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We analyze financial markets in which agents face differential constraints on the set
of assets in which they can trade. In particular, the assets available to each agent span
a partition of the state space that can be strictly coarser than the partition spanned
by the assets available in the market. We first show that the existence of differential
constraints has an impact on prices and allocations as compared to a complete financial
market with unconstrained agents.

We consider the implications for survival, taking the work of Blume and Easley
(2006) as a starting point. We show that whenever agents have identical correct be-
liefs and equal discount factors, and their partitions are nested, all agents survive. When
agents have heterogeneous beliefs, differential constraints may allow agents with wrong
beliefs to survive. Provided constraints are relevant (in a sense we define more pre-
cisely), the condition for an agent to survive is that his survival index is at least as large
as that of the agents with finer partitions. We also study the impact of deregulation (an
increase in the set of assets available to some agents). Unless the agent can adopt beliefs
that are closer to the truth on the newly refined partition than those of less constrained
agents, increasing his opportunities for trade might harm his chances for survival.

KEYWORDS: Differential financial constraints, asset markets, survival.

1. INTRODUCTION

THE QUESTION OF WHETHER FINANCIAL MARKETS PRICE ASSETS ACCURATELY IS of cen-
tral importance in economics, especially in the light of the rapid increase in the volume,
value, and complexity of financial transactions over recent decades. The strong form of
the efficient markets hypothesis (EMH) states that the market price of an asset is the
best possible estimate of its value, given all available information, public and private.
However, the observed behavior of financial markets appears to be inconsistent with the
strong-form EMH in a number of respects. Notable examples are excessive volatility (in-
cluding apparent “bubbles” and crashes), and the “equity premium” and “risk-free rate”
puzzles.

One argument in favor of strong-form EMH, discussed by Blume and Easley (2006)
and Sandroni (2000), is the idea that markets favor the best informed and most ratio-
nal traders. Trades in a financial market may be seen as “betting one’s beliefs” about
the relative probabilities of different states of nature and the resulting returns on assets.
Over time, traders who correctly judge these probabilities and make rational investment
choices based on their beliefs will accumulate wealth at the expense of others. In the limit,
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only these rational well informed traders will survive, and market prices will reflect their
beliefs.

This argument is intuitively appealing, and the central result can be derived under rel-
atively weak conditions. However, the argument raises some serious difficulties.

First, in simple versions of the model, all but the best informed traders vanish almost
surely (a.s.). This appears to be inconsistent with observed outcomes, where some traders
do better than others over the long run, but poorly informed traders manage to survive.
The result is also problematic with regard to welfare. While trade ensures that assets
are priced correctly, it does so by greatly increasing consumption inequality. In the limit,
consumption is driven to zero for all but the best informed. The empirical failure of pre-
dictions on survival, derived from standard models, casts doubt on all the predictions of
those models. Hence, it is of interest to consider more realistic models, where poorly
informed agents can survive.

Second, in the Blume–Easley version of the model, all traders can select their most
preferred portfolio from a set of securities that spans the state space. Hence, traders can
be regarded as choosing state-contingent consumption streams, and there is no need to
make the associated asset markets explicit.

This assumption is technically convenient and provides insight into the intuition under-
lying the key results. However, it is problematic because the set of financial assets traded
in markets, while it may be large, is finite. By contrast, the set of economically relevant
contingencies on which agents might conceivably trade is effectively unbounded.

Even within the span of the market, the assumption that traders can always select their
most preferred state-contingent consumption stream is not satisfied by large numbers
of agents. Some institutional investors are constrained by requirements to invest only in
particular classes of assets or to hold only investments with an investment grade (typically
credit rating).

In addition to explicit constraints, the portfolio choices of many investors appear to
reflect implicit constraints. These choices may be explained by bounded rationality, for
example, in the form of limited awareness (Guiso and Jappelli (2005), Quiggin and Siddiqi
(2015))) or as the result of transaction costs associated with entering a particular market
as in Blume, Cogley, Easley, Sargent, and Tsyrennikov (2018). Whatever the cause, the
result is that the spanning assumption of Blume and Easley becomes problematic. The
consumption plans available to investors are restricted to those that can be implemented
using the set of assets in which they are able to trade.

Another problem is that the financial sophistication implied by the capacity to imple-
ment any desired state-contingent consumption plan through financial transactions is at
odds with the core assumption of the model, namely, that agents are willing to make
investments based on their own beliefs, even though they are aware that others hold dif-
ferent beliefs. This assumption is, on the face of things, inconsistent with the result of
Aumann (1976) that, given common knowledge of rationality, such disagreement is im-
possible.

In this paper, we examine the Blume–Easley survival result in a context where agents
may be constrained to trade in a subset of the assets available in the market as a whole.
This constraint may be externally imposed, as in the case of institutions restricted to a
limited set of assets, or it may arise from cognitive limitations. In either case, the result
is that agents are limited to trades that lie within the span of the set of financial assets
available to them.

We begin with an exogenously given state space, so that assets may be described as
bundles of state-contingent claims. Similarly to Sandroni (2005), on this state space, we
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consider a (potentially incomplete) set of securities, that span a partition (referred to as
the market partition) of this state space. That is, each security pays 1 unit conditional on
a given element of the partition being realized and nothing otherwise. To capture differ-
ential constraints, we define for each agent a partition, in general coarser than the market
one, and assume that each agent has access to a set of assets that span his individual par-
tition. We refer to this partition as the constrained partition available to a given agent.
If the partition of each agent coincides with the market partition, the usual case of in-
complete markets arises. An agent can trade in a strictly larger set of assets than another
agent if the constrained partition of the first agent is strictly finer than that of the second.1

First, we consider an economy in which trade occurs only at time 0. With a set of assets
specified as above, the span of the market is a subspace of the space of state-contingent
claims. Consumption streams financed by asset trades must be measurable with respect
to this subspace. Similarly, each agent’s net trades must be measurable with respect to
his constrained partition. While we do not impose short sale constraints, all nonnegative
consumption streams measurable with respect to the span of the market can be financed
without recourse to short selling.

We consider the impact of differential asset constraints, and the associated differences
in partition refinement, on allocations and survival in markets. We first construct a simple
example of an economy with differential asset constraints and identical beliefs, and show
that allocations and prices in general differ from those in the complete markets case. In
particular, differential asset constraints might lead (force) less constrained agents to buy
only partial insurance against idiosyncratic risk, even though, by trading among them-
selves, they could fully insure themselves against idiosyncratic risk. We illustrate this in
Examples 1 and 2. For Example 1, we provide conditions under which less constrained
agents will choose to bear more risk than constrained agents, in return for higher ex-
pected consumption.

We next demonstrate that these effects are persistent in that constrained agents are not
driven out of the market. In particular, whenever agents have equal discount factors and
identical correct beliefs, and the constrained partitions are nested, all agents almost surely
survive. Thus, under these conditions, the coarseness of the partition is irrelevant for
survival, even though it alters the equilibrium allocation and even though, ceteris paribus,
agents with coarser partitions achieve lower welfare in equilibrium. In the special case of
incomplete markets, with no differential constraints, the main results of Sandroni (2005)
and Blume and Easley (2006) remain valid.

Differential constraints make a difference when agents have heterogeneous beliefs.
Provided constraints are relevant (in a sense we will define more precisely), an agent
whose beliefs are further away from the truth can survive if the agents with beliefs closer
to the truth are more constrained. The key to the result is that agents may survive either
because their probability judgements are more accurate than those of others or because
they can trade in asset markets from which agents with more accurate judgements are
excluded. This result is in stark contrast to the results cited above, which preclude belief
heterogeneity in bounded economies with complete markets and expected utility maxi-
mization.

1In Guerdjikova and Quiggin (2019), we use results by Choquet (1956), Kendall (1962), Polyrakis (1999),
and Kountzakis and Polyrakis (2006) to demonstrate how this asset structure can be generated from a general
set of assets available in the economy and a general set of financial constraints. A sufficient condition called
internal completeness is for the set of assets to contain an appropriate set of put and call options so that the
implied set of payoffs is a sublattice of the Euclidean space.
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In particular, suppose that aggregate risk persists in the limit on those contingencies
that can only be traded by one individual. While an individual will always try to smooth
consumption across contemporaneous states, the inability to trade with others across two
or more states with distinct initial endowments means that he will have strictly positive
consumption on at least one of them in the indefinite future and will, therefore, not van-
ish.

These results are also distinct from those obtained in the context of incomplete markets
with sequential trading (Beker and Chattopadhyay (2010), Coury and Sciubba (2012)),
where correct beliefs may not guarantee survival. In our model, agents with correct beliefs
always survive, regardless of the constraints they face. Agents with incorrect beliefs may
also survive provided they face less financial constraints. We consider the case of sequen-
tial trading in Appendix A. We show that the resulting survival criterion is much more
complex and cannot, in general, be reduced to comparisons of the exogenous character-
istics of the agents. Nevertheless, our main insights remain robust to such an extension.

We next consider the case (arguably the most realistic) where the sets of assets different
agents have access to are not related with respect to inclusion. We call such financial con-
straints nonnested. In particular, we look at an economy in which each agent can trade be-
tween a pair of states that no other agent can trade on, and we demonstrate that all agents
survive a.s. regardless of their beliefs and discount factors. Adding an unconstrained agent
with correct beliefs to such an economy implies that the surviving traders, regardless of
the constraints they face, must have correct beliefs and equal discount factors.

Next, we study the impact of an individual gaining access to new assets, with a result-
ing refinement of the constrained partition. This might occur exogenously as a result of a
policy change, such as the replacement of a defined benefit pension plan by a defined con-
tribution scheme in which participants are free to choose their own investment strategy.
Alternatively the change might arise endogenously, as individuals become aware of assets
they had not previously considered or become more confident in their ability to evaluate
a larger set of assets.2

We show that the agent almost surely vanishes, unless, upon gaining access to the mar-
ket, he adopts beliefs at least as close to the truth as those of other agents already trading
in this market. In particular, if an agent with correct beliefs is present in the economy,
a constrained agent who exogenously gains access to new markets and who either has to
guess the correct probabilities or use Bayesian updating to learn them will vanish almost
surely. More generally, we show that while markets with less constrained agents provide
more opportunities for risk sharing, they also pose greater risk for the survival of traders
who might misjudge probabilities.

The assumption that agents facing relaxed constraints adopt beliefs close to those of
the market is plausible in the case of an agent for whom the relaxation of constraints
is the result of increased awareness about investment options. On the other hand, it is
less plausible where access to new assets arises exogenously, for example, as a result of
changes in regulation.

This finding is also relevant in the consideration of hedge funds, which invest on be-
half of high wealth individuals. Hedge fund investors are assumed to be sufficiently so-
phisticated that they do not require prudential controls on their investment strategies.
However, many hedge funds incur losses sufficiently severe that they are terminated. Ro-
bust (that is, constrained optimal) investment strategies have been proposed that would
reduce the vulnerability of hedge fund portfolios to incorrect beliefs.

2We thank an anonymous referee for suggesting this interpretation.
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Apart from extending the analysis of Blume and Easley (2006) to a market with dif-
ferential financial constraints, the results derived in this paper are of a broader interest.
First, from a normative point of view, our results provide a potential rationale for restric-
tions on the investment choices available to certain classes of agents. An example is a
requirement for trustees to restrict their holdings to investment grade securities such as
highly rated bonds.

Second, going beyond the analysis of financial markets, the results derived here are
relevant for the rapidly growing body of research on macroeconomic models with het-
erogeneous agents. A crucial requirement for such models is the existence of a long run
equilibrium in which heterogeneous agents survive and are relevant in the determination
of state-contingent prices. Our analysis provides such an instance of persistent hetero-
geneity in beliefs and constraints arising in natural settings.

2. LITERATURE SURVEY

2.1. Survival in Markets

The idea that markets select for firms and agents that make optimal choices may be
traced back to mid-20th century debates about the economics of the firm. Responding to
evidence by Hall and Hitch (1939) that firms did not equate marginal cost and marginal
revenue in their pricing decisions, Alchian (1950) and Friedman (1953) argued that mar-
kets would nonetheless select for those firms that adopted profit maximizing principles.
Turning this argument around, Stigler (1958) argued for the “survivor” principle, namely
that the efficient scale of operation of firms in a given market could be inferred from the
scale of those firms that survived.

Similar ideas emerged in the early 2000s in relation to financial markets. Blume and
Easley (2006) and Sandroni (2000) studied the evolution of long-lived optimizing in-
vestors with different beliefs and preferences. In bounded economies with complete mar-
kets populated by subjective expected utility (SEU) investors, only investors with correct
beliefs survive. Risk preferences are irrelevant for survival.

Blume and Easley (2006) and Massari (2013) also develop, in the context of a bounded
economy, conditions for survival for agents who are Bayesian learners. In an unbounded
economy with a bond, Cogley, Sargent, and Tsyrennikov (2014) show that Bayesian learn-
ing need not vanish in the presence of agents who know the truth. In our setting, where
the assumption of boundedness is maintained, the result of Blume and Easley (2006) on
Bayesian learners vanishing relative to investors with correct beliefs still applies and has
some interesting consequences when financial constraints are relaxed.

The situation is more complex in the case of incomplete markets with sequential trad-
ing. In this case, correct beliefs are neither necessary nor sufficient for survival (Beker
and Chattopadhyay (2010), Coury and Sciubba (2012)). Beker and Chattopadhyay (2010)
demonstrate that the dynamics of an economy with incomplete markets is highly nontriv-
ial: in some cases an agent with correct beliefs can vanish; in others the economy might
exhibit cycles in which the consumption of each of the agents approaches 0 infinitely of-
ten. Coury and Sciubba (2012) show that in incomplete markets, it is always possible to
construct an equilibrium in which an agent with incorrect beliefs survives. However, the
equilibrium is constructed in such a way that the allocation coincides with an equilibrium
in which all agents have correct beliefs. In contrast, in our setting, incorrect beliefs (pro-
vided they survive), will have an impact on prices and allocations.

Finally, several recent papers have raised issues with the concept of Pareto optimal-
ity in the presence of heterogeneous beliefs (see, for example, Weyl (2007)) and have
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introduced alternative criteria for the optimality of equilibrium allocations such as belief-
neutral efficiency in Brunnermeier, Simsek, and Xiong (2014), no-betting Pareto improve-
ment defined by Gilboa, Samuelson, and Schmeidler (2014), and true Pareto efficiency
studied by Blume et al. (2018). These approaches argue that certain trades due to specu-
lation (differences in beliefs) have to be scrutinized to determine whether they are truly
mutually improving. In this context, constraints imposed on trades might be socially opti-
mal. Posner and Weyl (2013) discuss the practical implementation of financial regulation
when traders have different beliefs.

While Blume et al. (2018) look at markets that are incomplete in the same way for all
agents, we consider differential financial constraints. Our results show a trade-off between
expanding the set of possible trades and survival at the level of an individual. They raise
the question of whether investor type-specific financial constraints might serve the double
role of maximizing the number of nonspeculative trades while at the same time preventing
investors with incorrect beliefs from engaging in speculation leading to bankruptcy.

2.2. Constrained Investment

There is extensive evidence to show that the investment choices of households are con-
strained. Zhou (2015), using data from the Panel Survey on Income Dynamics, estimates
the stockmarket participation rate at 50 percent. More generally, as observed by French
and Poterba (1991), investors hold less foreign equity and more domestic equity than
would be considered optimal on the basis of a standard risk–return trade-off.

Many kinds of constraints in markets have been considered in the financial market lit-
erature. Goodhart, Romanidis, Tsomokos, and Shubik (2016) provide an extensive review
and discuss the significance of market imperfections in macroeconomic modelling. Bor-
rowing constraints have been introduced in the form of liquidity constraints, that is, when
certain types of income cannot be traded upon in advance (see, for example, Detemple
and Serrat (2003) and Kiyotaki and Moore (2005)), and in the form of collateral require-
ments (see Geanakoplos and Zame (2014) and Gottardi and Kubler (2015), as well as
the references therein). Kehoe and Levine (2001) compare the two types of models and
explain the different implications of such restrictions on the dynamics of asset prices and
allocations.

Gottardi and Kubler (2015), in particular, discuss the efficiency of equilibria with collat-
eral requirements and show that, in certain cases, sharper constraints can lead to Pareto
improvement. Araujo, Fajardo, and Pascoa (2005) endogenize the choice of collateral and
show that such equilibria are constrained Pareto efficient (given the possibility of default).
However, in this literature, the possibility of default is not agent-specific.3 Furthermore,
the efficiency analysis is conducted assuming that all agents have correct beliefs.

Limited participation has been studied in the literature under several different aspects.
Balasko, Cass, and Shell (1995) consider a one period economy with two states of the
world, in which some of the agents cannot trade across the two states, and they discuss
uniqueness of equilibria and the existence of sunspots. Multiple papers show that impos-
ing restrictions on the assets traded can explain some of the stylized facts in financial
markets, notably the equity premium puzzle, the foreign equity puzzle, and procyclical
price–dividend ratios (see Errunza and Losq (1985, 1989), Basac and Cuoco (1998), Guo

3Whenever the collateral requirements are exogenously fixed, as in the model of Gottardi and Kubler
(2015), these are also asset-specific and not agent-specific.
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(2004), and Guevenen (2009)). Brav, Constantinides, and Geczy (2002) summarize the
empirical evidence.

These papers mostly assume two types of agents with specific utility functions (loga-
rithmic or constant relative risk aversion (CRRA)) and two assets. One of the agents is
restricted and can only trade in one of the assets (a bond or his home security), while
the second agent is unrestricted and can hold both securities. Both types of agents have
correct beliefs. In contrast, we do not restrict the number or the type of traders in our
market and consider participation constraints that might concern any number of assets.
Furthermore, none of these studies addresses the issue of survival of constrained traders
in such markets. Hence, the question of whether such deviations of prices from funda-
mentals can be persistent is so far unresolved. Finally, the fact that most of the papers
consider agents with correct beliefs implies that participation constraints distort the mar-
ket allocation and, hence, removing them brings the market closer to efficiency (Errunza
and Losq (1989)). In contrast, as explained above, when (some) agents have incorrect be-
liefs, the appropriate notion of efficiency might change and, thus, the impact of relaxing
constraints on efficiency is no longer obvious.

While in our model, constraints are taken to be exogenous, a number of studies ad-
dress also the issue of endogenous limited participation (Allen and Gale (1994), Calvet,
Gonzalez-Eiras, and Sodini (2004)). In these models, there is a fixed cost of participa-
tion in a given market and agents decide whether to invest in a given market, depend-
ing on whether the obtained returns will compensate them for the incurred cost. Calvet,
Gonzalez-Eiras, and Sodini (2004) study the impact of financial innovation, and conclude
that it allows for better risk sharing and reduces risk premia, thus, bringing prices closer
to fundamentals, but that it can also reduce participation in the market. In contrast, Cao,
Wang, and Zhang (2005) show that Knightian uncertainty, that is, uncertainty about the
process determining dividends, can lead to endogenous participation. A similar idea is
used by Easley and O’Hara (2009) to show how participation in the stock market can
be affected by exogenous shocks, which increase the amount of uncertainty. Both papers
present models of a one period economy and use ambiguity aversion to model uncertainty
about the parameters of the distribution of dividends. In contrast, we model an infinite
horizon economy with expected utility maximizers. We show that expanding the set of
assets available to an agent increases his expected discounted payoff, but also requires
the agent to form beliefs over a larger state space and, thus, increases the probability of
vanishing from the market.

3. THE MODEL OF THE ECONOMY

3.1. Time and Uncertainty

Let N = {0;1;2; � � �} denote the set of time periods. Uncertainty is modelled through a
sequence of random variables {St}t∈N, each of which takes values in a finite set S. We set
S0 = {s0}, that is, no information is revealed in period 0. Denote by st ∈ S the realization of
random variable St . Denote by Ω =∏t∈NS the set of all possible observation paths, with
representative element σ = (s0; s1; s2 � � � st � � �). Finally denote by Ωt =∏t

τ=0S the collec-
tion of all finite paths of length t (ignoring period 0, which is common to all paths), with
representative element σt = (s0; s1; s2 � � � st). We will write s(σt) for the state realized on
path σ in period t. Each finite observation path σt identifies a decision/observation node
and the set of all possible observation paths Ω can also be seen as the set of all nodes.

We can represent the information revelation process in this economy through a se-
quence of finite partitions of the state space Ω. In particular, define the cylinder with base
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on σt ∈ Ωt , t ∈ N, as Z(σt) = {σ ∈ Ω | σ = (σt � � �)}. Let Ft = {Z(σt) | σt ∈ Ωt} be a par-
tition of the set Ω. Clearly, F = (F0 � � �Ft � � �) denotes a sequence of finite partitions of Ω
such that F0 =Ω and Ft is finer than Ft−1.

Let Ft be the σ-algebra generated by partition Ft ; F0 is the trivial σ-algebra. Let F be
the σ-algebra generated by

⋃
t∈NFt . It can be shown that {Ft}t∈N is a filtration.

We define on (Ω;F) a probability distribution π. Intuitively, π describes the evolution
of the state process in the economy. In what follows, for brevity, we abuse notation slightly
by denoting π(Z(σt)) = π(σt) = π(s0; s1; s2 � � � st). The one-step-ahead probability distri-
bution π(st+1 | σt) at node σt is determined by

π(st+1 | σt)= π(s0 � � � st; st+1 | s0 � � � st)= π(s0 � � � st; st+1)

π(s0 � � � st)
for any st+1 ∈ S�

In words, π(st+1 | σt) is the probability under distribution π that the next observation
will be st+1, given that we have reached node σt .

We will assume that the true process of the economy is independent and identically
distributed (i.i.d.) and write π(st+1 = s | σt) = π(s). Note that this does not restrict the
endowment process to be i.i.d.. The measurability requirements on the endowment pro-
cess are specified below.

3.2. Assets and Financial Constraints

In the classic model of Arrow and Debreu (1954), agents can trade on every possible
contingency. In reality, this type of trade usually occurs via asset markets.

Restrictions on the kinds of assets in which an agent can trade imply a coarsening of the
state space with respect to which their trades must be measurable. For example, an agent
with an initially nonstochastic endowment, who can trade only in bonds and an index fund,
can allocate consumption only in ways that are measurable with respect to the partition
generated by aggregate consumption.

Another example arises when two agents might have access to the same set of domestic
financial markets, but only one of them is willing and able to trade in global markets. The
less constrained agent would have access to a state space derived as the Cartesian product
of the state of the domestic economy and the state of the world economy, while the more
constrained agent would have access to a coarser quotient space, in which all states of the
world economy were treated as indistinguishable. In effect, the more constrained agent
displays “home bias” as in French and Poterba (1991).

Consider a partition of the state space S, W 0, with representative element w and the
corresponding partition of Ωt , Ω0

t , given by Ω0
t =∏t

τ=1 W
0 and Ω0 =∏∞

τ=1 W
0 with repre-

sentative elements ωt and ω, respectively. For a given period t ≥ 1, we assume that the
assets that pay at time t and are available for trade at period t = 0 are those that pay 1 unit
on a given element of the partition Ωt and nothing otherwise; that is, Ã0

t = {aωt (σt)= 1ωt }.
The collection of all such sets Ã0 =⋃t Ã

0
t represents the set of assets available to the

economy as a whole. Hence, markets can be complete (when W 0 = {{s}s∈S}) or incom-
plete.

Consider a finite set I of n infinitely lived agents. For each agent, define a partition of
the state space S, W i, which is at least as coarse as W 0, and the corresponding partition
of Ωt , Ωi

t =∏t

τ=1 W
i and Ωi =∏∞

t=1 W
i. This partition represents agent i’s financial con-

straints in that the assets available to agent i at t are those that pay conditionally on Ωi
t :

Ãi
t = {aωi

t
(σt)= 1ωi

t
}. The set of all assets i has access to is Ãi =⋃t Ã

i
t .
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REMARK 1: Propositions 1 and 2 in Guerdjikova and Quiggin (2019) give sufficient
conditions (internal completeness and intertemporal asset structure) under which a set
of assets A0 for the economy generates a space of positive payoff streams at time t ≥ 1
identical to that of Ã0

t , for some partitions of Ωt , Ω0
t and of S, W 0, such that Ω0

t =∏t

τ=1 W
0.

The realistic scenario, in which the set of assets is smaller than the underlying state space,
corresponds to a nontrivial partition Ω0

t that is coarser than Ωt for all t and, thus, W 0 that
is coarser than S. The payoffs of all available assets are measurable with respect to the
obtained partition.

Similarly, the agents’ partitions can be generated by assuming that each agent i has ac-
cess to a subset of all available assets Ai ⊆ A0 satisfying the same properties. The special
case of Ai = A0 and, thus, W i = W 0 for all agents corresponds to the standard case of
incomplete markets.

If Aj ⊂ Ai for two agents i and j, then W i is a strict refinement of W j . In this case, we
say that i is less constrained than j or that i has access to a larger set of portfolios than j.

Below, we specify the agents’ endowments in terms of the assets available to them and,
thus, implicitly assume that initial endowments are also measurable with respect to (w.r.t.)
the relevant partitions.4 Hence, the total endowment of the economy at t will also be
measurable with respect to Ω0

t . It follows that without loss of generality (w.l.o.g.), we can
take the partition Ω0

t to coincide with Ωt . Note, however, that this distinction between Ω0
t

and Ωt becomes relevant if we wish to consider financial innovation.
Finally, we remark that from the point of view of agent i, markets are complete with

respect to Ωi, that is, the agent can generate any stream of payoffs that is measurable5

with respect to Ωi.

