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INTRODUCTION

Bilinear systems refer to dynamics that involve cross terms between the state and the input in addition to linear terms. They consist in a natural extension of the linearization of nonlinear systems via the Taylor expansion and represent a relevant class of physical, chemical, biological systems and manufacturing processes being an interesting field of research for the control community. See for instance [START_REF] Mohler | Natural bilinear control processes[END_REF] which has early introduced several illustrations of bilinear systems and offered the first result dealing with their controllability. Bilinear systems may be viewed as particular cases of control-affine systems, which is the main class of systems investigated in [START_REF] Isidori | Nonlinear Control Systems[END_REF]. A large collection of results for bilinear systems may be applied in terms of derivation of the contributions for controlaffine systems, such as the local asymptotic stabilizability thanks to state feedbacks (Isidori, 1995, Proposition 4.4.1) or output feedbacks (Isidori, 1995, Proposition 4.7.1). In addition, the study of (state) quadratic systems may be beneficial to the properties of closed-loop bilinear systems when applying control as state feedbacks, see for example [START_REF] Coutinho | Nonlinear state feedback design with a guaranteed stability domain for locally stabilizable unstable quadratic systems[END_REF].

The problem of global stability analysis or global stabilization of such nonlinear system is a difficult issue, if not impossible, instead of their local counterparts which are trivial. Given this fact, a wide literature has been dedicated to the local stability analysis or design of locally stabilizing controllers for bilinear systems by taking into account the estimation of the basin of attraction of the origin. We can cite for instance [START_REF] Tarbouriech | Control design for bilinear systems with a guaranteed region of stability: an LMI-based approach[END_REF][START_REF] Amato | Stabilization of bilinear systems via linear state-feedback control[END_REF][START_REF] Coutinho | Nonlinear state feedback design with a guaranteed stability domain for locally stabilizable unstable quadratic systems[END_REF] and references therein. It should be emphasized that the generic approach dealing with control-affine systems uses local argument via approximations (linearization, singular perturbations theory) and does not cope easily with estimating the basin of attraction.

In general, the estimation is performed by a level set of a (control-) Lyapunov function yielding a compact and invariant region in the state space in closed-loop. An usual approach to jointly design a control law and related control Lyapunov function is to assume a fixed polytope for the state that induces a polytopic model of the bilinear system taking advantage of previous results from the literature of (quasi) linear parameter-varying (LPV) systems and some dedicated tools such as linear matrix inequalities (LMIs) over polytopes. That is the main guideline for the abovementioned papers that were focused on the design of statedependent control laws.

The local stabilization of bilinear systems by output feedback control laws has been less explored if setting aside generic contributions for control-affine systems and early works [START_REF] Yang | Stability of discrete bilinear systems with output feedback[END_REF] or [START_REF] Chen | Stability analysis of bilinear systems[END_REF]. We can nevertheless emphasize the observer-based approaches developed in [START_REF] Amato | Output feedback control of nonlinear quadratic systems[END_REF] and [START_REF] Andrieu | Global asymptotic stabilization for a class of bilinear systems by hybrid output feedback[END_REF], or the static output feedback (SOF) control investigated by means of sum-of-square techniques in [START_REF] Kang | Guaranteed cost control for bilinear systems by static output feedback[END_REF].

In this paper, we propose the design of a nonlinear fullorder DOF controller for continuous-time bilinear systems that maximizes the estimate of the domain of stability of the origin of the closed-loop systems. The synthesis is based on the design of a SOF control law for an augmented system but avoiding sparse matrices in the solution. A two-step procedure is adopted where, in the first step, a state feedback gain is designed and used as an input in the second step, where the gains of the output controller are computed. As a novelty, we propose a nonlinear term in the DOF controller that can be interpreted as a counteraction to the influence of the bilinear terms of the system. The enlargement of the estimate of the domain of attraction is possible thanks to an iterative algorithm that progressively increases the size of a polytope where the system is represented and mitigates the influence of the state feedback gain previously designed. A preliminary work was published in [START_REF] Tognetti | Controle de sistemas bilineares por realimentaçoã dinâmica de saída[END_REF] where a given fixed polytope is considered.

