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ABSTRACT

This work focuses on interstitial solid solutions of hydrogen in the face centered cu-

bic (fcc) host lattice of palladium and nickel, using a first-principles based approach.

Cluster Variation Method (CVM) and Monte Carlo simulation algorithms were es-

pecially designed, allowing a coupled use of both techniques, to study hydrogen-

vacancy interactions inside a fcc metallic host lattice. First-principles calculations

provided the H–Vac interaction energies by structure inversion method. The phase

diagrams and thermodynamic properties were computed using only theoretical in-

puts. The mechanisms leading to the formation of the miscibility gaps observed for

both Pd–H and Ni–H systems and the hydrogen ordering on palladium interstitial

lattice were reproduced without any empirical term.

PACS CLASSIFICATION

63.20.dk 88.30.R- 88.30.rd 88.30.G- 65.40.gd 07.05.Tp 61.43.Bn 64.75.Nx

KEYWORDS

Metal hydrides; Computer modelling and simulation; miscibility gap.

CONTACT Jean-Claude Crivello. Email: crivello@icmpe.cnrs.fr



1. Introduction

Among metal-hydrogen systems, Pd–H and Ni–H have been of particular interest

from both fundamental and application points of view. Palladium and nickel are in-

volved in many hydrogen technologies such as hydrogen storage alloys [1, 2], hydrogen

detection [3], purification [4], isotope separation and storage or electrode for nickel-

metal-hydride batteries [5, 6].

Pd and Ni are isoelectronic and the phase diagrams of Pd–H and Ni–H systems are

similar: it consists in an interstitial solid solution of hydrogen occupying the octahe-

dral (O) sites of the face centered cubic (fcc) metallic lattice. This has been shown

both experimentally [7, 8] and theoretically [9]. A miscibility gap is present in both

systems, observable at atmospheric pressure in Pd–H and above 340 MPa in Ni–H. It

corresponds to the two-phase equilibrium between hydrogen poor α and rich α′ phases

with the same fcc structure.

Despite these similarities, a specificity of the Pd–H system is the short-range order-

ing of hydrogen atoms and vacancies on the O-sites [10, 11] and the presence of two

super-structures (PdH0.5 and PdH0.8) observed by neutron diffraction at low temper-

ature [12–16] (Table 1). The two experimentally observed hydrides can be described

by successions of (420) planes: two hydrogen filled + two vacant at H/M=y(H)=0.5

(I41/amd) and four hydrogen filled + one vacant at y(H)=0.8 (I4/m). At a first

glance, these features seem to be incompatible with the presence of a miscibility gap.

Table 1. Observed super-structures for the Pd–H system at low temperature. Composition, Pearson Symbol

(P.S.) , Space Group (S.G.) (number), Wyckoff positions.

H/M P.S. S.G. (number) Wyckoff position

0.5 tI12 I41/amd (141) M : 8e, H : 4a
0.8 tI10 I4/m (87) M : 8h, 2a, H : 8h

The wide interest in the Pd–H system motivated modelling attempts since the

1930s. Before the discovery of the low temperature ordering, the first phenomeno-

logical model of Lacher [17], later developed by Harasima et al. [18], accounted

only for the phase separation, supposing a constant attractive H–H first neighbour

pair interaction. This attractive interaction reflects the segregation of hydrogen

atoms which corresponds at the macroscopic scale to the phase separation. Later on,
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Brodowski [19] introduced 2 independent energetic contributions: (1) an electronic

contribution arising from the chemical bonds between atoms on a rigid lattice and (2)

a contribution arising from the lattice expansion around interstitialhydrogen atoms,

leading to an indirect attractive interaction between hydrogen atoms, responsible

for the phase separation. Weaknesses of these approaches have been pointed out by

Oates [20] as the oversimplified hypothesis of independent protonic and electronic

energetic contributions.

In contrast to the theory of Cahn [21], in the concept developed by Alefeld [22, 23],

the long range elastic interaction arising from the lattice expansion with the α′

phase growth are supposed to favour the phase separation in M–H systems. The

corresponding energetic contribution depends only on H-composition and can be

regarded as indirect H–H attractive interactions.

