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Highlights 

• The synthetic polyether toxin gambierol potently enhanced stimulus-evoked quantal transmitter release. 

• The presynaptic fast K+ current was inhibited and the synaptic delay prolonged by gambierol. 

• Gambierol reversed the postsynaptic block produced by d-tubocurarine. 

• Gambierol restored from complete paralysis neuromuscular transmission ex vivo in BoNT/A-

poisoned mouse muscle. 

• Gambierol increased the transient Ca2+ signals in nerve terminals stimulated at 1 and 10 Hz. 

 

Abbreviations 

BoNT/A, botulinum neurotoxin type A 

3,4-DAP, 3,4-diaminopyridine 

EPP, endplate potential 

mEPP, miniature endplate potential 

DAS, Digit Abduction Scoring;  

EDL, extensor digitorum longus;  

LAL, levator aurus longus;  

SNAP-25, synaptosomal-associated protein of 25 kDa;  

SNARE, soluble soluble N-ethylmaleimide-sensitive factor attachment protein receptor; 

-BgTx, α-Bungarotoxin 

 

Abstract-Gambierol is a marine polycyclic ether toxin, first isolated from cultured Gambierdiscus 

toxicus dinoflagellates collected in French Polynesia. The chemical synthesis of gambierol permitted 

the analyses of its mode of action which includes the selective inhibition of voltage-gated K
+
 (KV) 

channels. In the present study we investigated the action of synthetic gambierol at vertebrate 

neuromuscular junctions using conventional techniques. Gambierol was studied on neuromuscular 

junctions in which muscle nicotinic ACh receptors have been blocked with d-tubocurarine 

(postsynaptic block), or in junctions in which quantal ACh release has been greatly reduced by a low 

Ca
2+

-high Mg
2+

 medium or by botulinum neurotoxin type-A (BoNT/A) (presynaptic block). Results 

show that nanomolar concentrations of gambierol inhibited the fast K
+
 current and prolonged the 

duration of the presynaptic action potential in motor nerve terminals, as revealed by presynaptic 

focal current recordings, increased stimulus-evoked quantal content in junctions blocked by high 

Mg
2+

-low Ca
2+

 medium, and by BoNT/A, reversed the postsynaptic block produced by d-

tubocurarine and increased the transient Ca
2+

 signals in response to nerve-stimulation (1-10 Hz) in 

nerve terminals loaded with fluo-3/AM. The results suggest that gambierol, which on equimolar 

basis is more potent than 3,4-diaminopyridine, can have potential application in pathologies in 

which it is necessary to antagonize pre- or post-synaptic neuromuscular block, or both. 

 

Keywords: Gambierol, marine biotoxin, nerve terminal, quantal transmitter release, potassium current, 

botulinum type A neurotoxin, Ca2+ transients 
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Introduction 

Biologically-active natural products and toxins from terrestrial and marine origin not only exhibit 

a great chemical diversity, but also constitute an important and rich source of new drug leads and 

drug candidates. Most of the marine polycyclic ether natural products are recognized secondary 

metabolites of dinoflagellates (Yasumoto, 2001). The wide-range and chemical diversity among 

marine toxins has attracted significant consideration among synthetic organic chemists which 

have produced large and complex molecules facilitating the investigation of their mode of mode 

of action (Nicolaou et al., 2008; Mori, 2019). 

Gambierol is a marine polycyclic ether toxin (Fig. 1) that was first isolated and chemically 

characterized from cultured Gambierdiscus toxicus dinoflagellates isolated in French Polynesia 

(Satake et al., 1993). The genus Gambierdiscus is known to produce a number of ladder cyclic 

compounds known as ciguatoxins, that are responsible for ciguatera fish poisoning, a foodborne 

disease caused by the consumption of marine fishes (from tropical or temperate waters) 

contaminated with ciguatoxins (Larsson et al., 2018), or ciguatera-like poisoning events resulting 

from the consumption of marine invertebrates (giant clams or sea urchins) containing ciguatoxins 

(Darius et al., 2018). Despite the chemical complexity of polycyclic ether toxins, the total 

synthesis of gambierol and analogues has been accomplished using different chemical strategies 

(Alonso et al., 2012; Furuta et al., 2009; Johnson et al., 2005; Fuwa et al., 2002) which permitted 

the detailed analyses of their mode of action. As shown in Fig. 1, gambierol is characterized by a 

transfused octacyclic polyether core containing 18 stereogenic centers and a partially skipped triene 

side chain including a conjugated (Z,Z)-diene system. 

Fig. 1. Near here 

Gambierol and analog synthetic compounds in nanomolar concentrations have been reported to 

inhibit voltage-gated K
+
 (Kv) channels in various cells and tissues including mouse taste cells 

(Ghiaroni et al., 2005), Xenopus skeletal myocytes (Schlumberger et al., 2010), murine cerebellar 

neurons (Pérez et al., 2012), mammalian Kv1.1-Kv1.5 channels expressed in Xenopus oocytes or 

in Chinese hamster ovary (CHO) cells (Cuypers et al., 2008; Konoki et al., 2015), Kv3.1 

channels expressed in mouse fibroblasts (Kopljar et al., 2009), and human Kv1.3 channels from 

T-lymphocytes (Rubiolo et al., 2015). In the range of nanomolar concentrations affecting Kv 

channels, gambierol has previously been reported to not affect or block voltage-gated Na
+
 channels 

(Ghiaroni et al., 2005; Cuypers et al., 2008; Schlumberger et al., 2010; Pérez et al., 2012). 

