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Abstract—Distribution networks must become smarter. Indeed
they may otherwise become subject to issues such as line
congestion due to the imminent deployment of electric vehicles
at a large scale. Hence, it is necessary that these electric vehicles
play a role in mitigating this type of issue. The objective of this
paper is to present a cooperative multi-agent system limiting these
problems using an electric vehicle fleet as distributed electricity
storage units.

Index Terms—Multi-Agent System, Smart Distribution System,
Electric Vehicle, Vehicle-to-Grid (V2G), Balance Responsible
Party, Line Congestion.

I. INTRODUCTION

The grid connection to the distribution network of an ever
increasing number of electric vehicles (EVs) and of distributed
power sources, such as photovoltaic (PV) panels, may raise
issues on the power system, both at a local (e.g. over- or
under-voltage, line congestion) and at a global level (e.g.
consumption/production imbalance). In order to mitigate these
issues, and thus maintain the safe and reliable operation of the
entire power system, it is crucial that the distribution network
become smarter and active. This implies to control the power
consumption of flexible loads such as electric vehicles. This
particular type of loads can also be used as storage units,
which can either absorb energy from, or inject energy into,
the grid. Last but not least, EVs being usually mobile (and
thus disconnected) only few hours a week, they may be used
for ancillary services the rest of time.

As mentioned earlier, the power consumption/production
imbalance constitutes one of the issues which could be miti-
gated by these ancillary services. Such imbalances are mana-
ged by Balance Responsible Parties (BRPs). Their imbalances
are calculated over a set of loads and power sources, called
a Balance Perimeter (BP), and over an imbalance settlement
period (soon to be harmonised to 15 min in Europe [ [7]]).
They correspond to the difference between their day-ahead
commitment in terms of power consumption/production and
their actual consumption/production. Should the actual pro-
duction be greater, or the actual consumption be lower, than
expected, the Transmission System Operator (TSO) pays the
energy mismatch to the BRP. In the opposite case, the BRP
must pay for this energy mismatch to the TSO.

Line congestion is also an issue which may arise due to
an excessive level of current injected into a line. Some papers
already addressed these problems. For example, Tulabing et al.
[1] define a hybrid centralized/decentralized control scheme
called localized demand control. This control mitigates grid
congestion using EVs. On the other hand, Sossan et al. [2]
proposes a real time control of a battery energy storage system
to compensate the mismatch between the actual aggregated
consumption and the planned consumption. While these papers
focus on one of the objectives, the proposed system in this
paper is supposed to handle both of them.

In order to provide a scalable system in terms of grid
size and number of devices, an adaptive multi-agent system
approach is proposed in this paper. Indeed, this approach is
characterized by a high level of scalability. It has been used
by Perles et al. [3] for state estimation in electrical distribution
networks.

This paper proposes an adaptive multi-agent system mana-
ging the EVs charging. This paper shows how this system
can handle antagonist issues encountered in the distribu-
tion network: consumption/production mismatch between the
consumption/production in a BRP perimeter and its day ahead
commitment, while also taking into account that an EV must
be sufficiently charged at its departure time. This paper is
organized as follows: first, the considered power system is
described. Second, the challenges tackled in this paper are
introduced. Then, the proposed multi-agent system, called
ADEMIS, is detailed. Finally, the case studies are presented
followed by an analysis of obtained results.

II. POWER SYSTEM MODELING

The electric grid model considered in this paper is based on
the publicly available “European Low Voltage Test Feeder”
electrical network model [4] shown in Fig. 1. This network
represents a 3-phase, low voltage (230/400 V) distribution
grid composed of 55 loads, each seemingly representing a
single household. It includes several feeders connected to a
11 kV/416 V substation. Consumption times series over a
single day, and averaged over one minute, are also provided as
part of this model. The electric grid has been decomposed into
three geographical zones. It has been simulated with power
system simulator PowerFactory.



The considered EV fleet is composed of 18 EVs, each one
connected to a bus to which a load is already connected. An
EV is a flexible load: its consumption can be adjusted and may
also be negative (i.e. it injects energy into the grid). For now,
no other flexible load or static battery have been considered.