Given the so defined individual partitions Ωi, from the point of view of agent i, the rel-
evant filtration is generated by finite partitions of the set Ωi, (Fi

t)t∈N, defined analogously
to (Ft)t∈N. Note that for each t, Fi

t is coarser than the corresponding Ft . We will denote by
F i

t the σ-algebra generated by partition F
i
t ; F i

0 =F0 is the trivial σ-algebra. Let F i be the
σ-algebra generated by

⋃
t∈NF i

t . Just as above, {F i
t }t∈N is a filtration. Note that for each σt

and the corresponding state realized at time t, s(σt), there is an element of the partition
wi with s(σt) ∈ wi. We will denote the element of the partition of agent i realized at time
t on path σ by wi(σt).

Agent i’s beliefs πi are defined on (Ωi;F i). The one-step ahead probability distribution
πi(wi

t+1 | ωi
t) is defined analogously to π(st+1 | σt). Obviously, F is finer than F i and,

hence, the true probability distribution π on (Ω;F) specifies a probability distribution
on (Ωi;F i) with π(ωi

t) = π{σt | sτ ∈ wi
τ for all τ ∈ {1 � � � t}}. We will say that i’s beliefs are

correct if they coincide with the restriction of π to (Ωi;F i).
For most of the paper, we will restrict attention to beliefs that describe an i.i.d. process,

πi(wi
t+1 =wi |ωi

t)= πi(wi).
There is a single good consumed in positive quantities. Each agent i is endowed at

t = 0 with some of the consumption good, ei(σ0), and with a portfolio θ̄i of securities in

4In particular, for an agent who has access only to a bond, initial endowment is nonstochastic (though it can
depend on the time period). Nontradable idiosyncratic risk can be captured by endowing an agent with risky
assets, which are nontradable, that is, which are only available to this particular agent and no one else in the
economy; see Example 3 below. The impact of such nontradable idiosyncratic risk on survival is considered in
Propositions 7 and 8.

5Furthermore, any nonnegative consumption stream can be obtained without recurring to short sales. Thus,
even though the financial constraints we impose in the paper do not restrict short selling, the equilibrium
allocation does not include short sales.
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Ãi, which pay in terms of the consumption good θ̄i : Ω \ σ0 →∏
t∈NR+. The payoff of i’s

portfolio is measurable with respect to (Ωi;F i) and, hence, his initial endowment stream
is given by a function ei : Ω →∏

t∈NR+. This stream is also measurable with respect to
(Ωi;F i). The initial endowment at node ωi

t coincides with the number of generalized
unit securities in the initial portfolio that pay conditional on ωi

t , that is, ei(ωi
t) = θ̄i(aωi

t
).

The total endowment of the economy is denoted by e =∑i e
i.

Since agent i can only trade in assets in Ãi, agent i’s consumption set consists of func-
tions ci :Ω→∏

t∈NR+ measurable with respect to (Ωi;F i).
Agents are assumed to be expected utility maximizers given their trading constraints

and their (subjective) beliefs.6 Agent i’s utility function for risk is denoted by ui and his
discount factor is βi.

We will impose the following assumptions on utility functions and endowments, which
are standard in the survival literature:

ASSUMPTION 1: All agents are expected utility maximizers with utility functions for risk ui :
R+ → R that are twice continuously differentiable, strictly concave, and satisfy limc→0 u

′
i(c)=

∞ and limc→∞ u′
i(c)= 0.

ASSUMPTION 2: Individual endowments are strictly positive, ei(σt) > 0 for all i and σt .
Aggregate endowments are uniformly bounded away from zero and uniformly bounded from
above. Formally, there is an m> 0 such that

∑
i∈I e

i(σt) > m for all i, σt ; moreover, there is
an m′ >m> 0 such that

∑
i∈Ie

i(σt) <m′ for all σt .

ASSUMPTION 3: For all s ∈ S, π(s) > 0, and for all i ∈ I, πi(wi) > 0 for all wi ∈W i.

Assumption 1 implies that the agent would never choose zero consumption in a state
he believes to have a positive probability. Assumption 2 ensures that endowments are
uniformly bounded away from 0 and above. Given the i.i.d. structure imposed on the
true process and on beliefs, Assumption 3 states that one-step-ahead probabilities of all
states of the world are positive and that all subjective beliefs assign a positive one-step-
ahead probability to every element in their respective partitions. In particular, there is a
π > 0 such that π(s) > π and πi(wi) > π for all i ∈ I and all wi ∈ W i. This assumption
is analogous to imposing absolute continuity of one-step-ahead subjective beliefs with
respect to the true one-step-ahead probabilities (as in Blume and Easley (2006)). Taken
together, Assumptions 1 and 3 ensure that no agent vanishes in finite time.

In economies with bounded endowments and complete markets, and populated by ex-
pected utility maximizers, only beliefs and discount factors matter for survival. In particu-
lar, if all agents are equally patient, agents with incorrect beliefs vanish a.s. in the presence
of agents with correct beliefs. In contrast, in unbounded economies, risk attitudes also
matter for survival, and agents with incorrect beliefs can survive. So as to disentangle the
effects of asset constraints on survival from those of risk attitude, we restrict our attention
to the case of bounded economies.

4. EQUILIBRIUM IN MARKETS WITH DIFFERENTIAL FINANCIAL CONSTRAINTS

Our main results are derived on the assumption that agents trade their portfolios at
time 0 with no subsequent opportunity for retrading. Thus, the approach taken in the

6An expected utility representation with a coarse subjective state space has been recently axiomatized by
Minardi and Savochkin (2016).
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main part of the paper mimics that of Sandroni (2005), in which there is a single period
of trade, but information is subsequently revealed according to the structure presented
in Section 3. This assumption greatly simplifies the analysis and allows us to derive a
simple criterion for survival in economies with differential constraints. Differently from
Sandroni, we allow consumption to occur in time. In Appendix A, we extend the analysis
to the case of sequential trading. Even though the definition and the analysis of the equi-
librium are substantially different for the two cases, we show that the main insights of the
paper are robust to such a modification.

DEFINITION 1: An equilibrium of the economy with differential financial constraints con-
sists of an integrable7 price system (p(σt))σt∈Ω and a consumption stream ci for every
agent i such that (i) all agents i ∈ {1 � � � n} are maximizing their expected utility given the
price system subject to choosing consumption streams that are measurable relative to
their constrained partition, and (ii) markets clear:

ci = arg max
ci

V i
0

(
ci
)

= arg max
ci

{
ui

(
ci(σ0)

)+ ∞∑
t=1

βt
i

∑
ωi
t∈Ωi

t

πi
(
ωi

t

)
ui

(
ci
(
ωi

t

))

s.t.
∑
t∈N

∑
ωi
t∈Ωi

t

∑
σt∈ωi

t

p(σt)c
i
(
ωi

t

)

≤
∑
t∈N

∑
ωi
t∈Ωi

t

∑
σt∈ωi

t

p(σt)e
i
(
ωi

t

)}



∑
i∈I

ci(σt)=
∑
i∈I

ei(σt) ∀σt ∈ Ω�

(1)

An equilibrium in an economy with differential financial constraints is consistent with
the fact that different agents face different financial constraints, trade on different parti-
tions of the state space, and, hence, effectively optimize over different sets of commodities
(consumption on events ωi

t rather than σt). The equilibrium can be interpreted in the fol-
lowing way: in period 0, before any uncertainty is resolved, all agents sell their initial en-
dowment to an intermediary8 at market prices and use the revenues to buy their preferred
consumption paths ci for all future contingencies on which they can trade. The price of

7Integrability of (p(σt))σt∈Ω on (Ω;F;μ), where μ is the counting measure or, equivalently, the require-
ment that the price system is L1 on (Ω;F;μ), ensures that the total wealth of an individual investor is finite,
that is, that the sum

∑
t∈N
∑

ωi
t∈Ωi

t

∑
σt∈ωi

t
p(σt)e

i(ωi
t) is well defined; see Bewley (1972, p. 516).

8The fact that agents can trade through an intermediary means that the restriction of measurability is im-
posed only on the total net trades of a given agent. One could alternatively define an equilibrium through
bilateral trades and require that the bilateral net trades be measurable with respect to each agent’s partition.
This will, in general, restrict the set of potential equilibrium allocations. Note, however, that when agents’
partitions are nested, the agent with the finest partition can de facto play the role of an intermediary and,
thus, measurable bilateral net trades supporting the equilibrium allocation always exist. The same is true for
an economy with two agents with nonnested partitions. More generally, as pointed out to us a by a referee, the
two equilibrium notions will not coincide (e.g., Remark 2 below need not hold when measurability of bilateral
trades is required), and this might have an impact on the existence and the properties of the equilibrium as well
as on survival results. Note, however, that in the cases studied below, notably nested partitions, or an economy
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consumption contingent on a coarse contingency ωi
t is simply the sum of consumption

prices over all nodes σt ∈ ωi
t , that is,

∑
σt∈ωi

t
p(σt).

PROPOSITION 1: Under Assumptions 1–3, an equilibrium of the economy with differential
financial constraints exists. Furthermore, the equilibrium satisfies, for each i ∈ I and at each
ωi

t , ω
i
t+1 ∈ Ωi such that π(ωi

t+1) > 0,

u′
i

(
ci
(
ωi

t

))
βiπ

i
(
ωi

t+1 |ωi
t

)
u′
i

(
ci
(
ωi

t+1

)) = p
(
ωi

t

)
p
(
ωi

t+1

) =

∑
σt∈ωi

t

p(σt)

∑
σt+1∈ωi

t+1

p(σt+1)

 (2)

where p(·) is the equilibrium price system.

We now provide a simple example to illustrate the impact of differential financial con-
straints on equilibrium prices and allocations.

EXAMPLE 1: Consider an economy with two agents, Ann and Bob. Their initial endow-
ments in each period depend on whether each of them is employed or not. The assets in
the economy are a bond, unemployment insurance claims for Ann and Bob, that is, assets
A and B, which yield a payment of 1 if the associated agent is unemployed, and an in-
surance claim against a high unemployment rate in the economy as a whole, which pays
1 when both agents are unemployed and nothing otherwise. The induced state space for
an unconstrained agent has four states: S = {s1 � � � s4}. In s1, A is employed and B is not;
in s2, B is employed, but A is not. In s3, both agents are unemployed, and in s4, both are
employed. Intuitively, states s1 and s2 can be interpreted as ‘business as usual,” in which
unemployment is a matter of idiosyncratic risk, whereas in states s3 and s4, the economy
is subject to aggregate risk (low or high unemployment rates). The initial endowment of
an agent is 1 in a state in which he is unemployed and 2 in a state in which he is employed,
see Table I.

Assume now that while A has access to all four assets, B can only trade the bond and
his own unemployment insurance asset. This induces the partition

W B = {wB
1 = {s1; s3};wB

2 = {s2; s4}
}
�

TABLE I

INITIAL ENDOWMENTS FOR EXAMPLE 1

Initial endowment s1 s2 s3 s4

Ann 2 1 1 2
Bob 1 2 1 2

with an unconstrained agent (as in Proposition 8), the results on survival will not depend on the definition
chosen. The result of Proposition 7 is based on the fact that trading constraints prevents agents from selling
parts of their endowment and, thus, from vanishing. Imposing further constraints on trades will not invalidate
this argument.
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Bob’s initial endowment respects the measurability assumption imposed above, that is,
eBs1 = eBs3 = 1 and eBs4 = eBs4 = 2.

Consider first the case in which both A and B are unconstrained. Assuming that both
have identical (correct) beliefs π about the realization of the four states and strictly con-
cave von Neumann–Morgenstern utility functions uA and uB, the equilibrium of this econ-
omy would fully insure both agents against the idiosyncratic risk, that is, cA(s1) = cA(s2)

and cB(s1) = cB(s2), and, hence, p∗
1

π(s1)
= p∗

2
π(s2)

obtains. As for the allocation across states s3

and s4, we know that the less risk averse agent will partially insure the more risk averse
agent against the aggregate risk. If both agents have identical utility functions, no trade
across these two states will occur.

Now consider the situation in which B is constrained and has access only to the two as-
sets that generate the partition W B specified above. The equilibrium allocation described
above is no longer feasible, since it specifies cB(s1) > 1 = cB(s3) and would, thus, require
B to trade on states s1 and s3. So what can we say about the equilibrium with financial
constraints? First, we can show (see the proof of Claim 1 in Appendix B) that when B is
constrained, neither A nor B is insured against idiosyncratic risk in equilibrium. Second,
since u is concave, in equilibrium, 1 < cB(s1)= cB(s3) < cB(s2)= cB(s4) < 2, that is, B buys
partial insurance against aggregate risk. This in turn implies that state prices are biased
relative to the case of no financial constraints: p∗

1
π(s1)

<
p∗

2
π(s2)

. Finally, if

π(s1)π(s2)−π(s3)π(s4)≤ 0
 (3)

A’s expected consumption is higher than her expected initial endowment (see the proof
of Claim 2 in Appendix B).

The sufficient condition (3) for A to bear more risk and, thus, obtain a higher expected
consumption than under her initial endowment will hold if all four states are equally
likely. Alternatively, suppose that the state s4 has a probability π4 >

1
2 , that is, full em-

ployment is the default state of the economy. Assume also that the two states with id-
iosyncratic risk, s1 and s2, are equally probable; π1 = π2, that is, the probability that each
one of the agents loses his/her job is the same. In this scenario, condition (3) is satisfied
as well.

While the example is formulated as a static one, we may show that, assuming equal
discount factors, identical von Neumann–Morgenstern functions uA and uB, and an initial
endowment i.i.d. over time, the static equilibrium will be replicated in every period t.

EXAMPLE 2: We now add (to Ann and Bob) two agents Clara and David. Assume that
C has the same initial endowment as A and that D has the same initial endowment as
B; that is, eC = eA and eD = eB, see Table II. However, we now assume that Clara has
access only to the bond and to Ann’s claim for insurance against unemployment (which
insures her against her own unemployment), whereas David is unconstrained. Hence, the

TABLE II

INITIAL ENDOWMENTS FOR EXAMPLE 2

Initial endowment s1 s2 s3 s4

Clara 2 1 1 2
David 1 2 1 2
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partition induced by Clara’s financial constraints is given by

W C = {wC
1 = {s1; s4}
wC

2 = {s2; s3}
}
�

Assume that all agents have identical correct beliefs on the partitions on which they can
trade and that they are all risk averse.

Consider first a (sub)economy consisting of only B and C. Given their financial con-
straints, the idiosyncratic labor income of these two agents is nontradable.9 From B’s
point of view the only consumption allocations that he prefers to his initial endowment,
and that can be derived through trade, are of the type(

cB(s1); cB(s2); cB(s3); cB(s4)
)= (1 + a;2 − b;1 + a;2 − b)

with a > 0, b > 0. However, market clearing implies that the resulting consumption bun-
dle for C specifies

cC(s1)= 2 − a �= cC(s4)= 2 + b

and is, thus, inconsistent with her constrained partition. Hence, even though in principle
Bob can and might find it optimal to purchase insurance against his own unemployment
risk, the fact that Clara is not able to trade in such an asset effectively prevents him from
doing so. We examine the impact of such nonnested financial constraints on survival in
Propositions 7 and 8.

In contrast, if A and D were the only agents in the economy, they would fully insure
each other across states s1 and s2 in equilibrium: cA(s1)= cA(s2) and cD(s1)= cD(s2). This
result holds independently of whether their utility functions are identical or not.10 If their
utility functions are identical, no trade on the states with aggregate risk, s3 and s4, occurs
between them.

When all four agents are present in the economy, the equilibrium allocation is different.
Suppose, for simplicity. that everyone’s beliefs are correct and assign a probability of 1

4 to
each of the states. First, it is impossible to insure everybody against idiosyncratic risk in
equilibrium, (see the proof of Claim 3 in Appendix B). Second, in general, the presence
of constrained traders in the market (B and C) implies that the unconstrained traders A
and D cannot be fully insured against idiosyncratic risk either (see the proof of Claim 4
in Appendix B).

Our example demonstrates that markets with differentially constrained agents exhibit
different properties from markets in which the same set of assets is available to all agents.
First, in such markets, some of the risk sharing opportunities cannot be used, due to the
constraints on some agents. Such constraints can affect even trades among unconstrained
agents, who, in the absence of constrained agents, would have obtained full insurance
against idiosyncratic risk. Second, unconstrained agents might provide additional insur-
ance against aggregate risk to constrained agents, even when both types have identical
beliefs and identical risk preferences. Third, in the presence of constrained agents, state
prices might be biased. Finally, unconstrained agents might obtain higher expected re-
turns than constrained agents.

9We are grateful to an anonymous referee for suggesting this interpretation.
10In the presence of differential bargaining power, which might arise from different risk attitudes, the party

with less bargaining power might be required to make a state-independent payment so as to reach agreement
on the full insurance bargain.
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5. SURVIVAL IN ECONOMIES WITH DIFFERENTIAL FINANCIAL CONSTRAINTS

In the previous sections, we showed that differential financial constraints can have an
impact on equilibrium prices and allocations. This raises the question of whether the
impact of constrained agents on prices and allocations is temporary or permanent. Is
it the case that their consumption converges to 0 over time, thus driving the equilibrium
allocation to that which would have obtained had all agents been unconstrained? In this
section, we will show that constrained agents can have a long-term impact on prices and
risk sharing.

We define survival as usual.

DEFINITION 2: Agent i vanishes on a path σ if limt→∞ ci(σt) = 0. Agent i survives on σ
if limt→∞ sup ci(σt) > 0.

In this section, we will assume that Assumptions 1–3 hold, without explicitly stating
them in each of the propositions below. We first remark that in the absence of aggregate
risk, constraints have no effect on survival.

REMARK 2: In an economy with no aggregate uncertainty, equal discount factors, and
identical correct beliefs, all agents will be fully insured. Indeed, since a full insurance
consumption stream is measurable w.r.t. any individual partition, the individual financial
constraints in such an economy are not binding. Hence, all agents will survive regardless
of their individual financial constraints. In this case, the first-order conditions (2) (with
correct beliefs) and the equilibrium allocation coincide with those in an unconstrained
economy.

Our first result generalizes the main result of Blume and Easley (2006) to apply to
agents with access to an identical set of assets and, thus, with identical partitions. It also
extends the result of Sandroni (2005) to the case of agents who consume over time. When
beliefs are identical, the agents with the highest discount factors can survive. For identical
discount factors, only those agents with beliefs closest to the truth can survive.

PROPOSITION 2: Consider two agents i and j, who have access to the same set of assets,
Ai = Aj , and, thus, have identical partitions, Ωi = Ωj . If agent’s i survival index lnβi −∑

wi∈W i π(wi) ln π(wi)

πi(wi)
is strictly higher than that of j, j vanishes a.s.

Our next result concerns agents who have access to sets of assets Ai ordered with re-
spect to inclusion and, hence, nested partitions. It shows that the fact that some agents
have access to smaller sets of portfolios alone does not affect survival.

PROPOSITION 3: Consider a population of agents who have sets of available assets ordered
with respect to inclusion and, thus, have nested partitions, equal discount factors, and correct
beliefs. All agents survive a.s.

Our result shows that whenever agents have equal discount factors and correct beliefs
relative to the partition generated by the set of assets they have access to, and the sets
of assets are ordered with respect to inclusion, whether the agent has access to a larger
or smaller set of assets is irrelevant for survival. In fact, all agents survive. We can relate
this result to Example 1. Recall that in a one period economy with Ann unconstrained
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and Bob constrained, insurance against idiosyncratic risk did not obtain in equilibrium.
In contrast, the unconstrained agent insured the constrained agent against some of the
aggregate risk. The result above implies that these features of the economy will persist in
the long run as long as both agents have correct beliefs and equal discount factors.

While agents with access to a smaller set of assets survive, the financial constraints will,
in general, (weakly) reduce their welfare.

PROPOSITION 4: Consider an economy with differential financial constraints and assume
that agent i is more constrained than j, Ai ⊂ Aj , and Ωi is coarser than Ωj . Suppose that the
two agents have identical endowments, utility functions, and discount factors β, and identical
beliefs π restricted to Ωi. In any equilibrium of the economy with equilibrium allocation c,
V

j
0 (c

j)≥ V i
0 (c

i).

Ceteris paribus, an agent who is more constrained will be able to invest conditional on
a coarser partition and will, as a result, obtain a lower welfare in equilibrium. Intuitively,
the less constrained agent has access to a larger set of trades that he can engage in and will
obtain a higher utility from consumption. Note, however, that the weak inequality cannot
be replaced by a strict one. For example, if i and j are the only agents in the population,
no trade will occur in equilibrium and their welfare will be identical.

We next examine the impact of heterogeneity in discount factors and beliefs on survival
when agents’ sets of assets are ordered with respect to inclusion. We first show that a more
constrained agent i can only survive if his survival index is at least as large as that of a less
constrained agent j. Thus, either i’s discount factor must be at least as high or his beliefs
must be at least as close to the truth as those of j.

PROPOSITION 5: If agent i is more constrained than agent j (Ai ⊂Aj and Ωi coarser than
Ωj) and i has a strictly lower survival index,

ln
βj

βi

+
(∑

wi∈W i

π
(
wi
)

ln
π
(
wi
)

πi
(
wi
) −

∑
wi∈W i

π
(
wi
)

ln
π
(
wi
)

πj
(
wi
))> 0


i vanishes a.s.

Hence, more constrained agents can survive only if they have larger survival indices
than less constrained agents. To formulate results for economies in which this conditions
is satisfied, we will have to understand when constraints matter in the long term. We will
use the following definition.

DEFINITION 3: The financial constraints of agent i, given by the partition Ωi, are ir-
relevant in the limit if for any ωi ∈ Ωi and any σ , σ ′ ∈ ωi, limt→∞ e(σt) − e(σ ′

t ) = 0. The
financial constraints of agent i, given by the partition Ωi, are relevant in the limit if for
some wi ∈ W i, s and s′ ∈wi, there is an ε > 0 such that for any σ , σ ′ ∈ ωi,

lim
t→∞

sup
[
e(σt; s)− e

(
σ ′

t ; s′)]> ε� (4)

The financial constraints of agent i are considered irrelevant if, in the limit, the total
endowment of the economy is measurable with respect to agent i’s partition. Such an
agent can effectively trade on the total endowment process of the economy in the limit.
In contrast, agent i’s constraints are relevant even in the limit if there are at least two
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states that i cannot trade on and in which the total endowment of the economy remains
distinct.

Note that if i’s constraints are irrelevant in the limit, then so are those of any agent j
who is less constrained, Ai ⊂ Aj . Similarly if i’s constraints are relevant in the limit, then
so are those of a more constrained agent j with Aj ⊂ Ai.

Consider agent j and for any ωj ∈ Ωj with ωi ⊆ ωj , define the set Ω̂i
t(ω

j
t ) = {ωi

t ∈ Ωi
t |

ωi
t ⊆ ω

j
t s.t. min

σt∈ωj
t
e(σt) = minσt∈ωi

t
e(σt)}, the set of ωi

t on which the initial endowment

of the economy obtains its minimum w.r.t. the set ωj
t . Let Ω̌i

t(ω
j
t )= {ωi

t ⊆ ω
j
t} \ Ω̂i

t(ω
j
t ).

DEFINITION 4: Let the set of assets available to agents i and j satisfy Ai ⊃ Aj . The
financial constraints of agent j given by the partition Ωj are irrelevant in the limit w.r.t.
those of agent i given by partition Ωi if for any ωi ∈ Ωi and ωj ∈ Ωj such that ωi ⊆ ωj ,
limt→∞ Ω̌i

t(ω
j
t ) = ∅. The financial constraints of agent j are relevant in the limit w.r.t. those

of agent i if there is an ε > 0, wi ∈W i and wj ∈ W j , wi ⊆wj such that for any ωj ∈Ωj and
every ωi ⊆ ωj , ωi ∈ Ωi, (i) min(σ

tk
;s)∈(ωi

tk
;wi) e(σtk; s)− min

(σ
tk

;s)∈(ωj

tk
;wj)

e(σtk; s) > ε occurs

on an infinite set of periods (tk)k such that (ii) min{σ
tk+1∈ωi

tk+1
|ωi

tk+1
∈Ω̌i

tk+1
(ω

j

tk
;wj)} e(σtk+1) −

min
(σ

tk
;s)∈(ωj

tk
;wj)

e(σtk; s) > ε for all tk.

To understand the definition, note that, in general, the initial endowment of the econ-
omy is not measurable w.r.t. to Ωi or Ωj . The maximum consumption of j at ωj

t given
the initial endowment of the economy is min

σt∈ωj
t
e(σt), whereas the maximum consump-

tion of i at ωi
t ⊆ ωi

t is minσt∈ωi
t
e(σt). Furthermore, if Ω̌i

t(ω
j
t ) = ∅, then these two values

coincide for all ωi
t ⊆ ω

j
t : even though j’s partition is coarser, he is no more constrained

than i in terms of his maximal possible consumption on ω
j
t . If this property obtains in the

limit, j’s constraints are irrelevant in the limit w.r.t. those of i. If, in contrast, Ω̌i
t(ω

j
t ) �= ∅,

then i can obtain a strictly higher consumption on ωi
t than j on ω

j
t , that is, j’s constraint

is “relevant” w.r.t. that of i. The condition for j’s constraints to be relevant w.r.t. those of
i in the limit requires that (i) on every path ωi ⊆ ωj on which wi occurs infinitely often
(i.o.), i’s maximal consumption exceeds that of j’s by ε i.o., and (ii) on every path ωj on
which wj occurs i.o., the minimal nonzero difference in maximal consumption between i
and j on ωj exceeds ε i.o.

In the sequel, to simplify the discussion, we will concentrate mainly on the case of agents
whose constraints are relevant in the limit w.r.t. those of other agents. We will comment
briefly on how the results change if agents with constraints that are irrelevant in the limit
are introduced.

