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Chapter 9

The Methodology Behind Network Thinking: Graphs
to Analyze Microbial Complexity and Evolution

Andrew K. Watson, Romain Lannes, Jananan S. Pathmanathan,
Raphaël Méheust, Slim Karkar, Philippe Colson, Eduardo Corel,
Philippe Lopez, and Eric Bapteste

Abstract

In the post genomic era, large and complex molecular datasets from genome and metagenome sequencing
projects expand the limits of what is possible for bioinformatic analyses. Network-based methods are
increasingly used to complement phylogenetic analysis in studies in molecular evolution, including com-
parative genomics, classification, and ecological studies. Using network methods, the vertical and horizon-
tal relationships between all genes or genomes, whether they are from cellular chromosomes or mobile
genetic elements, can be explored in a single expandable graph. In recent years, development of new
methods for the construction and analysis of networks has helped to broaden the availability of these
approaches from programmers to a diversity of users. This chapter introduces the different kinds of
networks based on sequence similarity that are already available to tackle a wide range of biological
questions, including sequence similarity networks, gene-sharing networks and bipartite graphs, and a
guide for their construction and analyses.

Key words Sequence similarity network, Evolution, Lateral gene transfer (LGT), Metagenomics,
Gene remodeling, Ecology

1 Introduction

An evolutionary biologist is interested in how processes governing
evolution have produced the diversity of genes, genomes, organ-
isms, species, and communities that are observed today. For exam-
ple, a biologist interested in the eukaryotes may wonder what
symbiotic partners have contributed to their origins and evolution.
Eukaryotic nuclear genomes are chimeric in nature, encoding many
genes acquired from their alphaproteobacterial endosymbiont
[1–3]. However, in recent years, it has been proposed that the
ongoing gain of genes by both microbial [4–6] and multicellular
eukaryotes [7, 8] via lateral gene transfer (LGT) has continued to
contribute to eukaryotic evolution, though to a lesser extent than
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prokaryotes [9]. A biologist interested in prokaryotes may wish to
investigate lateral gene transfer to explore the numbers and kinds of
genes transferred between bacteria, archaea, and their mobile
genetic elements [10–14]. These transfers are important for under-
standing the accessory genomes of prokaryotes [15–17]. Further,
studying gene transfers in real bacterial communities from different
environments can help to test the effect of LGT on ecology and
evolution of communities [18]. Given the prevalence of introgres-
sion [9–11, 19], one interesting question is whether gene transfer
has led to the formation of novel fusion genes that combine parts of
genes originating from separate domains of life [20]. An ecologist
may wish to analyze the distribution of genes and species in the
environment [21]. A metagenome analyst may need to overcome
an additional challenge exploring the nature of the large proportion
of sequences in metagenome datasets that have little or no detect-
able similarity to characterize sequences and to study the “microbial
dark matter” [22].

High-throughput sequencing technologies present new oppor-
tunities to investigate these diverse kinds of questions with molec-
ular data; however, they also present challenges in terms of the scale
of the analyses. Consequently, a number of network-based methods
have recently been developed to expand the toolkit available to
molecular biologists [23], and these have already made major con-
tributions to our understanding of molecular evolution. Networks
have been used to shed light on the nature of the “microbial dark
matter” [24] and used in ecological studies to explore the geo-
graphical distribution of organisms or genes [25, 26] or the evolu-
tion of different lifestyles [27]. Their suitability for investigating
introgressive events has been used to enhance our understanding of
the chimeric origin of genes in the eukaryotic proteome [28, 29],
the flow of genes between prokaryotes and their mobile genetic
elements [30–35], and gene sharing across mobile elements to
study the transfer of resistance factors [14, 36]. Networks have
also been used to classify highly mosaic viral genomes [37, 38]
and identify gene families [39, 40]. These approaches are highly
complementary to traditional phylogenetic approaches, high-
lighted by the development of hybrid approaches and phylogenetic
and phylogenomic networks [34, 41–43]. These hybrid networks
are beyond the scope of discussion in this chapter but are covered in
Chapters 7 and 8.

While the generation and analysis of networks were previously
limited to biologists with programming experience, tools have
recently been developed to simplify the process and broaden the
availability of network analyses of molecular sequence data. This
chapter introduces the different kinds of networks that are already
available to biologists and a guide to how these networks can be
constructed and analyzed for a large range of applications in molec-
ular evolution. More precisely, this chapter will focus on three kinds
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of network and the types of analyses that are possible using these
networks: sequence similarity networks, gene-sharing networks,
and multipartite graphs [23].

2 Sequence Similarity Networks (SSNs)

Sequence similarity networks are the bread and butter of network-
based molecular sequence analyses, with a huge range of applica-
tions in molecular biology. The use of SSNs for molecular sequence
analysis first came to the fore in the late 1990s and early 2000s,
when SSNs were suggested as a way to analyze the rapid influx of
new molecular sequence data due to advances in sequencing tech-
nology and reduced cost, as well as to predict gene functions and
protein-protein interactions [39, 44–46]. One of the earliest formal
and heuristic uses of SSNs was to define the COG groups of
homologous families and facilitate prediction of the functions of
large numbers of genes based on homology [39, 40]. The need for
efficient computation and analyses for large biological databases
still pervades; however, more recently SSNs have been increasingly
appreciated as useful approaches to describe complex biological
systems, including inferring the “social networks” of biological
life forms [30], producing maps of genetic diversity [27], detecting
distant homologues [47–49], and exploring gene and genome
rearrangements [50, 51].

A SSN is a graph in which each node is a sequence and edges
connect any two nodes that are similar at the sequence level above a
certain threshold (e.g., coverage, percent identity, and E-value) as
determined by their pairwise alignment (Box 1) (Fig. 1). While the
principle behind SSN construction is simple, the expression of
similarity data in this structure can enable the use of powerful

Fig. 1 Constructing a simple sequence similarity network. A set of sequences (protein or DNA) in fasta format
(a) are aligned in pairs using alignment tools (such as BLAST). These alignments (b) are scored with metrics
such as the percentage identity between two sequences (the number of identical nucleotides/amino acids
displayed above) or the E-value of the alignment. In the resulting network (c), sequences are represented as
nodes. Two sequence nodes are joined with an edge if they can be aligned above a define threshold, with the
weight of the edge often based on percentage identity or E-value
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algorithms for graph analyses to study complex biological phenom-
ena. Construction of a SSN is also frequently the starting point in a
diversity of further graph analyses. A SSN can be constructed
directly from fasta formatted sequence files using pipelines, such
as EGN [52], the updated and faster performing EGN2 (forth-
coming), or PANADA [53]. Visualization of networks can be
performed with programs such as Cytoscape [54] or Gephi [55],
both of which also have a range of internal tools and external plug-
ins for network analysis. While these programs are useful for the
visualization and analysis of relatively small networks, it can be
difficult to load large and complex networks with a lot of edges
(e.g., �50,000 edges). In these cases the iGraph library offers an
extremely powerful and well-supported implementation of a broad
range of commonly used methods for both complex graph genera-
tion and analysis in R, Python, and C++ [56]. However, using
iGraph requires knowledge of programming in at least one of
these languages. An additional package for network analysis in
Python is NetworkX [57]. It is our goal here to further generalize
network approaches by explaining how evolutionary biologists with
less programming knowledge could analyze their data. A list includ-
ing many of the tools and programs available for SSN generation is
available at https://omictools.com.

Box 1: How to Build Your Own Sequence Similarity
Network
1. Dataset assembly: The first and most important step of SSN

construction is the assembly of a dataset of sequences rele-
vant to your biological question, usually in fasta format. This
can be used as the initial input for wizards such as EGN or
EGN2 [52], which can fully automate the process. The
nature of the dataset is highly dependent on the research
question, so here we focus on the practicalities of database
assembly. To construct the similarity network, all sequences
in the dataset are aligned against one another in a similarity
search. This similarity search is often the time-limiting step
in an analysis, and the total number of searches required is
quadratic to the number of sequences in the dataset. For
large datasets, it is useful to benchmark the alignment using
a subset of the data to estimate the timescale for the align-
ment. Large datasets can generate huge outputs, not only
due to the number of sequences but also the length of their
identifier. One way to reduce the output size is to replace
each sequence name in the fasta file with a unique integer.
The use of integers will reduce disk space use and the mem-
ory consumption for any software used to analyze the
sequence data.

(continued)
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Box 1: (continued)
2. Similarity search: To generate a sequence similarity network,

all sequences must be aligned against one another in an all-
versus-all search, in which the dataset of sequences is
searched against a database including the same sequences.
For gene networks, the alignment is usually done with a fast
pairwise aligner such as BLAST [58, 59] as implemented in
EGN [52]. Filters are often used to remove low-complexity
sequences from the search, as these can cause artefactual hits
(BLAST options --seg yes, -soft-masking true). The BLAST
method of alignment will be the focus of future discussion in
this chapter; however, alternatives are available including
BLAT [60] (also implemented in EGN), SWORD [61],
USEARCH [62], and DIAMOND [63]. These alternatives
generally include an option to produce a “BLAST” style
tabulated output, making them compatible with programs
commonly used in network analyses.

Within alignment tools like BLAST, it is possible to
assign thresholds, such as the maximum E-value of the
alignment. It is not recommended to set minimal thresh-
olds for some parameters (such as % sequence identity)
unless required due to memory constraints so that you
can generate networks from a single sequence alignment
with different thresholds for comparison (e.g., compari-
son of a 30% similarity threshold to a 90% threshold,
where edges will only be drawn between highly similar
genes).

