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ABSTRACT
An ambitious goal in cosmology is to forward model the observed distribution of galaxies in
the nearby Universe today from the initial conditions of large-scale structures. For practical
reasons, the spatial resolution at which this can be done is necessarily limited. Consequently,
one needs a mapping between the density of dark matter averaged over ∼Mpc scales and the
distribution of dark matter haloes (used as a proxy for galaxies) in the same region. Here, we
demonstrate a method for determining the halo mass distribution function by learning the tracer
bias between density fields and halo catalogues using a neural bias model. The method is based
on the Bayesian analysis of simple, physically motivated, neural network-like architectures,
which we denote as neural physical engines, and neural density estimation. As a result, we are
able to sample the initial phases of the dark matter density field while inferring the parameters
describing the halo mass distribution function, providing a fully Bayesian interpretation of
both the initial dark matter density distribution and the neural bias model. We successfully run
an upgraded BORG (Bayesian Origin Reconstruction from Galaxies) inference using our new
likelihood and neural bias model with halo catalogues derived from full N-body simulations.
In preliminary results, we notice there could potentially be orders of magnitude improvement
in modelling compared to classical biasing techniques.

Key words: methods: data analysis – methods: statistical – galaxies: haloes – dark matter –
large-scale structure of Universe.

1 IN T RO D U C T I O N

Observations of the large-scale structure of the Universe provide a
window that allows us to constrain physical models of the Universe.
Although cosmological models can predict the statistical nature of
the structures that we see, it is difficult to extract the wealth of
information that we observe in real objects. One is able to make use
of these real structures by constraining the initial amplitudes and
phases of the dark matter distribution conditional on the observed
data. This ambitious task is made possible using algorithms such
as the Bayesian Origin Reconstruction from Galaxies (BORG)
algorithm (Jasche & Wandelt 2013; Jasche, Leclercq & Wandelt
2015; Lavaux & Jasche 2016) and/or other reconstruction schemes
(e.g. Kitaura & Enßlin 2008; Kitaura 2013; Wang et al. 2016; Feng,

� E-mail: charnock@iap.fr

Seljak & Zaldarriaga 2018). With the BORG algorithm, the initial
distribution of dark matter is evolved forward to the dark matter
density today, at which point a bias model is used to compare
to the observed distribution of galaxies via a choice of metric (the
likelihood). In essence, the bias model contains a phenomenological
description of the complex astrophysics that dictates how galaxies
trace the dark matter distribution (Peebles 1980; Kaiser 1984).
The bias model therefore is a parametrized surrogate for the
extremely non-linear, scale-dependent, and environment-dependent
astrophysics of galaxy formation and evolution. By assuming that
galaxy formation is a local function of the dark matter density,
one can still gain information about cosmology from the large-
scale distribution of galaxies that is related to the large-scale mass
density distribution. However, a poor choice of bias model can
massively impact the inference of the initial conditions due to the
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mapping between the dark matter distribution and the observables
being incorrect (Elsner et al. 2020).

In this work, we present a novel suite of methods for learning
a bias model based on physically motivated, neural network-
like algorithms (which we dub ‘neural physical engines’, NPEs)
and neural density estimators: a neural bias model. The ‘neural’
adjective is used here because we are inspired by the computational
machinery introduced by the machine learning community, and in
particular neural networks, to solve for the parameters of the bias
model. Furthermore, the parameters of the network will be inferred
as part of the feed-forward inference of the initial density phases
within the BORG framework. As such, the parameters for such a
neural bias model become part of the fully Bayesian interpretation
of the constraints. By using the physically motivated architectures of
an NPE, we can both massively decrease the number of parameters
in the model and drastically increase the interpretability of where
the information about the bias model arises in the data.

The combination of the NPE and the Bayesian sampling of the
parameters of the model provides us with a method for using neural
networks without any training data since the distribution of weights
(parameters of the bias model) is conditional on the true (observed)
data. Our approach is therefore the realization of an ultimate version
of zero-shot learning; the neural bias model is learned directly from
the data to be analysed, without reference to any training data.

For convenience, we will limit ourselves to modelling the relation
between the large-scale dark matter distribution and its embedded
small-scale haloes. Haloes are gravitationally bound objects that
host the galaxies that we see. It is useful to be able to describe the
distribution of haloes of a particular mass within a given density
environment. By learning to parametrize this distribution as a
function of the local density field, it becomes possible to sample
realizations of the observed haloes that can then be constrained
using halo catalogues. Therefore, this method provides a way to
emulate some of the features of the halo occupation distribution
model using only differentiable operations.

The paper will follow as such. In Section 2, we will describe
the properties of the halo mass distribution function that relates the
dark matter distribution today to (observed) haloes. We will then
show in Section 3 that we can build a neural network capable of
learning this function from data, and how this network can be made
efficient and interpretable using physical principles. We will also
explain how the parameters of this NPE can be inferred to provide
us with a fully Bayesian interpretation of the neural bias model. In
Section 4, we will elucidate the BORG framework and how the neural
bias model can be included. Finally, in Section 5 we present the data
simulation, model, and results before concluding in Section 6.

2 H ALO MASS D ISTRIBUTION FUNCTION

The halo mass distribution function conditioned on density, n(M|δ),
is a measure of the number of counts of haloes as a function of mass,
given the environment (Press & Schechter 1974; Bardeen et al.
1986; Mo & White 1996; Sheth & Tormen 2004a). In particular,
there are a number of different effects that influence the form of
this function, including the formalism of Press & Schechter (1974)
in which the formation of gravitationally collapsed objects from
the initial density fluctuations is described by a power law for small
masses with an evolving exponential mass cut-off. Further, the local
density field is known to affect the shape of the function (Kaiser
1984; Bardeen et al. 1986; Sheth & Tormen 2004b). Stochastic and
higher order effects are also known to influence the mass distribution

of haloes, in particular the departure from a Poissonian distribution
of the bias (Kitaura, Yepes & Prada 2014; Saito et al. 2014).

We use this principle to motivate a physical mapping between
the dark matter density distribution and the dark matter haloes. To
include all relevant information, and allow freedom to correctly
fit the true halo mass distribution, we will consider a neural bias
model with the ability to learn about the important structures of
the environment that affect the number of haloes with different
masses, directly from the data, without additional training data. In
this first outlook into learning such tracer biases, we will consider
a Poissonian sampling of the halo mass distribution function,
where we allow some freedom from the Poissonity by non-linearly
combining local patches of the density field. It should be noted that
here we are also only considering real space simulations and not
observation in redshift space, which will be necessary for use with
real surveys. This can be generalized straightforwardly, and this will
be explored in future work.