PROPOSITION 6: Consider a population of agents with available sets of assets ordered
with respect to inclusion A1 ⊃ A2 · · · ⊃ An and, thus, nested partitions Ω1 strictly finer than
Ω2. . . strictly finer than Ωn, and ordered survival indices such that for all i < j, either

lnβi −
∑
wj

π
(
wj
)

ln
π
(
wj
)

πi
(
wj
) < lnβj −

∑
wj

π
(
wj
)

ln
π
(
wj
)

πj
(
wj
)

or βi = βj and πi(wj) = πj(wj) for all wj ∈ W j . If the constraints of any agent i ≥ 2 are
both relevant in the limit and relevant w.r.t. those of i − 1, agents 1 and 2 a.s. survive. If, in
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addition, for every j ∈ {2 � � � n− 1} such that the survival indices of j and j+ 1 are distinct, all
wj+1 ∈ W j+1 and all wj ⊆wj+1, πj(wj |wj+1)= π(wj |wj+1), all agents a.s. survive.

The proposition considers agents with access to sets of assets ordered with respect to
inclusion. Furthermore, less constrained agents have lower survival indices than more
constrained agents. We impose the condition that the constraints of agents with lower
survival indices are both relevant in the limit and relevant w.r.t. those with the next finer
partition.11 In such an economy, the two agents with lowest survival indices, 1 and 2, a.s.
survive. Requiring that agents’ conditional beliefs πj(wj | wj+1) w.r.t. the next coarser par-
tition are correct12 further implies that all agent a.s. survive regardless of the value of their
survival indices. This result is interesting because it shows that agents with less financial
constraints can survive even when their survival index is not maximal in the economy.

This requires, however, that for i ≥ 2, agents’ constraints are relevant even in the limit.
In such a scenario, the constrained agents cannot consume the entire endowment of the
economy: such a consumption stream would violate their financial constraints. Hence,
it is the agents with lower survival indexes but weaker constraints who ensure that the
markets clear. They consume the “leftovers” of the constrained agents and, thus, the fact
that constraints are relevant ensures that they survive a.s.

Moreover, the least constrained agent 1 can survive in the presence of agents with
stronger constraints and correct beliefs even if his beliefs about the contingencies on
which others cannot trade are wrong. For example, in Example 1, Bob’s constraints are
relevant in the limit, whereas Ann’s are not. When only Ann and Bob are present in the
economy, given equal discount factors, Ann will survive if she and Bob assign equal prob-
abilities to the events wB

1 = {s1; s3} and wB
2 = {s2; s4}, regardless of whether her estimates

about the probabilities of the individual states s1, s2, s3, or s4 are correct.
Our last two propositions in this section examine an economy in which the agents’ con-

straints are not necessarily comparable. The economy discussed in Example 2 is an exam-
ple of such a situation. In this economy, the sets of assets to which Bob and Clara have
access are not ordered with respect to inclusion.

We now provide a formal definition of economies with nonnested financial constraints.
Note that, for this definition, we use the sets consisting of generalized unit securities Ãi.

DEFINITION 5:Agents i and j have nonnested financial constraints if there are states13 s,
s′, s′′, s′′′ ∈ S such that the following statements hold:

• There is an asset a′ ∈ Ãi such that a′(s) �= a′(s′) and for any asset a ∈ Ãi, a(s′′) =
a(s′′′).

• There is an asset a′′ ∈ Ãj such that a′′(s′′) �= a′(s′′′) and for any asset a ∈ Ãj , a(s) =
a(s′).

11The extension of Proposition 6 to the case where the constraints of some agent i are irrelevant with respect
to those of agent i − 1 requires the examination of multiple cases. For example, it is easy to show that agents
with irrelevant constraints weaker than those of agent 1 and survival indices lower than that of agent 1 a.s.
vanish. Lemma 14 in Appendix A further shows that if an agent’s constraints are irrelevant w.r.t. those of the
agent with the next finest partition, but his survival index is strictly lower, this agent a.s. vanishes.

12Since πj(wj+1) is, in general, incorrect, this does not imply that πj(wj) is correct.
13The definition does not require the four states to be distinct and, thus, also applies to economies with only

three states, where one can set s′ = s′′. However, requiring s′ = s′′ is, in general, too restrictive for our purposes,
since it excludes, for example, an economy, in which W i = {{s}; {s′}; {s′′; s′′′}} and W j = {{s; s′}; {s′′}; {s′′′}}. In-
deed, choose any three states (e.g., s, s′′, and s′′′) and note that at least one of the agents (here, j) can trade
among any of the three states, and, hence, the definition of nonnested constraints would not apply, contrary to
intuition. In economies with only two states, agents’ partitions are trivially nested.
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If the states s and s′ satisfy this definition, then we will say that i can trade between s
and s′, whereas j cannot.

We will say that agents in the economy have nonnested financial constraints if, for each
agent i, there are states s and s′ ∈ S between which i can trade, but between which no
other agent in the economy can trade.

Our first result shows that whenever an agent is the only one in the economy capable
of trading between some relevant contingencies, he survives regardless of his beliefs and
discount factor, and regardless of the financial constraints of the other agents.

PROPOSITION 7: Consider an economy with differential financial constraints and assume
that for an agent j, there are states s(j) and s′(j) ∈ S such that the financial constraints of j
and any other agent i ∈ I \ {j} are nonnested and j can trade between s(j) and s′(j), whereas
i cannot. Assume that condition (4) holds for s(j) and s′(j). Then agent j survives a.s. In
particular, if the condition above is satisfied for every agent j ∈ I, then all agents survive a.s.

This result is of special interest in view of Example 2 above. In particular, consider
agents who are exposed to some nontradable idiosyncratic risk such as labor income.
While the agent j in question can be seen as owning the asset corresponding to his labor
income stream, other agents cannot trade in this asset. That is, there are states s(j) (for
example, a state where j is employed) and s′(j) (j is unemployed), which are distinct in
j’s partition, but which no other agent in the economy can trade on. Provided that the
difference in payoffs in these states is bounded away from 0 in the limit, j’s consumption
will be strictly positive i.o. on almost every path and, hence, j will survive a.s., regardless
of his beliefs or discount factor.

A special case of Proposition 7 is that in which the intersection of the sets of assets to
which agents have access is empty, that is,

⋂
i∈I A

i = ∅. In this case, the finest partition that
is coarser than all state partitions (Ωi)i∈I is the trivial partition. Hence, no trade across
states occurs in equilibrium independently of agents’ beliefs or on their discount factors.
All agents survive a.s.

Our last result introduces an unconstrained agent with correct beliefs into the economy
from Proposition 7. The presence of such an agent will cause all constrained agents with
incorrect beliefs or lower discount factors to vanish a.s. However, we show that as long
as the constraints are nonnested, and the constrained agents have correct beliefs and
discount factors identical to that of the unconstrained agent, they survive a.s.

PROPOSITION 8: Take an economy with differential financial constraints and a set of
agents I ′ ∪ {j} (j /∈ I ′). Suppose that the conditions of Proposition 7 are satisfied for the set I ′.
Let j be an unconstrained agent. Suppose that all agents have identical discount factors and
correct beliefs. Then all agents survive a.s.

The results of this section have shown that markets do not select specifically for less
constrained agents. However, when agents differ with respect to their beliefs and discount
factors, less constrained agents have an advantage in that they can survive even when
their beliefs are incorrect and their discount factor is smaller than that of less constrained
agents. This implies that economies with differential financial constraints can exhibit lim-
ited risk sharing, biased state prices, and lower saving rates as compared to economies
with identical financial constraints across agents. When the partitions are nonnested,
agents with differential constraints survive. This can reduce the amount of trade in the
economy.
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The next section discusses the impact of a relaxation of the agent’s financial constraints
on his survival.

6. RELAXING CONSTRAINTS

In our analysis so far, we have assumed that trade occurs only once, in period 0, and that
agents cannot retrade the resulting equilibrium allocation. In this section, we will consider
what happens if constraints are relaxed. This might correspond, for instance, to a case of
financial deregulation, where certain classes of investors are allowed to trade in assets that
were previously unavailable to them. Alternatively, an agent may choose to invest through
a less regulated intermediary, such as a hedge fund, in preference to, say, a mutual fund
constrained to choose among investment grade securities. A particularly relevant case is
that of a switch from defined benefit pensions to defined contribution funds. In this case,
employees who previously held a nontradable claim to a pension payable on retirement
receive access to funds that they must allocate over a potentially diverse portfolio. Since
this is an exogenous change, beliefs about the possible returns on assets may have been
formed on the basis of limited information and consideration.

A contrasting case is that of endogenous action14 by agents to remove or relax con-
straints on their investment choices as a result of increased awareness15 of investment
possibilities. In such cases, agents might have beliefs based on research into the past per-
formance and future prospects of the assets that become available. Such beliefs may be
closer to those of agents already trading in the market, and ideally close to the most ac-
curate beliefs of agents in the market.

For simplicity, we will consider a onetime change in constraints, such as allowing an
agent to trade in an asset previously unavailable to him. In state space terms, this will
mean that at node σ∗

t∗ , agent i gains access to a (weakly) finer partition of his state space,
call this partition, Ω∗i. Let W ∗i be the partition over states corresponding to the relaxed
financial constraints Ω∗i of agent i with a representative element w∗i.

Let Ωσ∗
t∗ denote the set of all (infinite) paths σ∗ with initial node σ∗

t∗ and let Ω∗i
σ∗
t∗

denote
the set of all (infinite) paths ω∗i with initial node ω∗i

t∗ such that σ∗
t∗ ∈ ω∗i

t∗ . Intuitively, Ω∗i
σ∗
t∗

is the set of paths on which i can trade given his relaxed financial constraints and given
that the economy is in node σ∗

t∗ .
Gaining access to a larger set of assets and, thus, to trades on a finer partition of

the state space will require the agent to assign probabilities to the finer contingen-
cies. Let i’s probability distribution on (Ω∗i;F ∗i) be denoted by π∗i. We will require
that the revised beliefs are consistent with i’s initial beliefs in the sense that πi(ωi

t) =∑
{ω∗i

t ∈Ω∗i|ω∗i
t ⊆ωi

t } π
∗i(ω∗i

t ). In particular, the revised beliefs will be consistent while satisfy-
ing the i.i.d. property if

π∗i(w∗i |ω∗i
t

)= π∗i(w∗i) and

πi
(
wi
)=

∑
{w∗i∈W ∗i|w∗i⊆wi}

π∗i(w∗i)

14The distinction between exogenous and endogenous relaxation of a constraint was suggested to us by a
referee, to whom we are grateful.

15There is a growing literature on changes in awareness. See Grant and Quiggin (2013), Karni and Vierø
(2013, 2017), and Schipper (2016).
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for all possible continuations of ω∗i
t∗ and ω∗i

t . Note, however, that the beliefs on the finer
partition π∗i are not uniquely determined by the initial beliefs.

At σ∗
t∗ , agents might want to reoptimize, taking into account their extended trade op-

portunities. To compute the new equilibrium at σ∗
t∗ , we will take the initial equilibrium

allocation to be the agents’ initial endowments. We will compute the new allocation and
the new equilibrium prices for the economy that starts at σ∗

t∗ , taking into account that the
consumption of agent i now has to be measurable with respect to the finer partition Ω∗i.
To make sure that this reoptimization is meaningful, we have to impose a further assump-
tion on the structure of the economy. To formulate the assumption, we say that an agent
i can trade on σ∗

t∗ if there is an ω∗i
t∗ ∈Ω∗i such that ω∗

t∗ = {σ∗
t∗}.

ASSUMPTION 4:Either of the following statements holds.
(i) All agents in the economy can trade on σ∗

t∗ .
(ii) The agents’ partitions are nested, at least one of the agents in the economy can trade

on σ∗
t∗ , and for each k ∈ I who cannot trade on σ∗

t∗ , any path ω∗k ∈ Ω∗k such that σ∗
t∗ ∈ ω∗k

t∗ ,
and any t > t∗, we have

min
σ∈ω∗k

e(σt)= min
σ∈ω∗k|σt∗=σ∗

t∗
e(σt)�

The intuition of the last point of the assumption is that we wish the set of paths passing
through the node σ∗

t∗ to be similar to the set of paths that pass through the same cell of
agent k’s partition with respect to the lower bounds on the aggregate endowment.

Consider the economy from Example 1 consisting of Ann and Bob, and assume that
endowments are i.i.d. over time. While there is no node besides σ0 that both agents
can trade on, at every node σt , Ann can trade on the node. Now consider a node σ∗

t∗
at which B’s financial constraints are relaxed to W ∗B = {{s1; s3}; {s2}; {s4}} and the corre-
sponding Ω∗B =∏∞

τ=0 W
∗B. Consider an element of B’s new partition ω∗B

t ∈ Ω∗B, which
is a continuation of the path ω∗B

t∗ and, hence, σ∗
t∗ ∈ ω∗B

t∗ . Recall that s(σt) (respectively
w∗B(σt)) stands for the state (respectively, the element of B’s new partition W ∗B) re-
alized on path σ in period t. By the construction of Ω∗B, if σt and σ ′

t ∈ ω∗B
t for some

t > t∗, then w∗B(σt) = w∗B(σ ′
t ). Hence, either s(σt) = s(σ ′

t ) = s2, or s(σt) = s(σ ′
t ) = s4, or

s(σt) ∈ {s1; s3} and s(σ ′
t ) ∈ {s1; s3}. Suppose that σ ′ satisfies σ ′

t∗ = σ∗
t∗ . Since the economy

is i.i.d., we then have either

e
(
σ ′

t

)= e(σt) = e(s2)
 or

e
(
σ ′

t

)= e(σt) = e(s4)
 or

min
s∈{s1;s3}

e
(
σ ′

t−1; s
)= min

s∈{s1;s3}
e(σt−1; s)�

It then follows that

min
σ∈ω∗k

e(σt)= min
σ ′∈ω∗k|σ ′

t∗ =σ∗
t∗
e
(
σ ′

t

)
as required by Assumption 4.

The role of Assumption 4 is to establish that for the purposes of equilibrium analysis
upon relaxing some of the financial constraints, we can restrict attention to an “economy”
that starts at σ∗

t∗ with some endowment determined by trades at t = 0. In particular, the
equilibrium of the economy at σ∗

t∗ depends only on the set of successors of σ∗
t∗ as opposed
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to events that are impossible given σ∗
t∗ . Indeed, Proposition 9 demonstrates that the mar-

ket treats nodes that are not successors of σ∗
t∗ as 0 probability events by assigning them 0

prices in equilibrium.
As explained above, this condition is not overly restrictive.

REMARK 3: An economy with nested partitions and i.i.d. total initial endowment, that
is, e(σt; s) = e(σ ′

t′ ; s) for all σt , σ ′
t′ ∈ Ω, satisfies Assumption 4 for every σ∗

t∗ .

DEFINITION 6: Let (ci)i∈I be an equilibrium allocation of the economy with differen-
tial financial constraints. An equilibrium with relaxed constraints (Ω∗i)i∈I at σ∗

t∗ is an in-
tegrable price system (p∗(σt))σt∈Ωσ∗

t∗
and consumption streams (c∗i : Ωσ∗

t∗ → R+)i∈I such
that (i) all consumers i are maximizing their expected utility given the price system subject
to choosing consumption streams measurable relative to their relaxed constraints Ω∗i and
(ii) markets clear:

c∗i = arg max
c∗i

{
ui

(
ci
(
σ∗

t∗
))+ ∞∑

t=t∗
βt

i

∑
ω∗i
t ∈Ω∗i

σ∗
t∗

π∗i(ω∗i
t

)
ui

(
c∗i(ω∗i

t

))

s.t.
∑
t≥t∗

∑
ω∗i
t ∈Ω∗i

σ∗
t∗

∑
σ∗
t ∈ω∗i

t

p∗(σt)c
∗i(ω∗i

t

)

≤
∑
t≥t∗

∑
ωi
t∈Ωi

σ∗
t∗

∑
σt∈ωi

t

p∗(σt)c
i
(
ωi

t

)}



∑
i∈I

c∗i(σt)=
∑
i∈I

ci(σt) ∀σt ∈ Ω∗
σ∗
t∗
�

PROPOSITION 9: Under Assumptions 1–4, an equilibrium with relaxed constraints exists.
Furthermore, in such an equilibrium, p(σt) = 0 for all σt /∈ Ωσ∗

t∗ . Hence, the equilibrium
consumption can be characterized by the first order condition (f.o.c.)

u′
i

(
ci
(
ω∗i

t

))
βiπ

i
(
ω∗i

t+1 | ω∗i
t

)
u′
i

(
ci
(
ω∗i

t+1

)) = p∗(ω∗i
t

)
p∗(ω∗i

t+1

) =

∑
σ∗
t ∈ω∗i

t ∩Ωσ∗
t∗

p∗(σ∗
t

)
∑

σ∗
t+1∈ω∗i

t+1∩Ωσ∗
t∗

p∗(σ∗
t+1

) �

The proposition shows that the f.o.c.s that characterize the equilibrium upon retrading
coincide with the respective f.o.c.s in an economy with an initial node σ0 replaced by
σ∗

t∗ . Hence, we can use the results from Sections 3 and 4 to characterize the equilibrium
and study survival of an agent whose constraints have been relaxed. As we know from
Section 5, given identical discount factors, the revised beliefs π∗i will play a crucial role
for i’s survival. The next result follows directly from Proposition 5.

COROLLARY 1: Suppose that the economy satisfies Assumptions 1–3. Consider a popula-
tion of agents with access to sets of assets ordered with respect to inclusion, A1 ⊃ A2 · · · ⊃ An
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and, thus, nested partitions Ω1 strictly finer than Ω2. . . strictly finer than Ωn. Suppose that at
a node σ∗

t∗ that satisfies Assumption 4, agent i > 1’s set of assets is extended to A∗i and, thus,
his partition is refined to Ω∗i, such that the new set of partitions satisfies the nested property.

Let all agents have identical (but not necessarily correct) beliefs π̃ and identical discount
factors. Unless

∑
w1∈W 1

π
(
w1
)

ln
π∗i(w1

)
π̃
(
w1
) ≥ 0 if A∗i ⊇ A1 and

∑
w∗i∈W ∗i

π
(
w∗i) ln

π∗i(w∗i)
π̃
(
w∗i) ≥ 0 if A∗i ⊂ A1


i a.s. vanishes.

To understand the result, note that two cases are possible. First, i’s new set of assets can
be the largest (and, thus, his partition is the finest) in the population, A∗i ⊇A1. Since the
constraints on agent 1 are not relevant in the economy, in the limit, agent i’s consumption
will be measurable w.r.t. agent 1’s partition. Hence, i cannot survive (relative to 1) unless
he adopts beliefs at least as close to the truth as those of 1 on the finer partition. Second,
i’s new set A∗i could be smaller than A1, A∗i ⊂ A1, implying that Ω∗i is coarser than Ω1.
In this case, Proposition 5 implies that i will a.s. vanish relative to agent 1 unless i adopts
beliefs at least as close to the truth as 1.

The requirement that the agent adopt beliefs at least as close to the truth on the new
partition as those of the agents with finer partitions might not be easy to satisfy. Un-
less the agent has a good understanding of the underlying uncertainty, the probability of
guessing by chance a distribution that satisfies the condition is strictly less than 1. Hence,
even though an increase in an agent’s opportunities for trade increases his welfare (see
Proposition 4), this increase in utility comes at the cost of a positive probability of van-
ishing. If all agents have correct beliefs w.r.t. their initial partitions, π̃ = π, “guessing the
correct probability distribution”16 is a 0-probability event. In contrast, an agent who can
only trade in bonds, for whom W i = {{s ∈ S}}, trivially has correct beliefs and survives.

We have shown that while markets with less constrained agents provide more opportu-
nities for risk sharing,17 they also pose greater risk for the survival of traders who might
misjudge probabilities.

This issue has arisen in the literature on robust investment strategies for hedge funds.
Eichhorn, Gupta, and Stubbs (1998) examine strategies that yield “satisfactory” returns
for a range of beliefs, at the cost of being suboptimal for any precise belief. Eichhorn
et al. conclude that “one plausible explanation for why investors constrain certain asset
classes may arise because of differences in their relative confidence in the precision of the
inputs.”

16The issue of learning the true probabilities is beyond the scope of this paper. Nevertheless, we note that a
straightforward corollary to Theorem 5 in Blume and Easley (2006) is that an agent who uses Bayesian updating
to learn the correct probabilities will vanish in the presence of agents with finer partitions and correct beliefs.
Another possibility suggested by an anonymous referee is for the investor to try to infer the other agents’
distributions from prices. Sciubba (2005) studies survival in economies à la Grossman and Stiglitz (1980) and
demonstrates that when information acquisition has small but strictly positive cost, uninformed traders can
survive, implying that prices do not fully reveal all the available information even in the limit.

17Simsek (2013) points out that when traders have heterogeneous beliefs, the benefits of financial innovation
in terms of risk sharing might be offset by the increased portfolio risk resulting from speculative trades.
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Interestingly, differential survival creates econometric difficulties for the ex post as-
sessment of investment strategies for hedge funds. The most obvious such problem is
that high-risk strategies are likely to yield higher than average returns for the subset of
investors who follow such strategies and survive, even in the absence of any ex ante expec-
tation of higher returns. Survival bias also poses a problem in assessing the persistence of
hedge fund returns (Baqueroy, ter Horstz, and Verbeek (2005)). Persistence is relevant in
the current context, since only persistent differences in performance can produce almost
sure differential survival.

7. CONCLUDING COMMENTS

In the standard model of financial markets, all agents have access to the same set of
financial assets. In this context, the analysis of Blume and Easley (2006) shows that if
markets are complete, differences in prior beliefs are, ultimately, irrelevant since only
agents with correct beliefs will survive. In contrast, in incomplete markets, agents with
incorrect beliefs can survive, whereas agents with correct beliefs might vanish; see Coury
and Sciubba (2012) and Beker and Chattopadhyay (2010).

In contrast, we examine markets in which agents face differential financial constraints
and demonstrate the survival of agents with both differing beliefs and differing financial
constraints. On the one hand, less constrained agents may survive, even when their beliefs
are less accurate than those of others. Conversely, more constrained agents (those with a
coarser partition of the state space) will survive if their beliefs regarding the coarser state
space on which they can trade are accurate. Moreover, the cognitive and information
requirements to form accurate beliefs about the payoffs of a constrained set of assets
(on a coarse partition of the state space) are less demanding than the requirements for
accurate probabilities regarding the full set of assets and, thus, the full set of economically
relevant states. In particular, agents with nonstochastic endowments and minimal access
to financial markets who invest only in bonds, will survive a.s., though they will forgo
consumption opportunities available from insuring others.

In the main part of the paper, we concentrate on the case in which agents only trade at
time 0. This greatly simplifies the analysis and has the advantage of obtaining a clear-cut
criterion for survival that relies on direct comparisons of the individual financial con-
straints, beliefs, and discount factors. This analysis mimics the approach of Sandroni
(2005) by extending it to the case in which consumption, but not trade, is conditional
on the sequential revelation of information. In Appendix A, we derive a criterion for sur-
vival with differential financial constraints for the case of sequential trade and show that
it involves complex interactions between constraints, beliefs, and discount factors. Nev-
ertheless, the two main insights gained from the case of period-0 trade remain true with
sequential trade: (i) an agent who is more financially constrained relative to others in the
economy need not vanish; in fact such constraints might allow an agent to survive even if
he has wrong beliefs on the probabilities of states across which he is not allowed to trade;
(ii) differential financial constraints allow for heterogeneity in beliefs, and discount fac-
tors to persist and affect prices in the long run, thus providing a more realistic scenario
for the study of financial markets and, more generally, macroeconomic models with agent
heterogeneity.
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APPENDIX A: SEQUENTIAL TRADING

In this appendix, we extend the analysis of the model to sequential trade. We use the
model described in Section 3.1 to model the underlying uncertainty. The asset structure,
however, has to be redefined as follows.

A.1. Assets and Differential Financial Constraints

Let W 0 be the partition of the state space S as introduced in Section 3.2. For a given
node σt ∈Ωt , we consider a set of one-period-lived assets born at σt , available in 0 supply,
which pay on the direct successors of σt according to

A0
σt

=
{
aσt ;w(s) =

{
1 if s(σt+1) ∈ w


0 else

}
�

That is, asset aσt ;w pays exactly 1 unit in those states s following σt that are in w; A0
σt

is
the set of assets available to the economy as a whole. While it is convenient to keep the
node σt as the reference to the state at which an asset is traded, the partition W 0 does
not depend on σt and, hence, the asset structure remains constant over time. Markets
generated by such a partition might be dynamically complete or incomplete.

Let W i be the partition of the state space corresponding to agent i. In our discussion
of sequential trade, we will restrict attention to the case of nested partitions, that is, the
case in which agents’ partitions can be ordered from the finest to the coarsest. Assume,
w.l.o.g. that for i, j ∈ {1 � � � n}, j > i implies that j’s partition is coarser than that of i, and
let agent 1’s partition18 W 1 = W 0. Analogously to the case of period-0 trade, we wish to
assume that at each node σt , agent i has access to one-period-lived assets that span the
partition W i. However, certain complications arise.

In the sequel, we use the definition (and the proof of existence) of an equilibrium with
implicit debt constraints in Magill and Quinzii (1994). Their proof of existence of an equi-
librium does not require agents to have access to the same set of assets. However, it re-
quires the assets in the economy to be linearly independent. This, in turn, means that we
cannot simply endow each agent i with the set of generalized unit securities, paying condi-
tionally on the elements of i’s own partition, as well as on the elements of the partitions of
more constrained agents. Nevertheless, in Guerdjikova and Quiggin (2019), we show that
we can construct the set of assets Ã0

σt
for the economy and Ãi

σt
available to each agent

in such a way that (i) each agent i has access to a linearly independent set of generalized
unit securities that span the partition W i, (ii) each agent i has access to all assets available
to agents with coarser partitions j > i and each agent has access to the bond, and (iii) the
set of all assets in the economy is linearly independent, contains the bond, and spans W 0.

