
HAL Id: hal-02324834
https://hal.science/hal-02324834

Submitted on 22 Oct 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Perturbed Inverse Gaussian Process Model with Time
Varying Variance-To-Mean Ratio

Songhua Hao, Jun Yang, Christophe Bérenguer

To cite this version:
Songhua Hao, Jun Yang, Christophe Bérenguer. A Perturbed Inverse Gaussian Process Model with
Time Varying Variance-To-Mean Ratio. ESREL 2019 - 29th European Safety and Reliability Con-
ference, Sep 2019, Hannover, Germany. pp.739-745, �10.3850/978-981-11-2724-3_0144-cd�. �hal-
02324834�

https://hal.science/hal-02324834
https://hal.archives-ouvertes.fr


Proceedings of the 29th European Safety and Reliability Conference. 
Edited by Michael Beer and Enrico Zio 
Copyright ©2019 by ESREL2019 Organizers. Published by Research Publishing, Singapore 
ISBN: 981-973-0000-00-0 :: doi: 10.3850/981-973-0000-00-0 esrel2019-paper 

A PERTURBED INVERSE GAUSSIAN PROCESS MODEL WITH TIME 
VARYING VARIANCE-TO-MEAN RATIO 

SONGHUA HAO 
School of Reliability and Systems Engineering, Beihang University, Beijing, China. 
E-mail: haosonghua@buaa.edu.cn 

JUN YANG 
School of Reliability and Systems Engineering, Beihang University, Beijing, China. 
E-mail: tomyj2001@buaa.edu.cn 
 

CHRISTOPHE BERENGUER 
Univ. Grenoble Alpes, CNRS, Grenoble INP, GIPSA-lab, Grenoble, France. 
E-mail: Christophe.Berenguer@grenoble-inp.fr 
 
The inverse gaussian (IG) process has become a common model for reliability analysis of monotonic degradation 
processes. The traditional IG process model assumes that the degradation increment follows an IG distribution, 
and the variance-to-mean ratio (VMR) is constant with time. However, for the degradation paths of some practical 
applications, e.g., the GaAs laser degradation data that motivated to propose the IG process, the VMR is actually 
time varying. Confronted with this, we propose an IG process model with measurement errors that depend on the 
actual degradation level. According to different forms or parameter values of the dependence function, the VMR 
of the degradation paths can display different time varying patterns. The maximum likelihood estimation method 
is developed in a step-by-step way, combined with numerical integration method and heuristic optimization 
method. Finally, the GaAs laser example is revisited to illustrate the effectiveness of the proposed model, which 
indicates that the introduction of statistically dependent measurement error can provide better fitting results. 
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1. Introduction 
Considering the increasing difficulty of 
obtaining sufficient failure data in normal 
reliability tests, degradation analysis has been 
developed as a popular way for reliability 
assessment. Among many well-developed 
stochastic degradation models, the inverse 
gaussian (IG) process has attracted much 
attention for modelling monotonic degradation 
processes. For the GaAs laser degradation data in 
(Meeker and Escobar 1998), the Wiener and 
Gamma processes showed bad fitting results, and 
an IG process model was firstly proposed as a 
good alternative (Wang and Xu 2010). Then Ye 
and Chen studied its meaningful physical 
interpretation, and also pointed out its inverse 
relation with Wiener process (Ye and Chen 
2014). These pioneering works led to extensive 
further research of the IG process, such as the 
remaining useful life estimation (Pan, Liu, and 
Cao 2016), accelerated degradation test planning 
(Ye et al. 2014), condition-based maintenance 
optimization (Chen et al. 2015) and bivariate 
degradation analysis (Peng et al. 2016). 