For very narrow mass bins [m,m + �m], we may express the
Poisson intensity from the expectancy λi,m of observing Ni,m haloes
within a particular bin as

λi,m ≡ 〈Ni,m〉

= V

∫ m+�m

m

dM n(M|{δj |j ∈ local patch around i}), (1)

with V the volume of a voxel of the grid where i labels a specific
voxel and j labels the voxels in some local patch around i. The
density field δ(θ) ≡ {δi | i ∈ voxels} is a function of some set of
parameters θ that describe cosmology, the tracer bias between the
halo and dark matter, and the initial conditions of the dark matter
density field. In the above, we note that the halo distribution may be
voxel dependent. For a Poisson likelihood, for which all mass bins
and all voxels are independent, we may write the logarithm of the
likelihood L(θ |d) as

L(θ |d) =
∑

m∈mass bins
i∈voxels

(−λi,m(θ) + Nobserved
i,m log λi,m(θ)

)
, (2)

with the observed data d = {Nobserved
i,m | i, m ∈ catalogue} as the

number of haloes observed in mass bin m and at voxel i in the
grid. The above equation is just the sum of the logarithm of
the Poisson probability distribution, which arises naturally since
Poisson distributions are additive. For very narrow mass bins, such
that �m → 0, the number of observed haloes in each mass bin
can only be 0 or 1, Nobserved

i,m = 0 ∨ 1. We may thus reorganize the
summation as

L(θ |d) =
∑

h∈catalogue

log λih,mh
(θ )

∑
m∈mass bins

i∈voxels

λi,m(θ ) , (3)

where λih,mh
corresponds to the expected Poisson intensity for the

hth halo in the catalogue whose mass is in the mass bin mh and is
located at the voxel ih. By substituting equation (1) into equation (3),
we can see

L(θ |d) =
∑

h∈catalogue

log
(
n(mh|{δj | j ∈ local patch around ih})

)

−V
∑

i∈voxels

∫ ∞

mτ

dM n(M|{δj | j ∈ local patch around i}),

(4)

where we have discarded the constant induced by the logarithm of
the infinitesimal binning �m. The first term involves calculating
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the halo mass distribution function for every halo of the catalogue
given the density at each halo’s position on a grid. The second term
evaluates the halo mass distribution function at every voxel in the
gridded density field and integrates over the mass from some mass
threshold mτ .

3 N E U R A L B I A S MO D E L

We wish to build an automatic method for modelling the halo mass
distribution function based on the physical principles that we know
are relevant, but which is parametrized as simply as possible to
provide us with the ability to effectively sample the parameters of
this model. The added bonus of such a simple model is the increased
interpretability of the function.

Our model for n(mh|{δj | j ∈ local patch around ih}) consists of
two parts. First, we need to determine the influence of the central and
adjacent voxels {δj | j ∈ local patch around ih}. How to determine
this mapping using convolutional kernels is described in Section 3.1.
Secondly, since we want to build the output of the neural bias
model to be the halo mass distribution function, we need to ensure
that the outputs are evaluations of this function for haloes of a
certain mass given a density environment. To do so, we can consider
neural density estimators, and in this case a simple mixture density
network (MDN) is sufficient. MDNs are explained in further detail
in Section 3.2. Finally, it is essential that we can infer the parameters
of our neural bias model to provide us with a fully Bayesian
interpretation of the initial density field and the tunable parameters
of the network. The method by which we are able to efficiently
sample these parameters is described in Section 3.3.

3.1 Neural physical engines

We will here use terminology familiar to those in the machine
learning and computer science communities (for full details, see
e.g. Goodfellow, Bengio & Courville 2016). Much of the work
considered derives from the understanding of neural networks.
Neural networks are described as a set of algorithms with trainable
parameters known as weights and biases that map an input to an
output. The algorithms usually consist of simple operations such
as matrix multiplications or convolutions between input and weight
vectors. The output vectors of these operations are then normally
acted upon by a scalar activation function, which allows one to
add non-linearity to the mapping. Finally, many layers of these
operations can be stacked input to output, building a great deal
of abstraction between the original input and the final output. This
provides us with a highly complex, non-linear, and arbitrary function
that can be fitted using training data.

It is currently fashionable to build extremely large, deep neural
networks capable of huge abstraction from the input to the output.
However, in physics we have models that can drive the design and
conception of the architecture that we wish to use. The symmetries
of the physical model that describes the data can be used to
massively reduce both the amount of data and effort needed to train
such an NPE. Since an NPE is greatly restricted in the freedom
along the directions that we know are constrained by the data, there
is far less chance of overfitting. Along with this, we obtain a much
greater interpretability of what the neural network is doing. In this
work, we will denote the NPE N(θNPE) : δ → ψ , i.e. the physically
motivated mapping with tunable parameters θNPE that takes a patch
of the evolved density field δ to a transformed informative vector,
ψ , for the halo mass distribution function. Note in this work that

we consider the size of ψ to be 1 as it represents the transformed
density field in the central voxel.

As described at the start of Section 2, we already know that the
local density fluctuations are important for describing the halo mass
distribution, as is the large-scale overdensity. We also know that the
action of the tracing of the dark matter distribution by haloes is both
translationally and rotationally invariant, although local distortions
can give rise to more optimal environments for the development of
haloes. Furthermore, we know that the bias model is non-linear, all
of which we can build into our neural bias model.

Thus, in summary, we seek a mapping that will convolve the
density in nearby voxels and return a value, ψ , which characterizes
the environment. This summary will then be used as the informative
input in determining the halo distribution function.