Note: It may be intuitive to use additional CPUs to
speed up the alignment process; however, in BLAST it can
be more efficient to split the query file and launch multi-
ple searches on separate cores instead of using the BLAST
multithreading option. The pairwise alignment step is
generally the most time-limiting part of generating a
SSN, so benchmarking should be used to establish the
optimal settings for the pairwise and/or determine the
feasibility of a project given the size of the dataset and the
available computational resources.

3. Filtering similarity search results: In an all-versus-all similar-
ity search, any given query sequence will have a self-hit in the
corresponding database. For example, with sequences A
and B, a self-hit is query sequence A matching to sequence
A in the database, cases of which must be removed prior to
network construction (Fig. 2). When query sequence A in a
similarity search is aligned with sequence B in the database,
often the reciprocal result is also identified (an alignment
between query sequence B and sequence A in the database).
These are called reciprocal hits; while the sequences involved

(continued)
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Box 1: (continued)
are identical, the alignments and scores are not. Retaining
both hits would generate two different edges between the
same two nodes in a SSN, so generally only the best results
from reciprocal hits are retained, based on a score such as the
E-value (Fig. 2). Finally, a single query sequence may be
significantly aligned multiple times in different positions of
the same sequence in the database; however, for SSN con-
struction only the best BLAST hit is generally retained
(Fig. 2). The selection of the best BLAST hit is again gener-
ally often based on the E-value. Removing multiple hits
against the same sequence allows the generation of an undi-
rected network where a single edge connects two nodes,
representing the best possible alignment between these
nodes.

4. Thresholding and network construction: Constructing a SSN
from a BLAST output is conceptually simple; an edge is
created between two sequences (nodes) that have been
aligned in the sequence similarity search. It is common to
apply thresholding criteria such as minimal % ID and/or
coverage and/or maximal E-value to determine whether an
edge is drawn between two sequences in the network
(Fig. 1). There are different ways to calculate the % coverage
of an alignment. This could be based on the coverage of a
single sequence in the alignment, selecting either the query
or the database sequence in each alignment or the longest or
shortest sequence in each alignment. Alternatively both
(mutual coverage) can be used, retaining an alignment

(continued)

Fig. 2 Filtering sequence similarity results for network construction. In the output of an all-against-all
sequence similarity search, there are a number of features that are often filtered out prior to network
construction. Self-hits (1/ and 2/), where like sequences are paired in a sequence alignment, are not
informative to network construction and are removed (highlighted by the red box surrounding the alignments).
In cases where there are reciprocal hits (3/ and 4/) between two sequences, then only the alignment with the
highest E-value is retained (highlighted with a green box around the retained alignment) to ensure only one
edge representing the best possible alignment connects any two nodes in the network. The same is true for
cases where a sequence has multiple hits against another sequence, such as when it aligns to another
sequence in multiple positions (5/ and 6/)

276 Andrew K. Watson et al.



Box 1: (continued)
when both values are above a given threshold. Edges above
the thresholding criteria can be assigned a weight based on
these criteria, producing a weighted sequence similarity net-
work that retains information of the properties of the align-
ment between two sequences (Fig. 1). It is often useful to
construct and compare several SSNs with variable stringen-
cies defining the edges between sequences, for example, to
optimize gene family detection within the SSN (discussed
below).

2.1 Scalability of

Sequence Similarity

Network Analysis

As with other computational approaches, the scale of network
analysis is limited by the available computational resources. The
limiting factor in terms of the size of network it is possible to
construct is predominantly governed by the pairwise alignment.
All sequences in the dataset need to be aligned against one another
in a pairwise manner, meaning the number of alignments is qua-
dratic to the size of the dataset. For example, computing an all-
against-all comparison of 1,000,000 sequences requires computa-
tion of 1012 alignments. BLAST [64] is the standard tool for this
step, with a relatively good speed and accuracy for sequence simi-
larity searches; however, the use of BLAST can be a bottleneck for
the analysis of large datasets. This is an especially important consid-
eration given the growth in the number of gene and genome
sequences available in public databases. Several rapid alignment
tools such as BLAT [60], USEARCH [62], Rapsearch [65], and
Diamond [63] have been proposed to overcome this issue. For
example, Diamond benchmarks suggest that it is almost as accurate
as BLAST but is at least three orders of magnitude faster.

A second point to consider from the perspective of scalability is
the complexity and size of the graph and the complexity of the
algorithms used in their analysis. Algorithms where the number of
calculations is linear to the size of the graph can generally be run on
huge graphs with sufficient computational resources, for example,
finding connected components using the “deep search first” algo-
rithm. Algorithms for community detection (e.g., PageRank [66],
Louvain) are also linear and particularly suited for detecting groups
of closely related sequences in huge graphs (discussed in Subhead-
ing 4). In contrast, computing graph statistics such as the between-
ness centrality are not linear to the size of the graph, even using the
relatively efficient Brande algorithm for calculation [67], and are
therefore more difficult to calculate for huge graphs. This has led to
the development of toolkits specifically designed for the analysis of
huge graphs (e.g., NetworKit) [68]. A recent book summarizes the
challenges of the analysis of huge networks and some of the algo-
rithms that have been developed to face these challenges [69].
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2.2 Exploiting

Sequence Similarity

Networks for

Identification of Gene

Families

A gene family is usually defined as a group of sequences that are
similar at the sequence level, indicative of homology and potentially
of shared functions; however, there is no uniform way to define this
similarity [70, 71]. One of the early contributions of SSNs in
molecular sequence analysis was the construction of the COG
database of homologous protein sequences [39, 40]. This study
attempted to define gene families based on similarity at the
sequence level using the results of sequence similarity searches.
Within the results of an all-versus-all BLAST search, groups of at
least three proteins encoded by different genomes that were more
similar to each other than they were to other proteins found in the
same genomes were defined as a likely orthologous gene family.
Orthologous gene families are group of genes in different genomes
that show sequence similarity, likely as a result of their shared
evolutionary history.

The idea of using graphs to identify gene families is now a core
part of many graph-based analyses. Members of a gene family
aggregate in a sub-network in a SSN. These sub-networks are called
connected components (CCs) at these defined thresholds, i.e.,
clusters of nodes connected by edges either directly or indirectly
(via intermediate nodes) (Fig. 3). The size (number of nodes and
edges in a CC) and density (the proportion of potential connec-
tions between all nodes in a CC that are actually connected by edges
in the graph) of CCs will depend on the thresholds used for

Fig. 3 Louvain community detection in a sequence similarity network. The network is assembled from the
results of an all-versus-all alignment, as previously described. Edges can be weighted by E-value, percentage
of identity, or bitscore. For the purpose of simplification, we consider strong or weak weights rather than
actual values. (a) A giant connected component at relaxed threshold. (b) Three connected components at a
more stringent threshold. (c) Three communities with Louvain clustering algorithm, taking into account edge
weights
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constructing the SSN as well as the relationships between sequences
in the network. For example, for a given dataset at a given mutual
coverage threshold, a threshold of 90% sequence identity will iden-
tify a large number of small connected components that only
include highly similar genes, while at a threshold of 30% sequence
identity, there will be fewer but larger connected components
including genes with more variation in sequence similarity. Com-
monly used thresholds for detecting homologous gene families are
an E-value �e�5, mutual coverage �80%, and a percentage of
identity �30% [23].

CCs are often detected in a SSN using the Depth-First Search
(DFS) algorithm; however, there are also other approaches for the
detection of gene families based on the idea of detecting “commu-
nities” [72]. In some cases, a CC can be further separated into
communities of sequences that share more similarity to one another
than to other sequences in the CC and thus are more highly linked
in the SSN (Fig. 3). Communities are commonly identified by
using graph clustering algorithms such as Louvain [73], MCL
[74], or OMA [75]; however, different clustering algorithms will
result in different outputs. The Louvain weighted method is widely
used because it is simple to implement and scales very well to large
graphs (Figs. 3 and 4) [73]. MCL is a strong deterministic algo-
rithm that has been implemented, for example, in tribeMCL [74]
and orthoMCL [76]. A potential drawback of MCL is that it
requires user specification of the “inflation index,” a parameter
which controls cluster granularity (or “tightness”). A high inflation

Fig. 4 Giant connected component before and after community detection. (a) A single giant connected
component from a sequence similarity network. (b) The same giant connected component after application
of a community detection algorithm. Node colors correspond to the newly assigned communities
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index increases the tightness of clustering, producing a larger num-
ber of clusters that are smaller on average than those that would be
obtained clustering the same dataset using a low inflation index.
Selecting an appropriate inflation index is not trivial and requires
optimization [74].

A number of the above approaches have been used to compile
additional databases of orthology that can act as useful reference
datasets. OMA is a program that uses graph-based algorithms and
exact Smith-Waterman alignments to identify orthology between
genes [77–80]. OMA is also available as a web browser [81] includ-
ing a database of orthologues that, in 2015, included more than
2000 genomes and more than seven million proteins [75]. SILIX is
a software package [82] that aims at building families of homolo-
gous sequences by using a transitive linkage algorithm, and
HOGENOM [83] is a database that contains families inferred by
SILIX for seven million proteins.