For every σt , we set Ã0
σt

=⋃n

i=1 Ã
i
σt

to be the set of all assets in the economy at σt ,
Ãi =⋃σt

Ãi
σt

to be the set of all assets available to agent i, and Ã0 =⋃n

i=1 Ã
i to be the set

of all assets in the economy. An asset will be identified by the node at which it is born, σt ,
and the subset, w of S, on which it pays, and we write a(σt ;w) for a representative element
of Ã0

σt
.

18Since assets are available in 0-supply, assets that are inaccessible to any of the agents are irrelevant for the
economy.
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A.2. Consumption and Endowments

We maintain Assumption 1 in the main text and slightly strengthen Assumptions 2 and
3 to ensure that every agent’s initial endowment is uniformly bounded away from 0 and
agents’ one-step-ahead probabilities are uniformly bounded away from 0 for all s ∈ S.

ASSUMPTION 2′: There are m′ and m̃, m′ > m̃ > 0, such that ei(σt) > m̃ > 0 for all i and
σt ∈ Ω, and

∑
i∈Ie

i(σt) <m′ for all σt ∈Ω.

ASSUMPTION 3′: For all s ∈ S, π(s) > 0. Agents’ beliefs on (Ω;F) are i.i.d. and for all
i ∈ I, πi(s) > 0 for all s ∈ S.

With sequential trade, agents’ beliefs on S (as opposed to W i) will matter for the anal-
ysis. Assumption 3′ implies the existence of π > 0 such that πi(s) > π for all i ∈ I and all
s ∈ S.

Differently from the main part of the text, we do not require measurability of endow-
ments and consumption streams w.r.t. the agent’s partition. Indeed, a consequence of the
equilibrium with sequential trading defined below is that even if initial endowments sat-
isfy the measurability requirement, equilibrium consumption streams will, in general, not
do so. We impose Assumptions 1, 2′, and 3′ for the remainder of Appendix A.

A.3. Equilibrium

We use the following definition of an equilibrium with implicit debt constraints as stated
by Magill and Quinzii (1994).

DEFINITION 7:An IDC (implicit debt constraint) equilibrium is defined by consumption
streams (ci(σt) : Ω → R+)i∈{1���n}, portfolio holdings (θi(σt;a) : Ãi → R)i∈{1���n}, and asset
prices (q(σt; Ã0) : Ã0 →R+), such that the following statements hold:

(i) Consumers maximize utility
∑∞

t=0 β
t
iEπi [ui(c

i(σt))] subject to an implicit debt con-
straint:

BC =
{
ci(σt) ∈ l+Ω

∞
∣∣∣ there exists a θi ∈ lÃ

i

∞ s.t. for every σt ∈ Ω

ci(σt)+
∑
a∈Ãi

σt

q(σt;a)θi(σt;a)≤ ei(σt)+ θi(σt−1;a(σt−1;w(σt )))

and q · θi ∈ lΩ∞

}
�

(ii) Markets for the consumption good clear at each node:
∑

i∈I[ci(σt) − ei(σt)] = 0
for all σt .

(iii) Asset markets clear at each node:
∑

i∈I θi(σt;a) = 0 for all σt ∈ Ω and all a ∈ Ã0
σt

.

The linear independency of assets allows us to state that an equilibrium with implicit
debt constraints of the economy exists; see Magill and Quinzii (1994). The equilibrium
determines the price q(σt ;w) of any existing asset a(σt ;w) ∈ Ã0

σt
traded at node σt and paying

1 unit on the event (σt;w).
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On the other hand, a simple arbitrage argument establishes that we can price any gen-
eralized Arrow security that pays on (σt;wi) for some wi ∈ W i, i ∈ {0;1 � � � n}, even if it
does not belong to Ã0, using the prices of the existing assets.

This, in turn, allows us to state the equilibrium asset prices for those assets that pay on
the market partition W 0, q(σt;w) and to restate the optimization problem of consumer
i in terms of the set of generalized unit securities (portfolios) that pay exactly on the
partition W i,

max
c

∞∑
t=0

βt
iEπi

[
ui

(
ci(σt)

)]



subject to the implicit debt constraint

BC =
{
ci(σt) ∈ l+Ω

∞
∣∣∣ there exists a θi ∈ lΩ×W i

∞ s. t. for every σt ∈Ω

ci(σt)+
∑
w∈W i

q(σt;w)θi(σt;w) ≤ ei(σt)+ θi

(
σt−1;w(σt)

)

and q · θi ∈ lΩ∞

}
�

The IDC equilibrium will satisfy the Euler equation for any agent i and any asset paying
on (σt;wi), wi ∈ W i:

q(σt ;wi) =
βi

∑
s∈wi

u′
i

(
ci(σt; s)

)
πi(s)

u′
i(σt)

�

Furthermore, for any j > i (that is, W j coarser than W i) and wj ∈ W j , we have

q(σt ;wj) =
βi

∑
s∈wj

u′
i

(
ci(σt; s)

)
πi(s)

u′
i(σt)

�

We now collect some additional properties of the IDC equilibrium that will be useful
for the analysis of survival in the next section.

We first show that equilibrium prices are uniformly bounded away from 0 and uniformly
bounded from above.

LEMMA 1: In an IDC equilibrium, prices q(σt;w) are uniformly bounded away from 0 by
q(w) > 0, and the price of the bond

∑
w∈W 0 q(σt;w) is uniformly bounded above by q̄ and

below by q =∑w∈W 0 q(w).

Recall that an IDC equilibrium is characterized by a uniform bound on the value of
debt D (see Magill and Quinzii (1994)) such that∣∣∣∣∑

w∈W i

q(σt;w)θi(σt;w)

∣∣∣∣≤D for all i and π-a.s. all σt ∈ Ω�
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Combined with the uniform bounds on prices established in Lemma 1 and the fact that
asset payoffs are linearly independent, this implies the following lemma.

LEMMA 2: If D is the uniform bound on the value of debt in the IDC equilibrium, that is,
|∑w∈W i q(σt;w)θi(σt;w)| ≤D for all i and π-a.s. all σt ∈ Ω, then there is a uniform bound
N such that |θi(σt;w)| ≤N for all i and π-a.s. all σt ∈ Ω.

The conditions listed so far are valid independently of the type of financial constraints.
Consider two agents i < j (W j is weakly coarser than W i). For any given path σ ,

u′
i

(
ci(σt)

)
u′
j

(
cj(σt)

) =
βiπ

i
(
wj(σt+1)

) ∑
s∈wj(σt+1)

u′
i

(
ci(σt; s)

)
πi
(
s |wj(σt+1)

)
βjπ

j
(
wj(σt+1)

) ∑
s∈wj(σt+1)

u′
j

(
ci(σt; s)

)
πj
(
s |wj(σt+1)

) �

Define, analogously to Beker and Chattopadhyay (2010) (henceforth BC (2010)),

r̂
j
i (σt)= u′

i

(
ci(σt)

)∑
s∈wj(σt )

u′
i

(
ci(σt−1; s)

)
πi
(
s |wj(σt)

) �

Under the assumptions made on beliefs, utility functions, and endowments of the econ-
omy, the arguments in the proof of Proposition 1 in BC (2010) can be reproduced in our
case, which implies the following analogue of their Proposition 1.

PROPOSITION 10: For any agent i and agent j > i, that is, W j (weakly) coarser than W i,
Eπi [r̂ji (σt) | σt−1] = 1, r̂ji (σt) > 0 and supσt∈Ω r̂

j
i (σt) < ∞. Also, there is a random variable

R
j
i , which is nonnegative and a.s. finite such that

R
j
i(σ)= lim

T→∞

T∏
t=1

r̂
j
i (σt)�

In particular, note that the proposition applies equally when W i = W j (as, for example,
in the special case of identical financial constraints considered by BC (2010)).

Using the definition of r̂ji , we obtain, analogously to Proposition 2 in BC (2010), the
next proposition.

PROPOSITION 11: In equilibrium, the consumption of any two agents i and j such that j is
more constrained than i satisfies

T+1∏
t=1

r̂
j
i (σt)= βT+1

i

u′
i

(
ci(σT+1)

)
u′
i

(
ci(σ0)

) T∏
t=0

πi
(
wj(σt+1)

)
q
(
σt;wj(σt+1)

)
and

u′
i

(
ci(σt+1)

)
u′
j

(
cj(σt+1)

) = u′
i

(
ci(σt)

)
u′
j

(
cj(σt)

) βj

βi

πj
(
wj(σt+1)

)
πi
(
wj(σt+1)

) r̂ji (σt)

r̂
j
j (σt)

� (5)



MARKET SELECTION 1721

A.4. Survival in Economies With Sequential Trading

Expression (5) is of particular interest, since it allows us to compare our framework to
both the case of complete markets in Blume and Easley (2006) and the case of a single
asset in BC (2010). With complete markets, as in Blume and Easley (2006), all agents
have the finest partition and, hence, r̂jj (σt)= r̂

j
i (σt)= 1 for all σt . It follows that

u′
i

(
ci(σt+1)

)
u′
j

(
cj(σt+1)

) = u′
i

(
ci(σt)

)
u′
j

(
cj(σt)

) βj

βi

πj
(
wj(σt+1)

)
πi
(
wj(σt+1)

) 

which implies that discount factors and beliefs only matter for survival.

In contrast, if all agents only have access to a single security as in BC (2010) (which
in our case is restricted to be a bond), all agents have the trivial partition {S}, and since
πi(S) = 1,

u′
i

(
ci(σt+1)

)
u′
j

(
cj(σt+1)

) = u′
i

(
ci(σt)

)
u′
j

(
cj(σt)

) βj

βi

r̂
j
i (σt)

r̂
j
j (σt)

�

Individual beliefs thus only enter this equation implicitly through r̂.
When the partitions of the agents are nested, as in our case, beliefs on the coarser

partition W j enter the equation explicitly and play a similar role as they do in the standard
Blume and Easley (2006) complete market setting with correct beliefs on W j making the
agent more likely to survive.

Consider the case in which aggregate uncertainty is measurable w.r.t. W j and all agents
have identical beliefs. Then r̂

j
i (σt) = r̂

j
j (σt) = 1 for all σt and, hence, survival is deter-

mined only by the difference in discount factors. Clearly, in this case differential financial
constraints are irrelevant for survival.

More generally, if

r̂
j
i (σt+1)

r̂
j
j (σt+1)

= const = 1


we can think of markets as being “quasi-complete” w.r.t. W j . Define yji to be the ratio of
marginal utilities of j and i:

yji(σt) = u′
j(σt)

u′
i(σt)

�

An analogue of part (i) of Theorem 1 in BC (2010) shows that with equal discount
factors, on those paths on which the variance of the ratio of agents’ marginal utilities

converges to 0, the ratio r̂
j
i (σt+1)

r̂
j
j (σt+1)

indeed converges to 1 in the limit.

PROPOSITION 12: Let βi = βj . Then

lim
t→∞

πj(σt | σt−1)

πi(σt | σt−1)

yji(σt)

yji(σt−1)
= 1 π-a.s. on σ satisfying

lim
t→∞

Varπ

[
πj(σt | σt−1)

πi(σt | σt−1)

yji(σt)

yji(σt−1)

∣∣∣ σt−1

]
= 0�
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The results in the main part of the paper rely on agents’ consumption streams being
measurable w.r.t. their partitions. Such measurability in our case would imply r̂

j
j (σt) = 1

for all σt . We now show that with aggregate risk, if j > i, and if i and j have identical
correct beliefs and discount factors, j a.s. vanishes. In a second step, we provide conditions
on beliefs and discount factors under which j can survive.

To state the proposition, we first define an i.i.d. economy in which individual initial
endowments depend only on the current state and are, thus, i.i.d.

DEFINITION 8: An i.i.d. economy has the property that ei(σt; s) = ei(s) for all i ∈ I, all
σt ∈ Ω, and all s ∈ S.

PROPOSITION 13:Consider an i.i.d. economy with aggregate risk such that for some w̃j ∈W j ,
there are s
 s′ ∈ w̃j such that e(s) �= e(s′). Suppose that j’s equilibrium consumption19 satisfies

r̂
j
j (σt)= 1 for all σt�

Let i’s partition W i be finer than that of j, W j .
(a) If βi = βj and πi = πj = π, then j a.s. vanishes.
(b) If I = {i; j} and if

ln
βi

βj

+
∑
wj∈W j

π
(
wj
)

ln
πi
(
wj
)

πj
(
wj
) <∑

s∈S
π(s) ln

∑
s∈wj

s

u′
i

(
e(s)

)
πi
(
s |wj

s

)
u′
i

(
e(s)

) 


then j a.s. survives.

Proposition 13 imposes measurability on j’s equilibrium consumption. In general, this
property will not hold in equilibrium. Our next result shows indeed that j can vanish a.s.
conditional on any given node only in a set of i.i.d. economies with measure 0.

PROPOSITION 14: Consider an i.i.d. economy with two agents. Assume that

βi <
u′
i

(
m′)

u′
i(m̃)


 i ∈ {1;2}�

If the partition generated by agent j’s financial constraints, W j , has at least one element w̄j

that contains at least two distinct states sw̄j �= s′
w̄j , then, except for a set of endowment processes

with measure 0, there is no node σ̄t̄ ∈ Ω such that an agent i ∈ {1;2} a.s. vanishes conditional
on σ̄t̄ .

In economies with only two agents, there is no distinction between differential financial
constraints and market incompleteness: the set of possible trades is restricted to those
measurable w.r.t. to both agents’ partitions. Hence, the condition imposed on the parti-
tion of agent j implies that markets indeed are incomplete. The condition on the agents’
discount factors further ensures that the equilibrium price of the bond in this economy is

19Note that we do not claim that such an equilibrium exists. For the case of two agents, and non-i.i.d.
economies, BC (2010) provide a method of constructing economies in which equilibria satisfy this property.
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bounded strictly below 1, q̄ < 1. Under this condition, we show that none of the agents can
vanish a.s. conditional on a node σ̄t̄ ∈Ω. Note that this result is independent of agents’ be-
liefs and does not depend on the relative comparison of their discount factors or (trivially)
on the type of financial constraints imposed as long as markets are incomplete.

To provide some intuition for the result, we discuss an example.

EXAMPLE 3: Consider an economy with S = {s1
 s2
 s3}, e(s1) = 4, e(s2) = 2, and
e(s3) = 1. The economy is i.i.d. with π(s) > 0 for all s, and W j = {{s1; s2}; {s3}} and
W i = {{s1}
 {s2}
 {s3}}. Clearly, since there are only two agents in the economy, the con-
straint on j’s trades together with market clearing implies that i can also effectively only
trade on W j . Assume that20 ui(·)= ln(·) and πi(s) = 1

3 for all s, and let ej(s1)= ej(s2)= 1
and ej(s3)= 1

2 .
We will argue that agent j cannot vanish a.s. conditional on a node σ̃t̃ ; the argument

for i is analogous. Suppose, thus, that conditional on some node σ̃t̃ , j a.s. vanishes. In
Lemma 18 we show that on paths emanating from σ̃t̃ , equilibrium asset prices converge
to those in an economy with a representative agent i: qi(s;w = {s1; s2}) = 1

4βie(s) and
qi(s;w = {s3})= 1

3βie(s).

By assumption, βi <
u′
i(m

′)
u′
i(m̃)

= 1
4 , thus implying that the maximal limit price of the bond is

7
3βi < 1.

Furthermore, since j vanishes a.s. conditional on σ̃t̃ , cj → 0. So as to convey the intu-
ition of the argument for this example, we will use directly the limit prices qi(s;w) and
the limit consumption of j, cj = 0. The precise argument, which takes into account the
fact that conditional on σ̃t̃ , asset prices and j’s consumption are eventually close, but do
not coincide with their limit values, is spelled out in the proof of Proposition 14.

Since j’s initial endowment is bounded below by 1
2 , to obtain 0 consumption, he has to

either hold short positions in the relevant asset at the beginning of the period or, alterna-
tively, use his entire initial endowment and dividends to buy assets instead. One possibility
to accomplish this would be by holding a stationary portfolio θ∗(w) such that for all s and
the corresponding element of the partition ws such that s ∈ ws,

θ∗(ws)+ ej(s) =
∑

w̃∈{{s1;s2};{s3}}
qi(s; w̃)θ∗(w̃) = 1

3
e(s)βi

[
3
4
θ∗({s1; s2}

)+ θ∗({s3}
)]

holds. Note, however, that this system is overdetermined whenever j’s partition is not the
finest one. Since e(s1) �= e(s2), it thus does not have a solution for ej(s1)= ej(s2)= 1 (and,
more generally, except for a measure 0-endowment processes).

Instead, we solve a subsystem taking one equation for each element of the partition
(e.g., s1 for {s1; s2} and, trivially, s3 for {s3}; such a subsystem has a unique solution except
for a measure 0-endowment processes):

θ∗({s1; s2}
)+ 1 = 4

3
βi

[
3
4
θ∗({s1; s2}

)+ θ∗({s3}
)]



θ∗({s3}
)+ 1

2
= 1

3
βi

[
3
4
θ∗({s1; s2}

)+ θ∗({s3}
)]
�

(6)

20We provide only the specifications strictly necessary for the understanding of the argument. Agent j’s
beliefs and utility function do not impact the argument below and, hence, can be specified arbitrarily within
the assumptions of the model.
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Intuitively, the solution of (6) is a “stationary state” in which j has 0 consumption, while
holding a constant portfolio along a path on which only states s1 and s3 occur. Clearly, such
paths have a measure 0. However, we will now show that if j starts by holding a portfolio
that deviates from θ∗, his portfolio holdings will exceed any predefined boundary in finite
time with strictly positive probability, thus violating the result of Lemma 2.

Indeed, consider the solution to (6) θ∗({s1; s2}) and θ∗({s3}). Suppose that at σ̃t̃ ,
θj(σ̃t̃; {s1; s2}) = θ∗({s1; s2}) + d, where21 d > 0. Suppose, thus, that at t̃ + 1, s1 is real-
ized. Then, from j’s budget constraint together with the condition that cj(σ̃t̃; s1) = 0, j’s
portfolio θj has to satisfy

θj

(
σ̃t̃; {s1; s2}

)+ 1 = θ∗({s1; s2}
)+ d + 1 = 4

3
βi

[
3
4
θj

(
σ̃t̃; s1; {s1; s2}

)+ θj

(
σ̃t̃; s1; {s3}

)]
�

Using the first equation in the system (6), we have

3
7
θj

(
σ̃t̃; s1; {s1; s2}

)+ 4
7
θj

(
σ̃t̃; s1; {s3}

)= d

7
3
β

+
[

3
7
θ∗({s1; s2}

)+ 4
7
θ∗({s3}

)]

and, hence, either

θj

(
σ̃t̃; s1; {s1; s2}

)
>

d

7
3
βi

+ θ∗({s1; s2}
)
> d + θ∗({s1; s2}

)
or

θj

(
σ̃t̃; s1; {s3}

)
>

d

7
3
βi

+ θ∗({s3}
)
> d + θ∗({s3}

)



since (as shown above) 7
3βi < 1.

Intuitively, since the assets bought by j exceed the quantities in the “stationary state,”
since he receives both their dividends and his initial endowment, and since, by assumption,
asset prices are lower than 1, the quantity he needs to buy in the subsequent period of at
least one of the assets must also exceed the stationary quantity θ∗, but this time by d

7
3 βi

> d.
Proceeding inductively, one sees that one can choose a path of κ subsequent realiza-

tions of the states s1 and s3, such that on this path, j’s asset holdings in one of the two
assets will exceed d

( 7
3 βi)

κ . Thus, for sufficiently large κ s, j’s asset holdings will exceed any

initially predetermined bound on assets. Since any sequence of states s1 and s3 of length κ
occurs with a strictly positive probability, this generates a contradiction to the hypothesis
that j a.s. vanishes in equilibrium. Hence, θj(σ̃t̃; {s1; s2})= θ∗({s1; s2}) should hold.

However, by the same argument (exchanging s1 with s2 and considering the continua-
tion (σ̃t̃; s2)), θj(σ̃t̃; {s1; s2}) should be given by the solution θ∗∗({s1; s2}) to

θ∗∗({s1; s2}
)+ 1 = 2

3
βi

[
3
4
θ∗∗({s1; s2}

)+ θ∗∗({s3}
)]



θ∗∗({s3}
)+ 1

2
= 1

3
βi

[
3
4
θ∗∗({s1; s2}

)+ θ∗∗({s3}
)]
�

21The argument for d < 0 is symmetric.
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But θ∗({s1; s2}) �= θ∗∗({s1; s2}) (except for a set of endowments of measure 0). Hence, start-
ing with holdings θ∗({s1; s2}) implies a nonzero difference d to θ∗∗({s1; s2}), and one can
find a finite sequence of states s2 and s3 generating the same contradiction as above.

As the example illustrates, the assumption of an i.i.d. economy plays two roles: first,
it ensures that on paths on which j vanishes, the limit asset price process depends only
on the current state of the economy (this is also true in the Markov setting used by BC
(2010)); second, it guarantees that as long as there is variation in the endowment process
within one of the elements of the trading partition, this variation is persistent and a.s.
occurs infinitely often on any given path,22 so that there is no unique stationary portfolio
that makes j’s consumption consistently converge to 0.

While the result of Proposition 14 does not imply that the probability with which an
agent vanishes is 0, this set is (a) of measure less than 1 and (b) nowhere dense.23

The idea that a given type of agents (for example, those with wrong beliefs, more severe
constraints, etc.) will survive or vanish except for a negligibly small set of histories can be
formalized in two different ways: (a) in measure theoretic terms, these agents survive or
vanish a.s.; (b) in topological terms, the set on which these agents vanish or survive is
meager (a countable union of nowhere dense sets). That is, they are of Baire category 1.

In some relevant cases, these concepts coincide. Most obviously, if we represent the
history as a binary expansion, those histories that eventually end in a repetitive pattern
correspond to the rationals, which are both meager and of zero measure. These histo-
ries can be exploited by trading strategies, even for agents with wrong beliefs about the
probability distribution of the generating process.

It turns out, however, that intuitions based on the rationals are misleading. In general,
the concepts of measure and Baire category are orthogonal; see Marinacci (1994). We
have therefore addressed both criteria.

Finally note that one can interpret the two agents in the proposition as types. In partic-
ular, we can replace each agent i ∈ {1;2} by a set of n that is identical w.r.t. preferences,
beliefs, discount factors, constraints, and initial endowments agents, and consider an equi-
librium in which all agents of the same type behave identically. For such an equilibrium,
no agent will vanish a.s. conditional on any node.

We conclude the analysis of sequential trading with the following result.

PROPOSITION 15: Consider an i.i.d. economy populated by a finite set of agents I and
such that the uniform upper and lower bounds on equilibrium prices determined in Lemma 1
satisfy q < q̄ < 1. Suppose that for agent i ∈ I,

max
w∈W i

min
s∈w

ei(s) < (1 − q)(1 − q̄)min
w∈W i

max
s∈w

ei(s)� (7)

Furthermore, suppose that there is at least one agent in the economy with financial constraints
leading to a partition at least as fine as W i. Then there is no node σ̄t̄ such that agent i vanishes
a.s. conditional on σ̄t̄ .

22An examination of the proof suggests that the results extend to an economy in which endowments depend
only on the current state, but beliefs are Markovian, provided that all one-step-ahead transitional probabilities
are strictly positive. For general non-i.i.d. economies, the result need not, however, hold, as demonstrated by
BC (2010).

23Rudin (1983) provides a method for the construction of such sets on the interval [0;1], which is topologi-
cally equivalent to the set Ω.
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Similarly to the previous proposition, the result uses a condition on the upper and lower
bounds of prices in the economy as well as the initial endowment. As shown in Magill and
Quinzii (1994) and Krebs (2004), these bounds depend on the parameters of the economy,
such as the total initial endowment, the agent’s preferences and discount factors, and the
minimal probabilities π. This suggests that for a given initial endowment for i, the rest of
the parameters of the economy can be adjusted in such a way that the condition on q̄ and
q is satisfied.

In particular, the condition relating the initial endowment of agent i and the bounds
on prices, q and q̄, precludes the case in which i has access to a complete set of securities
and, thus, his partition is W i = {{s}s∈S}. Indeed, (7) would then require

max
s∈S

ei(s) < (1 − q)(1 − q̄)min
s∈S

ei(s)


which is excluded by (1 − q)(1 − q̄) < 1. In contrast, if i only has access to a bond, W i =
{{S}}, the requirement in (7) becomes

min
s∈S

ei(s) < (1 − q)(1 − q̄)max
s∈S

ei(s)�

In particular, the proof of the proposition uses the fact that (7) implies that for w1 ∈ W i

defined as

w1 ∈ arg max
w∈W i

min
s∈w

ei(s)


maxs∈w1 ei(s) strictly exceeds
min

s∈w1 ei(s)

1−q̄
and, hence, w1 has at least two states leading to

two distinct endowments for agent i.
Similarly to Theorem 2 in BC (2010), the two propositions that establish survival of

agents with financial constraints do not use the fact that the (potentially vanishing) agent’s
consumption is optimal. Rather, they exploit the idea that financially constrained agents
will be limited in their ability to sell their initial endowment. In particular, our results
show that when constraints are nontrivial, an agent whose consumption goes to 0 a.s.
conditional on a node σ̄t̄ will have to hold arbitrarily large long or short positions in at
least some of the assets in finite time. This, combined with the limits on equilibrium prices
contradicts, as shown in Lemma 2, the uniform bounds on debt.

Differently from the results stated in the main part of the paper, in the case of sequen-
tial trade, we do not obtain clear-cut criteria for survival that can be reduced to direct
comparisons of the individual financial constraints, beliefs, and discount factors. Instead,
similarly to the results in BC (2010) for incomplete markets, we obtain a criterion for
survival that combines in nontrivial fashion all of the above and suggests that the equilib-
rium dynamics in markets with differential financial constraints and sequential trade will
be rather complex. Nevertheless, the two main insights gained from the case of period-0
trade remain true: (i) financial constraints per se do not harm the agent’s chances to sur-
vive; (ii) differential financial constraints allow for heterogeneity in beliefs and discount
factors in the long run.