The aim of the present study was (i) to investigate whether the synthetic polyether toxin 

gambierol had an action on spontaneous and evoked quantal transmitter release at frog and 

mammalian neuromuscular junctions, (ii) to determine if the presynaptic K
+
 current in motor 

nerve terminals was sensitive to the polyether toxin, and if changes in the synaptic delay could be 

detected, (iii) to disclose if gambierol could antagonize the postsynaptic block produced by d-

tubocurarine, (iv) to find out if gambierol could have an action on junctions poisoned by botulinum 
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neurotoxin type-A (BoNT/A) in which neurotransmitter release has been greatly reduced, and (v) to 

determine if Ca
2+

 transients were modified by the polyether toxin. 

A preliminary account on a part of this work has been communicated by J.M. at the 18
th

 

International Conference on Harmful Algae (21-26 October) in Nantes, France. 

 

Experimental Procedures 

Chemicals, solutions and toxins 

Gambierol with purity of > 97% was produced by chemical synthesis, as previously reported 

(Fuwa et al., 2002). Synthetic gambierol, identical to natural gambierol, was dissolved in 

dimethyl sulfoxide (DMSO) and then diluted in the physiological solution. The total DMSO 

concentration in solutions did not exceed 0.1%. Fluo 3-AM was dissolved in 0.02% DMSO 

containing 0.01% pluronic acid F-127 (Molecular Probes), both compound were purchased from 

Invitrogen (Villebon sur Yvette, France). Isoflurane (Aerrane®) anesthetic was from Baxter S.A., 

Lessines, Belgium. D-tubocurarine chloride was purchased from Tocris Bioscience (Bristol, UK). 

All chemicals, including 3,4-diaminopyridine (3,4-DAP), and formamide were purchased from 

Sigma-Aldrich (Saint Quentin Fallavier, France; The µ-conotoxin GIIIB, and tetrodotoxin were 

obtained from Alomone Labs (Alomone Labs, Jerusalem, Israel). α-Bungarotoxin Alexa Fluor™ 

594 conjugate was from Invitrogen. Botulinum neurotoxin type A1 (BoNT/A) was a kind gift 

from Professor Michel Popoff (Pasteur Institute, Paris).  

Animals 

Adult male Swiss mice (Mus musculus, 2-3 months of age and 23-28 g of body weight) were 

purchased from Janvier Elevage (Le Genest-Saint-Isle, France), and acclimatized at the animal 

facility for at least 72 h before experiments. Live animals were treated according to the European 

Community guidelines for laboratory animal handling and to the guidelines established by the 

French Council on animal care “Guide for the Care and Use of Laboratory Animals” (EEC86/609 

Council Directive – Decree 2001-131). In particular, they were housed in groups of four- to six in 

cages with environmental enrichment, in a room with constant temperature and a standard light 

cycle (12-h light/12-h darkness), and had water and food ad libitum. All experimental procedures 

on mice were approved by the Animal Ethics Committee of the CEA (project 17_088 authorized to 

E.B.) and by the French General Directorate for Research and Innovation (project APAFIS#2671-

2015110915123958v4 authorized to E.B.). Rana esculenta frogs (20-25 g body weight) were bred 

and maintained in a natural water pond of the CNRS campus in Gif Sur Yvette, and used during 

the months of September-October. All efforts were made to minimize the number of animals used 

and their suffering. 

BoNT/A in vivo injection 

Swiss mice anaesthetized with isoflurane inhalation were injected with a single intramuscular 
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injection of 30 µL containing 10 pg BoNT/A/ mouse (based on 150 kDa BoNT/A neurotoxin 

protein) into the anterolateral region of the left hind limb into the mid-point of the Tibialis 

anterior muscle. Control animals received a single injection of 30 µL of the vehicle used to dilute 

the neurotoxin. Mice were evaluated in vivo for eventual paralysis using the Digit Abduction 

Score (DAS) assay 72 h post-neurotoxin injection. The DAS response was scored with the animal 

facing up in a reclining position. The digit-abduction was scored on a five points scale in which 0 

= normal and 4 = maximal reduction in digit abduction (Aoki, 2001). Mice were sacrificed 72 h 

post‐BoNT/A or ‐vehicle injection.  

Isolated nerve-muscle preparations 

Mice were anesthetized with isoflurane inhalation before being euthanized by dislocation of 

cervical vertebrae followed by immediate exsanguinations. Mouse phrenic-nerve-hemi-

diaphragm-muscle preparations, peroneal nerve-extensor digitorum longus (EDL) muscle), or 

levator auris longus nerve-muscle preparation were isolated, and mounted in a silicone-lined 

Plexiglass® chamber (2 mL volume) superfused with an oxygenated standard Krebs-Ringer 

solution of the following composition (in mM): NaCl 140, KCl 5, CaCl2 2, MgCl2 1, D-glucose 

11, and HEPES 5 (pH 7.4) In some experiments, the CaCl2 was reduced to 0.4 mM and MgCl2 

was increased to 8.0 mM, the osmolarity being kept constant. In some experiments nerve-muscle 

preparations were incubated with µ-conotoxin GIIIB (1.0-1.6 µM), which blocks specifically and 

irreversibly voltage-gated muscle Na
+
 channels (Cruz et al., 1985) and, thus, inhibits muscle 

contraction upon nerve stimulation.  

