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Abstract 

Hydrogen has concerned interest universally as an environmentally nontoxic and 

renewable fuel. Electrocatalytic hydrogen evolution reaction (HER) is one of the 

utmost favorable methods for hydrogen creation on a vast scale; however, the high 

cost of Pt-based supplies, which demonstrate the highest activity for HER, forced 

investigators to look for cheaper electro-catalysts. Tungsten has been considered 

as an effective, active and low cost electrocatalyst for the hydrogen evolution 

reaction, mostly in alkaline media, and we have investigated here its behavior in 

acid electrolytes. HER has been studied utilizing linear polarization technique and 

electrochemical impedance spectroscopy (EIS). It happens on W at rather low 

overpotential (-0.32 V vs. NHE at 10 mA cm-2, in 0.5 M H2SO4), yet more 

cathodic than the widely used Pt/C catalyst, but not so far from more sophisticated 

systems developed recently. The effect of acid concentration on the HER rate and 

the electrode stability was investigated. Cathodic transfer coefficient and 

exchange current density were calculated for the HER from Tafel curves obtained 

in H2SO4 solution at concentrations ranging from 0.1 to 3.0 M. EIS experiments 

were performed under both open circuit and/or cathodic polarization. It was found 

that the hydrogen evolution rate is relatively high under low overpotential, 

confirming that W is a possible applicant to substitute more expensive 

electrocatalysts usually used for the HER under acidic conditions. The process is 

economic and appropriate with no need for specific treatments, as supported by 

additional X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) 

characterization of the tungsten electrode surface. 

Keywords: Tungsten electrode; HER; Electrochemical activity; EIS. 
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1. Introduction 

      Hydrogen production from water electrolysis is a significant work owing to its 

importance as an alternative to hydrogen energy manufacturing field [1-3]. 

“Hydrogen economy” is a possible substitute to energy systems using fossil 

derived fuels, either for its useful environmental influence or as a substitute for 

rapidly exhausting fossil fuels [4,5]. HER has been studied on different electrode 

materials with the goal to find more efficient conditions for H2 production. The 

active materials for HER should be of large active surface area, highly intrinsic 

electrocatalytic activity, stable and of low cost [4,6].  

      It is well recognized that noble metals like platinum, Pt, and palladium, Pd 

(especially Pt/C and Pd/C) have high efficient catalytic performance for the H2 

production, good chemical stability, large surface area with low overpotential in 

acid media [7]. However, their high price reduces their utilization for industrial 

applications [8, 9]. Therefore, much effort has been exhausted to find cost-

effective, earth-abundant metal based compounds as a highly efficient HER 

catalyst [10].  

       Recently, non-precious metals like Ni [11], Co [12], W [13] or Mo [14], 

and/or non-noble metal-based materials, such as transition metal sulfides, nitrides, 

phosphides, carbides and carbonaceous materials, which have been stated as 

efficient HER catalysts replacing noble metal catalysts [15-17]. This is not only 

due to their chemical stability, but also because of their low cost and low HER 

overpotential [13,14]. In the tungsten family, more sophisticated W-based systems 

have been also reported for HER, including for instance tungsten carbide, tungsten 

oxide, tungsten sulfide or phosphide, tungsten-based alloys, or their 

multicomponent composites [18-30]. Note that tungsten oxide can be also used as 
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electrocatalyst for oxygen reduction [28]. Finally, one noticed also recent efforts 

directed towards the photocatalytic hydrogen generation using tungsten-based 

(nano) materials [31-39]. 

     W was utilized successfully to produce H2 from KOH solutions at a reasonable 

rate and for a relatively long time [13,40]. This is due to its superior electronic 

conductivity [41] that makes it significant candidate for electrocatalytic HER. The 

disadvantages of H2O alkaline electrolysis processes are mainly related to their 

low efficiency and high energy consumption [42-43].  

Hence, W metal is inspected as a catalyst for the HER in this work in acid solution 

which provides a potential alternative to this issue. It is aimed to utilize it as an 

effective cathode for hydrogen evolution at low hydrogen overpotential in H2SO4 

solution. This suggestion was done especially on tungsten owing to its low cost, 

superior electronic properties and easily available. The electrochemical and 

catalytic characteristics of this electrode were investigated here on the basis of 

potentiometry and linear scan voltammetry (LSV) measurements as well as 

electrochemical impedance spectroscopy (EIS). Also, composition and 

morphological or structural properties have been included on the basis of SEM, 

EDX, XRD and XPS measurements. 