Bond and Ross [24] proposed the first Monte Carlo (MC) simulation accounting

for the ordering tendency, expressed, this time, by a repulsive H–H first neighbour

interaction. Based on Alefeld’s work, they considered the phase separation as arising

from a configuration independent long-range contribution which was not included

in the simulation. The energies associated with the H–H first and second neighbour

pair interactions were especially chosen in order to stabilize one of the experimentally

observed super-structures.

Picton et al. [25] extended Bond and Ross approach introducing long-range in-

teractions in MC simulation to include, in a rough approach, the miscibility gap.

Thereafter, Mohri and Oates [26, 27] used the Cluster Variation Method (CVM) to

design a comprehensive description of Pd–H. The atomic interaction energies reflect

the ordering tendency, while the phase separation is promoted by a configuration

independent energy contribution, representing the effect of the lattice expansion. A

subsequent CVM model [28] returned however to an attractive H–H first neighbour

interaction to describe only the miscibility gap in palladium-based alloys. In addition

to these studies, the semi-empirical Calphad model of Joubert and Thiébaut [29]

describes the behaviour of Pd–H system based on experimental data above room

temperature with repulsive H–H interactions (attractive H–Vac interactions but

neglects the low temperature ordering.
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In comparison with Pd–H, the experimental data on Ni–H system are scarce.

The thermodynamic modeling Calphad method [30, 31] was only recently employed

to describe the thermodynamic behavior of the system, gathering all the available

experimental data and adding theoretical results from the Cluster Expansion Method

(CEM) [32].

The objective of the present study was to propose the first model of the Ni–H and

Pd–H systems using statistical thermodynamics without any empirical parameter and

to clarify the similarities and differences between the two systems. Considering the

metal host lattice as fixed, the cluster energies of the H–Vacancy sub-system on the

O-sites, were determined using various approaches. For this purpose, we used Density

Functional Theory (DFT) calculations of ordered structures generated in the frame

of the CEM. They were used as input data for the CVM and MC simulations and

to determine a comprehensive picture of the configurational dependence of the solid

solution energy. The two similar systems Ni–H, and Pd–H were thus jointly treated

using the same methods combining the input data of the DFT with CVM and MC

simulation, via the CEM as an interface.

2. Methodologies

2.1. CVM

The configurational entropy is approximated within the variational approach devel-

oped by Kikuchi [33] applied to the pseudo-binary system hydrogen–vacancy occupying

the fcc octahedral interstitial sublattice of the fcc host lattice.

In the following, we considered mainly the 13-14 points clusters, and in the case of

Ni–H the isotropic rhombohedral was also used as basic cluster. These two approxima-

tions are known to give fairly accurate results. The anisotropic rhombohedral cluster

approximation which was considered by Pelizzola [34] leads exactly to the same results.

The minimization was carried out not only using the correlation function formal-

ism [35] (case 1) but also in a pure probability framework (case 2). Each approach
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has its own advantages, allowing to design several minimization algorithms. We now

recall the main steps needed in the two CVM contexts.

Within the two formalisms, for a given basic cluster approximation (13-14 or rhom-

bohedral), the first step is to define the independent cluster probabilities of configura-

tions from space group symmetry operations. Unless the basic clusters were simplex, as

for example tetrahedron or octahedron, lattice translations define either cuts leading

to correlation functions, the independent variables, or to equality constraints among

probabilities. For example, writing the probabilities of finding an A or B atoms (equiv-

alently spin up or down in the Ising model), is defined as p± = 1±ξ1
2 where ξ∅ = 1

stands for the free ensemble and ξ1 the point correlation function. The whole set of

linear equations and the matrix M in Eq. 2 linking the probabilities to the correlation

functions, including those of sub-clusters, are thus obtained from Kronecker products

of the two by two matrix in case of M(1, 1) =
1

2

 1 1

1 −1

, associated to pure mean

field involving free ensemble and point correlation. It is followed by appropriate rows

and columns concatenation or by defining sub-cluster probabilities as symmetrized

positive linear combination of basic cluster ones in probability formalism. It should be

stated here that both approaches lead to exactly the same outcome.

Following the above procedures, the grand-potential β G = β F − βµ ξ1, with µ the

effective chemical potential and ξ1 the point correlation function, can be written in

standard form.