Frog Cutaneous pectoris nerve-muscle preparations were removed from frogs euthanized by 

double pithing. Each isolated preparation was pinned in a silicone-lined two-compartment 

Plexiglass® chamber (2 mL volume) and bathed in a standard frog physiological solution 

composed of (in mM): 115 NaCl, 2 KCl, 1.8 CaCl2, and 5 HEPES (buffered at pH 7.25). Some 

experiments were performed on muscles in which excitation-contraction coupling was eliminated 

by pre-treatment with 2 M formamide (Del Castillo and Escalona de Motta, 1978) for 18-20 min, 

followed by abundant washing with standard frog solution at 4°C, and allowing gradual increase 

in temperature and 60-90 min for recovery of the muscle membrane potential.  

Electrophysiological recordings 

Fire-polished glass microelectrodes (filled with standard saline and having resistance of 1-2 MΩ) 

and an Axoclamp-2A system (Axon Instruments, Union City, CA, USA) were used to record 

presynaptic currents from motor nerve terminals of the levator auris longus (LAL) nerve-muscle 

preparation (Angaut-Petit et al., 1987). An Ag-AgCl pellet located in the bath served as the 

reference electrode.  

Intracellular recordings of the resting membrane potential, end-plate potential (EPP) and 

miniature end-plate potential (mEPP) were made with standard techniques, using an Axoclamp-

2A system and glass microelectrodes filled with 3 M KCl and resistances of 10-12 MΩ. The 
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motor nerve was stimulated through a suction microelectrode (adapted to the diameter of the 

nerve), with supramaximal current pulses of 0.05 ms duration, at 0.1, 1 or to 10 Hz frequencies, 

delivered by the isolation unit of a stimulator (S-44 Grass Instruments, West Warwick, USA). The 

quantal content (m) of the EPP was assessed directly as the ratio of the average EPP amplitude 

and the average mEPP amplitude (at least 25 MEPPs and 75 EPPs were averaged). EPPs with 

amplitude exceeding 3 mV were corrected for nonlinear summation of EPPs (McLachlan and 

Martin 1981). The equilibrium potential for ACh used in the calculations was 0 mV. When the 

quantal content of EPPs was low, the following equation, based on Poisson statistics, was used: 

 m = ln (N/No), where m is the average number of transmitter quanta released per impulse, N is 

the total number of stimulations, and No is the corresponding number of failures of release (i.e., 

the number of stimuli not followed by an EPP). Signals were collected, amplified and digitized 

with the aid of a computer equipped with a Digidata-1322A A/D interface board (Axon 

Instruments, Molecular Devices, Sunnyvale, CA, USA). Data acquisition and analysis were 

performed with the WinWCP V3.9.6 software program, kindly provided by Dr. John Dempster 

(University of Strathclyde, Scotland). All experiments were carried out, unless indicated, at 

constant room temperature (22°C). 

Nerve terminal calcium signal imaging  

To load the cell permeable fluorescent indicator of intracellular Ca
2+ 

into nerve terminals, the cut 

end of the frog pectoralis proprius nerve trunk stump (about 2 mm length) was incubated for 90-

120 min in the dark, with the standard physiological solution containing fluo3/AM (5.4 µM) with 

0.02% pluronic acid (w/v), in a different compartment from the one containing the cutaneous 

pectoris muscle of a special recording chamber designed to fit on an upright microscope; To 

visualize muscle nAChR the preparation was incubated for 20 min with α-Bungarotoxin Alexa 

Fluor™ 594 conjugate (Invitrogen, Molecular Probes). Then, the nerve and muscle compartments 

were washed at a flow rate of 10 mL min
-1

 for 15-30 min with the standard physiological 

solution. The dual compartment chamber with the nerve-muscle preparation was placed in the 

microscope stage of an up-right multiphoton scanning confocal microscope (LSM 510 META; 

Carl Zeiss, Germany), and controlled through the manufacturer supplied software and 

workstation. Nerve stimulation was performed, with a suction microelectrode controlled by a 

micromanipulator that could fit into the working distance (1.7 mm) of the water-immersion lens 

(Plan-Apochromat 20 X/1.0 N.A.). Fluo3/AM was excited with the 488-nm wavelength line of an 

Argon ion laser, and Alexa-594 -bungarotoxin with the 561-nm wavelength line of a DPSS 

laser. The pinhole aperture was set to 1 Airy Unit. Images were digitized for time-laps series at 8-

bit into a 256x256 pixel array (up to 10 frames per second) or, at a 12-bit resolution into a 

512×512 pixel array (up to 5 frames per second). Fluorescence images were collected and 

analyzed frame by frame and processed identically using Zen® software (Carl Zeiss, Germany). 

The mean nerve terminal fluorescence was outlined before (F0) and during gambierol treatment 

(F). The relative fluorescence was calculated as ΔF/F0 percentage.  
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Statistical analyses 

The results are expressed as the mean ± S.E.M. Statistical differences were calculated using 

either paired or unpaired Student's t-test. P values < 0.05 were considered statistically significant.  