2. Experimental 

         The W rod (Sigma Aldrich of cross-section area of 0.2 cm2) was embedded 

in epoxy resin and then polished using successive grades of emery papers down to 

2000 grit then washed with triple distilled water and transferred quickly to the 

electrolytic cell. The W working electrode was held using a PTFE holder. Its 

electrochemical response was evaluated in H2SO4 medium (Sigma Aldrich) using 
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the Voltalab PGZ 100 workstation, most often with a three-electrode cell as stated 

previously in Badawy et al. [13] work. Triple distilled water was used. 

       The open circuit potential, OCP, was recorded for 1 h and all potential values 

are referred to the saturated calomel reference electrode (SCE, +0.241 V vs. 

NHE). All experiments were conducted at room temperature (25 ± 1 oC). Linear 

sweep voltammetry was performed at a scan rate of 5 mV s−1. EIS tests were 

performed at OCP potential and at different overpotentials in the H2 evolution 

region with a 10 mV amplitude at frequency ranging from 1mHz to 100 kHz. The 

polarization and EIS tests were repeated three times. Pt electrode was used for 

comparison purposes. 

Surface morphology and characterization was achieved utilizing the scanning 

electron microscope (SEM) (Model Quanta 250 Field Emission Gun) coupled 

with energy dispersive x-ray (EDX) Unit (FEI Company, Netherlands). XPS was 

collected on K-ALPHA (Themo Fisher Scientific, USA) with monochromatic X-

ray Al K-alpha radiation -10 to 1350 eV spt size 400 micro m at pressure 10-9 

mbar with full spectrum pass energy 200 eV and at narrow spectrum 50 eV. XRD 

instrument was … Surface roughness was measured using the Nanosurf C3000 

atomic force microscopy (AFM) apparatus.  

3. Results and discussion 

3.1. Preliminary characterization of W electrodes 

      The polished W rod electrode exhibited a flat surface (its roughness has been 

estimated from AFM imaging at about 45 nm), yet with noticeable polishing 

striations (see SEM micrograph on Fig. 1A), without any other detectable 

elements (as pointed out from EDX analysis, see Fig. 1B). XPS examination of its 

surface state (see the narrow scan corresponding to the W region on Fig. 1C) 
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reveals the presence of two main contributions of W(4f) at binding energies of 

respectively 31.3 and 33.5 eV, which are characteristics of metallic W0, and two small 

peaks located at 35.6 and 37.8 eV generally attributed to tungsten oxidized to its 

hexavalent state (WO3) [44-46]. The small amount of oxidized tungsten was even less 

after contacting a 0.5 M H2SO4 solution (i.e., the medium in which most of 

electrochemical measurements will be performed, as described below), which should be 

due to some wet etching of WO3 likely to occur in very acidic medium [46,47]. The 

residual WO3 signature might be also due to the fact that the W sample was briefly 

exposed to air prior to XPS analysis, and might therefore not reflect exactly the 

surface state of the electrode in the electrolyte medium (as otherwise reported for 

air-sensitive materials [48]). 

     Both crude W electrode and W electrode treated with 0.5 M H2SO4 have been 

characterized by XRD. The results (Fig. 2) indicate the expected body-centered 

cubic phase characteristic of W [49]. The same diffraction lines were observed for 

both crude and treated electrodes, with the typical reflections shown as (002) , 

(110), (200), (211) and (220), respectively located at 2 values of 29o, 40o, 58°,73o 

and 87o. No noticeable difference can be seen after W treatment in 0.5 M H2SO4, 

and no crystalline WO3 can be detected, suggesting that the small amount of oxide 

evidenced from XPS is either too low to be detected by XRD or amorphous. 