We start constructing our model using convolutional kernels that
respect symmetries. Naturally, the idea of convolutional kernels
respects the translational symmetry of the problem. As is usual in
the machine learning literature, convolutional kernels are matrices
where every element is a trainable parameter known as a weight.
Since we also want to build in rotational invariance and local de-
formations of rotational invariance, we expand the kernels in terms
of multipoles. This provides us with a hierarchy of convolutional
kernels with each multipole describing further deformation from
exact rotational symmetry.1 In three dimensions (as considered
here), the basis of rotational symmetries of the convolutional kernels
is spherical harmonics. In the �= 0 case, such a kernel is constructed
by associating the same weight in the convolutional kernel to each
matrix position that is equidistant from the centre. Then, for � = 1
we have 2� + 1 kernels where each weight is associated by distance
and by the values of Y �

m(θ, φ) at angles θ and φ from the centre
of the matrix. This expansion can be continued to learn further
information about deformations away from exactly rotationally
invariant environments. As an example of the drastic savings in
the number of weights that one can obtain by expanding the kernels
in terms of multipoles, consider a 33 kernel. This kernel would
traditionally have 27 independent trainable parameters. The � =
0 kernel has only four weights, one at the centre and one shared
on every edge, every face, and every corner. The � = 1 kernel has
(2� + 1) = 3 output feature maps, each kernel containing three
independent weights. In this case, only 9 parameters are needed
in the place of 27. It should be noted that if the � = 2 kernel is
also included, all 27 of the available parameters of a 33 kernel are
exhausted. As these kernels are fitted, using whichever optimization
procedure is most suitable, information is extracted from the data
via these orthogonal pathways. By analysing the scale of the weights
in each of these kernels, it becomes obvious to see where the
information in the data is contained. That can be, for example, in the
radially symmetric patches of the data, or in the shear component
of the data. To summarize, the output feature maps, C�,m, of the
symmetry respecting convolutional kernels, K �,m, take the form

C
�,m
j =

κ/2∑
i=−κ/2

K
�,m
i δj−i . (5)

Here, for simplicity, we have written a single sum representing the
N summations for a kernel K �,m ∈ RN , where κ represents the size
of each of the N dimensions of K�,m. The values of K

�,m
i depend on

1The code for generating multipole kernels in TENSORFLOW (with available
KERAS module) is available at https://github.com/tomcharnock/multipole k
ernels.

MNRAS 494, 50–61 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/494/1/50/5804803 by guest on 21 M
ay 2024

https://github.com/tomcharnock/multipole_kernels


Neural bias model 53

the multipole (�, m). Each � and m kernel has a different prescription
of the number of shared weight elements and the position of those
shared elements within the kernel.

The non-linearity of the bias model is included via the application
of an activation function to the output of the convolutional kernels.
Formally, we thus have

φ�,m = A(C�,m) , (6)

with A(x) a scalar activation function and φ�,m as the � and m
components of the activated feature maps. A(x) is normally chosen
to be a non-linear function that can be optimally specified depending
on the function that the network is approximating. The more
concurrent layers in the NPE, the more non-linear the response
from the input patch can be. Moreover, deep, activated stacks
independent along the orthogonal pathways can provide extremely
complex functions that remain, for example, rotationally invariant
for � = 0, provided the activation function remains scalar. This is
a particular example, relevant to the case under consideration here,
because we restrict to � = 0. For broader applications, coupling the
multipoles would drastically broaden the scope of physical effects
that can be modelled.

To ensure that the relevant local information is taken into account,
the size of the kernel (or the total combined receptive patch of many
layers of convolutions) must be large enough to pull all relevant
information from the data. This size should generally be known,
thanks to the physical model. However, regardless of this, one
can construct large spatial multipole kernels if necessary, since the
number of parameters is already massively reduced. The parameter
values from regions of the kernel that are not important will tune
to zero and be interpretable as the distance over which information
is relevant for the problem. Furthermore, the scales of each of the
kernels for different multipoles will indicate on which scales the
degree of deformation is most important.

Finally, we choose to use the late-time overdensity field as
our input such that the neural bias model is provided with the
non-local information about the density field via the mean of
the distribution. We could consider, instead, biasing the initial
conditions and transporting that along with the dynamical model
forming a Lagrangian neural bias model, which folds in the dark
matter history. We will explore this option in future works since it is
possible that a sufficiently complex neural bias model will be able
to obtain these aspects of the history from the final time-step.

Using these techniques, we build a well-reasoned model that
performs the real space mapping to the quantity of interest while
remaining free enough to fit the complex function, all the while
being interpretable.

3.2 Mixture density networks

To approximate the halo mass distribution function, we make use of
a very slight variation of an MDN (Bishop 1994). MDNs use neural
networks fitted to predict the normalized weights and parameters of
several distributions, such as the mean and standard deviation of a
Gaussian distribution, the event rate of a Poisson distribution, or the
shape parameters of a β-distribution. By combining a mixture of dis-
tributions, new distributions of many different forms can be built:

P(x|d, θ ) =
N∑

ι=1

αι(d, θ )Fι(x|d, θ ), (7)

where P(x|d, θ ) is the mixture of probability distributions,
Fι(x|d, θ ) is the collection of N parametrizable distributions,

αι(d, θ ) is a set of amplitudes for each distribution, and x, d, and θ

are the parameters of the model to be inferred, the input data, and
the trainable parameters of the neural network, respectively.

To ensure that the output of the MDN can be interpreted as
a probability distribution, the set of αι(d, θ ) is activated using a
softmax function, defined as

softmax(α) = αι∑N

ι=1 αι

. (8)

This ensures that the amplitudes are normalized. In principle,
the number of distributions in the MDN is self-regulating since
the amplitudes of any irrelevant distributions vanish. This self-
regularization can lead to problems with Bayesian sampling of the
network since there is strong multimodality. This multimodality is
in practice solved by restricting the parameter space as we show in
equation (11).

We are interested in approximating the number density of
haloes with a certain mass given a density environment, n(M|δi) ≡
N̄P(M|ψ i , θ

MDN), where ψ i is the (single-valued) vector output of
the NPE whose input is {δj | j ∈ local patch around i}) as discussed
in Section 3.1 and N̄ is the mean number density. Since the number
density is not a probability distribution, we do not constrain the set
of amplitude parameters α(ψ, θα

ι ) using the softmax function, and
instead just ensure their positivity.