Notation. The notation R n , R + and R n×m respectively denote the sets of n-dimensional real vectors, positive scalars, and n × m-dimensional real matrices. For a matrix A, A (i) denotes the ith row of A, A T denotes the transpose of A and He{A} = A + A T , if A is square. The notation co {M j , j = 1, . . . , N } denotes the convex hull formed by the matrices (or vectors) M j , j = 1, . . . , N , and diag(x 1 , . . . , x n ) the diagonal matrix obtained from the elements x 1 , . . . , x n . Identity and null matrices will be denoted respectively by I and 0, with appropriate dimensions. The symbol ⋆ denotes symmetric blocks in partitioned matrices, ⊗ stands for the Kronecker product, and 1 is a vector whose components are all equal to one.

PROBLEM STATEMENT

Consider the following continuous-time bilinear system

ẋ(t) = Ax(t) + B 0 u(t) + B(x(t))u(t), y(t) = Cx(t), (1) 
where x(t) ∈ R n is the state vector, u(t) ∈ R m is the input signal and y(t) ∈ R r is the measured output. The system matrices are A ∈ R n×n , B 0 ∈ R n×m , C ∈ R r×n and B : R n → R n×m is a vector-value function described by

B(x) = [ B 1 x • • • B m x ] with B i ∈ R n×n , i = 1, . . . , m, constant known matrices.
Remark 1. The representation of B(x) follows [START_REF] Tarbouriech | Control design for bilinear systems with a guaranteed region of stability: an LMI-based approach[END_REF]. Other equivalent forms may be found in the literature, see for instance [START_REF] Coutinho | Nonlinear state feedback design with a guaranteed stability domain for locally stabilizable unstable quadratic systems[END_REF] or [START_REF] Amato | Stabilization of bilinear systems via linear state-feedback control[END_REF].

The problem concerned in this paper is the local asymptotic stability of the origin of system (1), with an estimate of the basin of attraction of the origin as large as possible, via the nonlinear full-order DOF controller of the form

ẋc (t) = A c x c (t) + B c y(t) + K(x c (t))y(t) u(t) = C c x c (t) + D c y(t) (2) 
where

x c (t) ∈ R n and matrices A c ∈ R n×n , B c ∈ R n×r , C c ∈ R m×n , D c ∈ R m×r , and K(•) : R n → R n×r the vector-value function K(x c ) = [ K 1 x c • • • K r x c ]
with K i ∈ R n×n , i = 1, . . . , r. The nonlinear term in the DOF controller can be interpreted as a counteraction to the influence of the bilinear terms of the system. That can be close to the idea of using quadratic feedback pointed in [START_REF] Quinn | Stabilization of bilinear system by quadratic feedback controls[END_REF].

Defining an augmented state vector ξ(t) = x T (t) x T c (t) T , the closed-loop system formed by (1) and ( 2) is given by the following quadratic system ξ(t) = A cl (ξ(t))ξ(t)

(3) where

A cl (ξ) = A + (B 0 + B(x))D c C (B 0 + B(x))C c (B c + K(x c ))C A c . (4) 
The quadratic system (3) may present several equilibria and even if the origin is the unique equilibrium, ensuring its global asymptotic stability can be a very difficult task. Furthermore, the exact characterization of the basin of attraction of an equilibrium is, in general, arduous, even with systematic approaches and we will be focused on providing one of its estimate, as large as possible. In the sequel, for a sake of simplicity, we will consider only the origin as equilibrium and the estimate of the basin of attraction of the origin for system (1) with the control law given by ( 2), to be designed, and with zero initial condition x c (0) = 0 will be denoted by S 0 ⊆ R n . The problem addressed in this paper can be summarized as follows.

Problem 1. Determine a nonlinear dynamic output controller as (2) and a region S 0 ⊆ R n , as large as possible, such that the trajectories of closed-loop system (3) starting from any initial condition (x(0), x c (0)) ∈ S 0 ×{0} converge exponentially towards the origin.

PRELIMINARIES

Observe that the closed-loop matrix (4) depends on both x and x c . One may rewrite (4) depending only on x, with advantages that will become clear later, by the following theorem.