 

Results 

Effects of gambierol on spontaneous and stimulus-evoked quantal transmitter release 

To determine if gambierol had an action on spontaneous quantal transmitter release, the mEPP 

frequency was measured, by intracellular recordings, at mouse and frog resting neuromuscular 

preparations equilibrated in standard physiological solution. The mEPP frequency was not 

significantly modified by concentrations of 0.2-10 nM gambierol, applied for 30 min, to mouse 

hemidiaphragm (1.61 ± 0.07 s
-1

, n = 40 junctions from 5 different muscles treated with 10 nM 

gambierol , vs 1.57 ± 0.08 s
-1

, n = 30 junctions from 3 control muscles, P = 0.724). Under control 

conditions the mean resting potential of muscle fibers was -69.2 ± 2.8 mV. After 2, 10 and 20 nM 

gambierol treatment for 30 min, it was -67.9 ± 2.7, -68.2 ± 1.9 and -69.6 ± 2.2 mV, respectively 

(n = 28 to 36 fibers sampled from 6 different hemidiaphragms for each condition). These results 

indicate that gambierol, in the range of concentrations studied had no significant action on the 

resting membrane potential of muscle fibers (P > 0.05). Similarly, no change was detected on the 

mEPP frequency in frog cutaneous pectoris muscles treated with 0.5-20 nM gambierol (0.50 ± 

0.07 s
-1

, n = 21 junctions from 5 different muscles treated with 20 nM gambierol, vs 0.48 ± 0.03 

s
-1

, n = 19 junctions from 3 control muscles, P = 0.851). As illustrated in Fig. 2A, gambierol (100 

nM) did not change significantly the spontaneous mEPP frequency in resting unstimulated 

junctions bathed in standard physiological solution. However, multiquantal spontaneous events 

that had 5 to 10 times the amplitude of mEPPs were frequently recorded under those conditions 

(Fig. 2B). Such large synaptic events were completely suppressed by blocking nerve conduction 

with 1 µM tetrodotoxin added to the standard solution. It is thus likely that such events are due to 

gambierol-induced, tetrodotoxin-sensitive spontaneous nerve action potentials which, in turn, 

triggered synchronous multiquantal release.  

Fig. 2 near here 

To verify if gambierol had an action on evoked transmitter release, hemidiaphragm preparations 

were equilibrated for 30 min in a low-Ca
2+

 (0.4 mM) and high-Mg
2+

 (8.0 mM) physiological 

medium, to evaluate the mean quantal content (m) of EPPs. Under control conditions, m values 

ranged between 0.3 and 1.5 (with a coefficient of variation = 0.53), and mean m value of 0.70 ± 

0.07 (n = 26 junctions, 5 muscles), indicating that a proportion of nerve stimuli failed to release 

the transmitter and to evoke an EPP. Interestingly, after 20 min equilibration with nanomolar 

gambierol concentrations, most of the junctions examined had no failure of release upon nerve 

stimulation, and mean m values were markedly increased several fold, as shown in the 
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concentration-response curve of Fig. 3. On equimolar basis gambierol was more potent than 3,4-

DAP, in enhancing stimulus evoked quantal transmitter release.  

Fig. 3 near here 

To make clear if the ability of gambierol to enhance evoked quantal release was related to an 

action on the presynaptic action potential, local circuit currents were recorded with an 

extracellular microelectrode, using techniques previously developed (Katz and Miledi, 1965a,b; 

Brigant and Mallart, 1982. The fire-polished microelectrode was gently placed, under visual 

control, on the nerve terminal of a single neuromuscular junction of the LAL muscle. 

Representative focal current recordings performed in a Krebs-Ringer solution containing d-

tubocurarine (3.5 µM) to block neuromuscular transmission are shown in Fig. 3. The two positive 

signals correspond to the typical presynaptic currents seen in recordings done at terminal parts of 

the nerve terminal branches of mammalian junctions (Brigant and Mallart, 1982). The first peak 

relates to the capacity current (IC) leaving the terminal, due to the Na
+
 influx into the nodes of 

Ranvier of the parent axon. The second peak corresponds to a fast K
+
 current (IK) generated in 

the nerve terminals (see Fig. 4). Gambierol addition to the medium caused, within 10-15 min, a 

reduction of the IK signal of presynaptic currents (i.e. of 57.2 ± 1.6% at 2 nM and 80.3 ± 2.2% at 

10 nM, n = 6), without affecting the IC component (Fig. 4). These results strongly indicate that 

gambierol prolongs the duration of the presynaptic action potential due to the blockade of the fast 

IK current in motor nerve terminals. Also, when measuring the synaptic delay, from the peak of 

the presynaptic IC component to the beginning of the postsynaptic current (see Fig. 4A), in the 

presence of 2 nM gambierol the synaptic delay increased significantly by 23.2 ± 0.9 % (n =5 

junctions from 2 LAL muscles with respect to controls, P < 0.05). The synaptic delay in frog 

cutaneous pectoris junctions equilibrated with 3 µM d-tubocurarine, measured as the interval 

between the negative peak of the presynaptic spike and the start of the local inward current 

through the postsynaptic membrane (Katz and Miledi, 1965b), was also significantly increased by 

20 nM gambierol with respect to control, as shown in the graphs of Fig. 4B.  