In addition to clustering genes into families, valuable informa-
tion can be extracted from the connected components using net-
work metrics. Highly conserved sequences tend to form CCs where
most of the nodes are connected to each other by edges, while
sequences from more divergent families will tend to form more
sparsely interconnected CCs. This information can be easily
assessed for each component using the clustering coefficient. Con-
served families will have a clustering coefficient close to 1, even for
stringent thresholds. Identifying such conserved families can be
useful to produce multiple sequence alignments (MSA) needed
for phylogenetic reconstruction, but SSNs have also been demon-
strated to unravel relationships between distant homologues by
linking distantly related sequences together [24, 29, 48]. In a
SSN, two distant sequences A and C which do not share similarity
according to BLAST can be linked together due to sequence B
which shows similarity to both A and C.

The idea of distant homology has been particularly illuminating
regarding chimeric organisms such as eukaryotes which carry
homologous genes inherited from a bacterial ancestor and from
an archaeal ancestor [29]. A common way to analyze sequence
similarity networks is to identify certain “paths” of interest, for
example, the shortest possible paths between two nodes. This
notion describes the path between two nodes in a connected com-
ponent that minimizes the sum of the edge weights. Alvarez-Ponce
et al. used this approach to explore the topology of connected
components in a SSN including the complete proteomes of
14 eukaryotes, 104 prokaryotes (including archaea and bacteria),
2389 viruses, and 1044 plasmids. Eight hundred and ninety-nine
CCs contained sequences from all three domains, and of these
208 contained eukaryotic sequences that were not directly similar
to one another but only linked to one another via a “eukaryote-
archaea-bacteria-eukaryote” shortest path. These are putatively
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distant homologues in eukaryotes that were present in both the
archaeal host of the mitochondrial endosymbiont and in the alpha-
proteobacterial endosymbiont, with both copies subsequently
retained in eukaryotes and as such strong evidence for the chimeric
origin of eukaryotes [29]. This demonstrates the utility of networks
in the study of ancient evolutionary relationships including the
origin of eukaryotes [28] or rooting the tree of life [84]. Simple
path analysis for a network is possible using existing plug-ins within
visualization tools such as Cytoscape [54] and Gephi [55].

2.3 Exploiting SSNs

to Identify Signatures

of “Tinkering” and

Gene Fusion

When discussing identification of gene families, we have focused on
networks where edges are drawn between protein sequences that
show a high enough similarity across their entire length, defined by
a high mutual coverage threshold (e.g., 80%). Sequence similarity
can also be partial, for example, following gene remodeling or
“tinkering” [85] producing new combinations of gene domains
via gene fusion and fission events, or through the de novo sequence
synthesis of gene extensions, adding to existing sequences. The
term “Rosetta Stone sequence” was coined to define the formation
of a new fusion protein in a species as the result of the fusion of two
proteins that are found separate in another species, with authors
originally predicting that these fusions could occur between pro-
teins that physically interact in a common structural complex
[86]. One of the earliest applications of sequence similarity searches
to identify fusion proteins was an attempt to predict pairs of pro-
teins that may physically interact in an organism based on whether
they could be identified as a single “composite” fusion protein in
another organism [44]. Beyond predicting protein-protein interac-
tions, this kind of gene remodeling and recycling of existing gene
parts has the potential to contribute to the expansion of functional
diversity in genomes, creating new and unique combinations of
domains and functions [51, 85, 87–91]. Similarity search-based
screens have been implemented to identify composite genes and
genome rearrangements in a range of prokaryotes [92–94], eukar-
yotes [87, 95–97], and viruses [98].

Early attempts to identify composite genes were based on the
output of sequence similarity searches, but without formalizing the
results of search methods into a graph structure. The first attempt
to formalize the problem of identifying “composite” genes in net-
works was the “Neighborhood Correlation” approach, aiming to
distinguish genuine multi-domain proteins sharing common ances-
try (homologues) from novel multi-domain proteins that share
domains due to insertions [99]. The later development of the
FusedTriplets and MosaicFinder tools attempted to unify existing
graph-based methods for detection of “composite” gene detection
[50]. FusedTriplets is a graph-based implementation of the tradi-
tional gene-centered method for composite gene identification,
originally introduced by Enright et al. [44], with additional cross-
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checks on the absence of similarity between the two component
genes contributing to a composite gene based on varying thresh-
olds [50, 100]. MosaicFinder is a gene family-centered approach
which will only identify highly conserved composite gene families
that form “minimal clique separators” (Fig. 5) [50]. This graph
topology implies that MosaicFinder may fail to detect divergent
(e.g., ancient or fast evolving) composite gene families which will
tend to form “quasi-cliques” without perfect separation. Compo-
siteSearch [101] (available at http://www.evol-net.fr/index.php/
en/downloads) is a new program designed to overcome this limi-
tation by identifying both conserved and divergent composite gene
families (Box 2).

Box 2: How to Identify Composite Genes Using
CompositeSearch
1. BLAST search and filtering: An all-versus-all BLAST search is

carried out as described in Box 1. Filters can be applied on
the E-value and sequence similarity but should not include a
mutual query coverage threshold.

2. CompositeSearch: CompositeSearch takes a filtered BLAST
output and a list of genes as the initial input. Two search
algorithms are implemented: “fastcomposites” detects a list
of potential composite genes and “composites” additionally
detects potential composite gene families and component
gene families. Additional options are included to filter the
network based on a number of standard metrics (e.g., E-
value, sequence similarity, mutual coverage) and set the
maximum overlap allowed between different components
aligned on the same potential composite gene. The defini-
tion of a maximum overlap allows adjustment for the

(continued)

Fig. 5 Composite gene identification using “minimal clique separators.” (a) A multiple sequence alignment of
composite genes (yellow) with two components (blue and magenta). (b) The sequence similarity network
corresponding to the multiple sequence alignment. The composite genes (yellow) are a minimal clique
separator for the network. Their removal (shown in c) decomposes the network to the two separate
component families
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Box 2: (continued)
tendency of BLAST to produce overhanging alignments
[100]. The output includes a node, edge, and information
file including information on number of nodes, edges, and
family connectivity from family detection. Two outputs are
included for composite gene detection, a “composites” file
with detailed information on each predicted composite gene
in fasta format and a “compositesinfo” file, summarizing the
data. Similarly, two files provide detailed information on
composite gene families and a summary of composite gene
families.

3. Filtering results: By default, CompositeSearch outputs all
possible composite genes in “fast” mode or composite
gene families in the full mode. These are given alongside a
number of different metrics designed to help to filter families
for more confident predictions, including the gene family
size, number of composites directly predicted within the
gene family, the number of domains, the number of compo-
nent families, the number of singleton component families
(families including only one sequence), the connectivity of
the family, and a score based on the overlap between differ-
ent components mapped to the composite gene.

Recent studies have explored composite gene formation as a
source of innovation by “tinkering” [85] during major evolution-
ary transitions. These can be especially interesting when exploring
genome evolution following introgression, raising the possibility of
formation of new composite genes using components with differ-
ent evolutionary origins [20, 51, 102]. For example, the gain of a
cyanobacterial endosymbiont at the origin of photosynthetic eukar-
yotes was accompanied by the transfer of whole cyanobacterial
genes to its new host genome, with gene functions related to the
role of the plastid [103–105]. Identification of composite genes
related to the origin of photosynthetic eukaryotes unraveled novel
symbiogenetic composite genes, and unique fusions of genes
encoded in the nucleus of photosynthetic eukaryotes that included
components derived from the plastid endosymbiont. As with whole
genes transferred to the nucleus, several of these components had
predicted functions related to the role of the plastid, including
redox regulations and light response [51].

2.4 Exploiting SSNs

for Ecological Studies

Ecological studies increasingly involve the assembly, analysis, and
comparison of large metagenome datasets. In addition to identifi-
cation of functions and organisms associated with a particular
environment, these studies enable the investigation of important
hypotheses in microbial ecology at the level of organism or
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function, such as the often quoted hypothesis that “everything is
everywhere, but the environment selects” from Bass Becking: the
idea that microbial lineages are limitlessly dispersible in the envi-
ronment, but the environmental conditions will select for certain
lineages and control their distribution rather than any specific
geographical separation [21].

Networks are useful for these kinds of ecological studies because
existing graph algorithms can be used to investigate the structure of
the network. When investigating gene (or gene-sharing networks),
it is possible to distinguish nodes by labeling them based on their
properties, such as categories for taxonomic or environmental ori-
gins (Fig. 6). A simple way to represent this visually is to color nodes
based on these properties in Cytoscape or Gephi. A formal way to
explore the relationships between node properties is to use network
metrics such as conductance [106], modularity [73], and assorta-
tivity coefficient (normalized modularity) [107]. Assortativity and
conductance are different metrics that attempt to answer the same
type of question: do nodes labeled as belonging to a particular
category, such as environmental origin, tend to be connected with
other nodes labeled as belonging to the same category? More pre-
cisely, conductance quantifies whether a given category of nodes
shares more edges between themselves than with nodes from differ-
ent categories. A low conductance approaching zero indicates that
nodes of a given category are highly connected to one another, with
few connections to nodes from different categories. A higher con-
ductance is indicative that nodes of this category tend to be more
sparsely interconnected and share more connections with nodes
from different categories. Assortativity is a measure of the prefer-
ence for a category of nodes in a network to attach to other nodes

Fig. 6 Exploring distribution of annotations in sequence similarity networks. In this example, nodes within a
single connected component are assigned two colors, blue and yellow, corresponding to their having a
different categorical annotation (e.g., originating from a different environmental source). Using the example of
environmental source, genes in cluster A would all have the same environmental source (blue), indicating an
environment-specific cluster of genes. Genes in cluster B are found in two different environmental sources
(blue and yellow); however, nodes of the same type are preferentially linked to each other in the network than
to genes from different environmental sources. This would result in a positive assortativity coefficient
approaching 1 for environment and a low conductance score, suggesting a strong environmental community
structure. Genes in cluster C are also found in two different environmental sources; however, there is no clear
pattern for the distribution of genes with regard to environment. This network would have an assortativity
approaching 0 and a high conductance score
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from the same category. Normalized assortativity values range
between �1 and 1, where 0 indicates random distribution of cate-
gories within the network, 1 indicates that nodes from the same
categories tend to be connected to one another in the network, and
�1 indicates that nodes from different categories tend to be
connected in the network. A detailed description of the algorithms
used in these calculations can be found in [108].