Theorem 1. Let consider the system (3). Then, the dynamics A cl (ξ)ξ can be rewritten as Âcl (x)ξ, with

Âcl (x) = A + (B 0 + B(x))D c C (B 0 + B(x))C c B c C A c + C(x) K , (5) 
C(x) is induced by the rows of the constant matrix C as

C(x) = C (1) x . . . C (r) x ⊗ I n , K = K T 1 • • • K T r T , such that the system ξ(t) = Âcl (x(t))ξ(t) = A cl (ξ(t))ξ(t).
(6) Proof 1. By noticing that C (j) x(t), j = 1, . . . , r are scalars, one has, from (1) and (2),

K(x c (t))y(t) = K(x c (t))Cx(t) = r j=1 K j x c (t)C (j) x(t) = r j=1 C (j) x(t)K j x c (t) = C(x(t)) K x c (t).
Remark 2. As a consequence of Theorem 1, the stability of the equilibrium points of (6) does not dependent on the choice of the dynamical matrix. However, it is worthy to observe that Âcl (x) = A cl (ξ).

Here, to study system (6), a polytopic approach is considered. For this, let us define a polyhedral set χ 0 ⊂ R n related to the state x of the system and defined by

χ 0 = {x ∈ R n : Q 0 x 1} (7) 
where

Q 0 ∈ R g×n , n ≤ g, rank(Q 0 ) = n, and 1 ∈ R g . Observe that, 0 ∈ χ 0 .
For convenience in representing system (6) in a polytopic domain, that will be depicted next, the set χ 0 can also be defined equivalently in terms of its κ vertices,

χ 0 = co{v 1 , v 2 , . . . , v κ }, (8) 
where v j ∈ R n , j = 1, . . . , κ, can be obtained from Q 0 . Note that in the case where χ 0 is a symmetric hyperrectangle, we have g = 2n, κ = 2 n and a systematic approach to obtain v j ∈ R n , j = 1, . . . , κ, is found in [START_REF] Tarbouriech | Control design for bilinear systems with a guaranteed region of stability: an LMI-based approach[END_REF].

Hence, the polyhedral set χ 0 , defined by ( 8), induces the following n × n-matrix valued polytope

P = co Âcl (v j ), j = 1, . . . , κ . (9) 
such that x ∈ χ 0 implies Âcl (x) ∈ P. Remark 3. At this stage, the advantage of Theorem 1 becomes evident. If we had opted to describe A cl (ξ) instead of Âcl (x) in a polytope, we would have to consider a polytope with the augmented state ξ belonging to a polyhedral, for example, of the form ξ ∈ χ 0 × χ 0 . This approach has been adopted in [START_REF] Amato | Stabilization of impulsive quadratic systems over polytopic sets[END_REF] in the context of observed-based control of quadratic systems. The drawback of this approach is the necessity of imposing bounds on both states x and x c . In this paper, the necessity of imposing bounds on x c is relaxed by the use of Theorem 1 where one can consider ξ ∈ χ 0 × R n . Remark 4. We shall note that, differently from most of the works in bilinear [START_REF] Amato | Stabilization of bilinear systems via linear state-feedback control[END_REF] and quadratic systems [START_REF] Coutinho | Nonlinear state feedback design with a guaranteed stability domain for locally stabilizable unstable quadratic systems[END_REF], there is no admissible operative range of the system (1) defined a priori, that is, an initial guess for the polytope χ 0 must be provided. If the guess of χ 0 is too large, the design of (2) may become infeasible and if it is too small, the domain of stability S 0 will be conservative. To overcome the sensibility of the initial guess of χ 0 , an iterative procedure is proposed in this paper, presented at the end of the next section.

Remark 5. The stability of (3) can also be regarded in the framework of the stability of quadratic systems in the form presented in [START_REF] Valmórbida | State feedback design for input-saturating quadratic systems[END_REF] without imposing a polytope. The adaptation of such an approach to our DOF framework is not immediate and this issue is left for future investigation.

MAIN RESULTS

In this section, we present conditions to solve Problem 1, by considering a polytopic approach and by building under constraints a quadratic Lyapunov function related to the augmented system. Theorem 2. Consider a domain χ 0 defined in (7) yielding the polyhedral set χ = χ 0 × R n . If there exist a continuously differentiable function V :

R 2n → R + , positive defi- nite scalars b 1 , b 2 and b 3 , matrices A c ∈ R n×n , B c ∈ R n×r , C c ∈ R m×n , D c ∈ R m×r , K ∈ R nr×n , such that the following conditions hold: b 1 ξ T ξ ≤ V (ξ) ≤ b 2 ξ T ξ, ∀ξ ∈ χ. ( 10 
) ∂V (ξ) ∂ξ Âcl (v j )ξ < -b 3 ξ T ξ, j = 1, . . . , κ, ∀ξ ∈ χ, (11) 
S ⊆ χ, (12) where the set S is defined by