In case 1, we have :

β G =

nc∑
i=1

β νi ξi − β µ ξ1 +

np∑
j=1

aj p(j)
(

ln p(j)− 1
)

(1)

p(j) =

nc∑
i=1

M (j, i) ξi ≥ 0 (2)

where the subscripts i and j label the correlation functions and the probabilities,

respectively, and array ξi accounts for the nc correlation functions including the empty

ensemble ξ0 = 1, p(j) for j ∈ [1, np] accounts for the np probabilities including those
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of sub-clusters. Finally, array νi stands for the Effective Cluster Interactions (ECI)

multiplied by their respective multiplicity while the coefficient array ai is the product

of CVM coefficient times the probability degeneracy and the cluster multiplicity.

In case 2, we split the probability set into p
B

for the n
B

basic cluster probabilities and

p
S

for the sub-cluster ones (n
B

+ n
S

= np in case 1). We get :

β G =

n
B∑
i

(β ẽi − β µ θi) pB
(i) +

n
B∑
j

aj pB
(j)
(

ln p
B

(j)− 1
)

+

n
S∑
j

aj pS
(j)
(

ln p
S
(j)− 1

)
(3)

p
S
(j) =

n
B∑
i

M̃ (j, i) p
B

(i) (4)

b(i) =

n
B∑
i

J(k, i) p
B

(i) ∀ k ∈ [1, n
J
] (5)

In the above expressions array ẽi is the ECI phrased in terms of probabilities and

array θ is the linear combination associated with point correlation. The variables p
B

are box constrained and here involved in linear equalities rather than in Eq. 2 which

defines a convex polyhedron.

In the building procedure of matrices, we generally generate redundant constraints

that can be reduced by a Q.R decomposition with row pivoting, thus the Jacobian

matrix J in Eq. 5 is a full rank matrix of rank n
J
. The components of the right hand

side vector b(i) are zero except for probability normalization where b(i) = 1 and op-

tionally for given point correlation b(i) = ξ1.

In both cases, taking advantage of sparsity and parallelism, most minimizations were

carried out starting from the pure mean field solution, using the constrained Newton

method [36] where β µ was treated as a simple Lagrange multiplier. From Hessian

information, optimal solution derivative with respect to inverse temperature β or/and

chemical potential were computed to speed-up computations for varying these pa-

rameters. Spinodal decomposition was determined by locating hessian zero eigenvalue

either with respect to temperature at constant point correlation or the two boundary

point correlations at given temperature. In the same way, miscibility gap was identified

through the common tangent method, determining, by the Newton method, the two
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point correlation functions ξ±1 with identical grand-potential and chemical potential.

Numerical difficulties soon appeared owing to triangles ECI which shift spinodal or

miscibility gap far away from stoichiometry. In such cases, when ξ1 → ±1, some

probabilities become very small preventing convergence. In such case instead of using

constrained Newton optimization, we used the NIM (Natural Iteration Method) [37]

described for example in Ref.[34].

The slight difference of our algorithm and that of Pelizzola [34], is that Lagrange

multipliers implied in the set of constraints of kind J.X = 0 were computed using

either Broyden or Newton methods to solve a set of nonlinear equations rather than

using a fixed point method. However, even NIM fails when | ξ1 | is too close from

unity. In this limit, the solution is very close to a vertex of the polyhedron Eq.2,

therefore some probabilities are nearly zero. While they practically do not contribute

to the free energy, their contribution to derivatives is however dominant, so final

successful attempts were conducted as follows.

By removing probabilities which correspond to highly excited states with respect

to total occupancy of hydrogen atoms or vacancies, the number of variables from

which minimizations were performed can be reduced in both formalisms. The method

consists in reducing the dimensions of the problem, named ”reduced probability”

approach. Briefly stated, in case 1 for example, at a given iteration of the minimization

process, let n
p

the current number of probabilities and n
c

the number of correlation

functions. By n, we define the number of non redundant probabilities that fall below

a given threshold ε, as example the machine precision, which can be safely removed.

A row permutation of matrix M and related quantities such as the CVM coefficients

is performed to bring these probabilities first. Then, a Q.R decomposition with

column permutation of matrix M and related quantities allows to define a leading

full rank submatrix, from which n probabilities and n correlation functions can be

removed. The method applies also in case 2 under appropriate modifications and can

be extended to ordered phases, or multi-component system.