2.4.1 Assortativity as a

Tool to Study Geographical

and Habitat Distributions of

Microbes and Genes

Forster et al. used assortativity (among other network statistics,
including the previously discussed shortest path analysis) to explore
the geographical dispersion patterns of marine ciliates in a network
generated from ciliate SSU-rDNA sequences [25]. Sequences were
clustered into two different levels of gene family—CCs and Louvain
communities (LCs) as previously described. Sequences were
assigned categorical labels based on their geographical point of
origin (eight locations) or habitat of origin (three habitats), and
assortativity was calculated. If sequences, and thus species, are
broadly distributed across geographical categories, then assortativ-
ity of SSU-rDNA sequences labeled with these geographical cate-
gories would be low because similar sequences would be found in
different environments. Contrarily, if similar sequences tend to be
from the same geographical category, indicative of endemism, then
assortativity of sequence geographical origin will be high (Fig. 6).
The majority of CCs and LCs showed a positive assortativity for
geographical origin, higher than expected by chance, indicative of
geographical community structure as opposed to global dispersal of
ciliates. Similar approaches were used by Fondi et al. and applied to
a collection of environmental metagenome samples to test the
“everything is everywhere” hypothesis at the gene pool and func-
tional level. Gene pools were more strongly associated with a
particular ecological niche than with specific geographical location,
supporting the idea that microbial genes are found everywhere but
the environment selects for them [26].

2.4.2 Conductance in the

Comparison of Lifestyles

and Evolutionary Histories

Conductance is used to explore the clustering of pairs of different
node categories in a connected component. In a study by Cheng
et al., the proteomes of 84 prokaryote genomes were categorized
into four broad redox groups based on their lifestyle, methanogens,
obligate anaerobes, facultative anaerobes, and obligate aerobes
[27]. For each CC in a pan-proteome sequence similarity network
including all 84 genomes, the conductance was calculated for pairs
of redox categories and compared to values obtained following
random relabelling of the components. The distributions of con-
ductance values for methanogens and for obligate anaerobes
groups indicated that the sequences in these groups have features
distinct from those in other groups, that anaerobes and aerobes
tend to be dissimilar, and that their sequences are more isolated
from one another in the SSN than expected by chance.
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An additional example of the use of conductance is in exploring
the propensity of a gene family to lateral gene transfer. Within a
network of archaeal and bacterial genes, CCs showing a low con-
ductance for both archaeal and bacterial sequences indicate that the
bacterial and archaeal genes within the corresponding families are
structured in two separate and conserved groups (Fig. 6). Structur-
ing gene families into two groups would indicate that there was
little or no evidence for lateral gene transfer between archaea and
bacteria within this particular gene family. This kind of gene family
is rare, with only 86 gene families from 40,584 (0.2%) meeting this
criteria [24].

2.5 SSNs in Remote

Homologue

Identification:

Shedding Light on the

Microbial Dark Matter

Up to 99% of microbial species are not cultivable and thus have not
been studied in isolated culture. Analysis of high-throughput
sequencing and metagenomics datasets has shed light on these
uncultivable organisms, often referred to as the “microbial dark
matter” [109], and in some cases enabled the reconstruction of
draft genomes [110–114]. A considerable portion of most meta-
genome studies have predicted ORFs showing no detectable simi-
larity to any known proteins, termed metaORFans [115]. These
can represent 25–85% of the total ORFs identified in metagenomes
[22]. Identifying distant homologues of ORFans may help to pre-
dict their functions and begin to unravel the microbial dark matter.
Recent work by Lopez et al. in 2015 probed the microbial diversity
of metagenome datasets from a range of environments including
the human gut microbiome, identifying homologues of genes from
86 ancient gene families that are distributed across archaea and
bacteria. The majority of these gene families included environmen-
tal homologues that were highly divergent from any of their
cultured homologues, and many branched deeply with the phylo-
genetic tree of life, highlighting our limited understanding of
diverse elements of the microbial world and hinting at the existence
of yet unknown major divisions of life [24] (Fig. 7).

2.6 Exploiting SSNs

to Analyze

Classifications

Metagenomic and genomic data are providing scientists with a
tantalizing amount of sequence data, casting the analysis of the
extent of biodiversity as a major research theme in biology
[116–120]. In theory, existing organismal and viral classifications
are invaluable tools to structure and analyze this biodiversity. How-
ever, the way taxonomical classifications are constructed raises
questions about their naturalness and their actual application
scope [38, 120–128], in particular regarding genetic diversity
surveys. There are three major reasons for this. First, organismal
and viral diversity is still largely undersampled, which means that
existing classifications are incomplete [119, 120]. Therefore, taxo-
nomically unassigned sequences cannot be readily used in class-
based genetic diversity surveys, since this dark matter remains
outside existing classes. Second, classifications are constructed
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using different features (i.e., for viruses, a mix of phylogenetic,
morphological, and structural criteria, such as replication proper-
ties in cell culture, virion morphology, serology, nucleic acid
sequence, host range, pathogenicity, epidemiology, or epizootiol-
ogy); therefore their classes do not necessarily offer immediate
proxies for quantifying genetic diversity per se. Third, evolutionary
processes responsible for both genetic and organismal diversity are
diverse, and they operate at different tempos and modes in different
lineages [49, 123, 129–141]. As a result, genetic diversity within
classes and between classes can be heterogeneous, meaning that
existing classifications may lack efficiency to discriminate, predict,
or compare taxa on genetic bases, potentially hampering diversity
studies, a profound practical issue at a time where the analysis of
metagenomic sequences is becoming a priority in biology.

Addressing these challenges is notably crucial for viral studies.
Recently, the executive committee of the ICTV [142] proposed
that network analyses methods that create similarity metrics based
on the detection of homologous genes and their genetic divergence
constitute a valuable strategy to assist classification of viruses. Con-
sistently, basic network properties and metrics (Table 1) can quan-
tify (1) whether genetic diversity is consistent within and between
the classes of existing classifications and (2) describe what classes are
the most homogeneous and distinctive in terms of genetic diversity.
Three criteria can be used to estimate intra-class genetic heteroge-
neity (Fig. 8a–c). First, the average edge weights (measured as % of
identity, PID) between pairs of sequences from genomes of the

60%

Max % identity to homologues in databases ≥  60%

Max % identity to homologues in databases < 60%

Fig. 7 Remote homologue detection to help characterize the microbial dark
matter. (a) A hypothetical highly conserved cluster of genes from genomes
present in sequence databases, where the average % of identity is high
(�60%). (b) The same cluster after addition of divergent environmental
sequences to the network. Environmental sequences in gray are more similar
to those already identified from genome surveys (�60% max identity) so are
connected directly to the conserved gene cluster in the network. More divergent
sequences in pink have <60% maximum identity to their homologues in the
database. Many of these are only identified as linked to the sequences from the
conserved database via intermediate gray nodes. This is the notion of “transitive
homology”
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same class provide a trivial measure of intra-class genetic diversity.
Second, the average proportion of Conserved Canonical Connec-
tions between sequences from the same connected component and
from the same taxonomic class can be exploited (CCC, i.e., in each
connected component of the SSN, the total number of edges
connecting sequences of a given class i (intra-group edges, denoted
Eii) divided by the theoretical maximal number of possible edges
between sequences of that class in the connected component (CCC
(i)¼ 2*Eii/(Ni� (Ni � 1)) whereNi is the number of sequences of
class i present in the connected component). CCC ranges between
0 and 1. Within a connected component, if all pairs of sequences
from the same class are directly connected, CCC equals 1, since all
these sequences are more conserved than a given %ID threshold. By
contrast, low CCC are observed when sequences from genomes
from the same class lack cohesive evolution, for example, when
some related sequences evolved so fast that they show less than
the minimal similarity required to be directly connected to their
homologues in the graph. Third, the genetic consistency of a class
can be estimated by (1) identifying what cluster of sequences was
present in the largest number of genomes of the class and then
(2) by quantifying the proportion (in %) of the class members
harboring that most ubiquitous cluster (maxCore%). When max-
Core% of a class is<100%, it means that, for this dataset, there is no
gene family shared by all members of that class (i.e., no core genes).
The SSN structure can also serve to estimate the genetic distinc-
tiveness of each class, i.e., whether sequences from a given class are

Table 1
Schematic properties of two extreme kinds of taxonomic classes with respect to their genetic
diversity

“Ideal” classes Not ideal classes

Low intra-class genetic diversity (high average PID) High intra-class genetic diversity (low average
PID)

High genetic cohesion (high average CCC) Low genetic cohesion (low average CCC)

Core components (high maxCore%) No core components (low maxCore%)

Obvious genetic distinctiveness (high conductance
difference with random groups)

Limited genetic distinctiveness (conductance
similar to random groups)

Exclusive pangenome (high % of exclusive CC) No exclusive pangenome (low % of exclusive
CC)

The three top properties inform about genetic diversity within classes (intra-class genetic diversity). The last two

properties inform about the genetic distinctiveness (core and signature genes) of the classes. Interclass genetic heteroge-

neity identifies when genetic diversity of a class is not comparable with genetic diversity of another class in the

classification. CCC, average proportion of genetic conservation between sequences from the same cluster and from the
same taxonomic class; PID, average edge weights (% identity) between two sequences from genomes of the same class

288 Andrew K. Watson et al.



more similar to one another than they are to sequences from other
classes (Fig. 8d, e). Such sequences could be used as classificatory
features to assign members to the class. In a SSN, this property
translates to a low ratio of interclass edges over intra-class edges and
is measured by conductance (Fig. 8d). Likewise, the proportion of
clusters comprised exclusively of sequences from one class, a diag-
nostic feature of the class, provides an estimate of the class genetic
distinctiveness. Genetically highly distinct classes have a high % of
such exclusive clusters. Based on these network measures, interclass
genetic heterogeneity can simply be diagnosed by contrasting esti-
mates of genetic consistency for all the above measures for each
class. There is interclass heterogeneity within a classification when
the mean PID, mean CCC, maxCore%, DRC, and % of exclusive
components differ between classes.