S = {ξ ∈ R 2n : V (ξ) ≤ 1}, (13) then: 
• The origin is locally exponentially stable and V is a (control-) Lyapunov function over S for the system (6); • S ⊂ R 2n is a compact set which is positively invariant and exponentially contractive with respect to the augmented dynamics (6), i.e, for all ξ(0) ∈ S,

lim t→∞ ξ(t) = 0; • The set S 0 = {x ∈ R n : (x, 0) ∈ S} ⊂ R n is
an estimate of the basin of attraction of the origin related to the system (6), when imposing a zero initial condition to the DOF controller (2), that is, ∀ξ(0) ∈ S 0 × {0}, lim t→∞ ξ(t) = 0. Moreover, we have trivially the inclusion S 0 ⊆ χ 0 .

Proof 2. For ξ ∈ χ, x = ( I n 0 n ) ξ ∈ χ 0 and Âcl (x) ∈ P.

Inequalities (11) imply that

V (ξ) = ∂V (ξ) ∂ξ ξ(t) = ∂V (ξ) ∂ξ Âcl (x)ξ < -b 3 ξ T ξ.
Any level set of the function V , that is included in χ, is compact thanks to (10) and positively invariant and exponentially contractive. This is the case of S, instead of the polytope χ which is not a level set of V . The origin is exponentially stable with dynamics (6) starting from S. Since S 0 × {0} is a subset of S, the trajectories of (6) converge asymptotically to the origin for every initial condition x(0) ∈ S 0 and zero initial condition for the DOF controller. S 0 is an estimate of the basin of attraction of the origin. Remark 6. The DOF framework, instead of the state feedback one, imposes to deal with distinct sets S and S 0 , which have distinct dimensions and properties. It should be emphasized in particular that S 0 is not positively invariant. It is nevertheless interesting to notice that they are both obtained thanks to the Lyapunov function V .

Observe that, if the Lyapunov function V is a quadratic one, with V (ξ) = ξ T P ξ where P = P T ∈ R 2n×2n is a positive definite matrix, that is partitioned, for convenience, in n × n blocks as

P = P 1 P 2 P T 2 P 3 , (14) 
then the sets S and S 0 are given by two ellipsoids with, in particular, S 0 = {x ∈ R n :

x T P 1 x ≤ 1}. Remark 7. A constructive form of set χ = χ 0 × R n is given by χ = ξ ∈ R 2n : Qξ 1, Q = [Q 0 0 g×n ] ∈ R g×2n . ( 15 
) Note again that the region χ imposes no restrictions on the states x c .

The design of a DOF controller of the form (2) for system (1) using the congruence transformation and the change of variables proposed by [START_REF] Scherer | Multiobjective output-feedback control via LMI optimization[END_REF]) cannot be easily adapted to yield convex conditions, due to the nonlinear term in the DOF controller (2). Therefore, the design of DOF controller (2) may be converted into a SOF control design problem. This technique, initially proposed in [START_REF] El Ghaoui | A cone complementarity linearization algorithm for static output feedback and related problems[END_REF], is adapted in this work to take into account the gain K(x c (t)). For this, consider the closed-loop matrix (5) written as

Âcl (x) = A 0 0 C(x) K Â(x) + 0 B 0 + B(x) I 0 B(x) A c B c C c D c L 0 I C 0 Ĉ .
The closed-loop system (6) can be rewritten as

ξ(t) = Â(x(t))ξ(t) + B(x(t))û(t) ŷ(t) = Ĉξ(t) (16) 
with the control law û(t) = Lŷ(t), (17) where

ŷ(t) = x c (t) y(t) , û(t) = ϕ(t) u(t) , ϕ(t) = ẋc (t)-C(x(t)) K x c (t).
Observe that ( 17) can be viewed as a SOF control law. Due to the special structure of (2), the gains of the controller cannot be obtained by directly applying standard SOF conditions. One possible approach is to design (2) in two steps, inspired by [START_REF] Arzelier | Robust static output feedback stabilization for polytopic uncertain systems: Improving the guaranteed performance bound[END_REF] from the context of SOF control for linear polytopic uncertain systems. In the first step, the gain K and an auxiliary matrix N are designed. Then, K and N are used as input matrices in the design conditions of L. In this approach, matrices K and N are used to define a parameterization of the SOF gain. The matrix N has an interpretation of a dynamic state feedback gain in the control law û(t) = N ξ(t) that stabilizes ( 16) and, therefore, conditions from state feedback design problems can be adapted to design the gains K and N .