The traditional IG process model assumes that 
the degradation increments follow an IG 
distribution. To keep the additivity of the IG 
distributions and the mathematical tractability of 
the traditional IG process model, the variance-to-
mean ratio (VMR) of the degradation model is 
constant with time. However, for the degradation 
paths of some practical applications, the VMR 
may be time varying (Guida, Postiglione, and 
Pulcini 2012). Therefore, in order to further 
improve the fitting performance of the IG 
process model, it is meaningful to extend it by 
considering time varying VMR. 
Due to various sources of uncertainty in 
measurement processes, the measured 
degradation may not always represent perfectly 
the true degradation, and this greatly affects the 
accuracy of model parameter estimation and 
reliability assessment. To the best of our 
knowledge, existing researches about IG process 
model with measurement error are still limited. 
To model measurement errors, a common 
approach is to introduce a normal distributed 
variable with mean zero and constant standard 
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deviation. (Ye and Xie 2015) made a good 
review of stochastic degradation process models 
contaminated by random white noises. 
However, from the viewpoints of measurement 
systems analysis (Rabinovich 2005, 2013), 
sometimes it is more practical to assume that the 
measurement error is statistically dependent with 
the actual but hidden degradation value (Zhai 
and Ye 2017). Based on this assumption, 
(Pulcini 2016) developed a novel Gamma 
process model, where the measurement error is 
modelled by a zero-mean normally distributed 
variable, and its standard deviation is dependent 
on the actual degradation value. With different 
dependent function forms and different 
parameter values, the VMR of the degradation 
model shows completely different time varying 
patterns. With the same assumption of 
statistically dependent measurement error, 
(Giorgio, Mele, and Pulcini 2018) replaced the 
normal distributed variable by a three-parameter 
inverse gamma variable, which improved the 
degradation model by excluding non-negative 
degradation measurements. 
Motivated by the GaAs laser example and 
similar research for Gamma process model, we 
propose a new perturbed IG process model, 
where the standard deviation of the normally 
distributed measurement error depends on the 
actual degradation level. Descriptions of the new 
model are presented in Section 2, with the 
derivation of time varying VMR. Section 3 
provides the maximum likelihood estimation 
method in a step-by-step way. Section 4 revisits 
the GaAs laser example to illustrate the 
effectiveness of the proposed model. Some 
conclusions are given in Section 5. 

2. The perturbed inverse gaussian process 
model 

The traditional IG process model, denoted by 
, is defined to have the following 

properties: 

(1)  with probability 1; 

(2) The degradation increments at disjoint time 
intervals are independent with each other, i.e., 
for any ,  is 

independent with ; 

(3) The degradation increment is assumed to be 
IG distributed, i.e., for any , 

, where 
 and  are respectively the slope and shape 

parameter, and  is the nonlinear drift 
function. 

According to these definitions, we can know that 
the degradation performance  follows an 

IG distribution . And its 
probability density function (PDF) is as follows: 

  (1) 

Furthermore, it can be derived that the 
expectation, variance and VMR of  are 
respectively: 

  (2) 

  (3) 

  (4) 

It can be indicated that although the expectation 
and variance of the IG process are both time 
varying, the VMR of  is eventually 
constant, and does not change over time. This 
theoretical result is not fully consistent with the 
real observation in some practical applications, 
so we propose a novel perturbed IG process 
model, based on the actual degradation process 
and measurement error: 

   (5) 

where , ,  are 
respectively the measured degradation, actual 
degradation, measurement error at the  
measurement time point , either in constant 
inspection interval or non-constant one. 
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Most previous studies have assumed that  
and  are independent, and in this case, the 
VMR of the measured degradation process 
decreases over time. To account for more time-
varying patterns of the VMR, we propose to 
assume that the measurement error is statistically 
dependent on the actual degradation 
performance. Here we let  be normally 
distributed with zero mean, whose standard 
deviation  is a non-decreasing 
dependence function of the temporal actual 
degradation performance. Therefore, its 
conditional PDF can be written as follows: 

  (6) 

Theorem 1. For the perturbed IG process model 
with statistically dependent measurement error, 
the VMR is derived to be: 

  (7) 

Proof. According to Eqs. (5) and (6), the PDF of 
 on condition of  is as follows: 

  (8) 

And the conditional expectation and variance is 
respectively: 

  (9) 

  (10) 

The unconditional expectation and variance are: 

  (11) 

 (12) 

Therefore, through dividing Eq. (11) by Eq. (12), 
we can obtain the VMR of the proposed model, 
and this completes the proof of Theorem 1. 

In the rest of this paper, it is particularly assumed 
that the standard deviation of measurement error 
is a power function of the actual degradation 
performance, i.e., . This 
assumption is due to the flexibility of power 
function and motivated by (Pulcini 2016), and 
the perturbed IG process model with this 
statistical dependent measurement error is 
denoted by . Note that this model is rather 
general and flexible, and have two simpler 
models as special cases, i.e., the traditional IG 
process model ( , denoted by ), and 
the perturbed IG process model with statistically 
independent measurement error ( , 
denoted by ). 

Additionally, some simulations have been done 
to show the time-varying patterns of VMR in 
Fig. 1. We can see that the VMR of the proposed 
model can display various kinds of trends, 
depending on different values of . 

