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Abstract : 

The photo isomerization characteristic parameters (photo-stationary states (PSS), cross 

section quantum yield) of indolyl fulgimide compounds dispersed in solution are 

quantitatively compared to those of the same compounds covalently immobilized as a 

monolayer on a functionalized Si(111) surfaces (see Advanced Materials 25, 416 (2013)). The 

photo isomerization kinetics of fulgimide compounds in solution is monitored using UV-Vis 

spectroscopy and that of monolayers by in situ calibrated FTIR spectroscopy. While the 

isomeric composition at photo stationary states are very similar in solution and at surfaces, a 

strong influence of the incident light polarization is found on photo isomerization cross 

section  (            ). Accounting for the local excitation electromagnetic field 

indicates that the fulgimide groups adopt a preferential tilt angle with respect to the surface 

normal and that their transition dipole is almost parallel to the surface plane for either C or 

E/Z isomers. DFT indicates that this orientation corresponds to photochromic groups that are 

lying in contact with the underlying monolayer. This interaction plausibly explains why the 

quantum yield of photoisomerization is found nearly twice lower at the surface than in the 

solution. 
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1. Introduction: 

Photochromic molecules are molecules capable of changing conformation upon absorption of 

electromagnetic radiation [1]. This unique property is exploited in many different fields. For 

instance photochromic molecules were incorporated into polymers [2] [3] or thin films [4] [5] 

[6] [7] [8] [9] [10] to realize multifunctional layers, in particular to store information [11] [12] 

[13] or modulate charge transport [14] [15]. Photochromic molecules can also be used in the 

context of biological systems [16], to structure soft matter with light [10], to control the 

function of biomaterials [17], or to promote catalytic activity [18]. Immobilization of 

photochromic molecules on surfaces [19] [20] [21] [22] [23] [24] [25] [26] [27], very often on 

gold, or self-assembled as Langmuir-Blodgett (LB) layers [28] is a further approach to control 

wettability of surfaces with external light [29], which is crucial in microfluidics, or to tailor 

surface conductance [30] [31] [32] [33] [34] and surface work function.[35] [36] [37] [38] 

Photochromic molecules can be also adsorbed on nanoparticles to control their properties 

[39].  

On the molecular scale, photo isomerization implies the absorption of a photon by the 

molecule which promotes the molecule to a Frank-Condon state before the excited electron 

relaxes to a lower-energy state which brings the photochromic molecules either to its starting 

state or to another isomeric state [40]. The probability of the latter event corresponds to the 

quantum yield ( ) and it has been established that   depends on chemical substituents and 

polarity of the solvent in the case of azobenzenes [41] [42] [43] [44], fulgides [45] [46] 

[47,48] and spiropyrans [49] [50] [51] or diarylethenes [52] [53] dispersed in a solvent. The 

behaviour at the surface depends strongly on the architecture of the assembly (for a review at 

metallic surfaces see Ref. [40]). When the photoswitching molecules are in direct contact with 

the substrate, the photoswitching occurs but seems very slow {Comstock, 2007 #758} {Safiei, 

2012 #752}. This may partly due to steric hindrance, chemical and/or electronic coupling with 
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the substrate. This motivated studies aiming at increasing the free volume around 

photochromic compounds [56] [19] [57,58] and to reduce the electronic coupling with the 

substrate [59] [33] [31] using chemical spacers or a semimetal as substrate {Nickel, 2017 

#1352}. In such constructs the photo kinetics of photo isomerization of photochromic 

molecules, characterized by its effective cross section ( ), may be as fast as in solution. This 

has been demonstrated with azobenzene derivatives {Wagner, 2009 #1473} {Krekiehn, 2015 

#1286} {Moldt, 2016 #1409}. However   is yet found to be much smaller than in solution for 

fulgimides tethered on an organic monolayer on silicon{Schulze, 2015 #1314} or spirosyran 

{Nickel, 2017 #1352} evaporated on Bi(111), which minimizes electronic coupling. Lateral 

steric effects, mechanical and/or electronic coupling with the substrate are frequently invoked 

to explain the different behaviour at surfaces. and this motivated various strategies to increase 

the free volume around photochromic compounds [56] [19] [57,58] or to reduce the electronic 

coupling with the substrate [59] [33] [31] using chemical spacers or using semimetals with a 

small density of states at Fermi level [26]. In spite of significant improvements, when the 

photo isomerization cross section ( ) is determined [60] [26] [61] [63],   is generally smaller 

than the value measured for the same photochromic molecule dispersed in a solvent and the 

behaviour at the surface depends on the architecture of the assembly (for a review at metallic 

surfaces see Ref. [40]). Therefore other effects need to be considered and substituent effects 

seem too small to account for above mentioned differences between the kinetics of the 

photoswitching at surfaces and in solution. One key physical effect that has been largely 

ignored in the past is the influence of the local excitation electromagnetic field         although 

it is well known that photochemistry is strongly influenced by the presence of a substrate [62]. 

Such a knowledge appears however indispensable to discuss the influence of local chemical 

environment on the photoisomerization cross sections.   
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In this work we have investigated the photoswitching properties of fulgimide 

compounds because they present the key advantage of a very good thermal stability and a 

large quantum yield [45]. Scheme 1 displays the structure of the fulgimide isomers and solid 

arrows indicate optical transitions under visible ( ~ 525 nm) and UV light ( ~ 365 nm). 

