology: a brief history. Nature Reviews 

Molecular Cell Biology, 9: 255-262 

Kennedy, J.S. (1951). The Migration of the Desert Locust (Schistocerca gregaria Forsk.). I. 

The Behaviour of Swarms. II. A Theory of Long-Range Migrations. Philosophical 

Transactions of the Royal Society of London. Series B, 235: 163-290. 

Khuong, A., Gautrais, J., Perna, A., Sbaï, C., Combe, M., Kuntz, P., Jost, C. and Theraulaz, 

G. (2016). Stigmergic construction and topochemical information shape ant nest architecture. 

Proceedings of The National Academy of Sciences USA, 113: 1303–1308. 

Kim, Y., Lee, D and Lawler, S. (2020). Collective invasion of glioma cells through OCT1 

signaling and interaction with reactive astrocytes after surgery. Philosophical Transactions of 

the Royal Society of London - Serie B. Special issue: Multiscale Analysis and Modelling of 

Collective  Migration in Biological Systems. 

Lei, L., Escobedo, R., Sire, C., Theraulaz, G. 2020. Computational and robotic modeling 

reveal parsimonious combinations of interactions between individuals in schooling fish. Plos 

Computational Biology, 16: e1007194. 



27	
	

Lesne, A (2013). Multiscale analysis of biological systems. Acta Biotheoretica; 61: 3-19 

Londono, C., Loureiro, M.J., Slater, B., Lücker, P.B., Soleas, J., Sathananthan, S., Aitchison, 

J.S., Kabla, A.J. and McGuigan, A.P. (2014). Nonautonomous contact guidance signaling 

during collective cell migration. Proceedings of The National Academy of Sciences USA, 111: 

1807–1812. 

Loy, N. and Preziosi, L. (2020). Kinetic models with non-local sensing determining cell 

polarization and speed according to independent cues. Journal of Mathematical Biology, 80: 

373-421. 

Loy, N. and Preziosi, L. (2020). Modelling physical limits of migration by a kinetic model 

with non-local sensing. Journal of Mathematical Biology, https://doi.org/10.1007/s00285-

020-01479-w. 

Malet-Engra, G., Yu, W., Oldani, A., Rey-Barroso, J., Gov, N.S., Scita, G. and Dupré, L. 

(2015). Collective cell motility promotes chemotactic prowess and resistance to 

chemorepulsion. Current Biology, 25: 242–250. 

Méhes, E. and Vicsek, T. (2014). Collective motion of cells: from experiments to models. 

Integrative biology, 6 (9): 831-854. 

Mermin, N. D. and Wagner, H. (1966). Absence of ferromagnetism or antiferromagnetism in 

one- or two-dimensional isotropic Heisenberg models. Physical Review Letters 17, 1307. 

Michor, F., Iwasa, Y. and Nowak, M.A. (2004). Dynamics of cancer progression. Nature 

Reviews Cancer, 4: 197-205. 

Mora, M.T. and Bialek, W. (2011). Are Biological Systems Poised at Criticality? Journal of 

Statistical Physics, 144: 268-302. 

Moussaïd, M., Garnier, S., Theraulaz, G. & Helbing, D. (2009). Collective information 

processing in swarms, flocks and crowds. Topics in Cognitive Science, 1: 469–497. 

Muñoz, M.A. (2018). Colloquium: Criticality and dynamical scaling in living systems. 

Review of Modern Physics, 90: 031001. 

Nava-Sedeño, J.M., Voß-Böhme, A., Hatzikirou, H., Deutsch, A. and Peruani, F. (2020). 

Modeling collective cell motion: are on- and off-lattice models equivalent? Philosophical 



	

Transactions of the Royal Society of London - Serie B. Special issue: Multiscale Analysis and 

Modelling of Collective  Migration in Biological Systems. 

Nicolis, S.C. and Deneubourg, J.L. (1999). Emerging patterns and food recruitment in ants: 

an analytical study. Journal of Theoretical Biology, 198(4): 575-592. 

Oates, A.C., Gorfinkiel, N., Gonzalez-Gaitan, M. and Heisenberg, C.P. (2010). Quantitative 

approaches in developmental biology. Nature Reviews Genetics, 10(8): 517-530. 

Olivier, N., Luengo-Oroz, M.A., Duloquin, L., Faure, E., Savy, T., Veilleux, I., Solinas, X., 

Romero-Ferrero, F., Bergomi, M.G., Hinz, R.C., Heras, F.J.H. and de Polavieja, G.G. (2019). 