Since the halo mass distribution function is relatively smooth (as
seen via the diamonds in Fig. 2), we decide to model it using a
mixture of Gaussians

n(M|δ) =
N∑
ι

α
(
ψ, θα

ι

)
N

(
μ
(
ψ, θμ

ι

)
, σ (ψ, θσ

ι )|M)

=
N∑
ι

α
(
ψ, θα

ι

)
√

2π
(
σ
(
ψ, θσ

ι

))2
exp

[
−
(
log(M) − μ

(
ψ, θμ

ι

))2

2
(
σ
(
ψ, θσ

ι

))2

]
,

(9)

where we consider the logarithm of the mass for numerical stability
and the insight provided by the Press–Schechter formalism on
the mass function. For convenience, we will denote the parame-
ters of the ιth distribution as α(ψ, θα

ι ) ≡ αι, μ(ψ, θμ
ι ) ≡ μι, and

σ (ψ, θσ
ι ) ≡ σι. The parameters of our mixture of Gaussians depend

on ψ and the trainable parameters θMDN = {
θα, θμ, θσ

}
, where

each θα,μ,σ = {
wα,μ,σ

ι , bα,μ,σ
ι

∣∣ι ∈ [0, N )
}

. The parameters of the
Gaussians are calculated as

αι = softplus
(
wα

ι ψ + bα
ι

)
, (10)

μι =
{

wμ
ι ψ + bμ

ι , if ι = 0,

max
[
0, wμ

ι ψ + bμ
ι

] + μι−1, if ι > 0,
(11)

σι = softplus
(
wσ

ι ψ + bσ
ι

)
, (12)

where the function softplus is defined as softplus(x) ≡ log(1 +
exp x). The softplus function is used to ensure the positivity of both
the amplitude and standard deviations of the MDN, while being
differentiable at any point. The means of the MDN are ordered by
amplitude from smallest to largest. This is required to remove the
degeneracy introduced when removing the softmax constraint on
the amplitudes.

Since we have some prior on the function, we decide to use
a shifted coordinate system for the weights, making use of our
knowledge of the halo mass distribution function (seen in Fig. 2).
We therefore include an initial amplitude αinit, width σ init, and mass
threshold mass threshold mτ :

bα → bα + αinit, (13)
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b
μ
0 → b

μ
0 + log (mτ ) , (14)

bσ → bα + σ init, (15)

which allows all the parameters of the MDN, θMDN, to be approx-
imately centred on zero. This will be useful when sampling the
parameters of the neural bias model since the prior is simple to
implement (discussed further in Section 3.3).

Using equation (9) as the halo mass distribution function, we can
rewrite the log-likelihood (in equation 4) as

L(θ |d) =
∑

h∈catalogue

log

⎡
⎢⎣ N∑

ι

αι,ih√
2πσ 2

ι,ih

exp

[
−
(
log(mh) − μι,ih

)2

2σ 2
ι,ih

]⎤⎥⎦

−V
∑

i∈voxels

N∑
ι

αι,i

2
exp

[
σ 2

ι,i

2

]
erfc

⎡
⎢⎣ log (mτ ) − μι,i − σ 2

ι,i√
2σ 2

ι,i

⎤
⎥⎦ ,

(16)

where αι,i, μι ,i, and σ ι,i represent the amplitude, mean, and standard
deviations of the ιth element of the mixture of Gaussians given
an input ψ i at voxel i. The data d are described by the haloes
in catalogue at positions ih in mass bin mh. This is the effective
likelihood surface that we wish to explore to be able to infer the
distribution of parameters in the neural bias model at the same time
as the initial phases of the dark matter distribution.

Removing the constraint on the amplitudes of the distributions
means that the number of distributions can no longer self-regulate.
Therefore, we must choose a fixed number of distributions, deter-
mined by the expected shape of the function. It is possible to make
use of Bayesian optimization and model comparison to perform the
regularization, and this will be studied further in future works.

3.3 HMCLET

To obtain a Bayesian interpretation of the neural bias model (and the
initial phases of the density field), we need to infer the distribution
of the parameters of the model. The landscape of the likelihood
surface (in equation 16) is extremely flat in the directions of the
parameters of the neural bias model and is highly correlated, often
in unpredictable ways. As such, we need to use specific techniques
to be able to effectively traverse the likelihood surface. We use
a Hamiltonian Monte Carlo (HMC, also known as hybrid Monte
Carlo; Duane et al. 1987) sub-block in the BORG framework (which
we call HMCLET with -LET denoting the small dimensionality of
the HMC) to draw samples from the target conditional posterior
distribution of the neural bias model parameters given the matter
density field. HMC is a Markov chain Monte Carlo method where
the proposed states are dictated by a momentum, p, i.e. the
first-order gradient information of the target distribution, and the
acceptance rate is kept high via conservation of energy momentum.
In particular, the Hamiltonian is defined as the negative log-
probability of the distribution, P(θ , p), of model parameters, θ , and
momenta, p:

H(θ, p) = P(θ , p)

= K( p) + V(θ)

= 1

2
pT M−1 p − L(θ |d) − log [π (θ)] + constant. (17)

K( p) is a kinetic energy with a mass matrix, M, describing the
correlation between parameters. V(θ) is a potential energy formed
from the negative logarithm of the likelihood (in equation 16) and
the prior, π (θ), on the parameters. The state z = {θ, p} is found
by solving the ordinary differential equation (ODE) derived from
Hamiltonian dynamics:
θ̇ = M−1 p, (18)

ṗ = −∇V(θ), (19)

where the dots are derivatives in time (as introduced for the mo-
menta). Proposals of the ith parameters, θ i , are generated by drawing
a momentum from a proposal distribution, pi ← N (0, M), and
evolving these using equations (18) and (19) to obtain z∗ = {θ∗, p∗}.
The acceptance condition for the Metropolis–Hasting procedure is
obtained by computing the difference in energies between the ith
state and the proposed state:

acceptance probability = min
[
exp(�H), 1

]
, (20)

where �H = H(θ i , pi) − H(θ∗, p∗) arises from the discretization
of solving Hamilton’s equations. If the equations were solved
exactly (the Hamiltonian is conserved), then every single proposal
is accepted. It is typical to use ε-discretization (leapfrog method)
to solve the ODE, where ε describes the step size of the integra-
tor (Verlet 1967). Smaller step sizes result in higher acceptance
rate at the expense of longer computational times of the integrator,
while larger step sizes result in shorter integration times, but lower
acceptance.

Because the likelihood described in equation (16) is flat with
sharp edges, the momentum of the model parameters can cause
the integrator to step away from the domain of existence of the
gradients of the likelihood. To prevent this, we choose a Gaussian
prior on each of the parameters θ = {θNPE, θMDN}, centred on zero
with identical widths:

π (θ ) ∝ exp

[
− |θ |2

2σ 2
prior

]
. (21)

We could choose more general priors independently for each
parameter, but this is difficult since we do not have prior information
on the scale of the weights of the network. We are able to set the
mean of the Gaussian prior to zero by ensuring that all trainable
parameters of the neural bias model are close to zero via the use
of the initial amplitude, width, and mass threshold mentioned in
Section 3.2. As such, we just have to choose the Gaussian prior
to be wide enough to allow plenty of freedom for parameter value
exploration while preventing the parameters of the neural bias model
from becoming extremely large. This also implies that the total
probability distribution is now ensured to be proper.