APPENDIX B: PROOFS

Proof of Proposition 1

An equilibrium of the economy exists under the following conditions (Bewley (1972)):
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(i) The consumption sets are convex, Mackey-closed, and contained in the set of es-
sentially bounded measurable functions.

(ii) The preferences of the agents are complete and transitive.
(iii) The better sets are convex and Mackey-closed.
(iv) The worse sets are closed in the norm topology.
(v) There exists a set of paths with strictly positive measure such that the preferences

of all agents satisfy strict monotonicity on this set. That is, adding a constant to the payoff
in each state and each period makes the agent strictly better off.

(vi) For all agents, the initial endowments are in the interior of the consumptions sets.
We can assume that the consumption set of an agent i ∈ {1 � � � n} is given by the sets

of all essentially bounded measurable functions on Ωi and, hence, satisfies condition (i).
We can then define the function V i

0 (c
i) on the set of all essentially bounded measurable

functions on Ω, while the measurability restriction with respect to Ωi is imposed by the
consumption set of i. Condition (ii) is then trivially satisfied. The convexity requirement in
condition (iii) follows from the concavity of the utility function ui. Further, V i

0 is uniformly
continuous and, hence, continuous with respect to the Mackey topology. This means that
both the better and the worse sets are closed with respect to the Mackey topology and,
hence, also to the norm topology. The second requirement in conditions (iii) and (iv) are
therefore satisfied.

For condition (v) and an agent i, take the set of paths to be Ω. Note that V i
0 is mono-

tonic. Take any consumption stream c. Adding a positive amount to c strictly improves
the act. Hence, the preferences of all agents are strictly monotonic on Ω.

As for condition (vi), a careful examination of Bewley’s (1972) proof shows that in the
absence of production, this condition can be relaxed24 as in Assumption 2. We conclude
that an equilibrium of the economy exists.

Note that the measurability condition on i’s consumption ensures that u′
i(c

i(σt)) =
u′
i(c

i(σ ′
t )) for all σt , σ ′

t ∈Ωi
t . If p(·) is an equilibrium price system, then condition (2),

u′
i

(
ci
(
ωi

t

))
βiπ

i
(
ωi

t+1 |ωi
t

)
u′
i

(
ci
(
ωi

t+1

)) = p
(
ωi

t

)
p
(
ωi

t+1

) =

∑
σt∈ωi

t

p(σt)

∑
σt+1∈ωi

t+1

p(σt+1)



is the first-order condition of agent i’s maximization problem at state σt . Hence, it will
be satisfied in any equilibrium in which agent i chooses an interior allocation on all finite
paths with positive probabilities. We now show that Assumptions 1–3 imply that the opti-
mal consumption streams of all agents will be strictly positive on all finite paths that have
positive probability. To show this, we demonstrate that the marginal rate of substitution
between consumption at σ0 and ωt will always be strictly positive and finite, provided that
the true probability of ωt is positive.

Since the initial endowment is uniformly bounded above, so are all the consumption
streams in equilibrium. Hence, by Assumption 1, u′

i is always strictly positive. Further-
more, setting c(σ0) = 0 is not optimal, since, by Assumption 2, endowment is uniformly

24Indeed, Assumption 2 is sufficient for the existence of an equilibrium in a finite economy with no pro-
duction as in Debreu (1962). The extension of the price functional of each such finite economy to the whole
state space as in Bewley (1972, p. 521) only requires Assumption 2. With no production, the rest of the Bew-
ley (1972) proof can be replicated under Assumption 2. In particular, the last argument on page 523 follows
directly from equation (1) on page 522 and the strict positivity of individual endowments.
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bounded away from 0, and by Assumption 1, u′(0) = ∞. Take an arbitrary ωi
t such that

π(ωi
t) > 0 and, hence, by Assumption 3, πi(ωi

t) > 0. If c(ωt)= 0 and if p(σ0)
p(ωt) > 0,
an iteration on (2) gives

MRSi
(
ci(σ0); ci(ωt)

)= u′
i

(
ci(σ0)

)
βt

iπ
i
(
ωi

t

)
u′
i

(
ci
(
ωi

t

)) = 0 <
p(σ0)

p(ωt)



which cannot hold in the optimum. Hence, ci(ωt)= 0 can only obtain if πi(ωt)= 0 or, by
Assumption 2, if π(ωt) = 0. We thus obtain that i will have strictly positive consumption
on all finite paths that have positive probability with respect to the truth. This, in turn,
implies that the first-order condition will hold on all such paths.

Derivations for Example 1

CLAIM 1: Neither of the two agents is insured against idiosyncratic risk in equilibrium.

PROOF: Let uA(·) and uB(·) be A’s and B’s concave von Neumann–Morgenstern util-
ity. Standard expected utility maximization then gives the f.o.c.s for Ann,

u′
A

(
cA(s)

)
π(s)

u′
A

(
cA
(
s′))π(s′) = ps

ps′
for s
 s′ ∈ {1 � � �4}


and for Bob (since cB(s1)= cB(s3), cB(s2)= cB(s4)),

u′
B

(
cB(s1)

)(
π(s1)+π(s3)

)
u′
B

(
cB(s2)

)(
π(s2)+π(s4)

) = p1 +p3

p2 +p4
�

Combining these, we obtain

u′
B

(
cB(s1)

)(
π(s1)+π(s3)

)
u′
B

(
cB(s2)

)(
π(s2)+π(s4)

) = p1

p2

1 + p3

p1

1 + p4

p2

= u′
A

(
cA(s1)

)
π(s1)

u′
A

(
cA(s2)

)
π(s2)

1 + u′
A

(
cA(s3)

)
π(s3)

u′
A

(
cA(s1)

)
π(s1)

1 + u′
A

(
cA(s4)

)
π(s4)

u′
A

(
cA(s2)

)
π(s2)




u′
B

(
cB(s1)

)(
π(s1)+π(s3)

)
u′
B

(
cB(s2)

)(
π(s2)+π(s4)

) = u′
A

(
cA(s1)

)
π(s1)+ u′

A

(
cA(s3)

)
π(s3)

u′
A

(
cA(s2)

)
π(s2)+ u′

A

(
cA(s4)

)
π(s4)

�

Indeed, in a manner of contradiction, assume that cB(s1) = cB(s2) and note that this im-
plies

u′
B

(
cB(s1)

)(
π(s1)+π(s3)

)
u′
B

(
cB(s2)

)(
π(s2)+π(s4)

) =
(
π(s1)+π(s3)

)(
π(s2)+π(s4)

) = u′
A

(
cA(s1)

)
π(s1)+ u′

A

(
cA(s3)

)
π(s3)

u′
A

(
cA(s2)

)
π(s2)+ u′

A

(
cA(s4)

)
π(s4)

= u′
A

(
3 − cB(s1)

)
π(s1)+ u′

A

(
2 − cB(s1)

)
π(s3)

u′
A

(
3 − cB(s1)

)
π(s2)+ u′

A

(
4 − cB(s1)

)
π(s4)

> 1
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since

u′
A

(
3 − cB(s1)

)
π(s1)+ u′

A

(
2 − cB(s1)

)
π(s3)

u′
A

(
3 − cB(s1)

)
π(s2)+ u′

A

(
4 − cB(s1)

)
π(s4)

>

(
π(s1)+π(s3)

)(
π(s2)+π(s4)

)
is equivalent to

u′
A

(
3 − cB(s1)

)
π(s1)

(
π(s2)+π(s4)

)+ u′
A

(
2 − cB(s1)

)
π(s3)

(
π(s2)+π(s4)

)
> u′

A

(
3 − cB(s1)

)
π(s2)

(
π(s1)+π(s3)

)+ u′
A

(
4 − cB(s1)

)
π(s4)

(
π(s1)+π(s3)

)

[

u′
A

(
3 − cB(s1)

)− u′
A

(
4 − cB(s1)

)]
π(s1)π(s4)

+ [u′
A

(
2 − cB(s1)

)− u′
A

(
4 − cB(s1)

)]
π(s3)π(s4)

+ [u′
A

(
2 − cB(s1)

)− u′
A

(
3 − cB(s1)

)]
π(s2)π(s3) > 0


which is always satisfied, since u′
A is a decreasing function. We thus obtain a contradiction

to the assumption that B is fully insured against idiosyncratic risk in equilibrium. Q.E.D.

CLAIM 2: . If condition (3) holds, A’s expected consumption is higher than her expected
initial endowment.

PROOF: From the fact that B’s utility function is concave and, thus, B partially insures
against risk, it follows that the equilibrium consumption of A satisfies cA(s1) < 2, cA(s2) >
1, cA(s3) < 1, and cA(s4) > 2 with

cA(s4) = 4 − cB(s2) > cA(s1)= 3 − cB(s1)

> cA(s2)= 3 − cB(s2) > cA(s3)= 2 − cB(s1)�

From A’s f.o.c. we then conclude that the equilibrium prices satisfy

p∗
4

π(s4)
<

p∗
1

π(s1)
<

p∗
2

π(s2)
<

p∗
3

π(s3)
�

Suppose to the contrary of Claim 2 that

Eπ

[
cA(s)

]
<Eπ

(
eA(s)

)= 2π(s1)+π(s2)+π(s3)+ 2π(s4)

and, hence, [
3 − cB(s1)

]
π(s1)+ [2 − cB(s1)

]
π(s3)+ [3 − cB(s2)

]
π(s2)

+ [4 − cB(s2)
]
π(s4)≤ 2π(s1)+π(s2)+π(s3)+ 2π(s4)

or

cB(s2)≥ 2 + π(s1)+π(s3)

π(s2)+π(s4)

[
1 − cB(s1)

]
�

It follows that

EπuA

(
cA
)

= π(s1)uA

(
3 − cB(s1)

)+π(s3)uA

(
2 − cB(s1)

)+π(s2)uA

(
3 − cB(s2)

)
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+π(s4)uA

(
4 − cB(s2)

)≤ π(s1)uA

(
2 + (1 − cB(s1)

))+π(s3)uA

(
1 + (1 − cB(s1)

))
+π(s2)uA

(
1 − π(s1)+π(s3)

π(s2)+π(s4)

(
1 − cB(s1)

))

+π(s4)uA

(
2 − π(s1)+π(s3)

π(s2)+π(s4)

(
1 − cB(s1)

))

<
(
π(s1)+π(s4)

)
uA

(
2 + (1 − cB(s1)

) π(s1)π(s2)−π(s3)π(s4)(
π(s2)+π(s4)

)(
π(s1)+π(s4)

))

+ (π(s2)+π(s3)
)
uA

(
1 + π(s3)π(s4)−π(s1)π(s2)(

π(s2)+π(s4)
)(
π(s2)+π(s3)

)(1 − cB(s1)
))

�

Since cB(s1) > 1 for π(s1)π(s2)− π(s3)π(s4) ≤ 0, this is a mean-preserving spread of the
initial endowment and we have EπuA(c

A) < EπuA(e
A), in contradiction to utility maxi-

mization. Q.E.D.

Derivations for Example 2

CLAIM 3: It is impossible to ensure all agents in the economy against idiosyncratic risk.

PROOF: Suppose to the contrary that ci(s1)= ci(s2) for all agents i ∈ {A;B;C;D}. For
A to be fully insured across s1 and s2, we need

u′
A

(
cA(s1)

)
u′
A

(
cA(s2)

) = 1 = p1

p2
�

Furthermore, since C and D are fully insured across s1 and s2, the measurability require-
ment on their consumption implies that they are fully insured across all states,

ci(s1)= ci(s2)= ci(s3)= ci(s4)
 i ∈ {C;B}

and, hence, u′

B(c
B(s3))

u′
B(c

B(s4))
= p1+p3

p2+p4
or p3 = p4. But this would imply that u′

i(c
i(s3))

u′
i(c

i(s4))
= p3

p4
= 1 or that

both A and D have to be fully insured across states s3 and s4, which is impossible. Q.E.D.

CLAIM 4: In general, A and D will not be fully insured against idiosyncratic risk in equi-
librium.

PROOF: To give an example, suppose that ui(c) = ln c for i ∈ {A;B;D}, whereas
uC(c) = c

1
2 . Suppose that A and D were fully insured against idiosyncratic risk. Then

by the same argument as above, p1 = p2 = p. Since B and C are risk averse, they will
try to smooth consumption across the states they perceive. Hence, in equilibrium, their
consumption will satisfy

2 > cB(s2)= cB(s4) > cB(s1)= cB(s3) > 1


2 > cC(s1)= cC(s4) > cC(s2)= cC(s3) > 1�

But then

cA(s1)= 6 − cB(s1)− cC(s1)− cD(s1)

2
= 6 − cB(s2)− cC(s2)− cD(s1)

2
= cA(s2)
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and we obtain

cB(s1)+ cC(s1)= cB(s2)+ cC(s2)� (8)

The demand functions of B and C satisfy

cB(s1) = cB(s3)= 3p+p3 + 2p4

2(p3 +p)



cB(s2) = cB(s4)= 3p+p3 + 2p4

2(p4 +p)



cC(s2) = cC(s3)= 3p+p3 + 2p4

2p+p3 +p4

(p+p4)

(p+p3)



cC(s1) = cC(s4)= 3p+p3 + 2p4

2p+p3 +p4

(p+p3)

(p+p4)



and substituting into (8), we obtain

3p+p3 + 2p4

2(p3 +p)
+ 3p+p3 + 2p4

2p+p3 +p4

(p+p3)

(p+p4)
= 3p+p3 + 2p4

2p+p3 +p4

(p+p4)

(p+p3)
+ 3p+p3 + 2p4

2(p4 +p)
�

Without loss of generality, we can normalize 3p+p3 + 2p4 = 1 and simplify to

2p(p3 −p4)= (p4 −p3)(p4 +p3)�

Since the only solution of this equation is p3 = p4, it follows that

cA(s3) = cA
(
s4
)



cD(s3) = cD
(
s4
)



cB(s3) = cB(s4)

cC(s3) = cC(s4)


in contradiction to the existence of aggregate risk. Q.E.D.

To simplify the proofs of the following results, we state and prove the following lemma.

LEMMA 3: Consider two agents i and j such that j is weakly less constrained than i, that
is, Ai ⊆Aj and Ωi is weakly coarser than Ωj . In equilibrium, π-a.s. for any path ωi ∈Ωi,

lim
T→∞

1
T + 1

ln
u′
i

(
ci
(
ωi

T+1

))∑
ω̃
j
T+1⊆ωi

T+1

u′
j

(
cj
(
ω̃

j
T+1

))
πj
(
ω̃

j
T+1 | ωi

T+1

)

= ln
βj

βi

+
∑
wi∈W i

π
(
wi
)

ln
π
(
wi
)

πi
(
wi
) −

∑
wi∈W i

π
(
wi
)

ln
π
(
wi
)

πj
(
wi
) (9)
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and

lim
T→∞

1
T + 1

ln

∑
ω̃
j
T+1⊆ωi

T+1

u′
j

(
cj
(
ω̃

j
T+1

))
πj
(
ω̃

j
T+1 |ωi

T+1

)
u′
i

(
ci
(
ωi

T+1

))
= ln

βi

βj

+
∑
wi∈W i

π
(
wi
)

ln
π
(
wi
)

πj
(
wi
) −

∑
wi∈W i

π
(
wi
)

ln
π
(
wi
)

πi
(
wi
) � (10)

If, furthermore, πi(wi)= πj(wi) for all wi ∈ W i and βi = βj , then for every ωi
T+1 ∈Ωi,

u′
i

(
ci
(
ωi

T+1

))∑
ω̃
j
T+1⊆ωi

T+1

u′
j

(
cj
(
ω̃

j
T+1

))
πj
(
ω̃

j
T+1 |ωi

T+1

) = u′
i

(
ci(σ0)

)
u′
j

(
cj(σ0)

) � (11)

PROOF: We will use the analogue of the Blume and Easley (2006) decomposition. Ap-
plying condition (2) to i and j,

u′
i

(
ci(σ0)

)
βiu

′
i

(
ci
(
ωi

T+1

))
πi
(
ωi

T+1

) = u′
j

(
cj(σ0)

)
βj

∑
ω̃
j
T+1⊆ωi

T+1

u′
j

(
cj
(
ω̃

j
T+1

))
πj
(
ω̃

j
T+1

) �

Hence,

u′
i

(
ci(σ0)

)
βiu

′
i

(
ci
(
ωi

T+1

))
πi
(
ωi

T+1

) = u′
j

(
cj(σ0)

)
βjπ

j
(
ωi

T+1

) ∑
ω̃
j
T+1⊆ωi

T+1

u′
j

(
cj
(
ω̃

j
T+1

))
πj
(
ω̃

j
T+1 |ωi

T+1

) 
 (12)

which reduces to

u′
i

(
ci
(
ωi

T+1

))∑
ω̃
j
T+1⊆ωi

T+1

u′
j

(
cj
(
ω̃

j
T+1

))
πj
(
ω̃

j
T+1 |ωi

T+1

) = βj

βi

πj
(
ωi

T+1

)
πi
(
ωi

T+1

) u′
i

(
ci(σ0)

)
u′
j

(
cj(σ0)

)

= u′
i

(
ci(σ0)

)
u′
j

(
cj(σ0)

) T+1∏
t=1

βj

βi

πj
(
wi

t

)
πi
(
wi

t

) �
If πi(wi)= πj(wi) for all wi ∈ W i and βi = βj , (11) immediately obtains. Otherwise,

lim
T→∞

1
T + 1

ln
u′
i

(
ci
(
ωi

T+1

))∑
ω̃
j
T+1⊆ωi

T+1

u′
j

(
cj
(
ω̃

j
T+1

))
πj
(
ω̃

j
T+1 |ωi

T+1

)

= lim
T→∞

ln
βj

βi

+ lim
T→∞

1
T + 1

T+1∑
t=1

ln
πj
(
wi

t

)
πi
(
wi

t

) + lim
T→∞

1
T + 1

ln
u′
i

(
ci(σ0)

)
u′
j

(
cj(σ0)

) �
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Since u′
i(c

i(σ0)) and u′
j(c

j(σ0)) are finite, the third term on the right-hand side (r.h.s.)
converges to 0. Furthermore,

lim
T→∞

1
T + 1

ln
u′
i

(
ci
(
ωi

T+1

))∑
ω̃
j
T+1⊆ωi

T+1

u′
j

(
cj
(
ω̃

j
T+1

))
πj
(
ω̃

j
T+1 |ωi

T+1

)

= lim
T→∞

ln
βj

βi

+ lim
T→∞

1
T + 1

T+1∑
t=1

(
lnπj

(
wi

t

)− lnπ
(
wi

t

))

+ lim
T→∞

1
T + 1

T+1∑
t=1

(
lnπ

(
wi

t

)− lnπi
(
wi

t

))
�

Since ln π(wi
t )

πi(wi
t )

and ln π(wi
t )

πj(wi
t )

are i.i.d and are equal in expectations to the relative entropy
of i’s and j’s beliefs with respect to the truth π, we obtain that (9) π-a.s. holds. The
derivations for (10) are analogous and, thus, are omitted. Q.E.D.

Proof of Proposition 2

Using Lemma 3 for the case Ωi = Ωj , we obtain that for two such agents, i and j, with
ln βi

βj
+ (
∑

wi∈W i π(wi) ln π(wi)

πj(wi)
−∑wi∈W i π(wi) ln π(wi)

πi(wi)
) > 0, π-a.s. on every ωi ∈Ωi,

lim
T→∞

1
T + 1

ln
u′
j

(
cj
(
ωi

T+1

))
u′
i

(
ci
(
ωi

T+1

)) = ln
βi

βj

+
(∑

wi∈W i

π
(
wi
)

ln
π
(
wi
)

πj
(
wi
) −

∑
wi∈W i

π
(
wi
)

ln
π
(
wi
)

πi
(
wi
))> 0�

Since u′
i(c

i(ωT+1)) > u′
i(m

′) for all ωi
T+1, the denominator in the ln on the left-hand side

(l.h.s.) is bounded. If the numerator u′
j(c

j(ωT+1)) were also bounded, the l.h.s. would
converge to 0 in contradiction to the equality above. Hence, π-a.s., u′

j(c
j(ωT+1)) → ∞

and, therefore, cj(ωT+1)→ 0 or j vanishes.

Proof of Proposition 3

Order the agents from 1 to n such that A1 ⊇ A2 ⊇ � � �An and, thus, Ω1 finer than Ω2

finer than. . .Ωn. By measurability of initial endowment, w.l.o.g., set Ω1 = Ω.

LEMMA 4: Agent 1, cannot be the only one to survive on a path σ ∈ Ω.

PROOF: Take a path σ and assume that limt→∞ ci(σt) = 0 for all i > 1. Measurability
of consumption implies for all i > 1 and ωi ∈ Ωi such that σ ∈ ωi, ci(σt) = ci(σ ′

t ) for
all σ ′

t ∈ ωi
t and, thus, limt→∞ ci(σ ′

t ) = 0. Since Ω2 is the finest partition among those of
agents i > 1, there is a t(ω2) such that σ ∈ ω2 with ci(σt) < ε < m

n−1 for all i > 1 and all
t ≥ t(ω2), implying c1(σ̃t) ≥ m − (n − 1)ε > 0 for all σ̃ ∈ ω2 and t ≥ t(ω2). By (12), and
since discount factors and beliefs are identical, we can use (11), replacing i by 2 and j by

1, where u′
2(c

2(σ0))

u′
1(c

1(σ0))
< ∞. We have

∑
σ̃T+1∈ω2

T+1
u′

1(c
1(σ̃T+1))π

1(σ̃T+1 | ω2
T+1) ≤ u′

1(m − (n −
1)ε) < ∞ for all T + 1 > t(ω2). However, limt→∞ c2(σt) = 0 and, thus, by Assumption 1,
limT+1→∞ u′

2(c
2(ω2

T+1))= ∞, in contradiction to (11).
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It follows that at least one agent, i > 1, has to survive on σ and, thus, on ωi such that
σ ∈ωi. Q.E.D.

LEMMA 5: For any ωn
t ∈ Ωn,

lim
t→∞

sup
∑
σ̃t∈ωn

t

u′
1

(
c1(σ̃t)

)
π1
(
σ̃t | ωn

t

)≤ max
i∈{1���n}

u′
i

(
m

n

)
u′

1

(
c1(σ0)

)
u′
i

(
ci(σ0)

) �
PROOF: Take a path σ ∈ Ω and note that for every σt , there is an i(σt) ∈ I such that

ci(σt) ≥ m
n

. Since discount factors and beliefs are identical, it follows that for any σt ∈
Ω and the corresponding i(σt) and ωi(σt ) ∈ Ωi(σt ) such that σ ∈ ωi(σt ), we can use (11),
replacing i by i(σt) and j by 1 to obtain

∑
σ̃t∈ωi(σt )

t

u′
1

(
c1(σ̃t)

)
π1
(
σ̃t |ωi(σt )

t

)≤ u′
i(σt )

(
m

n

)
u′

1

(
c1(σ0)

)
u′
i(σt )

(
ci(σt )(σ0)

) �
It follows that for any σt and ωi(σt )

t ∈ Ωi(σt ),

∑
σ̃t∈ωi(σt )

t

u′
1

(
c1(σ̃t)

)
π1
(
σ̃t |ωi(σt )

t

)≤ max
i∈{1���n}

u′
i

(
m

n

)
u′

1

(
c1(σ0)

)
u′
i

(
ci(σ0)

) = P�

Consider ωn
t ∈ Ωn and note that we can partition ωn

t into at most n − 1 subsets
xk(ω

n
t ) ⊆ Ωt such that on σt ∈ xk(ω

n
t ), agent k is the agent with the coarsest partition

and consumption ck(σt)≥ m
n

. It follows that for every ωk
t ⊆ xk(ω

n
t ),∑

σ̃t∈ωk
t

u′
1

(
c1(σ̃t)

)
π1
(
σ̃t |ωk

t

)≤ P and thus,

∑
ωk
t ⊆xk(ω

n
t )

π1
(
ωk

t | xk

(
ωn

t

)) ∑
σ̃t∈ωk

t

u′
1

(
c1(σ̃t)

)
π1
(
σ̃t |ωk

t

)≤ P�

Finally, since the number of the elements of the partition (xk(ω
n
t ))k∈{1���n} is finite, we have

n∑
k=1

π1
(
xk

(
ωn

t

) |ωn
t

) ∑
σ̃t∈xk(ωn

t )

u′
1

(
c1(σ̃t)

)
π1
(
σ̃t | xk

(
ωn

t

))= ∑
σ̃t∈ωn

t

u′
1

(
c1(σ̃t)

)
π1
(
σ̃t |ωn

t

)≤ P

for any ωn
t ∈ Ωn and, thus,

lim
t→∞

sup
∑
σ̃t∈ωn

t

u′
1

(
c1(σ̃t)

)
π1
(
σ̃t | ωn

t

)≤ P


proving the statement of the lemma. Q.E.D.

LEMMA 6: On any ωn ∈ Ωn, agent n survives. Furthermore, the consumption of agent n on
each path is uniformly bounded away from 0.
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PROOF: Consider agents 1 and n. We have that
∑

σ̃t∈ωn
t
u′

1(c
1(σ̃t ))π1(σ̃t |ωn

t )

u′
n(c

n(ωn
t ))

= u′
1(c

1(σ0))

u′
n(c

n(σ0))
and,

thus, by Lemma 5,

lim
t→∞

supu′
n

(
cn
(
ωn

t

))≤ P
u′
n

(
cn(σ0)

)
u′

1

(
c1(σ0)

) � (13)

Hence, n survives on any ωn
t . Furthermore, (13) implies

lim
t→∞

inf cn
(
ωn

t

)≥ u′−1
n

(
P
u′
n

(
cn(σ0)

)
u′

1

(
c1(σ0)

))> 0�
Q.E.D.