Such network analyses show that virus classifications face a
pragmatic issue: overall genetic distinctiveness allows relatively
safe assignments of viral sequences to existing classes; however,
genetic diversity of viral taxa of similar ranks differs among the
tested classifications. Therefore, virus classifications (especially
ICTV classification at the family level) should be used carefully to
avoid inaccurate estimates in metagenomic diversity surveys. Clas-
ses with broader genetic diversity will tend to be more easily

wi

wj

PID

A.

Sequences are represented by nodes. Each node is colored 
to represent the class to which the host of its corresponding 
sequence belongs. Nodes with the same color belong to the 
same class. Edge weight is represented by edge size 
proportional to the weight.

3/3

2/3
PCS

B.
Member 1 Member 2

Member 3 Member 4

Out of 6 class members
X%-core

(4/6)

C.

High assortativity Low assortativity

D.

Fig. 8 Intra- and interclasses heterogeneity measurements in weighted similarity networks. Sequences are
represented by nodes. Each node is colored to represent the taxonomic class to which its host belongs. Nodes
with the same color belong to the same class. Edge weight is represented by edge size proportional to the
weight. Subgraphs correspond to clusters of sequences. Direct neighbors have a greater similarity than the
threshold set to allow such connections. PID, average edge weights (% identity) between two sequences from
genomes of the same class; CCC, average proportion of genetic conservation between sequences from the
same cluster and from the same taxonomic class; maxCore%, conductance; and %-exclusive components
correspond to the estimates used to assess genetic consistency of classes
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detected in the environment than classes with reduced genetic
diversity, since the former will necessarily be associated with more
OTUs than the latter. Some alpha- and beta-diversity analyses of
environmental data, which rely on counts and on contrasts of the
abundance of taxonomic classes in different samples, will thus also
be biased. A similar approach could be applied on different types of
classified lineages, i.e., to identify what groups of bacteria, archaea,
or eukaryotes with comparable taxonomical ranks are the most
genetically heterogeneous and what ranks of their classification
are the least genetically consistent.

3 Gene-Sharing Networks

Gene-sharing networks are often called “genome networks” as they
are best suited for summarizing what genes are shared between
different genomes, highlighting routes of gene sharing. The ability
to explore gene sharing between all genomes in a network in a
simple graph can have useful properties for reflecting microbial
social life, inherently inclusive of gene sharing both as a conse-
quence of vertical inheritance and lateral gene transfer (LGT).
Bacteriophage and plasmid genomes are typically highly mosaic in
nature due to a high level of horizontal gene transfer, making it
difficult to classify their genomes [37, 143]. Lima-Mendez et al.
proposed the use of gene-sharing networks as a new classification
method that tackles this problem of mosaicism by classifying viruses
based on their genome’s content [37]. Constructing gene-sharing
networks using subsets of genes from different functional cate-
gories of genes can also be useful in exploring what kinds of genes
are being shared by different genomes.

In a gene-sharing network, each genome is represented by a
node, and two nodes are connected by an edge when the two
corresponding genomes share homologous genes or gene families
(Fig. 9). These gene families can be identified from SSNs (of as CCs
of LCs) or by alternative methods. In gene-sharing networks, edges
can be weighted by the number of genes or gene families shared
between the genomes. In this way, gene-sharing networks enable
the study of microbial social life, quantitatively displaying the gene
families shared between genomes both as a result of vertical trans-
mission and lateral gene transfer.

Gene-sharing networks are useful tools for exploring overall
patterns of gene sharing between genomes. Recently, Lord et al.
developed BRIDES, a software package that specifically identifies
different kinds of patterns in evolving gene-sharing networks after
the addition of new genome nodes [144]. However, in gene-
sharing networks the kind of gene families that are being shared is
often overlooked. To explore how functions are shared between
different genomes, gene-sharing networks can be built from genes
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using different subsets of functions (Fig. 10) [29]. An alternative
form of the gene-sharing network is the multiplex network. In this
network nodes can be linked by edges of different types, for exam-
ple, each edge representing a different gene family or different
functional groups of gene families, thus retaining additional infor-
mation compared to a simpler gene-sharing network (Fig. 9)
[23]. Multiplex networks can be useful for small-scale analyses;
however, with large datasets they can rapidly become difficult to
interpret and analyze. Importantly, multiplex networks are unim-
odal projections of bipartite graphs (discussed in the Subheading
14) which can provide greater clarity and have a number of attrac-
tive properties for the analysis of larger datasets.

3.1 Classification of

Entities Using Gene-

Sharing Networks

The possibility of summarizing gene sharing between sets of enti-
ties with complex evolutionary histories means that gene-sharing
networks can be useful for classifying organisms based on their gene
content. Lima-Mendez et al. analyzed bacteriophage genomes to
generate two different phage gene-sharing networks that reflect
their reticulate evolutionary history [37]. In the first gene-sharing
network, phage genomes (nodes) were connected by edges when
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Fig. 9 Translating gene networks to gene-sharing networks. (a) Gene network
for three gene families. Gene nodes are colored based on their genome of origin.
The background color corresponds to the gene family color in part c. (b) The
gene-sharing network corresponding to the gene network in a. Edges are
weighted on the number of gene families shared by the genomes. (c)
Multiplex gene-sharing network corresponding to the gene network in a.
Genomes are connected by multiple edges with colors corresponding to
different gene families. These edges are weighted based on the number of
genes shared between two genomes for each family
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they shared significant similarity at the sequence level. This gene-
sharing network was clustered using the previously discussed MCL
algorithm [145], identifying distinct groups of phages with
sequence similarity. Following clustering, membership to a partic-
ular cluster was reassessed based on shared similarity with viruses in
other clusters, reflecting their reticulate evolutionary history, allow-
ing the generation of a matrix assigning a score describing the
relative membership of any given viral genome to a particular
classification group. In the second approach, Lima-Mendez et al.
generated a “module”-based gene-sharing network, where edges
are drawn between two phage genomes if they share a “module,” in
this case defined as a group of genes with similar phylogenetic
profiles, enabling the exploration of what kinds of genes are shared
between different groups of phages or are “signatures” for a partic-
ular group of phage genomes [37].

3.2 Exploring Routes

of Gene Sharing in

Gene-Sharing

Networks

Two network metrics, also useful in the analysis of gene networks,
can be used to attempt to identify “hubs” of gene sharing in the
context of gene-sharing networks: node “degree” and “between-
ness.” Both metrics aim to determine the centrality of a node in a
network. The degree of a node is simply the number of edges that it
is connected to. The betweenness of a node is the frequency at

Fig. 10 Functional gene-sharing network reflecting the chimeric nature of eukaryotes. These gene-sharing
networks describing how genes in different functional categories are shared between bacteria (green),
archaea (yellow), eukaryotes (gray), plasmids (purple), and viruses (red) from a published dataset [29]. In
both cases, a giant connected component is shown alongside examples of smaller connected components (a)
Gene-sharing network for COG category D: cell division control. In this network, sequences of eukaryote origin
(gray) cluster with bacterial sequences, reflecting their origin in the alphaproteobacterial endosymbiont that
would become the mitochondrion. (b) Gene-sharing network for COG category K: transcription machinery. In
this network, eukaryote sequence (gray) cluster with archaeal sequences, reflecting the origin of these genes
in the archaeal host for the eukaryotic endosymbiont
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which it is found in all the possible shortest paths between any two
nodes in the network. Halary et al. used gene-sharing networks
based on DNA sequence similarity to explore gene sharing between
prokaryotes and mobile genetic elements [30]. Plasmids were iden-
tified as hubs of gene sharing within this pool of genomes, suggest-
ing that they are key vectors for genetic exchange between cellular
genomes and a potential DNA reservoir shared by genomes. Phages
were more peripheral in the network and mostly linked prokaryotes
from the same lineage. Thus, gene-sharing networks provided
insights on the evolutionary processes that shape the gene content
of prokaryote genomes.