All EV batteries are characterized by the same capacity
Ecap

bat = 30 kWh and maximum charging or discharging power
Pmax = 7 kW . The battery state is represented by the energy
stored at instant k Ebat(k). No charge/discharge energy losses
have been considered here. The battery State of Energy (SoE),
defined by SoE(k) = Ebat(k)

Ecap
bat

, is modeled using (1), with ∆t

the simulation time step, and Pev(k) the EV charging power
absorbed from the power grid at instant k. This charging power
Pev(k) is negative if the battery is discharging.

SoE(k) = SoE(k − 1) +
∆t · Pev(k)

Ecap
bat

(1)

Each EV has an arrival and a departure time supposed to
be known. Moreover, the battery of each EV must be charged
at a minimal SoE at departure time (SoEmin). It has been
arbitrarily set to SoEmin = 0.7. From this constraint, the
uniform charging power Pu(k) can be defined by (2), where
tr(k) is the remaining time before departure. It corresponds
to the necessary charging power to have a sufficiently charged
battery when EV leaves, charging it at constant power between
instant k and departure time. This basic strategy is used as a
reference to analyze the obtained results. This strategy has
been proposed in [5].

Pu(k) =
(SoEmin − SoE(k)) · Ebat

tr(k)
(2)

Rooftop photovoltaic (PV) panels are supposed to be
installed with 18 loads. The energy efficiency of these pa-
nels is considered constant and equal to ηPV = 0.15. The
total surface of each PV installation is arbitrarily set to
S = 10 m2. The produced power PPV (k) is obtained by
PPV (k) = ηPV · S · Irr(k), where Irr(k) is the irradiance
at instant k. The irradiance data used for the simulation is
from the National Renewable Energy Laboratory database [6],
and corresponds to irradiance data of October 1, 2011. All

Fig. 1. Graphical representation of the European low voltage test feeder

PV panels receive the same irradiance: this is a worst case
scenario. Indeed, in this paper, no smoothing effect due to
the geographic distribution of these PV panels is considered.
Production peaks and throughs of each PV panel are thus
cumulative.

III. CHALLENGES

Electric line congestion may occur if the current flowing
through this piece of electrical equipment exceeds a pre-
defined rated value. It is a phenomenon which must be avoided
as it may have a potentially harmful impact on the line
material and endanger the grid reliability. However, such a
situation is usually prevented in transmission networks by
careful planning and real-time operational management, while
in distribution networks, it is prevented by the sizing, and
potential upgrading, of this type of grids.

However, Distribution System Operators (DSOs) seek now
to postpone, or even to avoid, whenever possible, the need
for such costly upgrading measures. Hence, they target an
increased usage of their existent electrical infrastructures while
still continuing to satisfy their corresponding constraints. This
implies that the distribution grids are expected to be opera-
ted closer and closer to their technical limits. Hence, under
these conditions, line congestion issues may occur also in
distribution networks. Therefore, this phenomenon should be
considered in the real-time management strategies which are
expected to be deployed by DSOs, and it has thus been taken
into account in this paper.

Imbalance over the BP can also constitute one challenge,
even in the ideal case where forecasts were perfect. Pho-
tovoltaic electricity generation forecasts are indeed usually
provided as a constant power averaged over one hour for geo-
graphical areas with distributed PV panels (such as residential
areas). However, the imbalance settlement period is shorter,
and soon to be equal to 15 min all over Europe [7]. Hence, it
is likely that a difference exists between the one hour-averaged
PV power level and its 15 min-averaged counterpart, thus
leading to an imbalance which has to be corrected in real-
time.

IV. SYSTEM AGENTIFICATION

In order to manage the EV fleet in a way to solve the BRP
imbalance and congestion issues, the Adaptive Multi-Agent
System (AMAS) approach has been adopted.

A. Introduction to AMAS

An agent is an autonomous entity in an environment. It
executes a cycle in a loop: it perceives its environment, makes
a decision on the action to execute and executes this action
[8]. It has a partial knowledge of its environment and some
individual goals to achieve. In an AMAS, an agent interacts
with its neighborhood in a cooperative manner, helping others
agents to satisfy their goals. All these interactions are intended
to generate a desired emerging collective phenomenon, which
is unknown to the agents, but solely to the AMAS designer
[9].