LEMMA 7: For any j ∈ {2 � � � n− 1} and any ωn
t ∈ Ωn

lim
t→∞

sup
∑

ω̃
j
t⊆ωn

t

u′
j

(
cj
(
ω̃

j
t

))
πj
(
ω̃

j
t | ωn

t

)≤ P
u′
j

(
cj(σ0)

)
u′

1

(
c1(σ0)

) � (14)

PROOF: The result follows from (11) in which i is replaced by n and j remains j, and
the fact that u′

n satisfies (13). Q.E.D.

LEMMA 8: Agent j ∈ {1 � � � n− 1} survives π-a.s. on Ω.

PROOF: Suppose in a manner of contradiction that there exists a set Ω̃j ⊆ Ωj , π(Ω̃j) >

0 and limt→∞ cj(ω
j
t )= 0 π-a.s. ωj ∈ Ω̃j . Then limt→∞ u′

j(c
j(ω̃

j
t ))= ∞ π-a.s. Ω̃j and, hence,

limt→∞
∑

ω̃
j
t∈Ω̃j π(ω̃

j
t )u

′
j(c

j(ω̃
j
t )) = ∞. Now let Ω̃n denote the smallest measurable event

on Ωn such that for every ωj ∈ Ω̃j , there is an ωn ∈ Ω̃n with ωj ⊆ ωn. Hence,

∞ = lim
t→∞

∑
ω̃
j
t∈Ω̃j

π
(
ω̃

j
t

)
u′
j

(
cj
(
ω̃

j
t

))≤ lim
t→∞

sup
∑

ωn
t ∈Ω̃n

π
(
ωn

t

) ∑
ω̃
j
t⊆ωn

t

ω̃
j
t∈Ω̃j

π
(
ω̃

j
t |ωn

t

)
u′
j

(
cj
(
ω̃

j
t

))

= lim
T→∞

sup
∑

ωn
t ∈Ω̃n

π
(
ωn

t

) ∑
ω̃
j
t⊆ωn

t

ω̃
j
t∈Ω̃j

πj
(
ω̃

j
t |ωn

t

)
u′
j

(
cj
(
ω̃

j
t

))≤ P
u′
j

(
cj(σ0)

)
u′

1

(
c1(σ0)

) < ∞


where the first inequality follows from the definitions of Ω̃j and Ω̃n, the second equality
follows from the fact that j’s beliefs are correct, and the two last inequalities from (14).
We, thus, obtain a contradiction and conclude that j ∈ {1 � � � n − 1} π-a.s. survives on Ωj

and, thus, by measurability on Ω. Q.E.D.

Proof of Proposition 4

At the equilibrium prices, i’s and j’s optimization problems are given by (1). Endow-
ments, discount factors, and utility functions coincide. Further, beliefs coincide on the
common partition representing contingencies of which both can trade. Hence, the only
difference between the two problems concerns the measurability requirements: cj has to
be measurable relative to (Ωj;F j), whereas ci has to be measurable relative to the finer
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(Ωi;F i). Since Ωi is coarser than Ωj , i and j are maximizing the same utility function at
the same equilibrium prices and at the same initial endowment, but with j having a strictly
larger choice set w.r.t. inclusion than i. Hence, V j

0 (c
j)≥ V i

0 (c
i) obtains in equilibrium.

Proof of Proposition 5

By Lemma 3, (9) obtains π-a.s. By assumption, the l.h.s. of (9) is strictly positive.
Since u′

j(c
j(ω̃

j
T+1))≥ u′

j(m
′) for all ω̃j

T+1 ∈Ωj and, thus,
∑

ω̃
j
T+1⊆ωi

T+1
u′
j(c

j(ω̃
j
T+1))π

j(ω̃
j
T+1 |

ωi
T+1)≥ u′

j(m
′) for all ωi

T+1 ∈ Ωi, this implies u′
i(c

i(ωi
T+1))→ ∞ or ci(ωi

T+1)→ 0, π-a.s.
To prove Proposition 6, we first prove two special cases of it: Proposition 16, in which

all agents have identical discount factors and identical, but potentially wrong beliefs, and
Proposition 17, in which all agents have distinct beliefs and discount factors. Lemma 16
provides the bridge between these two cases, essentially establishing that when a set of
agents has equal discount factors and beliefs, their total consumption in the limit coincides
with the limit consumption of a single agent with those same discount factors and beliefs,
and, furthermore, all of these agents a.s. survive.

PROPOSITION 16: Consider a population of agents with available sets of assets ordered
with respect to inclusion A1 ⊃ A2 · · · ⊃ An and, thus, nested partitions, Ω1 strictly finer than
Ω2. . . strictly finer than Ωn. If the constraints of any agent i ≥ 2 are both relevant in the limit
and relevant w.r.t. those of i− 1, and if all agents have identical discount factors and identical
(but not necessarily correct) beliefs, all agents a.s. survive.

PROOF: The proof of this proposition uses some of the lemmata derived in the proof
of Proposition 3. In particular, note that the proofs of Lemmata 4, 5, and 6 only depend
on the assumption that all agents have identical discount factors and identical, but not
necessarily correct, beliefs. Hence, the results of these lemmata apply here. Q.E.D.

LEMMA 9: Agent 1 survives a.s.

PROOF: Since partitions are nested, for every i, ei is measurable w.r.t. Ω1, and so is the
equilibrium consumption, ci. Thus, w.l.o.g., we can set Ω1 = Ω and conclude that agent
1’s constraints are irrelevant in the limit. Since those of agent 2 are both relevant and
relevant w.r.t. those of 1, there are distinct s and s′ ∈w2 for some w2 ∈W 2 and ε > 0 such
that for any σ , σ ′ ∈ ω2, limt→∞ sup[e(σt; s)− e(σ ′

t ; s′)] > ε.
Since for every j ≥ 2, j’s consumption is measurable with respect to Ω2, for every t,

every σt ∈ ω2
t , and s, s′ ∈ w2,

∑
j≥2 c

j(ω2
t ;w2) ≤ e(σt; s′) and, hence, for every σ ∈ ω2 on

which state s occurs i.o. (which in turn implies that w2 occurs i.o. on ω2),

lim
T→∞

sup c1(σT )

= lim
T→∞

sup
[
e(σT )−

∑
j≥2

cj(σT )

]

≥ lim
T→∞

sup
[
e(σT )− min

s̃∈w2(σT )
e(σT−1; s̃)

]
≥ lim

T→∞
sup
[
e(σT−1; s)− e

(
σT−1; s′)]> ε�

Since s occurs i.o. a.s. w.r.t. πi for any i, it follows that π-a.s. and for any i, πi-a.s., agent
1 survives on σ . Hence, if n = 2, by Lemma 6, agent 2 survives on all paths in Ωn =Ω2.
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Assume, thus, that n > 2. The next lemma considers a given path σ and distinguishes
two cases: on σ , either agent 1’s consumption exactly coincides with the part of the initial
endowment that is nonmeasurable w.r.t. Ω2 or it exceeds it. We show that in both cases,
agent 2 π-a.s. survives on ω2 such that σ ∈ ω2. Q.E.D.

LEMMA 10:Consider a path σ ∈ Ω and let σ ∈ ω2.
(i) If limt→∞ c1(σt)− e(σt)+ minσ̃t∈ω2

t
e(σ̃t)= 0, then π-a.s. 2 survives on ω2.

(ii) If limt→∞ sup c1(σt)− e(σt)+ minσ̃t∈ω2
t
e(σ̃t) > 0, then 2 survives on ω2.

PROOF: Part (i). Under condition (i) of the lemma, since
∑

j≥3 c
j(σt) is measurable

w.r.t. Ω3, for every t, c2(σt)+ c1(σt)− e(σt)+ minσ̃t∈ω3
t
e(σ̃t)≥ 0. Hence, π-a.s.,

lim
t→∞

inf c2(σt)≥ lim
t→∞

inf−c1(σt)+ e(σt)− min
σ̃t∈ω3

t

e(σ̃t)

= lim
t→∞

sup
[

min
σ̃t∈ω2

t

e(σ̃t)− min
σ̃t∈ω3

t

e(σ̃t)
]
> ε


where the last inequality follows from agent 3’s financial constraints being relevant in the
limit w.r.t. those of 2 and the fact that each w2 (w3) occurs π-a.s. i.o. on any ω2 (ω3).
Hence, agent 2 survives on ω2 π-a.s.

Part (ii). Since
∑

j≥2 c
j(σt) is measurable w.r.t. Ω2, c1(σ ′

t ) − e(σ ′
t ) + minσ̃t∈ω2

t
e(σ̃t) ≥

0 is also measurable w.r.t. Ω2. Thus, under condition (ii) of the lemma, there is an
ε̂1(ω2) with limt→∞ sup c1(σ ′

t ) − e(σ ′
t ) + minσ̃t∈ω2

t
e(σ̃t) = 2ε̂1(ω2) > 0. By measurabil-

ity, i.o. on ω2, minσ ′
t∈ω2 c1(σ ′

t ) − e(σ ′
t ) + minσ̃t∈ω2

t
e(σ̃t) ≥ ε̂1(ω2) and, hence, i.o. on ω2,∑

σt∈ω2
t
u′

1(c1(σt))π
1(σt | ω2

t ) ≤ u′
1(ε̂

1(ω2)) < ∞. Using (11) with i = 2 and j = 1, we con-
clude that agent 2 survives on ω2.

The two parts of Lemma 10 taken together imply that agent 2 π-a.s. survives.
To complete the proof of the proposition we proceed by induction. Take any h ∈

{1 � � � n − 1} such that all agents 1 � � � h a.s. survive. Note that by measurability of agent
h + 1’s consumption, the total consumption of agents 1 � � � h has to satisfy, for any
ωh+1 ∈ Ωh+1 and any σ ∈ωh+1, limt→∞

∑
i≤h c

i(σt)− e(σt)+ minσ̃t∈ωh+1
t

e(σ̃t) ≥ 0. Q.E.D.

LEMMA 11:Consider a path σ ∈ Ω and let σ ∈ ωh+1.
(i) If limt→∞

∑
i≤h c

i(σt) − e(σt) + minσ̃t∈ωh+1
t

e(σ̃t) = 0, then π-a.s. h + 1 survives on
ωh+1.

(ii) If limt→∞ sup
∑

i≤h c
i(σt)− e(σt)+ minσ̃t∈ωh+1

t
e(σ̃t) > 0, then h+ 1 survives on ωh+1.

PROOF: The proof of part (i) is identical to that of Lemma 10 up to a change in
indices and, therefore, is omitted. To prove part (ii), note that by an argument using
measurability of consumption and condition (ii) of the lemma analogous to that in the
proof of part (ii) of Lemma 10, it can be shown that there is an ε̂h(ωh+1) > 0 such that
minσ ′

t∈ω2
∑h

i=1 c
i(σ ′

t )−e(σ ′
t )+minσ̃t∈ωh+1

t
e(σ̃t)≥ ε̂h(ωh+1) i.o. on ωh+1. Hence, i.o. on ωh+1,

at every σ ′
t ∈ωh+1

t , at least one agent i ∈ {1 � � � h} has to consume at least ε̂h(ωh+1)
h

.
Clearly, if i consumes at least ε̂h(ωh+1) on σ ′

t , measurability implies ci(σ ′
t ) >

ε′
h

, where
σ ′

t ∈ ω′i
t ⊆ ωh+1

t . Using (11) with j̃ taking the place of j for any j̃ ∈ {1 � � � i} and, in particu-
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lar, for j = j̃ = 1, π1-a.s., there is a uniform infimum of u′
1(c

1(σ ′
t )) on σ ′

t ∈ω′i
t ,

lim
t→∞

infu′
1

(
c1
(
σ ′

t

))
< max

i∈{1���h}

u′
1

(
c1(σ0)

)
u′
i

(
ε̂h
(
ωh+1

)
h

)
u′
i

(
ci(σ0)

) 


and, moreover,

lim
t→∞

inf max
σ ′
t∈ωh+1

t

u′
1

(
c1
(
σ ′

t

))
< max

i∈{1���h}

u′
1

(
c1(σ0)

)
u′
i

(
ε̂h
(
ωh+1

)
h

)
u′
i

(
ci(σ0)

) �

It follows that

lim
t→∞

inf
∑

σ ′
t∈ωh+1

t

u′
1

(
c1
(
σ ′

t

))
π1
(
σ ′

t |ωh+1
t

)
< max

i∈{1���h}

u′
1

(
c1(σ0)

)
u′
i

(
ε̂h
(
ωh+1

)
h

)
u′
i

(
ci(σ0)

) < ∞�

Using (11) with i = h + 1 and j = 1, we have limt→∞ infu′
h+1(c

t+1(ωh+1
t+1 )) < ∞ or

limt→∞ sup ct+1(ωh+1
t+1 ) > 0, which implies that h+ 1 survives on ωh+1.

We thus conclude that when beliefs and discount factors are identical, all agents a.s.
survive. Q.E.D.

PROPOSITION 17: Consider a population of agents with available sets of assets ordered
with respect to inclusion A1 ⊃ A2 · · · ⊃ An, and, thus, nested partitions, Ω1 strictly finer than
Ω2. . . strictly finer than Ωn and ordered survival indices such that

lnβi −
∑
wj

π
(
wj
)

ln
π
(
wj
)

πi
(
wj
) < lnβj −

∑
wj

π
(
wj
)

ln
π
(
wj
)

πj
(
wj
)

holds for all i < j. If the constraints of any agent i ≥ 2 are both relevant in the limit and
relevant w.r.t. those of i− 1, agents 1 and 2 a.s. survive. Furthermore, if for every j ∈ {2 � � � n−
1}, such that the survival indices of j and j+1 are distinct, all wj+1 ∈ W j+1, and all wj ⊆wj+1,
πj(wj |wj+1)= π(wj | wj+1), all agents a.s. survive.

We prove the proposition in a sequence of Lemmata. As in the proof of Proposition 16,
w.l.o.g., set Ω=Ω1.

LEMMA 12: Agent 1 survives π-a.s. and π1-a.s.

PROOF: The proof that agent 1 survives π-a.s. is identical to that of Lemma 9. Note
that the proof requires that the state s occurs i.o. on almost every path, which is also true
for πi. Hence, agent 1 survives π1-a.s. Q.E.D.

LEMMA 13: Agent 2 survives π-a.s.



MARKET SELECTION 1739

PROOF: Suppose that limt→∞ c2(ω2
t ) = 0. Since agent 3’s constraints are relevant in

the limit w.r.t. those of 2, π-a.s., for ω3 ⊇ ω2, i.o., minσt∈ω2
t
e(σt) − minσt∈ω3

t
e(σt) > ε.

By measurability, cj(σt)≤ min
σt∈ωj

t
e(σt) for all j ≥ 2, σt ∈ ω

j
t , ω

j
t ⊇ ω2. Hence, i.o. on ω2,

c1(σt)≥ ε for all σt ∈ ω2
t . However, since agent 1’s survival index is strictly lower than that

of 2, π-a.s., this contradicts (10) (with i = 2, j = 1), since the infimum of the l.h.s. would
be nonpositive, whereas the r.h.s. is strictly positive. Hence, agent 2 π-a.s. survives. Q.E.D.

The following lemma uses the condition that for agents 2 � � � n − 1, conditional beliefs
on the next coarser partition are correct.

LEMMA 14: Suppose that for every j ∈ {2 � � � n − 1}, all wj+1 ∈ W j+1, and all wj ⊆ wj+1,
πj(wj | wj+1) = π(wj | wj+1). For any j ∈ {1 � � � n − 1}, limt→∞ |cj(σt) − c̄j(σt)| = 0 π-a.s.
on Ω, where for σt ∈ ω

j
t ⊆ω

j+1
t , c̄j(σt)= min

σ̃t∈ωj
t
e(σ̃t)− min

σ̃t∈ωj+1
t

e(σ̃t). Hence, j survives
a.s. if j + 1’s financial constraints are relevant in the limit w.r.t. those of j and vanishes a.s. if
they are irrelevant in the limit w.r.t. those of j.

PROOF: Consider first agent 1. Using condition (10) with i = 2 and j = 1, and noting
that the r.h.s. is strictly positive, we obtain that π-a.s.,

lim
T→∞

∑
σ̃T+1∈ω2

T+1

u′
1

(
c1(σ̃T+1)

)
π1
(
σ̃T+1 |ω2

T+1

)= ∞�

By measurability, for every ω2
t ∈ Ω2, c1

t (σt) = c1(σ ′
t ) for all σt
σ

′
t ∈ Ω̂1

t (ω
2
t ). As shown in

Lemma 12, π-a.s. and π1-a.s., on every σ , denoting by c̄1
t (σt)= e(σt)− minσt∈ω2

t
e(σt),

lim
t→∞

inf c1
t (σt)− c̄1

t (σt)≥ 0� (15)

Hence, π-a.s. for every ω2,

lim
T→∞

∑
σ̃T+1∈ω2

T+1

u′
1

(
c1(σ̃T+1)

)
π1
(
σ̃T+1 | ω2

T+1

)

= lim
T→∞

[ ∑
σ̃T+1∈Ω̂1

T+1(ω
2
T+1)

u′
1

(
c1(σ̃T+1)

)
π1
(
σ̃T+1 |ω2

T+1

)

+
∑

σ̃T+1∈Ω̌1
T+1(ω

2
T+1)

u′
1

(
c1(σ̃T+1)

)
π1
(
σ̃T+1 | ω2

T+1

)]

= lim
T→∞

[
u′

1

(
c1
(
ω2

T+1

))
π1
(
Ω̂1

T+1

(
ω2

T+1

))+ ∑
σ̃T+1∈Ω̌1

T+1(ω
2
T+1)

u′
1

(
c1(σ̃T+1)

)
π1
(
σ̃T+1 | ω2

T+1

)]



where the first term uses c1(σ̃T+1) = c1(σ̃ ′
T+1) for all σ̃T+1
 σ̃

′
T+1 ∈ Ω̂1

T+1(ω
2
T+1). Note fur-

ther that since agent 2’s financial constraints are relevant w.r.t. those of 1 in the limit, and
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since every w2 occurs i.o. π-a.s. on every ω2,

lim
T→∞

inf
∑

σ̃T+1∈Ω̌1
T+1(ω

2
T+1)

u′
1

(
c1(σ̃T+1)

)
π1
(
σ̃T+1 |ω2

T+1

)

≤ lim
T→∞

inf
∑

σ̃T+1∈Ω̌1
T+1(ω

2
T+1)

u′
1

(
c̄1(σ̃T+1)

)
π1
(
σ̃T+1 | ω2

T+1

)≤ u′
1(ε)�

Since π-a.s., limT→∞
∑

σ̃T+1∈ω2
T+1

u′
1(c

1(σ̃T+1))π
1(σ̃T+1 | ω2

T+1) = ∞, we thus have that

limT→∞ u′
1(c

1(ω̃2
T+1))π

1(Ω̂1
T+1(ω

2
T+1)) = ∞ and, hence, c1((ω̃2

T+1)) → 0 π-a.s. on
Ω̂1

T+1(ω
2
T+1).

By (15) and since e(σt) − c1(σt) is Ω2-measurable, limT→∞ |c1(σT+1) − c̄1(σT+1)| = 0,
π-a.s.

We can now repeat the argument by induction for any agent with an index greater
than 1. For agent j > 1, define c̄

j
t (ω

j
t ) = min

σt∈ωj
t
e(σt) − min

σt∈ωj+1
t

e(σt). Suppose that

π-a.s., limt→∞ cj(σt)= limj
t→∞ c̄i(σt) for all j ≤ k. Then, π-a.s.,

lim
t→∞

inf ck+1
t

(
ωk+1

t

)− c̄k+1
t

(
ωk+1

t

)≥ 0
 (16)

where for any σ̄t ∈ ωk+1
t ⊆ωk+2

t ,

c̄k+1
t

(
ωk+1

t

)= min
σt∈ωk+1

t

e(σt)− min
σt∈ωk+2

t

e(σt)= e(σ̄t)−
k∑

j=1

c̄j(σ̄t)− min
σt∈ωk+2

t

e(σt)

and, furthermore, since k + 2’s financial constraint is relevant in the limit w.r.t. that of
k+ 1, on almost all ωk+2

T+1,

lim
t→∞

sup c̄k+1 > ε� (17)

Furthermore, for any ωk+1
t ∈ Ω̂k+1

t (ωk+2
t ), e(σt)−∑j≤k c̄

j
t (σt)= e(σ ′

t )−∑j≤k c̄
j
t (σ

′
t ) for

all σt , σ ′
t ∈ ωk+1

t . Finally, for any ωk+2
t , any j > k + 1, any ωk+1

t , ω′k+1
t ∈ Ω̂k+1

t (ωk+2
t ),

and for any σt ∈ ωk+1
t , σ ′

t ∈ ω′k+1
t , cj(σt) = cj(σ ′

t ). It thus follows that for every ε > 0,
limt→∞ π{ωk+2

t s.t. maxωk+1
t 
ω′k+1

t ∈Ω̂k+1
t (ωk+2

t ) |ck+1(ωk+1
t )− ck+1(ω′k+1

t )| > ε} = 0 and, thus, π-

a.s. for every ωk+2, in the limit, k+ 1’s consumption is constant on Ω̂k+1
t (ωk+2

t ):

lim
t→∞

π
(

max
ωk+1
t 
ω′k+1

t ∈Ω̂k+1
t (ωk+2

t )

∣∣ck+1
(
ωk+1

t

)− ck+1
(
ω′k+1

t

)∣∣= 0
∣∣∣ωk+2

t

)
= 1� (18)

Since k + 1’s survival index is strictly smaller than that of k + 2, using (10) with
i = k + 2 and j = k + 1, and noting that the r.h.s. is strictly positive, we obtain π-a.s.,
limT→∞

∑
ω̃k+1
T+1⊆ωk+2

T+1
u′
k+1(c

k+1(ω̃k+1
T+1))π

k+1(ω̃k+1
T+1 |ωk+2

T+1)= ∞.

Then, since πk+1(ω̃k+1
T+1 |ωk+2

T+1)= π(ω̃k+1
T+1 |ωk+2

T+1), and using (18),

lim
T→∞

∑
ω̃k+1
T+1⊆ωk+2

T+1

u′
k+1

(
ck+1

(
ω̃k+1

T+1

))
πk+1

(
ω̃k+1

T+1 |ωk+2
T+1

)
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= lim
T→∞

[ ∑
ω̃k+1
T+1∈Ω̂k+1

T+1(ω
k+2
T+1)

u′
k+1

(
ck+1

(
ω̃k+1

T+1

))
π
(
ω̃k+1

T+1 | ωk+2
T+1

)

+
∑

ω̃k+1
T+1∈Ω̌k+1

T+1(ω
k+2
T+1)

u′
k+1

(
ck+1

(
ω̃k+1

T+1

))
π
(
ω̃k+1

T+1 |ωk+2
T+1

)]

= lim
T→∞

[
u′
k+1

(
ck+1

(
ω̃k+2

T+1

))
π
(
Ω̂k+1

T+1

(
ωk+2

T+1

))
+

∑
ω̃k+1
T+1∈Ω̌k+1

T+1(ω
k+2
T+1)

u′
k+1

(
ck+1

(
ω̃k+1

T+1

))
π
(
ω̃k+1

T+1 |ωk+2
T+1

)]
�

Furthermore, (16) together with (17), the fact that k+ 2’s constraints are relevant in the
limit w.r.t. k+ 1’s, and the fact that each wk+2 occurs i.o. π-a.s., implies that π-a.s.,

lim
T→∞

inf
∑

ω̃k+1
T+1∈Ω̌k+1

T+1(ω
k+2
T+1)

u′
k+1

(
ck+1

(
ω̃k+1

T+1

))
π
(
ω̃k+1

T+1 |ωk+2
T+1

)

≤ lim
T→∞

inf
∑

ω̃k+1
T+1∈Ω̌k+1

T+1(ω
k+2
T+1)

u′
k+1

(
c̄k+1

(
ω̃k+1

T+1

))
π
(
ω̃k+1

T+1 |ωk+2
T+1

)≤ u′
k̃−1

(ε)�

Since π-a.s., limT→∞
∑

ω̃k+1
T+1⊆ωk+2

T+1
u′
k+1(c̄

k+1(ω̃k+1
T+1))π(ω̃

k+1
T+1 | ωk+2

T+1) = ∞, we, thus, have

that π-a.s., limT→∞ u′
k+1(c

k+1(ω̃k+2
T+1))π(Ω̂

k+1
T+1(ω

k+2
T+1)) = ∞ and, hence, π-a.s. on

Ω̂k+1
T+1(ω

k+2
T+1), c

k+1(ω̃k+2
T+1)→ 0.

Since e(σt)−∑j≤k+1 c̄
j(σt) is measurable w.r.t. Ωk+2,

∑
j≥k+2 c

j(σt) is measurable w.r.t.
Ωk+2, ck+1(ω̃k+2

T+1) → 0, π-a.s., and limT→∞ |cj(σT )− c̄j(σT )| = 0, π-a.s., j ≤ k, we have π-
a.s., limT→∞ |ck+1(σT )− c̄k+1(σT )| = 0. It follows that k+ 1 a.s. survives if his constraints
are relevant in the limit w.r.t. those of k+2. In contrast, if k+1’s constraints are irrelevant
in the limit w.r.t. those of k+ 2, we have that a.s., limT→∞ Ω̌k+1

T+1(ω
k+2
T+1)= ∅ and, hence, π-

a.s., ck+1(ωk+1
T+1)→ 0 so that agent k+ 1 a.s. vanishes. Q.E.D.

LEMMA 15: Agent n a.s. survives.