The importance of plasmids in genetic worlds was further high-
lighted by exploring plasmid gene-sharing networks without inclu-
sion of prokaryote genomes [14, 36]. Connecting 2343 plasmid
genomes based on shared gene content in a single graph demon-
strated that plasmids tended to cluster based on the phylogenetic
class of their corresponding host prokaryote rather than habitat but
thatmoremobile plasmids tended to bemore “central” in the graph,
indicating that thesewere hubs of gene sharing. Specifically, routes of
gene sharing for gene families including antibiotic resistancemarkers
were identified between actinobacterial plasmids and gammaproteo-
bacterial plasmids, suggesting that Actinobacteria may act as a reser-
voir for antibiotic resistance genes for Gammaproteobacteria [14].

The finding that plasmids are hubs of gene sharing for prokary-
ote genomes was supported by analysis of gene sharing in a pro-
teobacterial phylogenomic network including 329 proteobacterial
genomes [32]. A phylogenomic network is a type of phylogenetic
network that has been constructed from fully sequenced genomes.
In this example the phylogenomic network is an alternative to a
gene-sharing network, in which genome nodes within a phylogeny
are linked by edges if they share genes [34]. This study identified
extensive evidence for lateral gene transfer among Proteobacteria,
with at least one LGT event inferred in 75% of all gene families. Of
these putative LGTs, more were related to plasmid-related genes
than phage-related genes, suggesting plasmid conjugation was a
more frequent source of gene transfer [32]. Directed graphs explor-
ing directionality of LGT events between 657 prokaryote genomes
allowed the polarization of 32,028 putative LGT events finding
that frequency of recent events correlates with genome sequence
similarity and most LGTs occurring between donor-recipient pairs
with <5% difference in GC content, suggesting that there are some
barriers to lateral gene transfer between prokaryotes but that these
are not insurmountable [31]. Later reconstruction of transduction
events linking phage donors and recipients in a phylogenomic
network demonstrated that LGT by transduction was generally
highest in similar genomes and between clusters of closely related
species but that this constraint was occasionally broken, resulting in
LGTs over long evolutionary distances [35].
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4 Bipartite Graphs

Bipartite graphs are excellent at summarizing what genes are shared
between sets of genomes, and as such are ideal for comparative
genomics, including for the comparison of genomes reconstructed
in metagenomic analyses. The potential to extend this approach to
multilevel graphs, adding additional layers of information such as
the environment in ecological studies, could provide a powerful
summary of gene sharing in relatively complex datasets.

A multilevel network is a network in which edges exclusively
connect nodes of different types, i.e., representing different levels
of biological organization. Thus, a bipartite graph is a graph with
two types of nodes (top and bottom nodes), where edges exclu-
sively connect nodes of different types (Fig. 11) [146]. The types of
nodes used can vary widely depending on the biological question,
from linking diseases (top nodes) to their associated genes (bottom
nodes) in order to explore the association between related disease
phenotypes and their genetic causes [147, 148], to exploring the
concept of flavor pairings in food based on a graph of ingredients
(top nodes) and the flavor compounds they contain (bottom
nodes) [149]. For applications in molecular biology, a typical exam-
ple of a bipartite graph may describe the relationships between
genomes (top nodes) and gene families (bottom nodes), with
edges between nodes indicating that a genome encodes at least
one member of the corresponding gene family (Fig. 11) [23, 33,
38, 150]. This kind of genome to gene family graph is particularly
suited for the comparative analysis of the gene content of genomes
in microbial communities and for exploring patterns of gene shar-
ing, for example, between distantly related cellular genomes [33] or
between cellular genomes and their mobile genetic elements (Corel
et al. forthcoming). It is possible to represent all genes shared
between a given set of genomes, as a result of both vertical inheri-
tance and horizontal gene transfer, in a single bipartite graph [23].

Fig. 11 A bipartite graph and its reduction to a quotient graph: (a) An example of a bipartite graph displaying
how five gene families are shared between three genomes. (b) A reduced form of the bipartite graph in which
gene families are combined to “twin” nodes if they share identical taxonomic distributions. A single
“articulation point” connects all three genomes
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This feature was utilized by Iranzo et al. to explore gene sharing
among the entire dsDNA virosphere, a group of entities typified by
high rates of molecular evolution and gene transfer [38]. In this
case, bipartite modularity was identified in the graph to identify
groups of related viral genomes and their shared genes, with the
modularity of the graph optimized to Barber’s bipartite modularity
[151]. A number of additional methods have been developed for
detection of module structures within a bipartite graph including
for weighted graphs [152]. Two recently developed tools,
AcCNET [150] and MultiTwin (forthcoming), have simplified
the process of constructing and analyzingmultilevel graphs without
the need for custom programming (Boxes 3 and 4).

Box 3: Generating Gene-Sharing Networks and Bipartite
Graphs
1. Dataset assembly: The same rules for dataset assembly as

described in SSN generation apply to assembling the dataset
for bipartite and gene-sharing graphs. It is especially impor-
tant to maintain an annotation file that maps gene IDs to
their genome of origin.

2. Definition of gene families: Gene family identification can be
carried out following the construction of sequence similarity
networks, as described in Subheading 2. There are a broad
range of alternative approaches for construction of gene
families that are beyond the scope of discussion in this chap-
ter; however, all of these can also be applied to the genera-
tion of gene-sharing and bipartite graphs.

3. Network construction: From the definition of gene families, it
is possible to construct both gene-sharing networks and
bipartite graphs.
(a) In a gene-sharing network, two genomes are connected

by an edge when they encode genes belonging to the
same gene family. Generating this kind of network can
be automated from BLASTor fasta sequence data using
EGN [52].

(b) In a bipartite graph, there are two types of node,
genome nodes and gene family nodes. An edge is
drawn between a genome node and a gene family
node if that genome encodes a member of the gene
family. AcCNET [150] and MultiTwin (forthcoming)
tools both include pipelines for generating bipartite
graphs from sequence data. MultiTwin can also gener-
ate a bipartite graph from two files: a tab-delimited file
mapping gene identifiers to their corresponding
genome identifier and a tab-delimited file mapping
gene identifiers to their corresponding gene family.
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Two topological features of bipartite graphs can be used to
facilitate studies of gene sharing by an exact decomposition of the
bipartite graph: twins and articulation points [23, 153]. A bipartite
graph can be reduced to a quotient graph, a reduced variant of the
bipartite graph where nodes from the bipartite graph have been
combined based on sharing similar properties without the loss of
information. For twin nodes (“twins”), this reduction is based on
the combination of bottom nodes that have identical neighbors
into a single “twin” supernode in the quotient graph (Fig. 11). This
is a useful way of reducing the size of large graphs without losing
information, but twin nodes also have useful properties for graph
interpretation. The genomes supporting a twin node (its neigh-
bors) define a club of genomes that share genes, through common
ancestry and/or horizontal transfer, and the number of gene
families making up the twin gives a simple description of how
many gene families are shared between this club. For example, in
any given dataset, any “core” set of gene families encoded by all
species in the analysis will be represented by a single twin node. The
gene families combined in twin supernodes can be viewed as gene
families that are likely to be transmitted together [23]. An articula-
tion point is a node that, when removed, will split the graph into
two or more connected components. Within a gene family-genome
bipartite graph, articulation points are expected to help to identify
“public genetic goods,” gene families that are shared by distantly
related entities that may confer an advantage independent of gene-
alogy [23, 154], as well as selfish genetic elements such as transpo-
sases that also spread across multiple genomes.

Box 4: Considerations for the Construction and Analysis of
Bipartite Graphs Using AcCNET and MultiTwin
The default workflow for both ACcNet and MultiTwin takes
protein sequence data in fasta format as input and generates a
bipartite graph alongside a number of graph summary statis-
tics and outputs for visualization in standard tools (such as
Gephi and Cytoscape) but with a number of important differ-
ences, including:

l Graph levels: Both AcCNET and MultiTwin can generate a
bipartite graph using their default workflow; however, Multi-
Twin can also be used to explore additional graph levels by
adding additional node types (e.g., a tripartite graph). Multi-
partite graphs mean that gene family level annotations can be
associated with additional levels of biological information.
This may be particularly useful for the comparison of samples
in metagenomics studies or time course experiments, allow-
ing gene families to be associated directly with features such as
environmental origin or time point.

(continued)
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Box 4: (continued)
l Gene family identification: AcCNET uses kClust [155] to

assemble gene families, a kmer-based method for rapid assem-
bly of clusters of homologous proteins from sequence data.
By default, MultiTwin identifies gene families using an all-
versus-all BLAST search, followed by identification of
connected components at a given threshold, as previously
discussed for gene family detection from SSNs. MultiTwin
can also be used in a modular way allowing for additional
customization, including the use of any custom gene family
input in the form of a “community file”: a tab-delimited file
linking every gene/protein ID to a community identifier,
with gene families defined using a clustering method of
choice.

l Edge weighting: In AcCNET the edge weight is proportional
to the inverse of the phylogenetic distance between proteins
in a cluster from a given genome to other proteins within the
same cluster. In MultiTwin, the default edge weight is based
on the number of genes present in a gene family from any
given genome.

l Graph compression: While both methods can be used to iden-
tify “twin” nodes, only MultiTwin generates a quotient graph
from these twin nodes and identifies articulation points.