 
3.2. Open circuit potential 

      The open-circuit potentials, EOCP, of W (Fig. 3a) were monitored over 1 h in 

aerated H2SO4 solution of various concentrations. EOCP was reached in ~ 30 

minutes at all acid concentrations, It shifted positively at first few minutes and 

then a gradual increase of potential with time  until a steady state value is obtained 

(the relatively steady values are in the range of 0 to 0.50 mV). This means a 
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passivation and healing of W in aqueous media even with using a high acid 

concentration. By increasing the H2SO4 concentration from 0.1-0.5 M, there is no 

appreciable change in the steady state potential, Ess. At higher concentration of 

H2SO4 (> 0.5 M), the EOCP of the W electrode shifts toward more positive values 

indicating healing (cf. Fig. 3a). For comparison, the EOCP for Pt in 0.5 M H2SO4 

solution was also outlined and the results of both Pt and W are set in Fig. 3b. The 

results indicate much more negative steady-state potential for W compared to Pt.  

3.3. Electrocatalytic evolution of hydrogen on W electrode 

     The HER electrocatalytic activity for W electrode was estimated by the 

cathodic current-potential curves in different H2SO4 acid concentrations (Fig. 4a) 

and examined in comparison with commercial Pt electrode. The increase of H2SO4 

concentration from 0.1 to 3.0 M resulted in different current densities related to 

the HER increasing from 95 to 592 mA cm-2 at -1.0 V and from 182 to 1470 mA 

cm-2 at -1.5 V. This means that the H2 production can be controlled by the 

electrolyte concentration. Fig. 4b illustrates the hydrogen evolution behavior of 

W, in comparison to Pt in 0.5 M H2SO4 solution, where the Pt catalyst exhibits the 

highest HER catalytic activity in the same solution, larger than that recorded on W 

electrode. These values are estimated from Fig. 4b, after enlargement of the 

current scale at 10 mA cm-2 are -0.32 V and -0.08 V vs. NHE (in 0.5 M H2SO4), 

respectively, for W and Pt electrodes. The steady state potentials of Pt and W are 

485 and -2 mV, respectively, (cf. Fig. 3b). The potential at which H2 starts to 

evolve in the same solution on the two different electrodes is -310 and -596 mV 

for Pt and W, respectively (cf. Fig. 4b). Thus, the potential jump for HER on W 

amounts to -594 mV whereas that on Pt is -795 mV. So, W is an effective catalyst 

for H2 production in H2SO4 solutions. To compare between W and Pt according to 
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HER rate using similar polarization circumstances, the current density on W at -

1.0 V from the steady-state potential amounts to 210 mA cm-2 , i.e. only twice as 

less than on Pt (410 mA cm-2). The presented data were extracted from Fig. 4b at a 

concentration of 0.5 M H2SO4 only. It was found that the hydrogen evolution rate 

is relatively high under low overpotential (-1 V). This confirms well confirming 

that W is a possible applicant as low cost electrocatalyst for the HER under acidic 

conditions. At higher concentration the rate of hydrogen evolution on W will be 

higher (cf. Fig. 4a). It means that even for practical applications when one needs 

to work in higher acid concentrations, W can act effectively as a catalyst for the 

HER in acidic electrolytes, yet achieving 50% of the performance in terms of 

current density when compared to Pt electrode. A more detailed comparison to 

other electrocatalysts investigated in the past few years (Table 1) shows that the 

overpotential values for W from the present study remains quite high, but not that 

much in comparison to other systems [50-87] that are often more sophisticated in 

terms of composition, (nano)structure or preparation methods, than a simple W 

rod as used here. 

     Fig. 5 presents the polarization scans of the HER on W electrode at different 

H2SO4 concentrations fitted well with the Tafel equation [13]. The kinetic 

parameters were derived by the extrapolation method and are summarized in 

Table 2. The slope of the cathodic Tafel line, b, is given by: b=2.3RT/(1-α)F, 

where it is inversely proportional to the cathodic transfer coefficient, (1-α). The 

exchange current density, io, is obtained from the intersection of Tafel lines. 

Generally, to convert H+ protons to H2 in acidic electrolytes, three elementary 

reaction steps are involved [88,89], as follow. 

A primary discharge step (Volmer reaction):  
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M + H3O+ + e- → M-Hads + H2O (b = 
.  

 ≈  120 mV)  (1),  

An electrochemical-desorption step (Heyrowsky reaction):  

M-Hads + H3O++ e- → H2↑ + M +  H2O (b = 
.  

( )
 ≈  40 mV)   (2)  

and A recombination step (Tafel reaction):  

2M-Hads→ H2↑ + 2M (b = 
.  