Idtracker. ai: tracking all individuals in small or large collectives of unmarked animals. 

Nature Methods, 16 (2): 179-182. 

Peruani, F., Klauss, T., Deutsch, A. and Voß-Böhme, A. (2011). Traffic jams, gliders, and 

bands in the quest for collective motion. Physical Review Letters 106:128101. 

Peruani, F., Deutsch, A. and Bär, M. (2006). Nonequilibrium clustering of self-propelled 

rods. Physical Review E, 74: 030904. 

Petitjean, L., Reffay, M., Grasland-Mongrain, E., Poujade, M., Ladoux, B., Buguin, A. and 

Silberzan, P. (2011). Velocity fields in a collectively migrating epithelium. Biophysical 

Journal, 98: 1790–1800. 

Pinter-Wollman N., Fiore S.M. & Theraulaz G. (2017). The impact of architecture on 

collective behavior. Nature Ecology and Evolution, 1: 0111. 

Poujade, M., Grasland-Mongrain, E., Hertzog, A., Jouanneau, J., Chavrier, P., Ladoux, B., 

Buguin, A. and Silberzan, P. (2007). Collective migration of an épithélial monolayer in 

response to a model wound. Proceedings of The National Academy of Sciences USA, 104: 

15988-15993. 

Preziosi, L. and Tosin, A. (2009). Multiphase and multiscale trends in cancer modelling,  

Mathematical Modelling of Natural Phenomena 4 (3), 1-11 

Rahmani, P., Peruani, F. and Romanczuk, P. (2020). Flocking in complex environments-

Attention trade-offs in collective information processing. Plos Computational Biology, 16(4): 

e1007697. 



29	
	

Reher, D., Klink, B., Deutsch, A. and Voß-Böhme, A. (2017). Cell adhesion heterogeneity 

reinforces tumour cell dissemination: novel insights from a mathematical model. Biology 

Direct, 12(1): 18 

Rens, E.G., Zeegers, M.T., Rabbers, I., Szabó, A., Merks, R.M.H. (2020). Autocrine 

inhibition of cell motility can drive epithelial branching morphogenesis in absence of growth. 

Philosophical Transactions of the Royal Society of London - Serie B. Special issue: 

Multiscale Analysis and Modelling of Collective  Migration in Biological Systems. 	

Rey-Barroso, J., Calovi, D.S., Combe, M., Moreau, M., Wang, X., Sire, C., Theraulaz, G. & 

Dupré, L. 2018. Switching between individual and collective motility in lymphocytes is 

controlled by cell-matrix adhesion and inter-cellular interactions. Scientific Reports, 8: 5800. 

Reynolds, C.W. (1987). Flocks, herds and schools: a distributed behavioural model. In 

SIGGRAPH’87: Proceedings of the 14th Annual Conference on Computer Graphics and 

Interactive Techniques, pp.: 25–34. ACM Press: New York. 

Rørth, P. (2009). Collective Cell Migration. Annual Review of Cell and Developmental 

Biology, 25: 407–29. 

Schoeller, S.F., Holt, W.V. and Keaveny, E.E. (2020). Collective dynamics of sperm cells. 

Philosophical Transactions of the Royal Society of London - Serie B. Special issue: 

Multiscale Analysis and Modelling of Collective  Migration in Biological Systems. 

Shellard, A. and Mayor, R. (2020). Rules of collective migration: from the wildebeest to the 

neural crest. Philosophical Transactions of the Royal Society of London - Serie B. Special 

issue: Multiscale Analysis and Modelling of Collective  Migration in Biological Systems. 

Shiwakoti, N., Sarvi, M., Rose, G. and Burd, M. (2011). Animal dynamics based approach 

for modeling pedestrian crowd egress under panic conditions. Procedia Social and 

Behavioral Sciences, 17: 438–461 

Starruß, J., de Back, W., Brusch, L. and Deutsch, A. (2014). Morpheus: a user-friendly 

modeling environment for multiscale and multicellular systems biology. Bioinformatics, 30: 

1331-1332. 



	

Stonko, D.P., Manning, L., Starz-Gaiano, M., Peercy, B.E. (2015). A mathematical model of 

collective cell migration in a three-dimensional, heterogeneous Environment. PLoS ONE 

10(4): e0122799. 

Sumpter. D.J.T. (2010). Collective Animal Behavior. Princeton University Press, Princeton, 

NJ, 2010. 

Swat, M. H., Thomas, G. L., Belmonte, J. M., Shirinifard, A., Hmeljak, D. and Glazier, J. A. 