PROOF: We have shown above that for agents j ∈ {1 � � � n− 1}, consumption converges
a.s. to c̄j . It follows that for σt ∈ ωn

t , π-a.s.,

lim
t→∞

cn(σt)= e(σt)−
n−1∑
j=1

c̄j(σt)= min
σ̃t∈ωn

t

e(σ̃t)≥ m

and, hence, n a.s. survives. Q.E.D.

Proof of Proposition 6

LEMMA 16: Suppose that agents j � � � j + k have equal discount factors and identical be-
liefs, whereas j + k+ 1 has a strictly higher survival index. Suppose that either j = 1 or j > 1,
j − 1 has a strictly lower survival index than j, and a.s., limt→∞

∑
i<j[ci(σt) − c̄i(σt)] = 0.

Then j � � � j + k a.s. survive and a.s. limt→∞
∑j+k

i=j [ci(σt)− c̄i(σt)] = 0.
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PROOF: Suppose in a manner of contradiction that for some σ ,

lim
t→∞

sup
j+k∑
i=j

[
ci(σt)− c̄i(σt)

]
> 0�

The same arguments as those used in the proof of part (ii) of Lemma 11 can be used to
establish that for ωj+k+1 ∈Ωj+k+1 such that σ ∈ ωj+k+1, there is a ε̂(ωj+k+1) > 0 such that

lim
t→∞

inf
∑

ω
j
t⊆ω

j+k+1
t

u′
j

(
cj
(
ω

j
t

))
πj
(
ω

j
t | ωj+k+1

t

)
< max

i∈{j���j+k}

u′
j

(
cj(σ0)

)
u′
i

(
ε̂
(
ωj+k+1

)
h

)
u′
i

(
ci(σ0)

) �

However, using condition (10) with j = j and i = j + k + 1, and noting that the r.h.s.
is strictly positive, implies π-a.s., limt→∞

∑
ω̃
j
t⊆ω

j+k+1
t

u′
j(c

j(ω̃
j
t )) π

j(ω̃
j
t | ωj+k+1

t ) = ∞, thus

establishing a contradiction to limt→∞ sup
∑j+k

i=j [ci(σt)− c̄i(σt)]> 0.
It follows that limt→∞

∑j+k

i=j [ci(σt)− c̄i(σt)] = 0. Since j + 1’s constraints are relevant in
the limit w.r.t. those of j, agent j a.s. survives. We can then apply Lemmata 10 and 11 to
show that all agents j + 1 � � � j + k survive a.s. as well.

The proof of Proposition 6 now follows by combining Propositions 16 and 17 with the
result of Lemma 16. Without loss of generality, let agents 1 � � � h1 for h1 ∈ {1 � � � n} have
distinct survival indices. In particular, agent 1 a.s. survives. By Lemma 14, we know that
if agents 1 � � � h1, h1 ∈ {1 � � � n} have distinct ordered survival indices, they all survive a.s.
and, furthermore, limt→∞[ci(σt) − c̄i(σt)] = 0 a.s. obtains for all i ∈ {1 � � � h1}. If h1 = n,
then Proposition 17 completes the proof. If h1 < n, let agent h2 − 1 be the agent with the
largest index who has a discount factor and beliefs identical to those of agent h1. Then by
Proposition 16 and Lemma 16, all agents h1 � � � h2 − 1 a.s. survive and, furthermore, the
condition limt→∞

∑h2−1
i=1 [ci(σt)− c̄i(σt)] = 0 a.s. obtains. If h2 − 1 = n, this completes the

proof.
If h2 − 1 < n, proceed by induction. Suppose that agents 1 � � � hk − 1 a.s. survive and

a.s.
∑hk−1

i=1 [ci(σt) − c̄i(σt)] = 0. If hk = n, hk a.s. survives by Lemma 15. If hk < n and
hk has a survival index distinct from hk + 1, then the proof of Lemma 14 (applied to
agents hk and hk+1) shows that agent hk a.s. survives and a.s. limt→∞[chk(σt)− c̄hk(σt)] =
0. If, in contrast, agents hk � � � hk+1 − 1 have identical discount factors and beliefs, then by
Lemma 16 and Proposition 16 and, all agents hk � � � hk+1 − 1 a.s. survive and, furthermore,
the condition limt→∞

∑hk+1−1
i=1 [ci(σt) − c̄i(σt)] = 0 a.s. obtains. This proves Proposition 6.

Q.E.D.

Proof of Proposition 7

Note that for all agents other than j, ci(σt; s) = ci(σt; s′) has to hold in equilibrium.
Since condition (4) is satisfied, agent j’s consumption on state s is bounded below by ε in
the limit. Since state s occurs i.o. π-.a.s., we conclude that j survives a.s.

Whenever the economy has nonnested partitions as in Definition 5, the same argument
applies to every agent j ∈ I and the statement of the proposition obtains.
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Proof of Proposition 8

Consider a set of paths Ω̄ that has a strictly positive probability and on which the uncon-
strained agent j vanishes a.s. We know from the previous result that, on this set of paths,
all constrained agents survive a.s. Hence, take the minimal set Ω̄′ such that Ω̄′ ⊇ Ω̄ and Ω̄′

is measurable w.r.t. Ωi for some constrained agent i. The set Ω̄′ also has a strictly positive
probability and since i survives a.s. on Ω̄, he also survives a.s. on Ω̄′. It follows that for any
path ωi ⊆ Ω̄′, the numerator of (11) has a finite infimum and, hence, the denominator has
to have a finite infimum. Hence, as shown in the proof of Proposition 3, the unconstrained
agent j survives a.s. on every such ωi ⊆ Ω̄′, a contradiction. We conclude, thus, that agent
j survives a.s.

Since j survives a.s., we know from the argument used in the proof of Proposition 3
that any agent who is more constrained than j, has correct beliefs, and has an identical
discount factor also survives a.s.

Proof of Proposition 9

The existence of such an equilibrium follows easily from Bewley’s (1972) theorem. If
all agents can trade on σ∗

t∗ , then all agents assign 0 probability to all σt /∈ Ωσ∗
t∗ and we

can directly apply the result of Proposition 1. If not all agents can trade on σ∗
t∗ , then

the set of contingencies in this economy includes all σt ∈ ω∗i
t for all ω∗i

t ∈ Ω∗i
σ∗
t∗

for some
i ∈ I. Obviously, given σ∗

t∗ , many of the paths have an objective probability of 0 and are
assigned 0 probability by agents who can trade on σ∗

t∗ . In contrast, agents who cannot
trade on σ∗

t∗ assign (mistakenly) strictly positive probability to impossible events. Hence,
in equilibrium, there will potentially be trade over 0 probability contingencies: agents who
can trade on σ∗

t∗ will want to sell consumption contingent on σt /∈ Ωσ∗
t∗ , whereas agents

who cannot trade on σ∗
t∗ would like to buy it. Nonnegativity constraints on consumption

ensure that such trades remain finite. Given Assumption 3, all agents will wish to assign
strictly positive consumption to nodes σ∗

t ∈ Ωσ∗
t∗ as long as p(σ∗

t ) ∈ (0;∞). However, if
p(σt) ∈ (0;∞), only an agent j for whom σt ∈ ω

∗j
t \Ωσ∗

t∗ will wish to assign strictly positive
consumption to such a node, whereas all agents who can trade on σ∗

t∗ will want to consume
0 at σt . We will now show that this cannot constitute an equilibrium allocation and, hence,
p(σt)= 0 has to hold, whenever σ∗

t /∈ Ωσ∗
t∗ .

Take σt /∈ Ωσ∗
t∗ such that there is an l ∈ I and an ω∗l

t ∈ Ω∗l
σ∗
t∗

such that σt ∈ ω∗l
t . Let L

denote the set of all such l. Suppose that p(σt) > 0 and, thus, c∗k(σt) = 0 for all k /∈ L.
Then

∑
l∈L c

∗l(σt) = e(σt). Let l′ be the agent with the finest partition in L. Then there
is also a node σ∗

t ∈ Ωσ∗
t∗ such that σt and σ∗

t ∈ ω∗l′
t , and, hence, σ∗

t ∈ ω∗l
t for all l ∈ L.

By Assumption 4, we can choose σ∗
t so that e(σ∗

t ) ≤ e(σt). Measurability of consumption
implies that

∑
l∈L c

∗l(σt) =∑l∈L c
∗l(σ∗

t ). However, c∗k(σt)= 0 < c∗k(σ∗
t ) for all k who can

trade on σ∗
t∗ ; hence, this cannot be an equilibrium allocation. We conclude that p(σt)= 0

for all σt /∈Ωσ∗
t∗ .

Proof of Lemma 1

To show that prices are uniformly bounded away from 0, we use an argument similar to
Krebs (2004). On an optimal consumption path for any consumer i, we have to have

qmin(σt;w)u′
i

(
ci(σt)

)≥ βi

∑
s∈w

u′
i

(
ci(σt; s)

)
πi(s)�
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Note that (i) in an economy with n agents, there is at least one agent i who consumes at
least 1

n
of the minimal initial endowment of the economy, ci(σt) ≥ m̃; (ii) for any agent

and at any node, ci(σt; s) ≤ m′, which is the maximal total endowment of the economy;
(iii) πi(s) ≥ π > 0 for all i and all s ∈ S. It thus follows that the uniform lower bound on
equilibrium asset prices is given by

qmin(σt;w) ≥ min
w∈W 0

min
i∈I

βi

∑
s∈w

u′
i

(
m′)

u′
i(m̃)

π > 0�

It follows that the price of asset w is uniformly bounded below by

q(w) = min
i∈I

βi

∑
s∈w

u′
i

(
m′)

u′
i(m̃)

π

and the price of the bond is uniformly bounded below by

q = min
i∈I

βi

∑
s∈S

u′
i

(
m′)

u′
i(m̃)

π�

The uniform upper bound can be determined by using the Magill and Quinzii (1994,
pp. 859–860) condition A4, which is always satisfied for agents with expected utility pref-
erences. Let β̃ denote the uniform coefficient of patience introduced in A4 of Magill and
Quinzii (1994). They show that

∑
w∈W 0 q(σt;w) ≤ q̄ = 1

(1−β̃)m̃
is a uniform upper bound on

the equilibrium price of the bond in the economy. It then follows that q(σt;w) ≤ 1
(1−β̃)m̃

for any σt and any w.

Proof of Lemma 2

Suppose that for every N > 0, there is an i, (σt; w̃) such that |θi(σt; w̃)| >N . Suppose,
for example, θi(σt; w̃) >N . Since

∑
w∈W i q(σt;w)θi(σt;w) ≤D and since, by the proof of

Lemma 1, q(σt;w) ∈ [q; q̄] with q > 0, it follows that

qN +
∑

w∈W i\w̃
q(σt;w)θi(σt;w) ≤ D


∑
w∈W i\w̃

q(σt;w)θi(σt;w) ≤ D− qN


and since N can be chosen large enough so that D − qN < 0, there must be at least one

w̄ such that θi(σt; w̄) ≤ D−qN

q̄
. It then follows that in state (σt; s) with s ∈ w̄, the value of

debt of the agent has to be at least

θi

(
(σt; s);w

)
q
(
(σt; s);w

)≥ qN −D

q̄
− ei(σt; s)�

Hence, for N > m′q̄+D(q̄+1)
q

, we obtain a contradiction to the uniform bound on the value
of debt.

The argument for θi(σt; w̃) <−N is symmetric.
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Proof of Proposition 11

From the definition of r̂ji , we have

T+1∏
t=1

r̂
j
i (σt)=

T+1∏
t=1

u′
i

(
ci(σt)

)∑
s∈wj

t

u′
i

(
ci(σt−1; s)

)
πi
(
s |wj

t

)

= βT+1
i

u′
i

(
ci(σT+1)

)
u′
i

(
ci(σ0)

) T∏
t=0

πi
(
wj(σt+1)

) u′
i

(
ci(σt)

)
βi

∑
s∈wj(σt+1)

u′
i

(
ci(σt; s)

)
πi(s)

= βT+1
i

u′
i

(
ci(σT+1)

)
u′
i

(
ci(σ0)

) T∏
t=0

πi
(
wj(σt+1)

)
q
(
σt;wj(σt+1)

) �
Furthermore,

u′
i

(
ci(σt)

)
u′
j

(
cj(σt)

) =
βiπ

i
(
wj(σt+1)

) ∑
s∈wj(σt+1)

u′
i

(
ci(σt; s)

)
πi
(
s |wj(σt+1)

)
βjπ

j
(
wj(σt+1)

) ∑
s∈wj(σt+1)

u′
j

(
cj(σt; s)

)
πj
(
s | wj(σt+1)

)

=
βiπ

i
(
wj(σt+1)

) ∑
s∈wj(σt+1)

u′
i

(
ci(σt; s)

)
u′
i

(
ci(σt+1)

)πi
(
s |wj(σt+1)

)

βjπ
j
(
wj(σt+1)

) ∑
s∈wj(σt+1)

u′
j

(
cj(σt; s)

)
u′
j

(
cj(σt+1)

)πj
(
s |wj(σt+1)

) u
′
i

(
ci(σt+1)

)
u′
j

(
cj(σt+1)

)

= u′
i

(
ci(σt+1)

)
u′
j

(
cj(σt+1)

) βi

βj

πi
(
wj(σt+1)

)
πj
(
wj(σt+1)

) r̂jj (σt)

r̂
j
i (σt)

�

It follows that

u′
i

(
ci(σt+1)

)
u′
j

(
cj(σt+1)

) = u′
i

(
ci(σt)

)
u′
j

(
cj(σt)

) βj

βi

πj
(
wj(σt+1)

)
πi
(
wj(σt+1)

) r̂ji (σt)

r̂
j
j (σt)

�

Proof of Proposition 12

Using the fact that π is i.i.d.,

lim
t→∞

Varπ

[
πj(σt | σt−1)

πi(σt | σt−1)

yji(σt)

yji(σt−1)

∣∣∣ σt−1

]
= 0

is equivalent to

lim
t→∞

[
πj(s)

πi(s)

yji(σt−1; s)
yji(σt−1)

−Eπ

[
πj(s̃)

πi(s̃)

yji(σt−1; s̃)
yji(σt−1)

∣∣∣ σt−1

]]
= 0 (19)
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for all s ∈ S or, since βi = βj and by (5),

lim
t→∞

[
πj(s)

πi(s)

πi
(
wj

s

)
πj
(
wj

s

) r̂jj (σt−1; s)
r̂
j
i (σt−1; s)

−Eπ

[
πj(s̃)

πi(s̃)

πi
(
w

j

s̃

)
πj
(
w

j

s̃

) r̂jj (σt−1; s̃)
r̂
j
i (σt−1; s̃)

∣∣∣ σt−1

]]
= 0


lim
t→∞

[
πj
(
s |wj

s

)
πi
(
s |wj

s

) r̂jj (σt−1; s)
r̂
j
i (σt−1; s)

−Eπ

[
πj(s̃)

πi(s̃)

πi
(
w

j

s̃

)
πj
(
w

j

s̃

) r̂jj (σt−1; s̃)
r̂
j
i (σt−1; s̃)

∣∣∣ σt−1

]]
= 0


(20)

where wj
s is used to denote the element of j’s partitions containing state s.

Denote

λ(σt−1)=Eπ

[
πj(s̃)

πi(s̃)

πi
(
w

j

s̃

)
πj
(
w

j

s̃

) r̂jj (σt−1; s̃)
r̂
j
i (σt−1; s̃)

∣∣∣ σt−1

]
� (21)

For every σ and every ε > 0, there is a t(ε;σ) such that for all t > t(ε;σ) and all s ∈ S,∣∣∣∣πj
(
s | wj

s

)
πi
(
s |wj

s

) r̂jj (σt−1; s)
r̂
j
i (σt−1; s)

− λ(σt−1)

∣∣∣∣< ε or

(
λ(σt−1)− ε

)
r̂
j
i (σt−1; s)πi

(
s |wj

s

)
<πj

(
s | wj

s

)
r̂
j
j (σt−1; s)

<
(
λ(σt−1)+ ε

)
r̂
j
i (σt−1; s)πi

(
s |wj

s

)
�

Thus, for any wj , summing over s ∈wj , we obtain(
λ(σt−1)− ε

)∑
s∈wj

r̂
j
i (σt−1; s)πi

(
s |wj

)
<
∑
s∈wj

πj
(
s |wj

)
r̂
j
j (σt−1; s)

<
(
λ(σt−1)+ ε

)∑
s∈wj

r̂
j
i (σt−1; s)πi

(
s |wj

)

and since by the definition of r̂ji ,
∑

s∈wj r̂
j
i (σt−1; s)πi(s | wj)= 1 and

∑
s∈wj πj(s |wj)r̂

j
j (σt−1;

s) = 1, (
λ(σt−1)− ε

)
πi
(
wj
)
<πj

(
wj
)
<
(
λ(σt−1)+ ε

)
πi
(
wj
)
�

Finally, summing once again over all wj , λ(σt−1)−ε < 1 < λ(σt−1)+ε or limt→∞ λ(σt)= 1.
It follows by equations (19), (20), and (21) that

lim
t→∞

πj(σt | σt−1)

πi(σt | σt−1)

yji(σt)

yji(σt−1)
= 1 π-a.s. on σ satisfying

lim
t→∞

Varπ

[
πj(σt | σt−1)

πi(σt | σt−1)

yji(σt)

yji(σt−1)

∣∣∣ σt−1

]
= 0�

We next prove a lemma that is analogous to Proposition 3 in BC (2010) and that charac-
terizes equilibrium prices in an i.i.d. economy with two agents on a path on which one of
the agents disappears. This lemma will be subsequently used in the proofs of Propositions
13 and 14.

In the case of two agents, even when financial constraints are different, both agents can
effectively trade on those events that are measurable w.r.t. both partitions. We can thus
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denote the finest common coarsening of W i and W j by W and consider an incomplete
market with generalized unit securities paying on w ∈W .

LEMMA 17: Consider an IDC equilibrium. Let I = {i; j}. Assume that the initial endow-
ment of the economy is i.i.d. Let J = {σ ∈Ω | limt→∞ cj(σt)= 0} be the set of paths on which
j vanishes. Let W be the finest common coarsening of W i and W j . Then, π-a.s. on J, for
w ∈W ,

lim
t→∞

q(σt;w) = qi
(
s(σt);w

)=:
βiπi(w)

∑
s̃∈wj

u′
i

(
e(s̃)

)
πi(s̃ |w)

u′
i

(
e
(
s(σt)

)) �

PROOF: For ε > 0, define the set

Jε =: {{σ | ∣∣q(σt;w)− qi
(
s(σt);w

)∣∣> ε
}

i.o.
}∩ J� (22)

On σ ∈ J, ci(σt)→ e(s(σt)) and so there exists a T(σ) such that if t ≥ T(σ), then

1 − 1
2
ε

βi

u′
i

(
m′)

u′
i(m̃)

1 − ε

βi

u′
i

(
m′)

u′
i(m̃)

≥ u′
i

(
ci(σt)

)
u′
i

(
e
(
s(σt)

)) ≥ 1�

Note that

q(σt;w)− qi
(
s(σt);w

)= βi

∑
s∈wj

πi(s)

[
u′
i

(
ci(σt; s)

)
u′
i

(
ci(σt)

) − u′
i

(
e(s)

)
u′
i

(
e
(
s(σt)

))]

and, hence, (22) combined with the fact that πi(s) > π > 0 for all s ∈ S implies that there
is a subsequence {tk}∞

k=1 with t1 ≥ T(σ) such that either

πi

(
s
∣∣∣ u′

i

(
ci(σtk; s)

)
u′
i

(
ci(σtk)

) − u′
i

(
e(s)

)
u′
i

(
e
(
s(σtk)

)) > ε

βi

)
>π and, hence,

π

(
s
∣∣∣ u′

i

(
ci(σtk; s)

)
u′
i

(
ci(σtk)

) − u′
i

(
e(s)

)
u′
i

(
e
(
s(σtk)

)) > ε

βi

)
>π

(23)

for all k≥ 1 or

πi

(
s
∣∣∣ u′

i

(
ci(σtk; s)

)
u′
i

(
ci(σtk)

) − u′
i

(
e(s)

)
u′
i

(
e
(
s(σtk)

)) <− ε

βi

)
>π and, hence,

π

(
s
∣∣∣ u′

i

(
ci(σtk; s)

)
u′
i

(
ci(σtk)

) − u′
i

(
e(s)

)
u′
i

(
e
(
s(σtk)

)) <− ε

βi

)
>π

(24)

for all k≥ 1.
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Suppose (23) holds for all k ≥ 1. Then there is a σ ′ such that σ ′
t = σt for all t ≤ tk such

that

u′
i

(
ci
(
σ ′

tk+1

))
u′
i

(
ci
(
σ ′

t

)) − u′
i

(
e
(
s
(
σ ′

tk+1

)))
u′
i

(
e
(
s
(
σ ′

t

))) >
ε

βi




u′
i

(
ci
(
σ ′

tk+1

))
u′
i

(
ci
(
σ ′

t

)) >
u′
i

(
e
(
s
(
σ ′

tk+1

)))
u′
i

(
e
(
s
(
σ ′

t

))) ( u′
i

(
e
(
s
(
σ ′

t

)))
u′
i

(
e
(
s
(
σ ′

tk+1

))) ε

βi

+ 1
)



u′
i

(
ci
(
σ ′

tk+1

))
u′
i

(
e
(
s
(
σ ′

tk+1

))) > u′
i

(
ci
(
σ ′

t

))
u′
i

(
e
(
s
(
σ ′

t

)))︸ ︷︷ ︸
≥1

(
u′
i

(
e
(
s
(
σ ′

t

)))
u′
i

(
e
(
s
(
σ ′

tk+1

)))︸ ︷︷ ︸
≥ u′

i
(m′)

u′
i
(m̃)

ε

βi

+ 1
)

≥ u′
i

(
m′)

u′
i(m̃)

ε

βi

+ 1�

Letting ε′ = 1
2
u′
i(m

′)
u′
i(m̃)

ε
βi
> 0, we obtain

π

(
s
∣∣∣ u′

i

(
ci(σtk; s)

)
u′
i

(
e(s)

) ≥ 1 + ε′
)
>π for all k≥ 1 on σ ∈ Jε�

Symmetrically, if (24) holds, then one obtains

π

(
s
∣∣∣ u′

i

(
ci(σtk; s)

)
u′
i

(
e(s)

) ≤ 1 − ε′
)
>π for all k≥ 1 on σ ∈ Jε�

Hence, for each σ ∈ Jε, either

∞∑
t=0

π

(
s
∣∣∣ u′

i

(
ci(σt; s)

)
u′
i

(
e(s)

) ≥ 1 + ε′
)

≥
∞∑
k=1

π

(
s
∣∣∣ u′

i

(
ci(σtk; s)

)
u′
i

(
e(s)

) ≥ 1 + ε′
)

= ∞

or
∞∑
t=0

π

(
s
∣∣∣ u′

i

(
ci(σt; s)

)
u′
i

(
e(s)

) ≤ 1 − ε′
)

≥
∞∑
k=1

π

(
s
∣∣∣ u′

i

(
ci(σtk; s)

)
u′
i

(
e(s)

) ≤ 1 − ε′
)

= ∞


which, by the EBC lemma in BC (2010) implies

σ ∈
{{

σ̃
∣∣∣ u′

i

(
ci(σt)

)
u′
i

(
e
(
s(σt)

)) ≤ 1 − ε′
}

i.o.
}

∪
{{

σ̃
∣∣∣ u′

i

(
ci(σt)

)
u′
i

(
e
(
s(σt)

)) ≥ 1 + ε′
}

i.o.
}



and since u′
i is continuous, ci(σt)� e(σt), π-a.s. Since Jε ⊆ J, it follows that π(Jε)= 0.

Q.E.D.
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Proof of Proposition 13

Extrapolating (5) over t, we obtain

lim
T→∞

1
T

ln
u′
j(σT )

u′
i(σT )

= ln
βi

βj

+
∑
wj∈W j

π
(
wj
)

ln
πi
(
wj
)

πj
(
wj
) + lim

T→∞
1
T

T∑
t=1

ln
r̂
j
j (σt)

r̂
j
i (σt)

�

If r̂jj (σt)= 1 for all σt , then

lim
T→∞

1
T

T∑
t=1

ln
r̂
j
j (σt)

r̂
j
i (σt)

= lim
T→∞

1
T

T∑
t=1

ln

∑
s∈wj(σt+1)

u′
i

(
ci(σt; s)

)
πi
(
s |wj(σt+1)

)
u′
i

(
ci(σt+1)

) �

(a) In particular, if as in (a), βi = βj and πi = πj = π, then in expectations,

−Eπ

⎛
⎜⎜⎜⎝ln

u′
i

(
ci(σt+1)

)∑
s∈wj(σt+1)

u′
i

(
ci(σt; s)

)
π
(
s | wj(σt+1)

)
⎞
⎟⎟⎟⎠

≥ − lnEπ

u′
i

(
ci(σt+1)

)∑
s∈wj(σt+1)

u′
i

(
ci(σt; s)

)
π
(
s | wj(σt+1)

) = 0


and since the economy faces aggregate risk, there is at least one w̃j such that the inequality
is strict whenever wj(σt+1) = w̃j is as in the statement of the proposition. Since w̃j occurs
i.o. π-a.s. on every path σ , it follows that a.s.

lim
T→∞

1
T

T∑
t=1

ln
r̂
j
j (σt)

r̂
j
i (σt)

> 0

and, hence, a.s.

lim
T→∞

1
T

ln
u′
j

(
cj(σT )

)
u′
i

(
ci(σT )

) > ln
βi

βj

+
∑
wj∈W j

π
(
wj
)

ln
πi
(
wj
)

πj
(
wj
) = 0�

However, limT→∞ 1
T

ln
u′
j (c

j(σT ))

u′
i(c

i(σT ))
> 0 can only obtain if u′

j(c
j(σt)) → ∞ or if cj(σt) → 0.