Fig. 4 near here 

Gambierol increases EPP amplitudes and reverses the block produced by d-tubocurarine  

Since gambierol increased the quantal content of EPPs, it was relevant to study whether it was 

able to antagonize the action of d-tubocurarine, a competitive inhibitor of ACh binding to muscle 

nAChRs (Colquhoun et al., 1979). For this, frog cutaneous pectoris neuromuscular preparations, 

in which excitation-contraction was uncoupled, were equilibrated for 45 min in standard 

physiological solution containing 5 µM d-tubocurarine. Under these conditions, only 

subthreshold EPPs (3-5 mV amplitude) were recorded at a normal resting membrane potential (-

80 mV). Gambierol (3 nM) significantly increased EPP amplitudes to 8-10 mV (n = 4 junctions, 

from 4 different muscles, P < 0.05), but EPPs remained subthreshold for action potential 

generation. Complete reversal of d-tubocurarine action was obtained with 5 nM gambierol 

concentrations, which allowed EPPs to reach the threshold for action potential generation (-56 to 



9 

 

-58 mV) in the muscle fiber, as shown in a representative experiment (Fig. 5A). Under those 

conditions the nerve-evoked muscle action potentials had overshoots comprised between 20-27 

mV amplitude (n = 4).  

Gambierol also increased the amplitude of EPPs in frog neuromuscular preparations pretreated 

with µ-conotoxin GIIIB (1.0-1.6 µM). Under this condition, EPPs were recorded in the absence of 

muscle action potentials, and 15 nM gambierol increased the peak amplitude of nerve-elicited EPPs 

up to 473 ± 20.2 % of control values (n = 4 junctions, 4 different muscles, P < 0.05 ). As shown in 

Fig. 5B, in the presence of gambierol, the peak EPP amplitude not only was rather flat, but in some 

cases also reached the equilibrium potential of ACh (about 0 mV), at which there is not net ion fluxes 

through the nAChR activated channel. Also, it was striking the marked increase in the time course of 

the EPP. When computing the integral of the EPP area, gambierol was found to increase the EPP area 

by 863.2 ± 44.6 % with respect to controls values (n = 4 junctions, 4 different muscles, P < 0.05).  

Fig. 5 near here 

Gambierol enhances delayed asynchronous quantal release 

When reducing transmitter release, following nerve stimulation that triggers EPPs there is a 

period of elevated spontaneous quantal release that is known as delayed quantal release. In order 

to determine whether gambierol affected delayed release, frog and mouse neuromuscular 

preparations were pre-treated with µ-conotoxin GIIIB (1.0-1.6 µM) and equilibrated in standard 

physiological solutions in order to evaluate the delayed quantal release i.e., the number of mEPPs 

appearing after the EPP evoked by nerve stimulation. A typical example of an EPP, evoked at 1 

Hz nerve stimulation, and recorded in the presence of gambierol (2 nM) that was followed by 

several mEPPs is shown in Fig. 6A. Since the number of delayed releases per stimulus was 

markedly dependent on the concentration of gambierol, the time of nerve stimulation, and the 

previous history of nerve stimulation. We standardized the number of stimuli given to the motor 

nerve and used different preparations for each concentration of gambierol tested. The graphs in 

Fig. 6B, summarizes the results obtained under control conditions, and after 10, 20 and 100 nM 

gambierol treatment. It is quite striking the concentration-dependent action of gambierol on 

delayed release, and the fact that high number of events could still be recorded several hundred 

milliseconds after the phasic EPP. This may be due to the possibility that Ca
2+

 entry into nerve 

terminals was enhanced by gambierol and that delayed release could be triggered by residual 

Ca
2+

 remaining in the terminals. 

Fig. 6 near here 

Gambierol reversed the presynaptic block produced by BoNT/A ex vivo 

BoNT⁄A is a bacterial Zn
2+

 metalloprotease acting in the nerve terminal cytosol of cholinergic 

synapses where it selectively cleaves the synaptosomal-associated protein of 25 kDa (SNAP-25) 

(Blasi et al., 1993) a core protein of the neuroexocytosis apparatus (Shiavo et al., 2000) causing 

at the neuromuscular junction a long-lasting inhibition of neurotransmitter release (Meunier et al., 
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2002). In view that 3,4-DAP has been shown to be effective in increasing evoked quantal release 

from BoNT/A-poisoned rat EDL muscles (Molgó et al., 1980), it was of interest to determine if 

gambierol had also an action on evoked quantal release from junctions treated with the 

neurotoxin. After the local intramuscular injection of BoNT/A into the hind limb of mice, the 

degree of muscle paralysis monitored in vivo using the DAS assay showed that all 6 mice injected 

had a DAS score of 4 and were paralyzed 24 h, 48 and 72 h after the injection. Mice injected with 

the vehicle to dilute the toxin (n = 4) had a DAS score of 0 and were normal. At 72 h after 

BoNT⁄A-injection, the deep peroneal nerve-EDL muscle preparations were removed from 

BoNT⁄A-treated animals and analyzed ex vivo for neurotransmitter release. Spontaneous mEPP 

frequency was markedly reduced from 1.68 ± 0.20 s
-1

 (n = 12 junctions, from muscles isolated 

from 4 vehicle-injected mice) to 0.020 ± 0.003 s
-1

 (n = 12 junctions, from muscles isolated from 6 

BoNT⁄A-treated mice). In BoNT/A-treated junctions, the few evoked synaptic responses recorded 

were mono-quantal (Fig. 7A). The addition of 15 nM gambierol to the medium markedly reduced 

the number of failures of release, and increased the amplitude of EPPs, most of which were 

multiquantal, as shown in Fig. 7A. Such EPPs could restore muscle twitches evoked by nerve 

stimulation in most muscle fibers. Comparison of the mean quantal content of EPPs, calculated 

using the failure method for controls, and estimated from EPPs/mEPPs ratio in the presence of 

gambierol, showed that the polyether was able to increase significantly (P < 0.05), by a factor 

close to 100-fold, the mean quantal content of EPPs in BoNT/A treated neuromuscular junctions 