(2012). Multi-scale modeling of tissues using CompuCell3D. Methods in Cell biology, 110: 

325-366. 

Topaz, C.M., D’Orsogna, M.R., Edelstein-Keshet, L. and Bernoff, A.J. (2012) Locust 

Dynamics: Behavioral Phase Change and Swarming. PLoS Computational Biology, 8(8): 

e1002642. 

Vicsek, T., Czirok, A., Ben-Jacob, E., Cohen, I. and Shochet, O. (1995). Novel type of phase 

transition in a system of self-driven particles. Physical Review Letters, 75(6): 1226. 

Weijer, C.J. (2009). Collective cell migration in development. Journal of Cell Science, 122: 

3215–3223. 

Te Boekhorst V, Preziosi L, Friedl P. Plasticity of Cell Migration In Vivo and In Silico. 

(2016). Annual Review of Cell and Developmental Biology, 32: 491-526.  

Theraulaz, G. & Bonabeau, E. (1999). A brief history of stigmergy. Artificial Life, 5: 97-116. 

Theraulaz, G., Bonabeau, E., Nicolis, S.C., Solé, R.V., Fourcassié, V., Blanco, S., Fournier, 

R., Joly, J.L., Fernandez, P., Grimal, A., Dalle, P., & Deneubourg , J.L. (2002). Spatial 

Patterns in Ant Colonies. Proceedings of The National Academy of Sciences USA, 99: 9645–

9649. 

Trepat, X., Wasserman, M.R., Angelini, T.E., Millet, E., Weitz, D.A., Butler, J.P. and 

Fredberg, J.J. (2009). Physical forces during collective cell migration. Nature Physics 5(6): 

426–430. 

Van der Lingen, C.D., Coetzee, J.C. and Hutchings, L. (2010). Overview of the KwaZulu-

Natal sardine run. African Journal of Marine Science, 32(2): 271–277. 

Vicsek, T. and Zafeiris, A. (2012). Collective motion. Physics reports, 517 (3-4): 71-140. 



31	
	

Vishwakarma, M., Thurakkal, B., Spatz, J.P. and Das, T. (2020). Dynamic heterogeneity 

influences the leader-follower dynamics during epithelial wound closure. Philosophical 

Transactions of the Royal Society of London - Serie B. Special issue: Multiscale Analysis and 

Modelling of Collective  Migration in Biological Systems. 

Weitz, S., Blanco, S., Fournier, R., Gautrais, J., Jost, C. and Theraulaz, G. (2012). Modeling 

Collective Animal Behavior with a Cognitive Perspective: A Methodological Framework. 

Plos One, 7: e38588. 

Westley, P.A.H., Berdahl, A.M., Torney, C.J. and Biro D. (2018). Collective movement in 

ecology: from emerging technologies to conservation and management. Philosophical 

Transactions of the Royal Society of London - Serie B, 373: 20170004. 

Zuriguel, I., Olivares, j., Pastor, J.M.; Martin-Gomez,, C., Ferrer, L.M., Ramos, J.J. and 

Garcimartin, A. (2016). Effect of obstacle position in the flow of sheep through a narrow 

door. Physical Review E, 94: 032302	

	
6. Figures	



	

	
	
Figure 1. Collective migration in biological systems. a. Collectively migrating neural crest cells in 
Xenopus embryos; membrane in cyan, nucleus pseudocoloured to distinguish leader (red) and trailing 
(blue) cells, photograph by Roberto Mayor ; b. E-cadherin negative MMT cells invading 3D fibrillar 
collagen, photograph by Peter Friedl; c. Collective migration of cancer cells in vitro (red: nuclei, 
green: cytoskeleton, grey collagen), photograph by Peter Friedl; d. Electronmicrograph showing the 
aggregate formed by seven sperm cells of the dear mouse (Peromyscus maniculatus), modified from 
(Fisher et al., 2014) ; e. Collective migration and aggregation by chemotaxis in the social amoeba 
Dictyostelium discoideum; f. A colony of termites (Nasutitermes sp.) on a march for food, following, 
and leaving, trail pheromones, photograph by Paul Bertner; g. A migratory swarm of Locusts 
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(Schistocerca gregaria) in Isalo National Park, Photograph by Tiphaine Desjardin; h. A school of  
bigeye trevally (Caranx sexfasciatus), photograph by Ludovic_Galko-Rundgren; i. A flock of Greater 
Snow Goose (chen caerulescens atlantica), photograph by Will MacGregor; j. The Great Wildebeest 
Migration in the Serengeti National Park (Connochaetes gnou), photograph by Pete Aighton. 
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