It follows that in this case j a.s. vanishes.
(b) If i and j are the only agents in the economy, then Lemma 17 above implies that

on the set of paths on which j vanishes, asset prices converge to equilibrium prices in
an economy with a representative agent i. Hence, i’s consumption converges toward the
total endowment of the economy, not just on the path on which j vanishes, σt as t → ∞,
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but also on (σt; s) for any s ∈ S as t → ∞. This in turn implies

lim
T→∞

1
T

T∑
t=1

ln
r̂
j
j (σt)

r̂
j
i (σt)

= lim
T→∞

1
T

T∑
t=1

ln

∑
s∈wj(σt+1)

u′
i

(
ci(σt; s)

)
πi
(
s |wj(σt+1)

)
u′
i

(
ci(σt+1)

)

=
∑
s∈S

π(s) ln

∑
s∈wj

s

u′
i

(
e(s)

)
πi
(
s |wj

s

)
u′
i

(
e(s)

) �

Hence, the condition for j not to vanish provided that he is fully insured across the states
within the elements of his partition W j is

ln
βi

βj

+
∑
wj∈W j

π
(
wj
)

ln
πi
(
wj
)

πj
(
wj
) <∑

s∈S
π(s) ln

∑
s∈wj

s

u′
i

(
e(s)

)
πi
(
s |wj

s

)
u′
i

(
e(s)

) �

Proof of Proposition 14

As above, let W denote the finest common coarsening of W i and W j , that is, the set of
tradable events. By the assumption on W j , there is an element w̄ ∈ W with two distinct
states sw̄ and s′

w̄. Without loss of generality, we show the result for j; the same argument
applies for agent i.

LEMMA 18: Under the assumptions of Proposition 14, on the set of paths, on which j
vanishes, asset prices satisfy

lim
t→∞

q(σt;w) = qi(s;w) = βi

∑
s̃∈w

u′
i

(
e(s̃)

)
πi(s̃)

u′
i

(
e(s)

)
and

∑
w∈W qi(s;w) ≤ 1 for any s ∈ S.

PROOF: The convergence result follows from Lemma 17. Since βi <
u′
i(m

′)
u′
i(m̃)

, it follows
that for any s ∈ S,

∑
w∈W

qi(s;w) = βi

∑
s̃∈S

u′
i

(
e(s̃)

)
πi(s̃)

u′
i

(
e(s)

) <
u′
i

(
m′)

u′
i(m̃)

∑
s̃∈S

u′
i

(
e(s̃)

)
πi(s̃)

u′
i

(
e(s)

) ≤ 1�

For each w ∈ W , choose an sw ∈ w such that sw̄ is the relevant state for w̄. Define
(θ∗(w))w∈W as the solution to the system of equations

θ∗(w)+ ej(sw)=
∑
w̃∈W

θ∗(w̃)qi(sw; w̃) for all sw
w ∈W � (25)

Note that a solution exists and is unique except on a measure-0 set of parameters of the
economy.
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Furthermore, except for a set of initial endowments with measure 0,

∑
w̃

θ∗(w̃)qi(sw̄; w̃)− ej(sw̄)−
∑
w̃

θ∗(w̃)qi
(
s′
w̄; w̃)+ ej

(
s′
w̄

)= d̂ �= 0� (26)

Let d > 0. Choose

ε(d)= min

⎧⎪⎪⎨
⎪⎪⎩
d

2

(
1 − max

s∈S

∑
w∈W

qi(s;w)

)
;

1 − max
s∈S

∑
w∈W

qi(s;w)

4
8N|W |

⎫⎪⎪⎬
⎪⎪⎭ �

Let ξ(d) = πk̄(d), where k̄(d) is the smallest positive integer such that

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

min
s∈S

1

∑
w∈W

qi(s;w)+
1 − max

s∈S

∑
w∈W

qi(s;w)

2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

k̄

> max
{N − min

w∈W
θ∗(w)

d − ε(d)
;
N + min

w∈W
θ∗(w)

d − ε(d)

}
�

Suppose in a manner of contradiction that j vanishes a.s. conditional on node σ̄t̄ . Then
there exists a t̂(ε(d);ξ(d))= t̂(d) such that

π

(
σ
∣∣∣ σt̄ = σ̄t̄ 
 cj (σt) <

ε(d)

2
and

∣∣q(σt;w)− qi
(
s(σt);w

)∣∣< ε(d)

8N
∣∣W j

∣∣ for all t ≥ t̂(d)

)
> 1 − ξ(d)� (27)

The condition on q(σt;w) together with those on ε(d) imply that for any θ(σt;w) ∈
[−N;N]|W | (including θ(σt;w) = θ∗(w)) and for all t ≥ t̂(d) on the set of paths in the set
on the l.h.s. of (27),

∣∣∣∣∑
w∈W

θ(σt;w)q(σt;w)−
∑
w∈W

θ(σt;w)qi(s;w)

∣∣∣∣< ε(d)

4
� (28)
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Since for any t̃ > t̂(d), the number of nodes σt̃ such that σt̄ = σ̄t̄ is finite, it follows that
there is at least one node σ̃t̃ such that

π
(
Ξ(σ̃t̃;d)

)
= π

(
σ
∣∣∣ σt̄ = σ̄t̄ 
 σt̃ = σ̃t̃ 
 cj (σt) <

ε(d)

2
and∣∣∣∣∑

w∈W
θ(σt;w)q(σt;w)−

∑
w∈W

θ(σt;w)qi(s;w)

∣∣∣∣< ε(d)

4

for all t ≥ t̃

)
> 1 − ξ(d)� (29)

Denote by Ω̃(d) the set of all nodes σ̃t̃ satisfying these properties. Note that for any
given path σ , on which j vanishes, σt ∈ Ω̃(d) occurs i.o. Furthermore, if d′ < d, then
ε(d′)≤ ε(d) and ξ(d′) ≤ ξ(d), so that Ω̃(d′) ⊆ Ω̃(d). Q.E.D.

LEMMA 19: Almost surely, on every path σ with σt̄ = σ̄t̄ , |θj(σt; w̄)−θ∗(w̄)|< d for every
σt ∈ Ω̃(d).

PROOF: Given σ̃t̃ ∈ Ω̃(d), consider its continuations σ with σt̃ = σ̃t̃ that belong to
Ξ(σ̃t̃;d) in (29). Note that w(σt̃+1)= w̄ occurs with probability at least π. Suppose first in
a manner of contradiction that θj(σt̃; w̄) ≥ d + θ∗(w̄) and sw1 = sw̄ = s(σt̃+1). The budget
constraint of j together with the definition of (θ∗(w))w∈W in (25) implies that

∑
w∈W

θj(σt̃; sw1;w)q(σt̃; sw1;w) ≥ d − ε(d)

2
+
∑
w∈W

θ∗(w)qi(sw1;w)

and, hence, by (28),∑
w∈W

θj(σt̃; sw1;w)q(σt̃; sw1;w) ≥ d − ε(d)+
∑
w∈W

θ∗(w)q(σt−1; sw1;w)�

Since by the definition of ε(d), d > 2ε(d) and

∑
w∈W

q(σt̃; sw1;w) <
∑
w∈W

qi(sw1;w)+
1 − max

s∈S

∑
w∈W

qi(s;w)

2
< 1


we have that for at least one w2 ∈W j ,

θj

(
σt̃; sw1;w2

) ≥ θ∗(w2
)+ d − ε(d)∑

w∈W
q(σt̃; sw1;w)

> θ∗(w2
)+ ε(d)�
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Recursively, noting that by assumption, for every κ,

d >
ε(d)

1 − max
s∈S

∑
w∈W

qi(s;w)

≥ ε(d)+ max
s∈S

∑
w∈W

qi(s;w)ε(d)+ · · · +
(

max
s∈S

∑
w∈W

qi(s;w)

)κ

ε(d) > ε(d)


there is a sequence of k̄(d) states such that

θj

(
σt̃; sw1 � � � swk̄;wk̄(d)+1

)
≥ θ∗(wk̄(d)+1

)

+

d − ε(d)∑
w∈W

q(σt̃; sw1;w)
− ε(d)

∑
w∈W

q(σt̃; sw1; sw2;w)
− ε(d)

� � �
− ε(d) � � �∑

w∈W
q(σt̃; sw1; sw2; � � � swk;w)

− ε(d)

≥ min
w∈W

θ∗(w)+ d − ε(d)

k̄∏
κ=1

⎡
⎢⎢⎣∑

w∈W
qi(swκ;w)+

1 − max
s∈S

∑
w∈W

qi(s;w)

2

⎤
⎥⎥⎦

>N�

Note, furthermore, that by assumption, the probability of such a sequence occurring
conditional on σ̃t̃ is at least π(sw1 � � � swk̄(d))≥ πk̄(d) = ξ(d) > 0 and, hence, the choice of σ
with σt̃+k̄(d) = (σ̃t̃; sw1 � � � swk̄(d)) belonging to the set Ξ(σ̃t̃;d) is nonvacuous. Furthermore,
θj(σ̃t̃; sw1 � � � swk̄(d);w) >N for some w ∈ W , in contradiction to Lemma 2.

A symmetric argument shows that if θj(σ̃t̃; w̄) ≤ −d + θ∗(w̄) for some σ̃t̃ ∈ Ω̃(d), there
is a path σ with σt̃ = σ̃t̃ such that σt̃+k̄(d) = (σ̃t̃; sw1 � � � swk̄(d)) has probability larger than
ξ(d) and, thus, belongs to Ξ(σ̃t̃;d) and θj(σ̃t̃; sw1 � � � swk̄(d);w) < −N for some w ∈ W , in
contradiction to Lemma 2

It follows that a.s. on every path σ with σt̄ = σ̄t̄ , |θj(σt; w̄) − θ∗(w̄)| < d holds for any
σt ∈ Ω̃(d), establishing the result of the lemma.

To conclude the proof of Proposition 14, we now establish that if |θj(σt; w̄)−θ∗(w̄)|< d̂
4

for some σt ∈ Ω̃( d̂
4 ), then the subsequent occurrence of state s′

w̄ implies that j’s asset hold-
ings will violate Lemma 2 in finite time with strictly positive probability. This generates
the necessary contradiction.
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Indeed, let d = d̂
4 . By Lemma 19, there is a finite period t0(

d̂
4 ) such that

π
(
Ξ̃(σ̃t̃)

)

= π

⎛
⎜⎜⎜⎝σ

∣∣∣∣∣ σt̄ = σ̄t̄ 
 cj (σt) <

ε

(
d̂

4

)
2




∣∣∣∣∑
w∈W

θ(w)q(σt;w)−
∑
w∈W

θ∗(w)qi(s;w)

∣∣∣∣<
ε

(
d̂

4

)
4

and, for σt ∈ Ω̃

(
d̂

4

)


∣∣θj(σt; w̄)− θ∗(w̄)

∣∣< d̂

4

for all t ≥ t0

(
d̂

4

))⎞⎟⎟⎟⎠

> 1 − ξ

(
d̂

4

)
�

As above, for any t̃ > t0(
d̂
4 ), there exists at least one node σ̃t̃ ∈ Ω̃( d̂

4 ) such that |θj(σ̃t̃; w̄)−
θ∗(w̄)| < d̂

4 . Note that the state s′
w̄ satisfying condition (26) occurs with a probability of at

least π conditional on σ̃t̃ , and, hence, combining the budget constraint of j at (σ̃t̃; sw1 =
s′
w̄) with condition (26) and the conditions imposed on σ̃t̃ ∈ Ω̃( d̂

4 ), we obtain25

∣∣∣∣∑
w∈W

θj

(
σ̃t̃; sw1 = s′

w̄;w)q(σ̃t̃; sw1 = s′
w̄;w)−∑

w∈W
θ∗(w)qi

(
sw1 = s′

w̄;w)∣∣∣∣≥ d̂

2
�

Replacing sw1 = sw̄ by sw1 = s′
w̄ and d by d̂

4 in the argument used in the proof of
Lemma 19 implies that there exists a path σ

t̃+k̄( d̂4 )
= (σ̃t̃; sw1 = s′

w̄; � � � s
w
k̄( d̂4 )

), which has

a probability strictly larger than ξ( d̂
4 ) and, thus, belongs to Ξ̃(σ̃t̃), and on which (σ̃t̃; sw1 =

s′
w̄; � � � s

w
k̄( d̂4 )

) /∈ [−N;N], violating Lemma 2. We thus obtain a contradiction to the con-

dition that |θj(σt;w1) − θ∗(w1)| < d̂
4 for all σ̃t̃ ∈ Ω̃( d̂

4 ) and all t̃ > t0(
d̂
4 ) established in

Lemma 19.
We thus conclude that if βi <

u′
i(m

′)
u′
i(m̃)

, there is no node σ̄t̄ conditional on which j vanishes
with probability 1, except for a set of initial endowments with measure 0. Since i and j
effectively trade on the same set of assets W , the argument for i is symmetric. Q.E.D.

25Note that ε(D
4 ) <

D
4 and, hence, cj (σt) <

ε( D4 )

2 < D
8 , |∑w∈W θ(w)q(σt;w)−∑w∈W θ∗(w)qi(s;w)| < ε( D4 )

4 <
D
16 , and |θj(σt;w1)− θ∗(w1)| < D

4 .



MARKET SELECTION 1755

Proof of Proposition 15

Let

w1 ∈ arg max
w∈W i

min
s∈w

ei(s)�

LEMMA 20: Under the conditions of the proposition, the parameters of the economy sat-
isfy

−min
s∈w1

ei(s)− q̄max
w∈W i

min
s∈w

ei(s) >

−max
w∈W i

min
s∈w

ei(s)

1 − q̄

> −max
s∈w1

ei(s)− qmin
w∈W i

max
s∈w

ei(s) (30)

and

q̄

max
s∈w1

ei(s)+ min
w∈W i

max
s∈w

ei(s)

max
s∈w1

ei(s)+ min
w∈W i

max
s∈w

ei(s)− max
w∈W i

min
s∈w

ei(s)
< 1� (31)

PROOF: Note that

−min
s∈w1

ei(s)− q̄max
w∈W i

min
s∈w

ei(s) > −
max
w∈W i

min
s∈w

ei(s)

1 − q̄

is equivalent to q̄2 maxw∈W i mins∈w ei(s) > 0, which is always satisfied.
Since maxw∈W i mins∈w ei(s) < (1 − q)(1 − q̄)minw∈W i maxs∈w ei(s),

−max
w∈W i

min
s∈w

ei(s) > −(1 − q)(1 − q̄)min
w∈W i

max
s∈w

ei(s) or

−max
w∈W i

min
s∈w

ei(s)

1 − q̄
> −max

s∈w1
ei(s)− qmin

w∈W i
max
s∈w

ei(s)

and we obtain (30).
Since q < 1, the second inequality in (30) then implies

−max
w∈W i

min
s∈w

ei(s)

1 − q̄
>−max

s∈w1
ei(s)− min

w∈W i
max
s∈w

ei(s)


which is equivalent to

0 <
[
(1 − q̄)max

s∈w1
ei(s)+ (1 − q̄)min

w∈W i
max
s∈w

ei(s)− max
w∈W i

min
s∈w

ei(s)
]

and, thus, to (31).
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Choose ε such that ε < m̃ and by (30) such that

−max
w∈W i

min
s∈w

ei(s)

1 − q̄
>−max

s∈w1
ei(s)− qmin

w∈W i
max
s∈w

ei(s)+ ε(1 − q)� (32)

Let k̄ be the smallest natural number such that⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1

q̄

max
w∈W i

min
s∈w

ei(s)+ min
w∈W i

max
s∈w

ei(s)

max
s∈w1

ei(s)+ min
w∈W i

max
s∈w

ei(s)− max
w∈W i

min
s∈w

ei(s)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

k̄

>
N

m̃− ε
� (33)

By (31), k̄ is finite and since, clearly

max
w∈W i

min
s∈w

ei(s)+ min
w∈W i

max
s∈w

ei(s)

max
s∈w1

ei(s)+ min
w∈W i

max
s∈w

ei(s)− max
w∈W i

min
s∈w

ei(s)
> 1


(33) implies [
1
q̄

]k̄
>

N

m̃− ε
and

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1

q̄

max
s∈w1

ei(s)+ min
w∈W i

max
s∈w

ei(s)

max
s∈w1

ei(s)+ min
w∈W i

max
s∈w

ei(s)− min
s∈w1

ei(sw1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

k̄

>
N

m̃
�

Let26 ξ ∈ (0;πk̄+2).
Suppose in a manner of contradiction that i vanishes a.s. conditional on node σ̄t̄ . Then

there exists a t̂(ε;ξ) such that

π
(
σ | σt̄ = σ̄t̄ 
 cj (σt) < ε for all t ≥ t̂(ε;ξ))> 1 − ξ�

Since for any t̃ > t̂(ε;ξ), the number of paths σt̃ such that σt̄ = σ̄t̄ is finite, it follows
that there is at least one path σ̃t̃ such that

π
(
Ξ(σ̃t̃;ε;ξ))= π

(
σ | σt̄ = σ̄t̄ 
 σt̃ = σ̃t̃ 
 cj (σt) < ε and for all t ≥ t̃

)
> 1 − ξ� (34)

Denote by Ω̃(ε;ξ) the set of all nodes σ̃t̃ satisfying these properties. Note that as in
the proof of Proposition 14, σt ∈ Ω̃(ε;ξ) occurs i.o. a.s. on every path such that σt̄ =
σ̄t̄ . Q.E.D.

26Clearly, the definition of both ξ and k̄ depends on ε. However, since the value of ε will remain fixed for
this proof, this dependence is omitted in the notation for brevity.
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LEMMA 21: For any σ̃t̃ ∈ Ω̃(ε;ξ),

θi

(
σ̃t̃;w1

)
< −max

s∈w1
ei(s)+ ε− q

[
min
w∈W i

max
s∈w

ei(s)− ε
]

must hold.

PROOF: Suppose in a manner of contradiction that θi(σ̃t̃;w1) ≥ −maxs∈w1 ei(s) + ε −
q[minw∈W i maxs∈w ei(s)− ε] for some σ̃t̃ ∈ Ω̃(ε;ξ). Given σ̃t̃ , w1 occurs with probability at
least π > ξ. According to the budget constraint of agent i, and since i’s consumption is
lower than ε, ∑

w∈W i

θi(σ̃t̃; sw1;w)q(σ̃t̃; sw1;w) ≥ θi

(
σ̃t̃;w1

)+ ei(sw1)− ε�

Since q ≤∑w∈W i q(σ̃t̃; sw1;w) ≤ q̄ < 1, it follows that there exists a state realization sw1

and w2 such that

θi

(
σ̃t̃; sw1;w2

)≥ θi

(
σ̃t̃;w1

)+ ei(sw1)− ε∑
w∈W i

q(σ̃t̃; sw1;w)
>− min

w∈W i
max
s∈w

ei(s)+ ε

and (σ̃t̃; sw1) belongs to the set Ξ(σ̃t̃;ε;ξ) in (34).
By a similar argument, there exists a state realization sw2 ∈ w2 and a w3 such that

(σ̃t̃; sw1; sw2) occurs with conditional probability of at least π2 > ξ and, hence, belongs
to Ξ(σ̃t̃;ε;ξ) and

θi

(
σ̃t̃; sw1;w2;w3

)≥ θi

(
σ̃t̃; sw1;w2

)+ ei(sw2)− ε∑
w∈W i

q(σ̃t̃; sw1; sw2;w)
> 0�

Then there exists sw3 ∈w3 and w4 such that (σ̃t̃; sw1; sw2) occurs with conditional probabil-
ity of at least π3 > ξ and, hence, belongs to Ξ(σ̃t̃;ε;ξ) and

θi

(
σ̃t̃; sw1;w2;w3

)≥ ei(sw3)− ε∑
w∈W i

q(σ̃t̃; sw1; sw2; sw3;w)
�

We obtain by induction that there exists a sequence w1 � � �wk̄+2 such that (σ̃t̃; sw1 � � � swk̄+2)

occurs with conditional probability at least π(sw1 � � � swk̄+1)≥ πk̄+2 > ξ and, hence, belongs
to Ξ(σ̃t̃;ε;ξ) and

θi

(
σ̃t̃; sw1; sw2 � � � swk̄+2;wk̄+3

)
>

θi

(
σ̃t̃; sw1; � � � swk̄+1;wk̄+2

)+ ei(swk̄+2)− ε∑
w∈W i

q(σ̃t̃; sw1; � � � swk̄+2;w)
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>
θi

(
σ̃t̃; sw1; � � � swk̄;wk̄+1

)+ ei(swk̄+1)− ε∑
w∈W i

q(σ̃t̃; sw1; � � � swk̄+1;w)
∑
w∈W i

q(σ̃t̃; sw1; � � � swk̄+2;w)
+ ei(swk̄+2)− ε∑

w∈W i

q(σ̃t̃; sw1; � � � swk̄+2;w)

� � �

≥ ei(sw3)− ε

q̄k̄
≥ m̃− ε

q̄k̄
> N�

Since θj(σ̃t̃; sw1 � � � swk̄+2;wk̄+3) > N contradicts Lemma 2, we obtain the desired result.
Q.E.D.

LEMMA 22: For any σ̃t̃ ∈ Ω̃(ε;ξ),
θi

(
σ̃t̃;w1

)≥ −max
s∈w1

ei(s)+ ε− q
[

min
w∈W i

max
s∈w

ei(s)− ε
]

must hold.

PROOF: Suppose in a manner of contradiction that for some σ̃t̃ ∈ Ω̃(ε;ξ), θi(σ̃t̃;w1)≤
−maxs∈w1 ei(s)+ ε− q(minw∈W i maxs∈w ei(s)− ε) and, hence, by (30) and (32),

θi

(
σ̃t̃;w1

)
<

−max
w∈W i

min
s∈w

ei(s)

1 − q̄
(35)

and

θi

(
σ̃t̃;w1

)
< −min

s∈w1
ei(s)− q̄max

w∈W i
min
s∈w

ei(s) = −(1 − q̄)max
w∈W i

min
s∈w

ei(s)�

Hence, there is a state realization sw1 , which occurs with probability at least π > ξ and
w2, such that the budget constraint of agent i implies

θi

(
σ̃t̃; sw1;w2

)≤ θi

(
σ̃t̃;w1

)+ min
s
w1 ∈w1

ei(sw1)

q̄

and (σ̃t̃; sw1) belongs to Ξ(σ̃t̃;ε;ξ).
Let q̃1 be defined as

θi

(
σ̃t̃; sw1;w2

)= θi

(
σ̃t̃;w1

)
q̃1

�

Note that

θi

(
σ̃t̃;w1

)
q̃1

<

θi

(
σ̃t̃;w1

)+ min
s
w1 ∈w1

ei(sw1)

q̄



q̃1 < q̄
θi

(
σ̃t̃;w1

)
θi

(
σ̃t̃;w1

)+ min
s
w1 ∈w1

ei(sw1)
< 1


where the last inequality follows from (35).
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Note further that

q̄
θi

(
σ̃t̃;w1

)
θi

(
σ̃t̃;w1

)+ min
s
w1 ∈w1

ei(sw1)
< q̄

max
s∈w1

ei(s)+ min
w∈W i

max
s∈w

ei(s)

max
s∈w1

ei(s)+ min
w∈W i

max
s∈w

ei(s)− min
s
w1 ∈w1

ei(sw1)
< 1


where the second inequality was shown in (31).
We conclude that

θi

(
σ̃t̃; sw1;w2

)
< θi

(
σ̃t̃;w1

)
< −

max
w∈W i

min
sw∈w

ei(sw)

1 − q̄
�

Hence, there exists an s2
w and w3 such that, according to i’s budget constraint,

θi

(
σ̃t̃; sw1; sw2;w3

)≤ θi

(
σ̃t̃; sw1;w2

)+ min
s2
w∈w2

ei
(
s2
w

)
q̄

and the conditional probability of (σ̃t̃; sw1; sw2) is at least π2 > ξ, implying that it belongs
to Ξ(σ̃t̃;ε;ξ). Define q̃2 as

θi

(
σ̃t̃; sw1; sw2;w3

)= θi

(
σ̃t̃; sw1;w2

)
q̃2

and note that

q̃2 ≤ q̄
θi

(
σ̃t̃; sw1;w2

)
θi

(
σ̃t̃; sw1;w2

)+ min
s2
w∈w2

ei
(
s2
w

) < q̄
θi

(
σ̃t̃;w1

)
θi

(
σ̃t̃;w1

)+ min
w1∈w1

ei(sw1)
< 1�

Proceeding iteratively, we conclude that there exists a sequence sw1 � � � swk̄ with condi-
tional probability at least π(sw1 � � � swk̄) ≥ πk̄ > ξ so that σt̃+k̄ = (σ̃t̃; sw1 � � � swk̄+2) belongs
to Ξ(σ̃t̃;ε;ξ) and a wk̄+1 such that

θi

(
σ̃t̃; sw1 � � � swk̄;wk̄+1

)
<

θi

(
σ̃t̃;w1

)
⎡
⎢⎣q̄ max

s∈w1
ei(s)+ min

w∈W i
max
s∈w

ei(s)

max
s∈w1

ei(s)+ min
w∈W i

max
s∈w

ei(s)− min
s
w1 ∈w1

ei(sw1)

⎤
⎥⎦

k̄

<
−m̃⎡

⎢⎣q̄ max
s∈w1

ei(s)+ min
w∈W i

max
s∈w

ei(s)

max
s∈w1

ei(s)+ min
w∈W i

max
s∈w

ei(s)− min
s
w1 ∈w1

ei(sw1)

⎤
⎥⎦

k̄
< −N�

However, θi(σ̃t̃; sw1 � � � swk̄;wk̄+1) <−N contradicts Lemma 2, thus establishing the result
of the lemma. Q.E.D.

Combining the results of Lemmata 21 and 22, we conclude that there is no node σ̄t̄

conditional on which agent i a.s. vanishes.
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