The previously described method allows to sample at low temperature, however, it

cannot reach 0 K, for which a ground state analysis was performed by minimizing, in
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matrix form:

eT x− µ ξ1 such M x ≥ 0 (6)

(ẽ− µθ)T p
B

such b = J p
B

(7)

To solve the LP (linear programming) problem defined by Eq. 6, we used the interior

point algorithm from Ref. [38] and to solve the LP problem defined by Eq. 7, we used

the simplex based code LA04D adding upper bounds on probabilities [39]. In the case

of PdH in addition to pure palladium ξ1 = −1 and the hydride PdH ξ1 = +1, we

identified two other ground states occurring at ξ1 = −0.5 that is a Pd4H3 structure

and at ξ1 = −0.25 or Pd8H5 through which low temperature phase diagram can be

computed if required.

Finally to close this section, we notice that various algorithms to tackle minimization

of the CVM free energy functional can be designed as for example projected gradient

or reduced gradient methods [36]. It is also easy to build global optimizer that fulfils

constraints such as differential evolution or genetic algorithm which rely on some

random process. In this scope, we investigate MC for comparative purpose but also

as a companion method. For example, solving the LP problem leads to a vertex from

where in a next step a translationally invariant structure should be found. While

spanning the whole range of chemical potential in LP is fast and highly reliable, the

second task is easier in MC.

2.2. Monte Carlo simulations

Monte Carlo simulations which nowadays give ”quasi exact” results, have been done

within the grand canonical ensemble. The interstitial fcc sublattice is represented

by a 4 by L3 box with L the box length up to 20 to prevent size effect bias. An

openMP code was written allowing 24 runs in parallel. In most cases, 20000 burns-in

MC steps were disregarded and for 2n (n ≥ 17) MC sweeps, magnetization energy

and correlations associated to ECI were recorded. Average and statistical errors of
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magnetization, susceptibility, energy and specific heat were analyzed using binning

and/or blocking methods [40].

We used MC methods, as a companion method to CVM, to locate the misciblility

gap at given temperatures, using thermodynamical integration of the magnetization

function of the chemical potential using Chebyshev polynomials, to supply data points

where CVM may lack of accuracy. To this aim, we used:

G(µ) = U(µ−∞) + µ−
∫ µ

−∞

(
ξ1(τ) + 1

)
dτ (8)

G(µ) = U(µ+∞)− µ−
∫ +∞

µ

(
1− ξ1(τ)

)
dτ (9)

G(µ) = G(µ1)−
∫ µ

µ1

ξ1(τ) dτ (10)

In equation 8 and 9, U refers to the internal energy of pure states (Pd and PdH) for

which entropy is exactly zero and in equation 10 G(µ1) refers to the grand potential

of a reference state taken here as CVM output away from the phase separation. In all

cases the CVM outputs match exactly the MC results within statistical error. The

main advantage is to narrow the range of µ to be sampled in MC without loss of

accuracy.

Simulated annealing and parallel tempering were also used to identify the crystal

structures of previously predicted ground states by LP. The space group of the ob-

tained crystal structures were identified via the phonopy code [41].

MC methods overcome many difficulties of CVM and graciously accommodate longer

range interactions and more complex lattice structures without hard work. Such

progress has been made in sampling techniques that even free energy or entropy can

be computed, so this is obviously the right alternative to CVM for more complicated

structures.
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2.3. Structure Inversion Method

The ECI supplying both CVM and MC codes were determined using the Structure

Inversion Method [35, 42] (SIM) within correlation function formalism based on DFT

calculations. In our approach, only the energetic (enthalpic) contribution was used

and not the temperature dependence that would allow the calculation of the phase

diagram. In the CEM formalism, the energy of mixing is expanded in a complete and

orthonormal basis in the configurational space {φ}α:

Emix
CEM =

∑
α

ναξα (11)

with να = 〈E, ξα〉, the ECI, representing the contribution associated to the cluster α.