We also use an adaptation to the usual HMC paradigm, the
quasi-Newtonian HMC (QNHMC; Fu, Luo & Zhang 2016). This is
because there is very little a priori knowledge about the correlations
between the parameters of the neural bias model, especially those
in the NPE, and therefore the ODE is exceptionally stiff. With the
QNHMC, we make use of the second-order geometric information
of the target distribution as well as the gradient. This additional
information can be efficiently approximated using quasi-Newtonian
methods. The QNHMC modifies equations (18) and (19) to

θ̇ = BM−1 p, (22)

ṗ = −B∇V(θ), (23)
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where B is an approximation to the inverse Hessian derived from
the L-BFGS technique (Liu & Nocedal 1989) found using quasi-
Newton methods:

B∗ =
(

I − si yT
i

yT
i si

)
Bi

(
I − yi s

T
i

yT
i si

)
+ si sT

i

sT
i yi

, (24)

where si = θ∗ − θ i , yi = ∇V(θ∗) − ∇V(θ i), and I is the identity
matrix.2 The inverse Hessian effectively rescales the momenta and
parameters such that each dimension has a similar scale and thus
the movement around the likelihood surface is more efficient and
the produced proposals are less correlated. The mass matrix is still
present to set the dynamical time-scales of the ODE problem along
each direction. The rationale behind the choice of the mass matrix
is indicated in Appendix A. Note that the approximate inverse
Hessian varies with proposal, but is kept constant while solving
the ODE. Obtaining B∗ is extremely efficient because both si

and yi are calculated when solving equations (18) and (19) using
leapfrog methods. We start with an initial inverse Hessian B0 = I
and allow it to adapt to the geometry of the space. Although this
requires an estimate of the mass matrix initially, the rescaling of the
momenta via B allows us to be fairly ambiguous about its value.
In essence, this all occurs during the burn-in phase of the HMC
sampler.

4 BORG F R A M E WO R K

Our ability to sample the parameters of the neural bias model
builds upon the previously developed BORG algorithm. BORG aims
to the analyse the 3D cosmic matter distribution at linear and
non-linear scales of structure formation from galaxy surveys (see
e.g. Jasche & Wandelt 2013; Jasche et al. 2015; Lavaux & Jasche
2016). Explicitly, the BORG algorithm fits 3D models of gravitational
structure formation to data. Via the introduction of a physical model
of gravitational structure growth, the inference of the non-linear
dark matter distribution today can be posed as a statistical initial
condition problem. To do so, the BORG algorithm seeks to infer
the cosmic initial conditions from which present 3D structures in
the distribution of galaxies have formed via non-linear gravitational
mass aggregation.

The BORG algorithm explores the posterior distribution of large-
scale structures, consisting of a Gaussian prior for the initial
density field at an initial scale factor of a = 10−3 and a choice
of bias model and likelihood metric at scale factor a = 1. The
evolution of the initial density fields can be related to the present
galaxy (or halo) distribution via a first- or second-order Lagrangian
perturbation theory (LPT or 2LPT) or a full particle mesh model of
gravitational structure formation (for details, see Jasche & Wandelt
2013; Jasche & Lavaux 2019). By exploiting non-linear structure
growth models, the BORG algorithm naturally accounts for the
filamentary structure of the cosmic web typically associated with
higher order statistics induced by non-linear gravitational processes.
Furthermore, the posterior distribution accounts for systematic
and stochastic uncertainties, such as survey geometries, selection
effects, unknown noise, and galaxy biases as well as foreground
contamination (see e.g. Jasche & Wandelt 2013; Jasche et al. 2015;
Lavaux & Jasche 2016; Jasche & Lavaux 2017).

In this work, we use the BORG algorithm to sample the initial
conditions of the dark matter density field using LPT to evolve

2For large dimensions, more computationally and memory efficient methods
can be used (Nocedal & Wright 2006).

Figure 1. Schematic of the BORG algorithm with the neural bias model.
Initial conditions for the density field in Fourier space, δ̂ic, are drawn from a
prior given a cosmology �, P(δ̂ic|�). These are then evolved forward using
a deterministic prescription, in this example using LPT. The evolved field
is then transformed further using the NPE N that requires parameters θNPE

that are drawn from a prior π (θNPE). This provides a field ψ from which
the halo mass distribution function can be described using the MDN with
parameters θMDN drawn from a prior π (θMDN). This halo mass distribution
function is then compared to the masses of haloes Mobs from the observed
halo catalogue.

the field to the dark matter conditions today and then rely on the
neural bias model to sample the parameters of the NPE to provide
a field that is most informative about the halo mass distribution
function inferred from a halo catalogue. A detailed schematic of the
interconnection between parts of the model is shown in Fig. 1. The
stochastic uncertainties are assumed to be Poissonian using the like-
lihood in equation (16), and further study into direct learning of the
deviations from Poissonity will be conducted in an upcoming work.

5 R ESULTS

To examine the techniques developed in this paper, we will con-
sider a relatively simple mock run using a simulated dark matter
distribution and minimal working neural bias model.

5.1 VELMASS simulation

The halo catalogue that we use in this work comes from the VELMASS

suite. It is comprised of 10 cosmological simulations, 9 of which are
probing slightly different variations of a selection of cosmological
parameters while using the same initial phases (for full details of the
suite of simulations, see Ramanah, Charnock & Lavaux 2019a). We
recall here the salient features that are relevant for this work. The
simulation that we use in this work assumes a Planck-like cosmol-
ogy (Planck Collaboration XIII 2016) with �m = 0.315, �b = 0.049,
H0 = 68 km s−1 Mpc−1, σ 8 = 0.81, ns = 0.97, and YHe = 0.248
(named ‘central’ or � simulation). The power spectrum is obtained
through the analytic prescription of Eisenstein & Hu (1999), and
the initial conditions are generated by MUSIC (Hahn & Abel 2011).