AcCNET is available at: https://sourceforge.net/pro
jects/accnet

MultiTwin is available at: http://www.evol-net.fr/index.
php/en/downloads

4.1 Using Bipartite

Graphs to Explore

Patterns of Gene

Sharing Between

Diverse Entities

The simplest application of a bipartite graph is the summary of all
genes shared between genomes in a single parsable graph, and this
feature has been used to explore gene sharing in the dsDNA virome
[38], a range of Escherichia coli genomes to investigate the E. coli
pangenome [150] and between a broad range of prokaryotes that
include newly discovered organisms [33]. In their analysis of pro-
karyote genomes, Jaffe et al. used the notion of “twins” to explore
patterns of gene sharing between prokaryotes, including Archaea
and the recently discovered ultrasmall “Candidate Phyla Radiation”
and TM6 bacteria with extremely unusual and reduced genomes.
The group found evidence for lateral gene transfer between ultra-
small bacteria and other prokaryotes, consistent with the sugges-
tion that the ultrasmall bacteria may be symbionts [33]. In their
exploration of the dsDNA virome, Iranzo et al. used graph module
detection, algorithms designed to identify groups of densely
connected nodes in a graph, to identify sets of densely connected
viral genes and genomes that included viruses with broad host
ranges, as well as 14 hallmark viral genes that account for most of
the gene sharing between all different viral modules [38].
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5 Conclusions

This chapter has offered a brief introduction to the generation of
commonly used sequence similarity networks in molecular biology
and a guide to how they can be generated and applied to a broad
range of studies (Fig. 12). Networks provide a highly scalable
framework for the study of an increasingly broad range of applica-
tions in molecular biology and evolution and have already contrib-
uted to a number of important discoveries in the field. These
include exploring patterns of introgression and horizontal transfer
across all domains of life and mobile elements, the origin of eukar-
yotes, the contribution of new genes including novel fusion genes
to major evolutionary transitions, shedding light on the “microbial
dark matter” in metagenome sequencing datasets and in testing
ecological hypotheses about organism and gene distribution and
environmental selection. New methods and tools for network anal-
ysis are becoming increasingly user-friendly and accessible to biol-
ogists without extensive programming experience and enabling
network analysis to become a more common part of a biologist
toolkit in the analysis of molecular sequence data.

Fig. 12 A workflow highlighting some of the available routes for generation and analysis of SSNs, gene-
sharing networks, and bipartite graphs. This workflow highlights just some of the many tools and routes for
network construction and analysis
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6 Exercises

The exercises use EGN [52] and require access to a local installation
of BLAST+ [58] and Perl. The fasta sequence file “example.faa”
provided with EGN includes a dataset of protein sequences from
Archaea, Bacteria, Eukaryota, and mobile genetic elements, avail-
able at http://www.evol-net.fr/index.php/fr/downloads:

1. Perform a manual all-versus-all BLAST using search for a given
protein sequence file from the unix terminal (requires local
installation of BLAST). The output can be filtered to generate
a network:

(a) Make the blast database using the “makeblastdb.”

l Command: “makeblastdb -dbtype prot -in example.faa
–out example”

(b) Performing the BLAST search using “blastp,” remember-
ing to output data in a tabular format for easy processing.

l Command: “blastp -query example.faa -db example
-evalue 1e-5 -seg yes -soft_masking true - max_target_-
seqs 5000 -outfmt “6 qseqid sseqid evalue pident bitscore
qstart qend qlen sstart send slen” -out protein.blastpout”

2. Generate a SSN using EGN from example.faa (requires local
installation of BLAST and download of EGN from http://
www.evol-net.fr/index.php/fr/downloads):
(a) Run EGN from the terminal using “perl egn.1.0.plus.pl”

from the programs home directory.

(b) Follow on-screen prompts sequentially to generate an
alignment, filter the output, and generate a gene network
with outputs compatible with both Cytoscape and Gephii.

3. Visualize SSN networks:

(a) In Cytoscape: Import files named “cc.*.txt” as a network
to visualize that set of connected components.

l To associate nodes with their annotations, import “cc*.
atr” as a table.

(b) In Gephi: Open “cc*.gxf” files to import individual
connected components from the network into Gephi.
Use the “layout” menu to explore different kinds of lay-
outs for the network.

Glossary

Articulation point A node in a graph whose removal increases
the number of connected components of
the resulting graph.
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Adjacency matrix A numerical square matrix with row and
columns labeled by network nodes, with
1 or 0 in the matrix indicating whether
they are connected by an edge in the
network.

Assortativity A measure of the preference for labeled
nodes in a network to attach to other
nodes with identical labels. This is the Pear-
son correlation coefficient of the degrees of
pairs of linked nodes.

Assortativity ¼ modularity
modularitymax

with modularity

defined below and modularity max as the
modularity of a perfectly mixed network.

modularitymax ¼ 1
2m 2m �P

ij
kik j

2m δ ci � c j
� �� �

.

Betweenness A centrality measure for a node in a graph.
Precisely, this is the proportion of shortest
paths between all possible pairs of nodes in a
connected component that pass through
this node. A betweenness close to 1 is indic-
ative of a highly central gene, whereas close
to 0 is more peripheral.

Bipartite graph A graph with two types of nodes (top and
bottom nodes), in which an edge only con-
nects nodes of different types.

Club of genomes A group of entities that replicated separately
but exploit common genetic material that
may not trace back to the last common
ancestor.

Communities
(also called modules)

In graph terminology, a community is
defined as a group of nodes that are more
connected between themselves than to
nodes in the rest of the graph.

Composite gene A gene that is made up of at least two com-
ponent parts.

Component genes Genetic fragments sharing partial similarity
to a composite gene.

Conductance A measure that quantifies whether a given
category of nodes shares more edges
between themselves than with the rest of
the nodes in the graph. A low conductance
approaching zero implies that there are few
edges shared between this category of
nodes and the rest of the graph, while a
higher conductance implies more connec-
tivity between that category of nodes and
other nodes outside of the category. G a
graph, G ¼ {V, E}. With U & G a set of
nodes that is assumed to not have more
than half the total node. �U ¼ G\U. d(U)
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sum of degree of vertices in U.

Conductance ¼
P

i∈U , j∈ �Uai, j

min d Uð Þ; d� �U
�� �

Connected component A subgraph in which any pair of nodes is
connected, either directly or indirectly, and
that is not connected to the rest of the
graph.

Degree The number of edges connected to a
given node.

Endosymbiont An organism that lives inside another to the
mutual benefit of both organisms.

Edge The link between two nodes in a network.
E-value The number of alignments in a sequence

similarity search expected to be seen by
chance searching against a database of a
certain size.

Introgression Descent process through which the genetic
material of an entity propagates into differ-
ent host structures and is replicated within
these new host structures.

Lateral gene transfer
(LGT; or horizontal
gene transfer, HGT)

Movement of genetic material between
entities not mediated by vertical descent.

Louvain community A graph community identified using the
Louvain algorithm. Louvain algorithm is
based on optimizing modularity.

Network (or graph) A system of objects (nodes), some pairs of
which are linked (edge).

Multipartite graph Similar to a bipartite graph, but with any
number of types of nodes exclusively
connected to nodes of other types.

Multiplex graph A graph where nodes can be connected by
edges of different types.

Modularity The fraction of edges falling within given
groups (e.g., communities or functional
categories) in a network, minus the fraction
of edges that would be expected with a
random distribution of edges. With m the
total number of vertices, ci the community
of node i, δ() the Kronecker delta, and ki the
degree of modularity

¼ 1
2m

P
ij Aij � kik j

2m

� �
δ ci � c j
� �

.

Phylogenomic network A phylogenetic network constructed from
whole genome sequences where genomes
are connected based on pairwise relation-
ships including vertical and lateral gene
transfer (LGT) events.
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Public genetic goods Common genetic materials shared by clubs
of phylogenetically distinct genomes.

Quotient graph A simplified graph whose nodes represent
disjoint subsets of nodes of the original
graph; an edge in this new graph connects
two such new nodes whenever an edge in
the original graph connects at least one ele-
ment of a new node with at least one from
the other.

Supporting genomes The common set of neighbors that support
a “twin” class in a multipartite graph.

Twins Nodes in a multipartite graph that share
identical sets of neighbors.
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109. Rappé MS, Giovannoni SJ (2003) The uncul-
tured microbial majority. Annu RevMicrobiol

306 Andrew K. Watson et al.

https://doi.org/10.1038/nature01310
https://doi.org/10.1038/nature01310
https://doi.org/10.1101/gr.101386.109
https://doi.org/10.1101/gr.101386.109
https://doi.org/10.1186/gb-2010-11-7-126
https://doi.org/10.1186/gb-2010-11-7-126
https://doi.org/10.1093/bib/bbs072
https://doi.org/10.1093/bib/bbs072
https://doi.org/10.1098/rstb.2014.0332
https://doi.org/10.1098/rstb.2014.0332
https://doi.org/10.1093/bioinformatics/16.5.451
https://doi.org/10.1093/bioinformatics/16.5.451
https://doi.org/10.1093/molbev/msl138
https://doi.org/10.1093/molbev/msl138
https://doi.org/10.1016/j.jmb.2007.06.022
https://doi.org/10.1016/j.jmb.2007.06.022
https://doi.org/10.1093/gbe/evu168
https://doi.org/10.1093/gbe/evu168
https://doi.org/10.1371/journal.pcbi.1000063
https://doi.org/10.1371/journal.pcbi.1000063
https://doi.org/10.1073/pnas.141236298
https://doi.org/10.1073/pnas.141236298
https://doi.org/10.1093/molbev/msx283
https://doi.org/10.1093/molbev/msx283
https://doi.org/10.7554/eLife.23717
https://doi.org/10.7554/eLife.23717
https://doi.org/10.1038/30234
https://doi.org/10.1038/30234
https://doi.org/10.1073/pnas.182432999
https://doi.org/10.1073/pnas.182432999
https://doi.org/10.1016/j.cub.2006.09.063
https://doi.org/10.1016/j.cub.2006.09.063
https://doi.org/10.1103/PhysRevE.67.026126
https://doi.org/10.1103/PhysRevE.67.026126
https://doi.org/10.1093/acprof:oso/9780199206650.001.0001
https://doi.org/10.1093/acprof:oso/9780199206650.001.0001