The main challenge of this approach is to find gains N and K that provide the largest estimate of the domain of stability of (3). The following result provides sufficient conditions to find initial values for N and K for the design L. After that, an iterative procedure is proposed to enlarge the set S 0 . Theorem 3. If there exist matrices

W W T > 0 ∈ R 2n×2n , G 1 ∈ R n×n , G 2 ∈ R n×n , G 3 ∈ R n×n , R ∈ R rn×n and Z ∈ R (n+m)×2n
, and a positive scalar ǫ such that the following inequalities hold: 16) is asymptotically stable for all x ∈ χ 0 with û(t) = N ξ(t), N = ZG -1 and K = RG -1 3 . Proof 3. Consider the Lyapunov function V (ξ) = ξ T W -1 ξ and observe that there exits a vector β(x) belonging to the unitary simplex of dimension κ such that x = 18) holds, Θ(x) < 0, G is nonsingular, and therefore G 3 , since G + G T > 0. By preand post-multiplying Θ(x) by [I Â(x) + B(x)N ] and its transpose, respectively, one has

Θ(v i ) < 0, i = 1, . . . , κ (18) with Θ(v i ) = Φ(v i ) + Φ T (v i ) ⋆ W -G + ǫΦ T (v i ) -ǫ(G + G T ) (19) Φ(v i ) = AG 1 AG 2 0 C(v i )R + B(v i )Z, G = G 1 G 2 0 G 3 , then (
κ i=1 β (i) (x)v i , leading to denote Θ(x) = κ i=1 β (i) (x)Θ(v i ), for R = KG 3 and Z = N G. If (
( Â(x) + B(x)N )W + W ( Â(x) + B(x)N ) T < 0. ( 20 
)
Remark 8. Consider the matrix N partitioned as

N 1 N 2 N 3 N 4 . One has Â(x) + B(x)N = A + (B 0 + B(x))N 3 (B 0 + B(x))N 4 N 1 C(x) K + N 2 .
(21) Theorem 3 may provide numerically N 1 , K and N 4 closest to be trivial, assessing the stability of ( 21) but yielding, as a consequence, null values for B c and C c in the design of (2), as pointed out by [START_REF] Yaesh | Robust reduced-order output-feedback H ∞ control[END_REF], in the context of linear systems. In the last case, although the obtained controller stabilizes the origin of the closedloop systems (3), the basin of attraction is conservative compared with a full order DOF controller.

To circumvent this problem a nonsingular matrix

T ∈ R (n+m)×(n+m) is included as follow Â(x)+ B(x)N = Â(x)+ B(x)T -1 T N = Â(x)+ B(x)T -1 N where N = T N, T = I 0 -X I ,
with X ∈ R m×n . Therefore, the design of N is rewritten as the design of N such that Â(x) + B(x)T -1 N is stable avoiding block of zeros in N at a price of a particular structure in the variable Z in ( 18), as shown in the following result. Corollary 1. If there exist matrices

W = W T > 0 ∈ R 2n×2n , G 1 ∈ R n×n , G 2 ∈ R n×n , G 3 ∈ R n×n , R ∈ R rn×n , Q ∈ R m×n , Z 1 ∈ R n×n , Z 2 ∈ R m×n and Z 3 ∈ R m×n
, and scalars ǫ > 0 and β = 0 such that (18) holds with Θ(v i ) as in (19) and 16) is asymptotically stable for all x ∈ χ 0 with

Φ(v i ) = AG 1 AG 2 0 C(v i )R + (B 0 + B(v i ))(βQ + Z 2 ) βZ 1 (B 0 + B(v i ))(Q + Z 3 ) Z 1 , G = G 1 G 2 0 G 3 , then (
û(t) = N ξ(t), N = βZ 1 Z 1 βQ + Z 2 Q + Z 4 G -1 , K = RG -1 3 . Proof 4. Observe that Φ(v i ) is equivalent to ( Â(v i ) + B(v i )N )G with N = T -1 ZG -1 , Q = XZ 1 , T = I 0 -X I , Z = βZ 1 Z 1 Z 2 Z 3 .
Following the same steps of the proof of Theorem 3, one has (20).