(Fig. 7B). Concentrations of gambierol higher than 20 nM completely antagonized the muscle 

paralysis caused by BoNT/A, and evoked muscle twitches upon every nerve stimulation (not 

shown). Thus, gambierol at nanomolar concentrations is able to reverse the block of stimulus-

evoked quantal release in BoNT/A-poisoned junctions.  

Fig. 7 near here 

Gambierol incrases Ca
2+

 signals in motor nerve terminals  

Frog nerve-muscle preparations, in which excitation was uncoupled from contraction, were 

loaded with fluo-3-AM, treated with α-Bungarotoxin (-BgTx) Alexa Fluor™ 594 conjugate to 

both localize nAChRs and block eventual Ca
2+

 influx through the activated nAChR channel, and 

imaged using fast confocal microscopy. Nerve terminals were stimulated with trains of 1 Hz (20-

25 s duration), 10 Hz (12-15 s) and 1 Hz (17-25 s) followed by an unstimulated period, as shown 

in a typical experiment (Fig. 8) . Under control conditions (Fig. 8B; supplementary video Movie 

S1), nerve stimulation with trains of 1 Hz evoked tiny phasic Ca
2+-

 signals, that were 

distinguishable from the basal level, and which fluctuated in amplitude between events in the 

train. These event represented transient increases in fluorescence of 9-14 % (F/F; n = 6). Nerve 

stimulation with trains of 10 Hz caused saw-toothed signals that fused reaching about 100-fold 

the basal fluorescence level. At the end of the 10 Hz stimulation period, the Ca
2+

 signal 

represented about 10-12-times the level of fluorescence (F/F) observed at 1 Hz nerve 

stimulation. After the 10 Hz stimulation, continuous 1 Hz stimulation induced again similar tiny 
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transient phasic Ca
2+-

 signals. As shown in Fig. 8A, the basal fluorescence after the 10 Hz nerve 

stimulation equilibrated to a new higher level that was about 2.5-3 times the level recorded 

during the 1
st
 train at 1 Hz, and returned in the absence of nerve stimulation, to the basal level 

with a time constant (3 s.  

After equilibration with 50 nM gambierol, and using a similar pattern of nerve stimulation (see 

Fig. 8C; supplementary video Movie S2), the relative intracellular Ca
2+

-fluorescence signals of 

nerve terminals were markedly increased both at 1 and 10 Hz, compared to controls values (Fig. 

8B). Calcium transients at 1 Hz nerve stimulation were increased by about 200%, and at 10 Hz 

by about 361%. In addition, with continuous stimulation the relative basal fluorescence was also 

increased. The phase of decrease of the relative Ca
2+

 fluorescence, after stopping nerve 

stimulation was also much prolonged in the presence of gambierol, with fast and slow kinetics. 

These results strongly indicate that phasic Ca
2+

 signals markedly increase with gambierol 

treatment, and suggest that the increase in presynaptic action potential duration leads to an 

important increase in the Ca
2+

influx into the motor nerve terminals. It is worth noting that the 

calcium transients observed in the presence of gambierol upon nerve stimulation (1 and 10 Hz) 

were completely suppressed when blocking nerve conduction with 1 µM tetrodotoxin. 

Fig. 8 near here 

 

Discussion 

The present experimental results demonstrate for the first time that the synthetic polyether toxin 

gambierol, at nanomolar concentrations, is able to markedly enhance stimulus-evoked quantal 

transmitter release at mouse and frog neuromuscular junctions, without affecting the resting 

membrane potential of muscle fibers. Thus, gambierol reversed the postsynaptic neuromuscular 

blockade produced by d-tubocuranine, and the presynaptic block caused by low calcium-high 

magnesium medium, as evidenced by the increase in the amplitude of EPPs and the quantal 

content of EPPs, respectively. Gambierol, on equimolar basis, was found to be more potent than 

4-aminopyridine or 3,4-DAP (Molgó et al., 1975; Molgó et al., 1980) well-known Kv-channel 

blockers that markedly potentiate evoked transmitter release at motor nerve (Heuser et al., 1977; 

Molgó et al., 1982; Katz and Miledi, 1979).  

Spontaneous quantal transmitter release, measured by recording mEPP frequency in resting 

junctions, was not significantly modified by gambierol; this is in marked contrast to the action of 

other polyether toxins like ciguatoxins, also produced by dinoflagellates of the genus 

Gambierdiscus that produce gambierol. The increase in mEPP frequency with ciguatoxins ends 

with the depletion of synaptic vesicles from nerve terminals, and can be completely prevented or 

blocked by tetrodotoxin. Such actions are related to the activation of voltage-gated Na channels 

and to the block of synaptic vesicle recycling (Molgó et al., 1992). 