The cosmological simulation covers a volume of 2000 h−1 Mpc
with 20483 particles tracing dark matter, initialized at a redshift
z = 50 and evolved to present time with GADGET2 (Springel
2005), adopting a softening length for gravity equal to 48 h−1 kpc
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corresponding to 1/20th of the mean interparticle separation. The
ROCKSTAR halo finder algorithm (Behroozi, Wechsler & Wu 2013)
was subsequently employed to extract the haloes from the simula-
tion and generate the halo catalogue. The particle mass resolution
is 8.10 h−1 M�.

Using a patch of the central VELMASS simulation of side
250 h−1 Mpc gridded on to a 643 grid,3 and a fairly sampled set
of haloes from the corresponding halo catalogue, we attempt to
constrain both the initial phases of the dark matter density field and
the parameters of the neural bias model.

5.2 Neural bias model

In this work, we focus on a minimal model using a single � = 0
kernel with extent of 33 voxels (∼12 h−1 Mpc per side). This is
sufficient for studying the first-order effect of the beyond-local
density environment. We also use a single softplus activation
function on the output feature map from the � = 0 kernel that
provides us with the non-linearity necessary to infer the parameters
of the MDN. Further studies into the optimal architecture for
extracting all the relevant information from the density field about
the halo mass distribution function will be considered in future
works. In particular, we note that in this work we consider only a real
space mock without redshift space distortions. If we were to extend
to more realistic observations, we could proceed in two different
ways. First, we could use a similar network presented here to
provide the bias model and then use codes such as ALTAIR (Ramanah
et al. 2019b) as an intermediate step between the neural bias
model in real space and the observations. ALTAIR is an extension to
BORG that performs a cosmological parameter-dependent coordinate
transform from real space into redshift space. Using such a step
would allow us to extract information about the cosmological
parameters directly using physical models, while the neural bias
model provides the agnostic fit of the tracer bias. However, knowing
the physical properties of the coordinate transform we could equally
add the � = 1 and higher order multipole kernels to the neural
bias model from which we could learn about the real space
distortions due to observations in redshift space at the same time
as the effect of the biasing. While both methods are valid, we
expect that more cosmological information could be gained using
ALTAIR due to the exact form of the coordinate transformation.
This will be studied when we consider observations in redshift
space.

Thanks to the simplicity of the NPE considered in this paper,
we only introduce five trainable parameters, θNPE. We centre the
parameters of the MDN, θMDN, on zero by using an initial amplitude
αinit = log(1 × 10−3), mass threshold mτ = 2 × 1012 h−1 M�, and
initial width σ init = log(1 × 103). Due to the number of visible
features in the halo mass distribution function shown in Fig. 2, we
determine that two Gaussians are sufficient to model the halo mass
distribution function. As such, the total number of parameters for
the MDN is 12, so the neural bias model has 17 parameters to infer.
Further study into the number and types of distributions optimal for
extracting all of the information from the density field about the halo
mass distribution function will be left to future work. We chose a
prior width of σ prior = 10 to allow for a range of possible parameter

3High-resolution results over the whole simulation will be reserved for
future papers studying optimal forms of the neural bias model and studies
into direct likelihood estimation. 643 is more than sufficient for indicating
the methodology of the techniques presented in this paper.

Figure 2. The halo mass distribution function as a function of mass (in
solar masses). The diamonds connected by a dashed line indicate the number
density of haloes from the central VELMASS halo catalogue of a given mass,
where the different colours represent the value of the density environment
for those haloes. The lines higher in number density correspond to the more
dense regions; i.e. there are more large haloes in denser environments. The
solid lines show the mean halo number density from samples (taken from the
Markov chain) from the neural bias model, with the shaded bands as the 1σ

deviations of these samples. The dotted line indicates the number density of
haloes of a given mass using the initialization values of the parameters from
the neural bias model. There is a subtlety in the density environments. The
diamonds indicate the number density of haloes in a voxel whose density
is equal to the numbers shown in the legend, while the neural bias model
takes a 33 patch whose average density is equal to the numbers shown in the
legend. We see that there is a very good agreement between the observed
halo number density and that obtained by the neural bias model. We can also
see that the sampling captures the distribution of possible number densities
about the observed data. Furthermore, the fact that the shape of the function
changes as a response to the change in density environment is an indication
that the non-linearity of the tracer bias is captured by the neural bias
model.

values in the neural bias model while preventing numerical stability
issues if they become extremely large. A posteriori verification that
the prior has no practical impact on the inference is shown in Fig. 3,
since the amplitudes of the weights are all well within the 1σ region
of the Gaussian prior.

The neural bias model is written using the JULIA (Bezanson et al.
2017) interface to TENSORFLOW (Abadi et al. 2016; Malmaud &
White 2018). This is embedded into the HMCLET, which is one
sub-block of the BORG algorithm. A skeleton of the JULIA code is
available along with this paper.4

Since running the HMC is computationally expensive, especially
when sampling the initial density field, we pre-train the neural bias
model using stochastic gradient descent to find pseudo-maximum-
likelihood estimates of the weights. These parameters are then used
in the initialization of the neural bias model in the HMCLET to help
prevent a long burn-in. This option is available in this case since we
have both the true density field and halo catalogue generated from
that field. However, the pre-training would not be possible when
constraining the network on real data, where the density field is not
available. In this case, the burn-in of the HMCLET would be much
longer and more computationally demanding.

4https://github.com/tomcharnock/neural bias model
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Figure 3. The Markov chain of sampled parameters of the neural bias model. The top row shows, from left to right, the values of the sampled weights of the
centre, face, edge, and corner of the � = 0 convolution kernel, respectively. The final subplot on the top row shows the overall bias parameter of the NPE. The
lower three rows show the sampled parameter values of the MDN. The second row shows the weight and bias that parametrize the amplitude of the first and
then the second distribution of the mixture of Gaussians. Likewise, the third and fourth rows show the weights and biases parametrizing the mean and standard
deviation of the first and second distributions, respectively. We can see that the chain wanders quite wildly until around ∼3000 samples, at which point the
chain is properly burnt in and the samples are really being drawn from the posterior distribution.

5.3 Assessment of the model

First, we consider the sampling of the parameters of the neural bias
model. The obtained halo mass distribution function is shown in
Fig. 2, and the values of the sampled parameters of the model as a
function of the Markov chain are shown in Fig. 3.