B. Agentification Compliant with the AMAS Approach
In the ADEMIS system (ADaptive Energy Management In

Smart grids), each physical component of the power grid is a
cooperative agent. Each agent has its objective and its set of
actions. At every cycle, a cooperative agent decides to act in
order to pursue its own goal or to help another agent of its
neighborhood. To do so, it compares its state with the state of
others agents based on the criticality measure which represents
the dissatisfaction of an agent regarding the achievement of its
local goal. All criticalities are defined between 0 and 1.

Fig. 2 illustrates the agentification of a simple electric
system. Four types of agent are considered in the ADEMIS
system: line agent, bus agent, BRP agent and EV agent. These
agents are described in the following paragraphs.

1) Line Agent: It is intended to limit the congestion of
its assigned electrical line by requesting cooperative actions
from EV agents. Its neighborhood is composed of the two
bus agents associated to the buses the line is connected
to. First, it perceives the current in the line and calculates
the corresponding effective criticality Crl(k) defined by (3),
where I(k) is the current in the line and Ith is an arbitrarily-
selected threshold. The current Imax is the maximum allowed
current in the line set arbitrarily to 95 % of the rated current.
The existence of such a security margin prevents congestion
from occuring in the case where an current peak presenting an
amplitude of up to 5% appears suddenly. Then the line agent
acts sending requests to its neighborhood. These requests are
propagated into the AMAS through line and bus agents until
being received by agents able to physically act on the power
grid: EV agents. However, if the current line is low, it is
necessary to differentiate if this is due to the low uncontrolled
consumption of entities connected to the power grid (inflexible
loads) or to the cooperating EVs. Indeed, in the second
case, it is necessary to maintain the cooperation of the EV
agents. In order to solve this problem, anticipated criticality
concept has been defined. The anticipated criticality Cra,l(k)
represents the criticality with a lower dynamic. It is defined
by (4), where Kl is a parameter to control its dynamics.
This anticipated criticality is supposed to converge towards
the effective criticality.

Crl(k) = (I(k)− Ith)/(Imax − Ith), if I(k) ≥ Ith (3)
Cra,l(k) = Cra,l(k− 1) +Kl · (Crl(k)−Cra,l(k− 1)) (4)

Fig. 2. Example of a simple electrical system and its corresponding AMAS.

2) Bus agent: In the presented system, the role of the bus
agent consists only in transferring requests sent by line agents.
The neighborhood of the bus agent is line and EV agents
associated to the lines and EVs connected to this bus.

3) BRP agent: It ensures that the consumption/production
of the BP at the end of the commitment period is as close
as possible from the commitment. Only one BRP, and thus
only one BRP agent, has been considered in the system. This
implies that all the consumers and producers considered in
this study belong to the same BP. The BRP agent neighbors
are all the EV agents in the system. Its criticality is defined
by (5), where trperiod(k) is the remaining time before the
end of the current commitment period, while trperiod(k) ≥
3 min at the end of the period, and KBRP a parameter.
The variable ∆E(k), defined by (6), is the current energy
mismatch between the energy consumed during the current
period, starting at instant kstart, and the energy that should
have been consumed during the same period with the constant
commitment power level Pcom. The power PBP (i) is the total
power consumed in the BP at instant i.

CrBRP (k) =
|∆E(k)|

trperiod(k) ·KBRP
(5)

∆E(k) =

k∑
i=kstart

(PBP (i)− Pcom) ·∆t (6)

4) Electric vehicle agent: It manages the EV consumption
Pev(k) (positive if the EV is charging, or negative if it is
discharging). It attempts to make the battery SoE reach its
requested SoEmin at departure time. Its neighbors are the BRP
agent and the agent of the bus to which its assigned EV is
connected. Its criticality is defined as (7).

CrEV (k) =
(SoEmin − SoE(k)) · Ebat

Pmax · tr(k)
(7)

If the criticality of the EV agent is greater than the maxi-
mum criticality in its neighborhood, the battery is charged at
power Pu(k) as defined in (2). Otherwise, it selects the most
critical request and cooperates such as Pev(k) = Pu(k) ±
(Crmax(k)−Crmax,2(k)) ·Pmax. Criticalities Crmax(k) and
Crmax,2(k) are respectively the highest criticality and the
second highest criticality among antagonist requests compared
to the most critical request. Two requests are antagonist when
they require opposite actions from an agent. For instance,
in this paper, an EV agent may be requested to decrease
its power consumption by a neighboring agent while being
simultaneously requested to increase it by another. The EV
agent select the action to adopt (either increase or decrease
the EV power consumption) corresponding to the most critical
request: the two terms of the equation are added when the EV
increases its consumption. The second term is subtracted to the
first one in the case when the EV decreases its consumption.