Gambierol and analogs are known to inhibit native or expressed mammalian Kv channel subtypes 
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in neuronal cells (Ghiaroni et al., 2005; Cuypers et al., 2008; Pérez et al., 2012; Konoki et al., 

2015), and Xenopus skeletal myocytes (Schlumberger et al., 2010). Present results indicate that 

also motor nerve terminals of vertebrate neuromuscular junction are sensitive to nanomolar 

concentrations of gambierol, as shown by the reduction of the fast IK current generated in the 

nerve endings, using external focal current recordings in mammalian junctions. Blockade of the 

fast IK current in motor nerve terminals by gambierol lengthened the presynaptic action potential 

duration, increased the synaptic delay and increased evoked quantal transmitter release. Thus, 

these results support the view that the fast K
+
 current in nerve terminals is extremely important 

for regulating the duration of the presynaptic action potential, playing an important role in the 

control of the amount of Ca
2+

 entry into the terminal and therefore in the number of quanta 

released upon nerve stimulation (Van der Kloot and Molgó, 1994).  

Interestingly, gambierol was also found to reverse the block of stimulus-evoked quantal 

transmitter release produced by BoNT/A in mouse neuromuscular junction poisoned in vivo and 

examined ex vivo. BoNT/A is known to cleave a small segment of nine amino acid residues of the 

C-terminal region of SNAP25 (Blasi et al., 1993). However, several lines of evidence indicate 

that cleaved SNAP-25 can still establish a stable complex with syntaxin and 

VAMP⁄synaptobrevin, the so-called soluble N-ethylmaleimide-sensitive factor attachment protein 

receptor (SNARE) complex which conveys synaptic vesicles into close contact with the nerve 

terminal membrane (Sutton et al., 1998). This apposition is mandatory for subsequent steps of 

membrane fusion and transmitter release (reviewed by Schiavo et al., 2000). The fact that few 

transmitter quanta were released in the BoNT/A-poisoned junctions and that gambierol treatment 

significantly increased more than a hundred-fold the mean quantal content of EPPs further 

indicates that the capability of truncated SNAP-25 to form stable single or multi complexes is not 

completely impaired (see Pantano and Montecucco, 2014).  

Ca
2+

 is essential for neurotransmitter release as shown by the pioneering studies of Katz and 

Miledi (1965c). In the present study gambierol was found to markedly increase Ca
2+

 transients 

upon nerve stimulation at 1 and 10 Hz in terminals loaded with fluo-3/AM; The robust increase 

in phasic calcium signals in the presence of gambierol can be related to an enhanced Ca
2+

 entry 

during the presynaptic action potential and to the observed increase in evoked quantal transmitter 

release. Delayed transmitter release which has been attributed to residual Ca
2+

 was also increased 

during gambierol action. Interestingly, with repeated stimulation at 1 Hz, in the presence of 

gambierol, the basal fluorescent level increase with every stimulus. When stopping nerve 

stimulation at 1 Hz the basal fluorescence level remained relatively high, suggesting that residual 

Ca
2+ 

is involved
 
in

 
the asynchronous release following the phasic one. In addition, the results 

suggest that residual Ca
2+

 is proportional to the amount of Ca
2+

 entering to trigger the phasic 

release quantal release. Gambierol in high concentrations (0.1-30 µM) was reported to evoke 

intracellular highly synchronous Ca
2+

 oscillations at single cerebellar granule cells in culture 

(Alonso et al., 2010). Also, inhibition of Kv channels by gambierol augmented spontaneous Ca
2+
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oscillations in cerebro cortical neurons (Cao et al., 2014). Such actions were mimicked by other 

Kv inhibitors including 4-aminopyridine and tetraethylammonium.  

 

Conclusion 

Altogether, the results here presented show for the first time that gambierol enhances quantal 

transmitter release in normal and in BoNT/A-treated junctions in response to nerve stimulation. 

On equimolar basis, gambierol is more potent than 3,4-diaminopyridine. Although spontaneous 

quantal release is unaffected by gambierol in resting junctions, nerve stimulation markedly 

enhanced delayed quantal release in a concentration-dependent manner. Changes in quantal 

release detected seem to be due to the blockade of the fast K
+
 current in nerve terminals and the 

concomitant enhanced Ca
2+

 influx that triggers phasic and delayed release. Further studies will be 

needed to fully understand the mechanism(s) involved in the action of gambierol at motor nerve 

terminals. In particular, the handling of Ca
2+

 by intracellular Ca
2+

 stores. Our results strongly 

suggest that gambierol, or synthetic analogues, can have potential medical application in 

neuromuscular conditions in which it is necessary to antagonize pre- or post-synaptic 

neuromuscular blockade, or both. 
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Figure 1. Chemical structure of gambierol. 
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Figure 2. (A) Spontaneous mEPPs recorded in a resting unstimulated junction of the mouse 

hemidiaphram, before (Control) and after 20 min exposure to 100 nM gambierol. Note the lack of 

gambierol effect on mEPP frequency. (B) Typical monoquantal mEPP (1) followed by a 

spontaneous multiquantal event (2), recorded in an unstimulated frog cutaneous pectoris muscle. 