In Fig. 2, the observed number density of haloes from the central
VELMASS simulation halo catalogue is plotted using diamonds (with
dashed lines connecting them to help visualization). From top to
bottom in number density, the different colours represent decreasing
density environments; i.e. voxels with higher densities have a larger
halo number density in those voxels. We analyse the effectiveness
of the neural bias model by providing it with density patches (of
size 33 voxels) with an average density equivalent to the values in
individual voxels to compare to the halo mass distribution function
from the halo catalogue. These 33 volumes are randomly drawn
to provide a variety of different local patches. The mean result of
the neural bias model from the Markov chain is shown using a
solid line, and the filled area represents the 1σ deviations from the
samples of parameter values of the model. For completeness, we
also show the initial values of the parameters of the neural bias
model, obtained using stochastic gradient descent, via the dotted
line. We can see that there is extremely good agreement between
the observed halo number density and that obtained using the neural
bias model. In particular, we notice that the two components of the
MDN fit the complexities of the halo mass distribution function
well. The sampling is also well contained about the observed data,
and improved over the initial neural bias model parameter values.
The fact that the response to different density environments can
be seen provides us with confirmation that the non-linearity of the
tracer bias is built into our neural bias model.

Turning our attention to Fig. 3, we can see the sampling of the
parameters of the neural bias model. The top row shows the free
parameters of the NPE, with the first four subplots showing the
weights of the centre, face, edge, and corner of the � = 0 kernel,
respectively. The fifth subplot is the overall bias to the NPE that sets
the response scale for activated feature map that will be passed to
the mixture of Gaussians. The second, third, and fourth rows show
the weight and bias values for the amplitude, mean, and standard
deviation of the mixture of Gaussians, respectively. The first two
columns show the weight and bias for the first Gaussian of the
mixture and the third and fourth columns show the weight and
bias for the second Gaussian. Overall, we can see that the values
of the samples vary a lot during the first ∼3000 samples, after
which burn-in ends and the HMCLET starts to truly sample well from
the posterior. The variation in the samples during burn-in occurs
even though we pre-initialize the parameters of the neural bias
model using stochastic gradient descent. This happens because the
rescaling of the momenta in the HMCLET is being learned via the
QNHMC, and because the initial density field is not yet conditioned
on the observed halo catalogue. Interestingly, we also see that there
is some change between the initial and average parameter values.
This could be caused by the stochastic gradient descent not properly
finding the minimum of the log-likelihood, but which is achieved by
the HMCLET. It is more likely to be due to the fact that the density field
used to constrain the parameters using stochastic gradient descent
is a full N-body simulation, while only the LPT field is used in
the density sampler, showing that the neural bias model is able to
adapt to the missing information due to using only the approximate
evolution. We can see that our choice of prior width on the parameter
values has not affected the posterior since none of the parameters
have vanished, and in fact can be relatively large (in the case of

MNRAS 494, 50–61 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/494/1/50/5804803 by guest on 21 M
ay 2024



58 T. Charnock et al.

Figure 4. 3D projections of relevant fields. The upper left box shows the
3D projection of the initial dark matter distribution. The upper right box
shows the same projection of the dark matter distribution evolved to a scale
factor a = 1 using LPT. The lower left box shows the output of the NPE,
ψ , and, for completeness, we show the logarithm of the mass distribution of
the halo catalogue in the lower right box. The three density boxes all use the
same colour scale. We can see that the production of the non-linear features
of evolution by comparing the initial and final density fields (in the top row),
while we see the enhancing effect of the non-linear structures due to the
NPE in the lower left box. Note the stochastic nature of the halo distribution
obtained from the observed halo catalogue compared to the field obtained
from the NPE.

the weights and biases for the mean and standard deviation of the
second distribution).

By looking at the average samples in the first four subplots on
the top row of Fig. 3, we can introspect our physical neural engine.
In this case, since we only have one kernel, it is very easy to see the
effect of the kernel on the density field. This type of kernel resembles
that of a contrast-increasing kernel, which enhances dense regions
and washes out underdense areas. In fact, if we look at Figs 4
and 5 we can see, qualitatively, the effect of the NPE. In Fig. 4,
the upper left box shows the inferred initial conditions of the dark
matter density field, which is then evolved forward using LPT to
obtain the box on the upper right. The lower left box then shows
the output of the NPE. The lower right box shows the distribution
of mass from the halo catalogue, for completeness. We can see
the aforementioned increase in contrast of the density field that
the NPE provides. The existence of non-zero value for the faces,
edges, corners, and central part of the � = 0 kernel shows us that
beyond-local information from the density field is important for the
fitting of the halo mass distribution function. The neural bias model
therefore makes use of information from the surrounding regions of
each voxel to improve the quantification of the number density of
haloes with a given mass in each voxel. Likewise, in Fig. 5 we can
see that a slice of the average final density field well represents the
same slice from the VELMASS simulation with very little variance in
the regions of low mass, as can be seen in the bottom right subplot.
It should be remembered that the output of the NPE is just a set

of summaries that are the most informative about the distribution
of haloes with a certain mass in a given environment. The average
NPE summary field is quite pixelated in each slice since it contains
information about the abundance of haloes from each the density
environment of the neighbouring slices.

The halo distribution should be a stochastic sampling of the
inferred halo mass distribution function provided by the neural bias
model. In the current design, this sampling would be described via
a Poisson distribution. Deviations between such a realization and
the halo distribution from the catalogue could be due to the nature
of the true likelihood that is expected to be non-Poissonian.

Via the BORG algorithm, we also sampled the initial conditions
of the dark matter density field (seen in the upper left box of Fig. 4).
We show in Fig. 6 the power spectrum of the initial conditions.
The orange dashed line is the prior power spectrum from which
the initial density field is drawn. The blue transparent lines show
the initial power spectrum of the dark matter density field from the
posterior samples inferred via BORG. We can see that the inferred
power spectra are consistent with the prior, and there are no spurious
features. This indicates that the sampling of the density field is self-
consistent with the prior provided and the data used to generate the
halo catalogue.