The Alloy Theoretic Automated Toolkit (ATAT) [43–45] was used to produce a

relevant set of 25 long range ordered fcc super-structures for both Pd–H and Ni–H

systems. In the frame of the SIM, the ECI were refined to fit an initial set of DFT

calculated energies of mixing. The initial ECI are then used to predict the energy of

a large number of super-structures. If a new ground-state super-structure is found,

the corresponding DFT input data are generated and the calculation is done in order

to add the new energy to the initial set. Otherwise the generated super-structure is

judiciously selected in such a way that the variance component of the prediction error

of a least-square fit is minimized.

The DFT calculations were carried out within the generalized gradient approxi-

mation (GGA) using the Perdew-Burke-Ernzerhof functional (PBE) [46, 47] with the

Vienna Ab-initio Simulation Package (VASP) code [48, 49]. Calculations were per-

formed with spin polarization for the Ni–H system. We used a high energy cutoff of

800 eV and a dense grid of k-points in the irreducible Brillouin zone (∼ 2π · 0.05 Å),

generated with the Monkhorst-Pack scheme [50]. For each compound, both the internal

atomic coordinates and the lattice parameters were fully relaxed, so that the conver-

gence of Hellmann- Feynman forces was better than 0.1 meV.Å−1. The self-consistent

total energy converged to less than 0.01 meV.

10



The energy of mixing at 0 K of a given super-structure MHy with 0 ≤ y ≤ 1 was

calculated according to equation 12.

∆Emix
i = Etot

MHy
− y · Etot

MH − (1− y) · Etot
M . (12)

3. Results

The DFT calculations of all the Ni–H super-structures resulted systematically in posi-

tive ∆Emix
i values. This reflects their instability with respect to the two-phase equilib-

rium between pure nickel and NiH and therefore explains the existence of a miscibility

gap. Conversely, many ordered super-structures with negative energy of mixing were

found in Pd–H system, in particular at high hydrogen compositions (Fig. 1). This

includes the two previously reported super-structures PdH0.5 and PdH0.8 in I41/amd

and I4/m space group respectively.

Figure 1. DFT calculated (blue) and CEM energies of mixing (red) of the ordered super-structures for Pd–H

and Ni–H systems. Comparison with the DFT calculated values (gray) of Wang et al. [51].

On the basis of the DFT calculated energies of mixing, the ECI were refined within

the ATAT code and the final set was selected on its predictive power quantified by the

cross-validation (CV) score defined in Ref. [43] and constrained to confine within the

13-14 points. The chosen clusters are illustrated in Fig. 2 with the respective ECI sets

listed in Table 2.

Using the listed ECI as input data for the CVM code, the thermodynamic quantities

were calculated for Pd-H system (not for Ni-H which presents numerical instabilities
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Figure 2. Chosen fcc cluster considered in the present work. from top to bottom: pairs, triplets and tetrahedra.

Table 2. ECI (eV) including multiplicity assessed on DFT calculations for Pd–H (CV=1.8 meV) and Ni–H
(CV=1.6 meV). The pairs i are indexed in ascending order of atomic distance and are presented in Fig. 2.

cluster multiplicity pairs i Pd–H Ni–H

∅ 1 - -0.016767 +0.033359
point 1 - +0.027846 +0.015733
pair 1 6 1 +0.005922 -0.035916
pair 2 3 2 +0.004905 +0.005322
pair 3 12 3 +0.003216 -0.009924
pair 4 6 4 +0.003762

triplet 1 8 1, 1, 1 -0.004240 -0.006520
triplet 2 12 1, 1, 2 -0.001800 -0.008172
triplet 3 24 1, 1, 3 -0.004968
triplet 4 24 1, 3, 3 +0.005976
triplet 5 24 1, 2, 3 -0.001680
triplet 6 24 2, 3, 3 -0.005232
triplet 7 8 3, 3, 3 -0.004536
triplet 8 48 1, 3, 4 -0.011184

tetraedron 1 2 1, 1, 1, 1, 1, 1 -0.000792
tetraedron 2 12 2, 1, 1, 1, 1, 1 +0.006912
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within the spinodal domain) and is shown in Fig. 3 using canonical CVM calcula-

tions at 350 K. The point near the stoichiometric compositions could be obtained via

the NIM and the minimization performed on reduced probability sets. CVM results

within the spinodal should be considered with care as they do not correspond to true

minimum. The resulting phase diagrams for both systems are represented on Fig. 4.

One may note the excellent agreement between the CVM and MC for Ni–H system,

validating the reliability of the results.