 ≈  30 mV)  (3)  

Molecular H2 can be produced when reaction (1) is combined with reaction (2), or 

reaction (3). For materials that are good catalysts toward H2 production (HER), 

the Tafel reaction is the rate-determining step (rds) at low overpotentials, while at 

higher overpotentials, the Heyrovsky reaction becomes the rds [90]. The right 

reaction mechanism can’t be simply known. As example, the Tafel slope for the 

HER on the Pt(110) was 28 mV/dec, indicating the reaction pathway to the Tafel-

Volmer mechanism [91].  By knowing the evaluated values, we can assume that 

the route for HER on W (b = 25 mV dec-1 cf. Table 1) should follow Volmer–

Tafel steps, where Tafel reaction is the rds. It is also evaluated that the exchange 

current density increases with the H2SO4 concentration. To know the actual 

meaning of the Tafel slope, the right value of the transfer coefficient α should be 

known. The transfer coefficient for the HER is given to be between 0 and 1 [92]. 

The cathodic transfer coefficient decrease by a small value with increasing the H+ 

concentrations with an increase of exchange current density io, leading to an 

overall effect of HER enhancement [93]. Comparison to other HER catalysts 

indicates that Tafel slope achieved here with W electrode is amongst the smallest 

values reported to date for other electrode materials (Table 1). 
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3.4. EIS investigations of W electrode.     

Metallic catalysts are likely to be corroded, inducing a decrease in its performance 

when utilized in industrial applications (activity and lifetime drops). Hence, EIS is 

an appropriate technique to characterize such behavior [94-99]. The Bode plots of 

W electrode after 1 h immersion in an aerated solution of different H2SO4 

concentrations were given in Fig. 6. They show a broad two time constants with a 

maximum phase angle of ~ 90o demonstrating that the corrosion reaction is mostly 

controlled by a charge transfer process. The phase diagram shape or phase angle 

maximum does not vary with the H2SO4 concentration [99,100] ensuring the same 

reaction mechanism (Fig. 6). The data are fitted well utilizing an equivalent circuit 

model constituting a solution resistance, Rs in series with a two parallel 

combinations consisting of a resistor representing the charge transfer resistance of 

outer and inner layer, R1, R2, respectively, and a constant phase element (CPE), 

CPE1, CPE2, respectively, representing the double layer capacitance of the outer 

and inner layer (cf. Fig. 6 (inset)). The CPE is introduced to account for the non-

ideality of the surface [101-103] including α as an empirical parameter (0 < α < 1) 

and f as the frequency in Hz [104,105]. The experimental results were fitted to the 

circuit inset in Fig. 6 and the calculated parameters are given in Table 3. The total 

charge transfer resistance (RT) (Table 3) was found to be increased with 

increasing the concentration of H2SO4 indicating a higher stability of W electrode 

at higher acidic solutions due to the formation of less soluble hetero-

polytungstates [100]. 

      Fig. 7 presents the Bode and Nyquist plots of the W catalyst in H2SO4 

solutions at various concentrations, as polarized catholically at a potential of -750 

mV, where the HER is taking place at a measurable rate. Generally, the total 
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impedance, Z, under cathodic polarization, is lower (cf. Fig. 7a) owing to the 

activation of the W surface due to the HER. The ϴmax value shifts toward lower 

values and the impedance, Z, value decreases in more concentrated H2SO4 

solutions, indicating an increase in the rate of H2 generation (HER). There is no 

broadening of phase diagram meaning that the rate of hydrogen production is 

appreciably high. Only one depressed semicircle was observed in Nyquist plot for 

W catalyst at all H2SO4 concentrations (cf. Fig. 7b), which becomes smaller in 

more concentrated H2SO4 due to the fact that the adsorption process is facilitated 

and the charge transfer process controls the mechanism as the concentration 

increases. The data can be adjusted utilizing the simple Randles model (Fig. 7b) 

and fitting values [106-110] are presented in Table 4. The charge-transfer 

resistance decreases as the acid concentrations increases. This confirms well the 

increase in the current density, i.e. the increase in HER rate. Fig. 8 presents the 

Bode and Nyquist plots performed after different intervals of electrode immersion 

in 0.5 M H2SO4 at a cathodic potential of -750 mV. RT increases due to a 

progressive adsorption of H+ on the electrode surface [7] as given in Table 5. The 

resistance of the adsorbed layer increases with increasing immersion time 

indicating increased adsorption of hydrogen on the electrode surface [111].   