57:369–394. https://doi.org/10.1146/
annurev.micro.57.030502.090759

110. Williams TA, Embley TM (2014) Archaeal?
Dark matter? And the origin of eukaryotes.
Genome Biol Evol 6:474–481. https://doi.
org/10.1093/gbe/evu031

111. Castelle CJJ, Wrighton KCC, Thomas BCC
et al (2015) Genomic expansion of domain
archaea highlights roles for organisms from
new phyla in anaerobic carbon cycling. Curr
Biol 25:690–701. https://doi.org/10.1016/
j.cub.2015.01.014

112. Brown CT, Hug LA, Thomas BC et al (2015)
Unusual biology across a group comprising
more than 15% of domain Bacteria. Nature
523:208–211. https://doi.org/10.1038/
nature14486

113. Spang A, Saw JH, Jørgensen SL et al (2015)
Complex archaea that bridge the gap between
prokaryotes and eukaryotes. Nature
521:173–179. https://doi.org/10.1038/
nature14447

114. Zaremba-Niedzwiedzka K, Caceres EF, Saw
JH et al (2017) Asgard archaea illuminate the
origin of eukaryotic cellular complexity.
Nature 541:353–358. https://doi.org/10.
1038/nature21031

115. Prakash T, Taylor TD (2012) Functional
assignment of metagenomic data: challenges
and applications. Brief Bioinform
13:711–727. https://doi.org/10.1093/
bib/bbs033

116. Hingamp P, Grimsley N, Acinas SG et al
(2013) Exploring nucleo-cytoplasmic large
DNA viruses in Tara Oceans microbial meta-
genomes. ISME J 7:1678–1695. https://doi.
org/10.1038/ismej.2013.59

117. de Vargas C, Audic S, Henry N et al (2015)
Eukaryotic plankton diversity in the sunlit
ocean. Science 348:1261605–1261605.
https://doi.org/10.1126/science.1261605

118. Sunagawa S, Coelho LP, Chaffron S et al
(2015) Structure and function of the global
ocean microbiome. Science
348:1261359–1261359. https://doi.org/
10.1126/science.1261359

119. Paez-Espino D, Eloe-Fadrosh EA, Pavlopou-
los GA et al (2016) Uncovering earth’s vir-
ome. Nature 536:425–430. https://doi.org/
10.1038/nature19094

120. Shi M, Lin XD, Tian JH et al (2016) Redefin-
ing the invertebrate RNA virosphere. Nature.
https://doi.org/10.1038/nature20167

121. van Regenmortel MH, Mayo MA, Fauquet
CM, Maniloff J (2000) Virus nomenclature:
consensus versus chaos. Arch Virol
145:2227–2232

122. Gibbs AJ (2000) Virus nomenclature des-
cending into chaos. Arch Virol
145:1505–1507

123. Lawrence JG, Hatfull GF, Hendrix RW
(2002) Imbroglios of viral taxonomy: genetic
exchange and failings of phenetic approaches.
J Bacteriol 184:4891–4905

124. Franklin LR (2007) Bacteria, sex, and system-
atics. Philos Sci 74:69–95. https://doi.org/
10.1086/519476

125. Bapteste E, Boucher Y (2008) Lateral gene
transfer challenges principles of microbial sys-
tematics. Trends Microbiol 16:200–207.
https://doi.org/10.1016/j.tim.2008.02.
005

126. Bapteste E, O’Malley MA, Beiko RG et al
(2009) Prokaryotic evolution and the tree of
life are two different things. Biol Direct 4:34.
https://doi.org/10.1186/1745-6150-4-34

127. Andam CP, Williams D, Gogarten JP (2010)
Natural taxonomy in light of horizontal gene
transfer. Biol Philos 25:589–602. https://
doi.org/10.1007/s10539-010-9212-8

128. Koonin EV, Dolja VV (2014) Virus world as
an evolutionary network of viruses and cap-
sidless selfish elements. Microbiol Mol Biol
Rev 78:278–303. https://doi.org/10.1128/
MMBR.00049-13

129. Lederberg J, Tatum EL (1946) Gene recom-
bination in Escherichia coli. Nature 158:558

130. Zinder ND, Lederberg J (1952) Genetic
exchange in Salmonella. J Bacteriol
64:679–699

131. Levin BR (1988) Frequency-dependent selec-
tion in bacterial populations. Philos Trans R
Soc Lond B Biol Sci 319:459–472

132. Rodriguez-Valera F (2004) Environmental
genomics, the big picture? FEMS Microbiol
Lett 231:153–158

133. Chen I, Christie PJ, Dubnau D (2005) The
ins and outs of DNA transfer in bacteria. Sci-
ence 310:1456–1460. https://doi.org/10.
1126/science.1114021

134. Edwards RA, Rohwer F (2005) Viral metage-
nomics. Nat Rev Microbiol 3:504–510.
https://doi.org/10.1038/nrmicro1163

135. Frost LS, Leplae R, Summers AO, Toussaint
A (2005) Mobile genetic elements: the agents
of open source evolution. Nat Rev Microbiol
3:722–732. https://doi.org/10.1038/
nrmicro1235

136. Dagan T, Martin W (2009) Getting a better
picture of microbial evolution en route to a
network of genomes. Philos Trans R Soc
Lond B Biol Sci 364:2187–2196. https://
doi.org/10.1098/rstb.2009.0040

The Methodology Behind Network Thinking. . . 307

https://doi.org/10.1146/annurev.micro.57.030502.090759
https://doi.org/10.1146/annurev.micro.57.030502.090759
https://doi.org/10.1093/gbe/evu031
https://doi.org/10.1093/gbe/evu031
https://doi.org/10.1016/j.cub.2015.01.014
https://doi.org/10.1016/j.cub.2015.01.014
https://doi.org/10.1038/nature14486
https://doi.org/10.1038/nature14486
https://doi.org/10.1038/nature14447
https://doi.org/10.1038/nature14447
https://doi.org/10.1038/nature21031
https://doi.org/10.1038/nature21031
https://doi.org/10.1093/bib/bbs033
https://doi.org/10.1093/bib/bbs033
https://doi.org/10.1038/ismej.2013.59
https://doi.org/10.1038/ismej.2013.59
https://doi.org/10.1126/science.1261605
https://doi.org/10.1126/science.1261359
https://doi.org/10.1126/science.1261359
https://doi.org/10.1038/nature19094
https://doi.org/10.1038/nature19094
https://doi.org/10.1038/nature20167
https://doi.org/10.1086/519476
https://doi.org/10.1086/519476
https://doi.org/10.1016/j.tim.2008.02.005
https://doi.org/10.1016/j.tim.2008.02.005
https://doi.org/10.1186/1745-6150-4-34
https://doi.org/10.1007/s10539-010-9212-8
https://doi.org/10.1007/s10539-010-9212-8
https://doi.org/10.1128/MMBR.00049-13
https://doi.org/10.1128/MMBR.00049-13
https://doi.org/10.1126/science.1114021
https://doi.org/10.1126/science.1114021
https://doi.org/10.1038/nrmicro1163
https://doi.org/10.1038/nrmicro1235
https://doi.org/10.1038/nrmicro1235
https://doi.org/10.1098/rstb.2009.0040
https://doi.org/10.1098/rstb.2009.0040


137. Kulp A, Kuehn MJ (2010) Biological func-
tions and biogenesis of secreted bacterial
outer membrane vesicles. Annu Rev Micro-
biol 64:163–184. https://doi.org/10.
1146/annurev.micro.091208.073413

138. McDaniel LD, Young E, Delaney J et al
(2010) High frequency of horizontal gene
transfer in the oceans. Science 330:50.
https://doi.org/10.1126/science.1192243

139. Dubey GP, Ben-Yehuda S (2011) Intercellu-
lar nanotubes mediate bacterial communica-
tion. Cell 144:590–600. https://doi.org/10.
1016/j.cell.2011.01.015

140. Desnues C, La Scola B, Yutin N et al (2012)
Provirophages and transpovirons as the
diverse mobilome of giant viruses. Proc Natl
Acad Sci U S A 109:18078–18083. https://
doi.org/10.1073/pnas.1208835109

141. Kutschera VE, Bidon T, Hailer F et al (2014)
Bears in a forest of gene trees: phylogenetic
inference is complicated by incomplete line-
age sorting and gene flow. Mol Biol Evol
31:2004–2017. https://doi.org/10.1093/
molbev/msu186

142. Simmonds P (2014) Methods for virus classi-
fication and the challenge of incorporating
metagenomic sequence data. J Gen Virol.
https://doi.org/10.1099/jgv.0.000016

143. Iranzo J, Koonin EV, Prangishvili D, Krupo-
vic M (2016) Bipartite network analysis of the
archaeal virosphere: evolutionary connections
between viruses and capsid-less mobile ele-
ments. J Virol 90:11043–11055. https://
doi.org/10.1128/JVI.01622-16

144. Lord E, Le Cam M, Bapteste É et al (2016)
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