 
Fig. 1. Time-varying patterns of VMR under different values 
of  
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3. Parameter estimation 
For the traditional IG process model, the 
degradation increments of two successive 
measurements are independent IG distributed 
variables, and the likelihood function can be 
easily obtained. However, for the proposed 
perturbed IG process model, the introduction of 
measurement errors leads to the fact that the 
degradation increments are no longer 
independent. Based on the concept of conditional 
probability, the likelihood function for all 
measured samples can be expressed as: 

  (13) 

where  is the sample size,  is 
the  measurement time for sample , 

 is the measured degradation 

performance for sample  at time , and 

 is the PDF of 

 conditioned on . 

To obtain the above likelihood function, it is 
required to derive the conditional PDF 

, and this can be computed in 
the following step-by-step way, combined with 
the numerical integration method for the 
complex integrations. 

1) Derive the PDF of the actual degradation 
 on condition of the measured degradation

, both at time : 

  (14) 

where  and  can be 
referred to Eqs. (8) and (1), respectively. 

2) Based on Eq. (14), we can update and obtain 
the PDF of the actual degradation  on 
condition of the measured degradation , 
respectively at times  and : 

  (15) 

where  can 
also be referred to the PDF of degradation 
increment in Eq. (1). 

3) Finally, the conditional PDF of the measured 
degradation at two successive times can be 
expressed as: 

  (16) 

where  can be referred to Eq. (8). 

Therefore, the likelihood function for all 
measured samples can be given by plugging Eq. 
(16) into (13). And by maximizing the likelihood 
function (or the logarithm value), a heuristic 
optimization method, such as a genetic 
algorithm, can be used to estimate the model 
parameters. 

4. Illustrative example 
In this Section, we reanalyse the GaAs laser 
example that motivated to propose the IG 
process, and demonstrate the effectiveness of the 
proposed perturbed IG process model. 

Firstly, in order to enlighten the limitation of the 
traditional IG process model (i.e., constant 
VMR) for some real data, we plotted the GaAs 
laser degradation paths and the time varying 
VMR, respectively in Fig. 2 and Fig. 3. It can be 
seen that the VMR obviously increases with 
time. Furthermore, we have fitted the time 
varying VMR with several candidate, and find 
that a simple linear function can provide rather 
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good fitting results, with the square of the 
Pearson correlation coefficient to be 0.9955. 
Therefore, based on the simulation results in 
section 2, an initial guess of the model parameter 

 will be 1. 

 
Fig. 2. Degradation paths of the GaAs laser example over 
time 

 
Fig. 3. The VMR of the GaAs laser example over time 
 

Therefore, it is natural to apply the proposed 
perturbed IG process model to the GaAs laser 
example. Based on the laser degradation data, we 
estimate the relevant model parameters through 
the step-by-step method in Section 3. 
Furthermore, the following Table 1 lists the 
comparison results of three candidate models, 
i.e., ,  and  (donoted in 
Section 2). We can see that compared to the 
traditional IG process model, model  
provides slightly poorer fitting with smaller log-
likelihood value, and this may be because that 

statistically independent measurement error leads 
to decreasing VMR, which deviates farther from 
the VMR of laser data. Besides, the proposed 

, with the smallest Akaike information 
criterion (AIC), performs best for the laser 
example, which illustrates the significance of 
introducing statistically dependent measurement 
error, and also the effectiveness of the proposed 
perturbed IG process model. 

Table 1. Log-likelihoods and AICs of the 3 models 
for GaAs laser degradation data. 

Candidate model Log-likelihood AIC 

 75.03 -146.06 

 75.02 -144.04 

 77.69 -147.38 

5. Conclusion 
The VMR of the traditional IG process model is 
constant with time. In accordance with the time 
varying features of many practical degradation 
processes, we propose a novel perturbed IG 
process model with statistically dependent 
measurement error. Particularly, it is assumed 
that the standard deviation of measurement error 
is a power law function of the actual degradation 
performance, and simulation results indicate that 
the VMR of the proposed model can display 
various kinds of time varying trends, depending 
on different values of the dependence function. 
The parameter estimation is developed in a step-
by-step way. And the GaAs laser degradation 
data, with approximately linear increasing VMR, 
is reanalysed to indicate the effectiveness of the 
proposed perturbed IG process model. Compared 
to the traditional IG process model with constant 
VMR and the model with independent 
measurement error and decreasing VMR, the 
proposed perturbed IG process model performs 
best to fit the laser example. 

For further research of this work, non-gaussian 
or truncated measurement error can be 
investigated to model the practical non-negative 
measurements better. Besides, random effects 
can be further introduced to represent the unit-to-
unit variability. Another interesting direction can 
be remaining useful life estimation and 
condition-based maintenance based on the 
perturbed IG process model. 
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