 

4. Conclusions 

This work has investigated the electrocatalytic properties of tungsten electrode in 

0.5 M H2SO4 for hydrogen evolution reactions. Polarization and impedance results 

have shown that the hydrogen production occurs at a reasonable overpotential on 

W compared to other HER catalysts, yet more cathodic than the most efficient 

used to date (i.e., Pt/C or novel nanostructured catalysts), however, from cost 
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comparison W is better economically. Tungsten catalyst exhibited high HER 

activity with an overpotential of -0.32 V vs. NHE (at 10 mA cm-2, in 0.5 M 

H2SO4), large cathodic current, and a Tafel slope as small as 25 mV/decade, 

which makes them perspective for application in acidic electrolyzers for hydrogen 

production. 
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Figures captions:  

Fig. 1. (A) SEM micrograph and (B) EDX spectrum corresponding to a freshly 

polished W electrode. (C) High resolution XPS spectra for W (4f) recorded with 

W electrode, respectively, before (C1) and after contacting a 0.5 M H2SO4 solution 

(C2). 

 
Fig. 2. XRD patterns for A) a crude W electrode (without polishing) and B) W 

electrode treated with 0.5 M H2SO4 (with polishing).   

 
Fig. 3. (a) Variation of the open circuit potential with time for W electrode 

immersed in H2SO4 solutions of different concentrations at 25 oC. (b) Variation of 

the open-circuit potential with time for W and Pt electrodes in a stable natural 

aerated 0.5 M H2SO4 solution. 

 
Fig. 4. (a) Influence of H2SO4 solution concentration on the catalytic activity of 

W electrode at 25 oC. (b) Cathodic polarization curves for HER on W and Pt in 

0.5 M H2SO4 at 25 oC. 

 
Fig. 5. Cathodic Tafel lines for HER on W electrode immersed in aerated H2SO4 

solution of different concentrations at 25 0C. 

 
Fig. 6. Bode plots for W electrode immersed in H2SO4 solutions of different 

concentrations after 60 min of electrode immersion at 25 oC. (inset): Equivalent 

circuit model used in the impedance data fitting. Where Rs= solution resistance, 

Rp= polarization resistance, Cdl= double layer capacitance. 

 
Fig. 7. (a) Bode plots for W electrode at E= -750 mV vs SCE, for HER at 

different concentrations of H2SO4 solutions at 25 oC. (b) Nyquist plots for W 

electrode at E= -750 mV vs SCE, for HER at different concentrations of H2SO4 

solutions at 25 oC. 

 
Fig. 8. (a) Bode plots of W after 1 h of electrode immersion in stagnant naturally 

aerated 0.5 M H2SO4 solution at -750 mV and 25 oC. (b) Nyquist plots for W after 

1 h of electrode immersion in stagnant naturally aerated 0.5 M H2SO4 solution at -

750 mV and 25 oC. 
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Tables 

Table 1- Comparative performance of various HER electrocatalysts in acidic 
media (0.5 M H2SO4). 

Electrode material Tafel slope 
(mV dec-1) 

Overpotential 
(at 10 mA/cm2) 

(mV) 

Reference 

Core-shell MoO3-MoS2 nanowires 50-60 254 [50] 

MoS2 nanoparticles on Au electrode 69 226 [51] 

Defect-rich MoS2 nanosheets  50 190 [52] 

Nanostructured Ni2P 46 117 [53] 

CoS2 42.4 231 [54] 

CoP nanocystals on C nanotubes 54 122 [55] 

WSe2 film on glassy carbon electrode 100 150 [56] 

Dendritic WSe2 on carbon nanofiber 80 228 [57] 

WO2-carbon mesoporous nanowires 44 56 [58] 

WC nanocystals on C nanotubes 72 145 [59] 

WO3 (precipitated on glassy carbon) 
WO3 (annealed on glassy carbon) 
Pt/carbon 

43.9 
39.5 
29 

147 
73 
24 

[60] 