V. CASE STUDIES

To evaluate the proposed system, a scenario where different
problems are encountered is proposed: BRP imbalance, line
congestion and vehicle charging constraints. The simulation
scenario starts at 6 pm and ends at 7 pm. It is composed of 4
commitment periods of 15 minutes.



A. Electric Vehicles Arrival and Departure Times

EV characteristics have been arbitrarily chosen in order to
create a relevant scenario demonstrating the valid behavior
of the AMAS in the case where antagonist situations arise.
Among the 18 EVs considered, 9 EVs are connected in zone
A (Fig. 1): 7 of them arrive between 6 pm and 6:03 pm with
an initial, arbitrarily selected, SoE between 0.25 and 0.4. Nine
EVs are in zones B and C. Seven of them arrive at 6:15 pm
with an initial SoE equal to 0.3. The 4 others EV, 2 in zone A
and 2 in zone C are already connected at 6 pm. The EVs in
zone A (resp. zone C) are leaving at 6:15 pm (resp. 6:30 pm)
and have an initial SoE of 0.7 and 0.68 (resp. 0.7 and 0.7).
Since these EVs are leaving during the considered period, they
are used to check the behaviour of the system with departing
shortly EVs. Fig. 3 shows a timeline indicating the arrival and
departure time of EVs.

B. Commitment Temporal Settings

As explained in Section III, the BRP took a commitment
towards the TSO. The commitments for the proposed sce-
nario have been defined considering that consumption and
PV production forecasts are perfect over 1 hour. As for the
commitments, they are taken by the BRP for each of the
15 minute periods and are equal to the one hour averaged
forecasts. Hence, there are deviations between the forecasts
and the real consumption/production, even if the forecasts are
assumed perfect.

C. Antagonist Issues

In the considered scenario, between 6:15 pm and 7:00 pm,
14 EVs are connected to the network and consume 1 kW.
Between 6:00 pm and 6:15 pm, only 8 EVs are charging, 7 of
them at 1 kW and 1 at 2.3 kW. Thus, the average consumption
between 6:00 pm and 6:15 pm is lower than between 6:00
pm and 7:00 pm. Yet the average consumption between 6:00
pm and 7:00 pm is used to calculate the commitment. The
BP is under-consuming compared to the commitment between
6:00 pm and 6:15 pm. To compensate this global under-
consumption, available EVs should increase their charging
power to increase the BP consumption. However, in the
proposed scenario, among the 8 EVs charging between 6:00
pm and 6:15 pm, 7 of them are in zone A: the current in the
departure line of the zone A (LINE287, Fig. 1) is relatively
high. Moreover, inflexible loads connected in zone A have
a consumption peak during this same period. The current
limit in this line Imax = 40 A has been set arbitrarily
in order to have an over-current during these consumption
peaks. A line congestion appears in LINE287 due to a local

Fig. 3. Electric vehicles arrival (↓) and departure (↑) times

TABLE I
ENERGY MISMATCH RATIO COMPARED TO THE BASIC CHARGING

STRATEGY

Kbrp 1 kW 2 kW
Kl 0.002 0.005 0.010 0.005

6:00 - 6:15 pm 3.3 % 2.9 % 2.7 % 6.2 %
6:15 - 6:30 pm 1.5 % 0.0 % 1.8 % 0.8 %
6:30 - 6:45 pm 4.0 % 0.6 % 0.3 % 3.4 %
6:45 - 7:00 pm 19.0 % 12.5 % 12.5 % 21.4 %

over-consumption: EVs should decrease their consumption to
reduce the current. Finally, 2 EVs in zone A have to leave at
6:15 pm: they have to charge in order to respect their SoE
constraint.

VI. RESULTS

To analyze the proposed ADEMIS system, the results
are compared with those obtained when the naive, non-
cooperative, strategy is used and which will be referred
to as ”basic charging strategy”. This simulation consists in
considering that each EV is charged at uniform charging power
Pev(k) = Pu(k) where Pu(k) is described in (2).