Next theorem presents sufficient LMI conditions for the existence of the DOF controller (2).

Theorem 4. Let the given matrices N ∈ R (n+m)×2n and K ∈ R rn×2n . If there exist matrices n+m) and L ∈ R (n+m)×(n+r) such that the following inequalities hold:

P = P T > 0 ∈ R 2n×2n as in (14), F ∈ R 2n×2n , H ∈ R 2n×2n , R ∈ R (n+m)×(
Γ(v i ) < 0, i = 1, . . . , κ, (22) 
1

Q (i) Q T (i) P ≥ 0, i = 1, . . . , g (23) 
with

Γ(v i ) =   F Ψ(v i ) + Ψ T (v i )F T ⋆ ⋆ P -F T + HΨ(v i ) -H -H T ⋆ BT (v i )F T + L Ĉ -RN BT (v i )H T -R -R T   , (24) Ψ(v i ) = Â(v i ) + B(v i )N.
Then, the origin of the closed-loop system (3) is locally asymptotically stable with

A c B c C c D c = L, L = R -1 L
and, for any initial condition x(0) ∈ S 0 ⊆ χ 0 , x c (0) = 0, the resulting trajectories of system (3) asymptotically converge towards the origin. Proof 5. Consider the Lyapunov function V (ξ) = ξ T P ξ and observe that (23) implies S ⊆ χ [START_REF] Boyd | Linear Matrix Inequalities in System and Control Theory[END_REF], with χ and S as in ( 13) and ( 15), respectively. The inequality ( 23) is equivalent to

    1 Q 0(i) 0 Q T 0(i) P 1 P 2 0 P T 2 P 3     ≥ 0, i = 1, . . . , g (25) 
and, therefore, if (23) holds, the block formed by the first two rows and columns of (25) implies S 0 ⊆ χ 0 . Let L = R L, by pre-and post-multiplying

Γ(v i ) by [I ÂT cl (v i ) ( L Ĉ -N ) T
] and its transpose, respectively, one has ÂT cl (v i )P + P Âcl (v i ) < 0. Therefore, there exists a positive scalar b 3 such that the condition (11) of Theorem 2 is satisfied by 2ξ T P Âcl (v i )ξ < -b 3 ξ T ξ and the proof is concluded. Remark 9. Observe that pre-and post-multiplying Γ(v i ) by [I ( Â(v i )+ B(v i )N ) T 0] and its transpose, respectively, yields (20) with W = P -1 . Therefore, a necessary condition to choose matrices N and K in Theorem 4 is that Â(x) + B(x)N is stable.

Remark 10. The maximization of the estimate of the region of attraction S 0 is obtained by solving the following optimization problem: min

P,F,H,R,L,Y Trace(Y) (26) 
subjected to relations of Theorem 4 and Y P 1

P 1 P 1 ≥ 0, Y ∈ R n×n . ( 27 
)
Remark 11. Observe that the matrices K and N provided by Theorem 3 (or Corollary 1) are not decision variables in the optimization problem ( 26)-( 27). Therefore, an iterative algorithm is proposed for the problem of enlarging S 0 , as follows.

Algorithm 1

(1) Compute matrices K(1) and N (1) with Theorem 3 or Corollary 1 and define an initial guess χ

(1) 0 ;

(2) Set k ← 1;

(3) For given K(k) , N (k) and a set χ and Γ(∆v i ) < 0, i = 1, . . . , κ, with Γ(•) given in ( 24) and ∆ = diag(ρ 0 , . . . , ρ 0 ) ∈ R n×n . To deal with the product between the variables ρ 0 and K, the term C(ρ 0 v i ) K is rewritten as C(v i ) Ǩ and K recovery as Ǩ/ρ 0 ;

(5) If k is even: fix F , H, Y , K(k) and set N (k) = L(k) Ĉ

to compute L(k) and scalars ρ i > 1, i = 1, . . . , n, solutions to the optimization problem: max n i=1 ρ i subject to (27) and Γ(∆v i ) < 0, i = 1, . . . , κ, with Γ(•) given in ( 24) and ∆ = diag(ρ 1 , . . . , ρ n ) ∈ R n×n . (6) If max{ρ i } < 1+η, i = 0, . . . , n, being the tolerance η define a priori, stop; otherwise, set