Figure 3. Thermodynamic quantities for Pd–H system obtained by CVM using 3 different minimization

algorithms. Comparison with the Calphad model [29].

Figure 4. Phase diagrams and spinodals of Pd–H and Ni–H systems obtained by CVM. Comparison with

the Calphad models [29, 32] and experimental data.
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Two new ordered super-structures PdH0.625 and PdH0.75 (details on Tab. 3) were

identified on the ground-state by using MC on the ECI set generated by CEM.

Table 3. Monte Carlo predicted ground-state for Pd–H system suing the ECI set of Table 2: Composition,

Space Group (S.G.) (number), Wyckoff positions.

H/Pd S.G. (number) Wyckoff positions

0.625 Im3̄m (229) Pd: 2a, 6b, 24h H : 8c, 12e
0.75 I4132 (214) Pd: 8a, 24h H : 24g

4. Discussion

One may note that the ordering observed for the Pd–H system is almost unique among

M–H systems and was only observed on the O-sites of rare-earth hydrides RH2+x in

which hydrogen occupies all the tetrahedral sites of the fcc lattice [52].

The two experimentally observed intermediate compounds PdH0.5 and PdH0.8 have

been calculated by DFT and one of them (I41/amd) is actually found on the ground

state. However, the present DFT calculations on CEM superstructures pointed out

that several other PdHx compounds are also stable at 0 K (Fig. 1). The precision of

the DFT calculation is indeed too limited to compare the super-structure relative

stabilities within a so close energy range and to determine a reliable groundstate.

Indeed, previous DFT calculations [51] lead to a different groundstate with an average

difference of about 3.6×10−3 eV with the present calculations. Besides, the vibrational

contribution to the energy of mixing may also be non negligible, as shown in previous

work [53]. In this frame, the predictions of CVM and MC inevitably differ slightly

from the observed ordered configurations. In fact, the two new structures of Table 3

predicted by CVM and MC and recalculated by DFT are not exactly found on the

DFT ground state but the associated energy calculated by CEM with the same set of

ECI place them on the ground state.

At first sight, Pd–H and Ni–H systems seem to be very similar. Palladium and nickel

both adopt the fcc structure and have the same valence electronic structure, suggesting

similar chemical bonds with hydrogen. Second, in presence of hydrogen, both metals

appear to have similar behaviors. Indeed, hydrogen atoms settle on the same O-sites
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and the structure of the hydride has the NaCl structure type in both case. Besides,

the α/α’ phase separation is observed in both cases and the resulting miscibility gap

closes at similar temperatures.

A first difference came from the stability of the formed hydrides: while palladium

hydride can be formed easily at pressures of around 10 mbar at room temperature, a

couple of kilobars is necessary to form Ni hydride. This can be fairly well explained by

the larger cell volume of Pd compared to Ni host structure and by the DFT calculation

of the very different enthalpies of formation of Pd and Ni hydrides as shown in our

recent work [9].

Even more surprising, in the frame of the present study is the opposite sign of

the energy of mixing (Fig.1). This difference can be interpreted by analyzing the

calculated density of state (DOS) of the ordered super-structures. DOS of pure metal

and stoichiometric hydrides are given in supplementary materials. A simple picture

is given in Fig. 5, showing the evolution of DOS at the Fermi level, DOS(EF ), as a

function of y(H) for both Pd–H and Ni–H systems.

Figure 5. DOS at the Fermi level as a function of y(H) for both Pd–H and Ni–H systems.

In comparison with Pd metal, Ni presents more localized d−bands structure and,

without spin polarisation, the DOS at Fermi level is higher for Ni (4.5 states by eV).

As a consequence, to reduce its DOS(EF) to 1.8 (Stoner criterion), a ferromagnetic

state is found more stable for Ni and the majority spin bands are almost filled. The

electronic structure is affected by hydrogen absorption. In Ni–H system, electrons

given by H lead to a progressive filling of the 3d-Ni bands and to an increase of
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the DOS(EF) up to a maximum at y = 0.33 (corresponding to the filling of a peak

in minority spin), before a decrease of DOS(EF) with y. This is detrimental to the

formation of intermediate compounds. On the contrary for PdHy compounds, the

DOS(EF) decreases as a function of hydrogen concentration y, with respect to its

values for Pd and PdH. As a consequence, the energy of mixing for Pd–H system is

negative which explains the presence of stable ordered super-structures.