The mean resting membrane potential during measurements was -70.8 mV in A and -80 mV in B.  
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Figure 3. Gambierol and 3,4-diaminopyridine (3,4-DAP) increased the mean quantal content of 

EPPs in mouse neuromuscular junctions equilibrated in a low Ca
2+

 (0.4 mM)-high Mg
2+ 

(8 mM) 

medium. The fold-increase was calculated as the ratio of m gambierol / m control values; 4-6 

junctions were sampled before and 20 min after gambierol or 3,4-DAP-treatment; 2-4 different 

muscles were used for each toxin or drug concentration.  

  



20 

 

 

 

Figure 4. (A) Superimposed traces of focally recorded currents at a single neuromuscular 

junction of the mouse levator auris longus muscle, before (black trace) and 20 min after the 

addition of 2 nM gambierol to the standard Krebs-Ringer solution containing 3.5 µM d-

tubocurarine (green trace). “S” designates the nerve stimulus artefact; “IC” relates to the transient 

capacity current; “IK” shows the fast K
+
 current that is partially blocked by gambierol, the post-

synaptic inward currents having been truncated. Each trace is the average of 16 focal current 

recordings. Vertical calibration is in mV, due to the unknown resistance between the recording 

microelectrode and the nerve terminal membrane. (B) Graphs showing the significant increase in 

the synaptic delay (**: P = 0.006) at frog neuromuscular junctions treated for 50 min with 20 nM 

gambierol (green column), when compared to control.  
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Figure 5. Gambierol reversed the post-synaptic block produced by d-tubocurarine (A), and 

produced full-sized EPPs (B). (A) Gambierol (2 and 5 nM) addition to the standard medium 

containing 5 µM d-tubocurarine increased the amplitude, so that an EPP reached the threshold 

potential and triggered an action potential in the muscle fiber. (B) Increase in EPP amplitude by 

gambierol (15 nM) in a neuromuscular preparation in which voltage-gated muscle Na
+
 channels 

have been blocked by µ-conotoxin GIIIB. Under this condition, EPPs were recorded in the absence 

of muscle action potentials. In (A) and (B), different frog cutaneous pectoris nerve-muscle 

preparation were used, in which excitation was uncoupled from contraction by pre-treatment with 

formamide. Resting membrane potential during measurements was -80 mV in A and B.  
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Figure 6. Gambierol increased the mEPP frequency that follows an EPP in mouse and frog 

neuromuscular junctions treated with µ- conotoxin GIIIB. (A) Example of an EPP evoked by 

nerve stimulation in a mouse hemidiaphragm junction during the action of 2 nM gambierol. Note 

the presence of mEPPs in the falling phase of the EPP. Resting membrane potential was -70 mV. 

(B) The graphs show examples of cumulative plots of delayed releases per stimulus as a function 

of time, under control conditions and with gambierol (10, 20 and 100 nM) in frog junctions. 

Nerve stimulation was 1 Hz. Number of stimuli delivered to the motor nerve was the same under 

control conditions, and in the presence of gambierol. The error bars ± show the 95% confidence 

limits; Data obtained from n = 3 and n= 9 from control and treated junctions respectively, from 3 

different frog cutaneous pectoris preparations. 

  



23 

 

 

 

Figure 7. Gambierol increases stimulus-evoked quantal transmitter release in BoNT/A-treated 

junctions. Typical intracellular recordings performed ex vivo in an EDL muscle treated 72 h 

before with a single BoNT/A injection. (A) Note the important number of failures of release upon 

nerve stimulation (indicated by arrows) and the monoquantal EPP in the BoNT/A-treated 

junction (Control), and example of large amplitude EPPs recorded during the action of 15 nM 

gambierol on the same junction. Resting membrane potential during recordings -68.5 mV. (B) 

Mean quantal content of EPPs in BoNT/A-treated junctions, before and after the action of 

gambierol (15 nM). Data obtained from 8 different junctions from 4 different BoNT/A-treated 

EDL muscles. Note the significant increase in the mean quantal content of EPPs (***: P = 

0.0002) after the action of gambierol, when compared to control. 
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Figure 8. Confocal images showing part of a frog neuromuscular junction of the cutaneous 

pectoris muscle in which nAChRs have been stained with fluorescent -BgTx, the motor nerve 

terminal branches loaded with fluo-3/AM (during nerve stimulation) and a merged image (A). 

Calcium signals in the motor nerve terminals stimulated continuously at 1, 10 and 1 Hz before 

(B), and after 50 nM gambierol treatment (C). Data in B and C are from the same junction and 

from a muscle in which excitation-contraction has been uncoupled by formamide pretreatment. 

Note in (B) the relative tiny Ca
2+

 fluorescence signals recorded under control conditions, and the 

increase in Ca
2+

 fluorescence transients in the presence of gambierol (C). Note also in the 

presence of gambierol the slow decay of basal fluorescence levels after stopping stimulation (see 

text for details).  
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Supplementary Material videos 

 

Movie S1. "Molgó et al_Ca Signal-Control" file  

Fluorescent signals in the branches of a frog motor nerve terminal loaded with fluo-3/AM 

showing Ca 
2+

 signals following continuous nerve stimulation at 1, 10 and 1 Hz under control 

conditions (for details see Fig. 8B). 

 

Movie S2. "Molgó et al_Ca Signal-Gambierol" file 

Fluorescent signals in branches of a frog motor nerve terminal loaded with fluo-3/AM showing 

Ca
2+

 signals following continuous nerve stimulation at 1, 10 and 1 Hz in the presence of 50 nM 

gambierol (for details see Fig. 8C). 

 

 