N (k+1) = L(k) Ĉ, K(k+1) = K(k) , χ (k+1) 0 = ∆χ (k) 0 (vertices v i ← ∆v i ), k ← k + 1 and go back to step (3).
If L(k) is a solution of Theorem 4 for a given N (k) , then N (k+1) = L(k) Ĉ also assures a feasible solution to Theorem 4. Therefore, if step (3) provides solution, steps (4) and ( 5) also do with, at least, ρ i ≥ 1, i = 0, . . . , n. This is verified by first observing that Γ(v i ) < 0 implies

Λ(v i ) = He{F Âcl (v i )} ⋆ P -F T + H Âcl (v i ) -H -H T < 0, where Λ(v i ) = Π T Γ(v i )Π, Π T = I 0 ( L Ĉ -N ) T 0 I 0 ,
and that Λ(v i ) is the block formed by the first two rows and two columns of Γ(v i ) when N = L Ĉ. Then, observe also that, if there exist sufficiently small matrices R and L such that R -1 L = L, and scalars ρ i ≥ 1+η, i = 0, . . . , n, η sufficiently small, then the feasibility of step (4) and step (5) is assured by

Λ(∆v i ) ⋆ BT (∆v i )[F T H T ] -R -R T < 0
with a matrix P 1 satisfying P 1 ≤ Y due to (27). By the same argument step (3) provides, in the next iteration, a solution with, at least, Trace(Y (k+1) ) ≤ Trace(Y (k) ), implying the enlargement of S 0 .

Observe that the enlargement of the polytope χ 0 is performed by finding positive scalars ρ i , i = 0, . . . , n, as large as possible. In step (4), the enlargement of χ 0 is done in all directions equally (ρ 0 x 1 , ρ 0 x 2 , . . .) and matrix K is updated. On the other hand, step (5) allows the enlargement of χ 0 in any direction independently (ρ 1 x 1 , ρ 2 x 2 , . . .) at a price of keeping K constant. Numerical experiments have demonstrated that the alternation of both approaches provides the largest regions χ 0 and S 0 .

NUMERICAL EXAMPLE

Consider the bilinear system (1) adapted from [START_REF] Tarbouriech | Control design for bilinear systems with a guaranteed region of stability: an LMI-based approach[END_REF] such that only state x 1 is available for feedback: x 1 (t)

x 2 (t)

Fig. 1. Evolution of the estimate of the basin of attraction S 0 ⊆ χ 0 with Algorithm 1 after 7 interactions and trajectories x(t) of the closed-loop system (3) for several initial conditions x(0) ∈ ∂S 0 .

CONCLUSION

The design of a class of dynamic output feedback controllers that maximize the domain of stability of bilinear systems has been investigated here. The proposed approach does not consider a fixed polytope that delimits the region of operation of the bilinear system as most of the approaches in the context of state feedback control. The technique based on the static output feedback problem has also the advantage to allow the design of reduced-order controllers by simple adjustments. Finally, the numerical experiment has shown that the proposed iterative algorithm was able to circumvent the restriction of supposing an initial guess for the polytope.

  L(k) and matrices F , H, Y solutions to the optimization problem (26)-(27); (4) If k is odd: fix F , H, Y and set N (k) = L(k) Ĉ to compute K(k) , L(k)and a scalar ρ 0 > 1 solutions to the optimization problem: max ρ 0 subject to(27) 

=

  C = [1 0] .For the design of the controller (2), Algorithm 1 was performed with β = 0.1 and ǫ = 1 in Corollary 1, a tolerance η = 0.001, and an initial polytope given by χ x ∈ R 2 : |x 1 | ≤ 0.5, |x 2 | ≤ 1 . The resulting DOF controller and the obtained Lyapunov matrix after 7 iterations are given by, respectively:A c B c C c D c =One can observe in Figure1the evolution of the polytope χ 0 and the estimation of the domain of attraction S 0 for every iteration of Algorithm 1. The trajectories x(t) of the closed-loop system (3) for several initial conditions x(0) ∈ ∂S 0 and x c (0) = 0 are also shown in the figure. As shown in Figure1, the proposed algorithm was efficient to enlarge S 0 from an initial guess of the polytope χ 0 .
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