For each simulation, EVs leaving during the considered
simulation period left with a SoE higher than SoEmin = 0.7.
The energy mismatches at the end of each 15 min commit-
ment period with the basic charging strategy are equal to
−0.790 kWh, 0.453 kWh, 0.321 kWh and 0.014 kWh. They
will serve as comparison for the results using our ADEMIS
system.

A. Parameters Analysis

For these studies, parameter KBRP used in the BRP agent
criticality has been taken to KBRP = 1 kW . Simulations have
been realized for multiple values of Kl, which is a parameter
included in the definition of the line agent anticipated critica-
lity, as defined in (4).

Table I shows the ratios between energy mismatches at the
end of each commitment period obtained with each considered
study to the ones of the basic charging scenario. It shows
that the ADEMIS system can reduce energy mismatches
significantly. Also, it must be noted that this trend is generally
relatively independent of parameter Kl. Regarding the last
period considered (6:45-7:00 pm), the energy mismatch ratio is
greater than in the other periods. This is due to the fact that the
energy mismatch at the end of this period is already weak with
the basic charging strategy. However, Fig. 4 shows that this
parameter has an important effect on the current. Indeed, when
Kl increases, the line anticipated criticality dynamic increases
and EV agents respond to the request faster, as shown in
Fig. 4. Hence, after a congestion is detected (i.e. the current
is greater than its allowed value), the cooperation between
the EVs solves this issue faster as parameter Kl increases.
However, it can be noticed that oscillations appear 6:30 pm.
With a smaller Kl, there is no oscillation, but the current takes
longer time to decrease.

Four EVs left during the simulation period: EV2, EV6,
EV42 having an initial SoE equal to 0.7 and EV47 having an



initial SoE equal to 0.68. For each simulation, EV2 and EV6
left with a SoE 0.72: they continued charging, even though
they were sufficiently charged, in order to increase the BP
consumption. The vehicles EV42 and EV47 left with a SoE
equal to 0.7. Indeed, these EVs are in zone A, thus having
the additional responsability to reduce the line congestion
in LINE287 which also belongs to this zone. Hence, their
recharge was performed only to satisfy their SoE constraint at
departure time.

Finally, a simulation has been realized with Kl = 0.005
and KBRP = 2 kW to analyze the influence of parameter
KBRP . This parameter influences mainly the energy mismatch
reduction performances of the ADEMIS system. Indeed, when
KBRP increases, the energy mismatch reduction for each
period increases (Table I). However, in this former simulation,
the electric current in LINE287 exceeds its allowed value of
40 A for almost 3 seconds.

B. Electric Vehicle Agent Analysis

Fig. 5 shows the charging power of several vehicles for
the first period, i.e. between 6:00 pm and 6:15 pm, with
KBRP = 1 kW and Kl = 0.005. Since EV6 is not in zone
A, it cannot participate to the current reduction in LINE287
when the congestion event occurs. It only can cooperate with
the BRP agent which is in an under-consumption state at
this time. This is in line with its own recharge objective to
reach SoEmin at its departure time. Thus, EV6 recharges at
a higher power level than the uniform charging power in order
to reduce the under-consumption issue. On the contrary, EV24
is connected in zone A. Hence, it cooperates by reducing its
consumption in order to reduce the electric current level on
LINE287. Finally, EV47, which is also connected in zone A,
reduces its consumption as well. However, this EV leaves at
6:15 pm and still needs to charge to attain its objective. Hence,
its contribution in solving the congestion issue is necessarily
smaller than the one of EV24. Moreover, it further increases
its consumption before the end of the period in order to satisfy
its SoE constraint (SoE = 0.7) at its departure time.

VII. CONCLUSION

An adaptive multi-agent system, called ADEMIS, has been
proposed to manage intelligently the recharge of an EV fleet in
order to solve some technical problems: congestion in electric

Fig. 4. Current in LINE287 (kA) between 6:00 pm and 7:00 pm

Fig. 5. Electric vehicles charging power between 6:00 pm and 6:15 pm

lines, BRP energy mismatch, while ensuring the vehicles are
sufficiently charged at their departure times. The implemented
system has been shown to solve these problems thanks to a
careful tuning of the agents parameters. The proposed solution
is modular and may easily be applied to other electrical
network models and generalized to other flexible loads.

In future work, additional aspects will be taken into account,
such as bus voltage management and EV battery aging. Also,
larger electrical network models will be considered in order to
demonstrate the genericity and the scalability of the proposed
system.
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