MoN on N-doped C nano-octahedrons 54 62 [61] 

FeSe2 nanorods on graphene oxide 
nanosheets  

64 250 [62] 

Pt nanoparticles on MoS2 nanosheets 52 
70 

31 
36 

[63] 
[64] 

WC hybrid nanowires on carbon cloth 55 118 [65] 

NiS2/MoS2 on glassy carbon electrode 58-83 204-284 [66] 

NiTe/NiTe2 nanosheets on carbon rod 87.4 422 [67] 

MoSx electrodeposited on Cu foam 43.6 200 [68] 

Pt nanoparticles on N-doped carbon 
nanofiber 

35 47 [69] 

CoPS nanoparticles on N-doped carbon  68 80 [70] 

Nanostructured CoP on C fiber paper 49.7 128 [71] 

MoS2 nanoflowers on carbon cloth 50 94 [72] 

CoSe2 on carbon nanotube arrays 36.7 204 [73] 

Pyrazine-incorporated graphdiyne film 75 475 [74] 

N-doped porous carbon 77 220 [75] 

CoP2 nanowire arrays on carbon cloth 67 56 [76] 
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Pt on porous TiN nanorod array 38.6 39.7 [77] 

Polyoxometalate-encapsulated Ag-
tetrazole nanocage frameworks 

82 234 [78] 

Pd13Cu3S7 Nanoplates 49.6 64 [79] 

Ni-NixP nanospheres on carbon cloth 76 164 [80] 

AgPd alloy decorated MoS2 nanosheets 82-109 215-229 [81] 

Mesoporous CoSNiP nanosheet array 45.2 41 [82] 

Pd/Bi/Cu nano-architectures 61 79 [83] 

Hollow Cu/Cu2O/Cu2S nanotubes 107 86 [84] 

W2C nanodots on C nanotube networks 57.4 176 [85] 

PtMo nanosponge wrapped with 
graphene dots 

32 32 [86] 

NiMo/NiMoO4 polyhedron on Ni foam 98.9 80 [87] 

W electrode 25.0 320 This work 
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Table 2- Tafel parameters for the HER on W electrode in H2SO4 solution with 
different concentrations at 25 oC. 
 

Onset pot. 
/ V 

1-αc cα  -b 
/mVdec-1 

io 

/mA cm-2 
Conc 

/M 

-0.5965 0.8332 0.1668 0.02677 0.1168 0.1 
0.5874 - 0.8798 0.1202 0.02535 0.1182 0.3 
0.5828 - 0.8742 0.1258 0.02552 0.1185 0.5 
-0.5783 0.8605 0.1395 0.02592 0.1337 1 
-0.5691 0.8704 0.1296 0.02563 0.1345 5 

 
 
Table 3- Equivalent circuit parameters for W electrode measured after 1 h of 
electrode immersion in H2SO4 solution with different concentrations at 25 oC. 
 

CT 
/µF cm2 

RT 
/kΩ cm2 

Rs 
/Ω cm2  

Conc. 
/M 

129.6 22.27 5.94 0.1 
123.9 22.84 7.37 0.3 
108.1 24.71 12.00 0.5 
49.24 42.31 6.19 1.0 
26.68 69.63 3.59 3.0 

 
 
Table 4- Equivalent circuit parameters for W recorded after 1 h of electrode 
immersion in H2SO4 solution of different concentration under -750 mV cathodic 
polarizations at 25 0C. 
 

  Cdl 
/µFcm2 

Rct 
/Ω cm2 

Rs 
/Ω cm2 

Conc. 
/M 

91.81 69.33 4.03 0.1 
75.34 26.61 1.51 0.3 
80.53 9.88 1.19 0.5 
64.18 7.84 0.625 1.0 
75.40 2.66 0.465 3.0 

 
 
Table 5- Equivalent circuit parameters for W electrode measured after different 
intervals of electrode immersion in 0.5 M H2SO4 solution under -750 mV at 25 0C. 
 

Cdl 
/µF cm2 

Rct 
/ Ω cm2 

Rs 
/Ω cm2 

Time 
 /min 

70.88 14.19 1.15 5 
65.44 15.37 1.31 10 
75.05 16.96 1.48 25 
73.75 17.26 1.58 40 
72.68 13.84 1.45 60 

 

 