As a simple test of how well the inference using the neural bias
model, MNeural bias, works, we compare it to the bias model of
Neyrinck et al. (2014), MNeyrinck, where the Poisson rate for the
realization of the halo field is given by

λ = N̄ (1 + δLPT)α exp
[−A(1 + δLPT)−ε

]
. (25)

This model is superior to a simple linear bias model since it enhances
the contrast between dense regions and voids. There are four free
parameters, θNeyrinck = {N̄, α, A, ε}. By evaluating the value of the
normalized likelihood given the VELMASS halo catalogue and a
single realization of the δLPT field at the maximum-likelihood values
of the parameters, θ̂Neyrinck, and comparing it to the normalized
likelihood for the neural bias model at the maximum-likelihood
values of its parameters, θ̂Neural bias, we can get a sense of how the
neural bias model performs in comparison to the Neyrinck model.
We find that the relative likelihood ratio (Neyman & Pearson 1933)
is

B(MNeural bias,MNeyrinck) = L(d|θ̂Neural bias,MNeural bias)

L(d|θ̂Neyrinck,MNeyrinck)

≈ exp[2000], (26)

which is decisive. Note that we are not suggesting the neural bias
model is better than the Neyrinck model since we are not comparing
it to a full reconstruction using the bias model of Neyrinck. Instead,
we just use this test as a simple comparison to make sure the results
of the inference make sense. What we have found is that there is
a great potential for this method over classical biasing techniques.
A test comparing many models, including an optimal neural bias
model, is in preparation using realistic data.

6 C O N C L U S I O N S

We have presented a neural bias model: a physically motivated
neural network-like architecture that maps dark matter density fields
to the halo mass distribution function. In doing so, we have used
a swathe of new techniques including novel architectures, such as
the multipole expansion in convolutional kernels, and well-adapted
sampling methods (such as the QNHMC) to provide a Bayesian
interpretation of the parameters of the neural bias model.
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Figure 5. Left: A slice of the density field evolved to a scale factor a = 1 using LPT averaged over the MC samples from steps 3000 to 15 000 on the top and
the same for the output of the NPE. Middle: The variance over the same samples of the equivalent slices of the final density field and the summaries from the
NPE. Right: On the top is a slice of the density field from the VELMASS dark matter simulation and on the bottom is the mass distribution of haloes in the same
slice. We can see that the NPE summaries are pixelated in this slice since it is drawing in information from neighbouring slices to be most informative about
the stochastic nature of the halo distribution. The average final dark matter density field represents very well the real density field. The variance is small in
low-density regions where there is less mass in haloes than in the high-mass regions.

Figure 6. The power spectrum of initial conditions of the dark matter
density field. The blue transparent lines show the power spectrum from the
posterior samples. The orange dashed line shows the power spectrum of
the prior initial dark matter distribution. We can see that the inferred power
spectra are consistent with the prior initial power spectrum without any
spurious features.

Most importantly, we have shown how physical principles allow
us to build extremely efficient neural networks whose parameters
can be sampled to provide a truly Bayesian network. The neural bias
model becomes part of the forward physical model meaning that
the posterior is only conditional on the architecture in the same way
as the model that describes the data. No training data are necessary
since the weights are inferred directly from the observed data.

We have found that an exceptionally simple neural bias model
constructed using a single, rotationally symmetric convolutional
kernel and an MDN consisting of a mixture of two Gaussians can
effectively model the halo mass distribution function. This neural
bias model contains the non-linear response of different density
environments and is able to make use of the information from
neighbouring patches of the Universe to better predict the abundance
of haloes of given masses. Furthermore, the parameters of the model
have been inferred using only forward simulations of the dark matter
density field and the observed halo catalogue, providing us with a
completely Bayesian interpretable network. The simplicity of the
model has also allowed us to introspect the neural bias model to see
that the kernel enhances dense regions since this informs the halo
mass distribution function about where haloes are more likely to be
abundant.

This work is proposed as the initial work in a suite of follow-
up studies including using Bayesian optimization routines to find
the optimal architecture for the NPE and the number and types
of distribution for the MDN that allow us to extract maximal
information about the halo mass distribution function from the
density field. We shall also study the effects of the likelihood that
we use to evaluate the density field given the halo catalogue via
the replacement of the halo mass distribution function with a neural
density estimator emulating the unknown likelihood. This will allow
us to search beyond-Poissonity likelihoods. The culmination of this
suite of works will be to analyse real cosmological survey data using
BORG with a completely agnostic neural bias model, which can be
marginalized out to provide constraints on the initial distribution of
dark matter, coupled with cosmological parameters, independent of
the unknown astrophysics that dictates the tracer bias between the
dark matter distribution we use and the observable Universe.
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7 EN V I RO N M E N TA L IM PAC T

This study has made use of 103 single core days and 2 single GPU
days on a high-performance computing cluster and 90 single core
days and 8 full GPU days on a 850-W workstation loaded with an
NVIDIA Quadro P6000. This amounts to approximately 1100 kWh,
including cooling and data storage. In the Paris metropolitan, this
would be equivalent to approximately 55 kg of CO2.

We have also reused simulations from the VELMASS suite. These
simulations were created for the purpose of being a general tool
for a wide variety of projects. Its longevity reduces its single-
use cost dramatically. This suite of simulations took 23 000 single
core days at Occigen facility managed by CINES. The amounts
to approximately 5500 kWh and is equivalent to 275 kg of CO2 in
the Hérault metropolitan. The VELMASS suite is stored at l’Institut
d’Astrophysique de Paris at a cost of around 260 kWh yr−1, which
is approximately 13 kg of CO2 per year.

All values have been approximated using the Parliamentary
Office of Technology document on Carbon Footprint of Electricity
Generation and according to l’Agence Internationale de l’Énergie.
Exact figures were not available for the power consumption of the
computing facilities, and as such a generous approximation has
been considered. This is because figures are generally represented
in terms of running costs and not in terms of power usage or
environmental impact.
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APPENDI X: MASS MATRI X FOR Q NHMC

The new set of ODEs introduced by the QNHMC yields substantial
modifications to the HMC prescription for the optimal mass matrix
to sample the parameter space with low rejection rate. This can
be seen by considering a Gaussian posterior distribution with
covariance C; then

V(θ ) = 1

2
θT C−1θ . (A1)

The approximate inverse Hessian of V(θ ), B, should satisfy B � C.
In this case, equations (18) and (19) become

θ̇ = CM−1 p, (A2)
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ṗ = −CC−1θ

= −θ . (A3)

These two equations can be combined to form a single equation

θ̈ + CM−1θ = 0 . (A4)

To numerically integrate the above equation with a leapfrog integra-
tor in an optimal way, it is best to choose a mass matrix satisfying

M = C . (A5)

In most practical cases, we choose a diagonal mass matrix with
coefficients that are close to the expected width of the posterior
distribution.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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