Regarding the Ni–H system, the positive sign of the energy of mixing is reflected

in the ECI associated to the first neighbour pair, which has a strongly negative

value, thus favouring like-pairs. It accounts for the tendency of hydrogen atoms to

be surrounded by other hydrogen atoms yielding the formation of a miscibility gap.

Contrarily, for the Pd–H system, the positive first neighbour pair ECI leads to the

ordering tendency. The sign is the same as in the models of Bond and Ross [24] and

Mohri and Oates [26, 27]. Interestingly, the ECI associated to the second pair in

Pd–H was found dominant against that of the first pair. A similar result was found by

Demangeat et al. [54] within a tight-binding model, obtaining also positive values for

the first ECI, the second being about twice the first. Besides, the triplet interactions

introduce an asymmetry in the phase diagrams particularly pronounced in Pd–H

system, favouring the solid solution stability on the higher composition range and the

phase separation on the lower composition range.

Figure 4 shows the predicted miscibility gap boundary for Pd–H and Ni–H, com-

pared with experimental determination. The data resulting from CVM and MC were

voluntary shifted to be distinguished. These two statistical methods though radically

different since the CVM relies on a variational principle while MC rest on Markov pro-

cess, lead to the same outcome for magnetization. It should be quoted that this agree-

ment remains true for the magnetic susceptibility calculated analytically by derivation

in CVM and from fluctuations in MC. These results were expected since the 13-14

points cluster is already accurate in the Ising model and as a general trend mean

field theory improves significantly with the number of ECI, as well as the number of

chemical compounds. In Ni–H, the phase separation is driven by the positive sign of
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the energy of mixing on the complete composition range (Fig. 3). The critical point is

slightly shifted to the left by the triplet contribution.

Very differently, in Pd–H system, the miscibility gap arises from two curvature

changes of the negative free energy of mixing (Fig. 3). It explains very well the simul-

taneous presence of a miscibility gap and negative enthalpies of mixing correlated with

the observation of super-structures, very unlikely at a first glance. Compared with the

experimental data, the critical point of Pd–H is underestimated by 166 K while the

one of Ni–H is overestimated by 158 K (Fig. 4). The discrepancy reflects the lack of

precision of the raw ECI data, which are volume independent in our model. But it may

also arise from macroscopic effect like coherency strain between the α and α’ phase

boundary as suggested by Alefeld [22, 23] which favours the phase separation. Other

mechanisms as potential mechanical instability also require further investigation. How-

ever, considering that only theoretical input were used, the predictions are remarkable.

The present results show that the only configurational contribution to the thermody-

namic quantities is sufficient to describe the behavior of both systems and to induce

both the miscibility gap and the ordering phenomena for Pd–H, without the need of

either long-range elastic interaction [24] or lattice expansion contribution [26, 27].

5. Conclusion

Both CVM and MC simulations based on DFT calculations allowed to obtain compre-

hensive descriptions of both Pd–H and Ni–H systems. We would like to underline the

complementarity of the two techniques, allowing to validate the results given by the

same inputs. MC simulation allows to identify the atom positions of the ground-state

and the CVM improves the MC calculation time providing integration constants. Our

model could be improved by taking into account the effect of lattice vibration and

distortion [55] in order to improve the accuracy on the DFT calculated energies. The

effects of the important volume expansion on the atomic interactions could also be

considered. However, both MC and CVM techniques allowed to show that miscibility

gaps in Pd–H and Ni–H systems originate from very different physical quantities: a

change of the curvature of the negative free energy for Pd–H and a positive energy
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of mixing in the case of Ni–H. For Pd–H system, the simultaneous presence of low

temperature ordering and a miscibility has been shown to be compatible. Compared

to the previous phenomenological models [24, 26, 27], the energy and entropy contri-

bution to the Gibbs energy could be determined from physical inputs only without

the use of any empirical parameter.
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[29] J.M. Joubert and S. Thiébaut, A thermodynamic description of the system Pd-Rh-H-D-T,

Acta Mater. 59 (2011), pp. 1680–1691.
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