Both wavelengths refer to the main absorption band of the respective isomers. Visible 

irradiation promotes ring opening which transforms the closed form (C) into the open form 

(E). UV irradiation leads to the back formation of the C-isomer but also of another open form 

(Z-isomer). Amino-fulgimide may be immobilized as a monolayer on a surface (see scheme 

2) [22]. The photo isomerization kinetics are monitored in solution using UV-Vis 

spectroscopy and at surfaces using in situ calibrated FTIR spectroscopy. A new experimental 

protocol has been developed with respect to Ref. [22] in order to determine the photo 

isomerization cross section () and the composition of the surface at the photo-stationary 

states (PSS) with high precision. In the case of fulgimide MLs, is investigated as a function 

of the incident light polarization and the fulgimide surface density. Results are discussed 

within the framework of a molecular model and the properties of the local electromagnetic 

field.  

2. Experimental: 

All chemicals used for surface modification (purchased from Aldrich) were of the highest 

available purity and used as received. Indolyl fulgimide compounds substituted  with an ethyl-

amino linker were synthesized as detailed in reference [21]. For silicon etching, electronic-

grade chemicals (Carlo Erba, RSE) were used. ATR-FTIR silicon prisms were cut from 

double-side polished (FZ-purified, 800 .cm) n-type Si(111) wafers with 0.2° miscut angle 

along the        direction (Sil’tronix, France). For AFM observations one-side polished (CZ 

purified, 1-10 .cm, with a similar miscut) were used. The silicon (111) surface was first 

treated by anisotropic etching in oxygen-free 40% NH4F solution as reported before  to obtain 
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clean H-terminated Si(111) surfaces with wide and atomically flat terraces separated by 

bilayer-high steps (3.1 Å). [63,64] 

  

Monolayer characterizations: FTIR characterizations were performed in ATR geometry with 

an Equinox 55 spectrometer (Bruker, Germany) equipped with a liquid-nitrogen cooled 

Mercury-Cadmium Telluride photovoltaic detector. The ATR samples (thickness 500-550 

µm) were shaped as prisms with two opposite sides bevelled at ~ 45°. Their length (~15 mm, 

for ca 30 internal reflections) was chosen to obtain wide range FTIR spectra (1000– 4000 cm
-

1
). Measurements were carried out in a N2-purged ATR chamber to minimize the contribution 

of H2O vapour and CO2 absorption bands. Spectra were recorded in s- and p-polarization.  

 

In situ monitoring of photoswitching:  

In the case of monolayers, photo switching was monitored by in situ FTIR spectroscopy using 

a specifically home-designed optical experimental setup installed within the custom chamber 

of the IR spectrophotometer (see scheme in supplementary information, section S1). Both 

sides of the sample were irradiated with a quasi-parallel beam using LEDs (UV: 365 nm, 35.9 

mW/cm
2
; Vis: 525 nm, 51.5 mW/cm

2
) and cylindrical lenses. Neutral filters were used to 

adjust the photon flux. For most of the experiments, a 45° incidence angle is used. Polarizers 

were added for experiments with p-polarized light. For experiments with s-polarized light, it 

has been found more reliable to work at normal incidence rather than using polarizers, in 

order to ensure the absence of any residual electromagnetic-field component normal to the 

surface. A computer controlled shutter allowed for irradiating the sample with short light 

pulses (few ms) at the very initial stages of the photo-switching and longer ones (1-100 s) at 

the subsequent stages to control the photon dose. Photon fluxes were calibrated in each 

configuration with a photodiode to determine the photon dose during light pulses. The 
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nominal photon flux (in the absence of neutral filters and polarizers) was 6.6 10
16

 photons cm
-

2
 s

-1
 and 1.4 10

17
 photons cm

-2
 s

-1
 for UV and visible light, respectively. FTIR spectra (150 

scans, resolution 4 cm
-1

) were recorded between light pulses, i.e., in the dark where the 

system is stable. This procedure allows for recording FTIR spectra corresponding to 

controlled photon dose for an accurate determination of the photokinetics.  

Photo switching in solution was characterized with a similar approach using in situ 

UV-Vis spectroscopy. 20 µM of either E- or C-fulgimide were dissolved in acetonitrile. A 

simplified optical setup was installed in the spectrophotometer (Agilent Technologies, Cary 

50) to monitor the process. The nominal photon flux (in the absence of neutral filters and 

polarizers) was 3.3 10
16

 photons cm
-2

 s
-1

 and 2.2 10
17

 photons cm
-2

 s
-1

 for UV and visible 

light, respectively. A similar protocol, recording UV-Vis spectra between light pulses, was 

used.  

 

Preparation of fulgimide monolayers with variable surface densities: Pure C- and E-

fulgimide were synthesized as reported in ref. [21] and immobilized on the silicon surface 

using the multistep protocol described in Scheme 2. The primer COOH-terminated monolayer 

(step 1) was grafted by photochemical reaction (wavelength 312 nm) between the H-

terminated surface and neat undecylenic acid as detailed in Ref. [65]. The “activation” of the 

carboxylic groups (step 2) was performed in MES buffer (pH=5, 15°C, under Ar bubbling) 

containing N-Hydroxysuccinimide (HOSuc, 100 mM and 1-ethyl-3-(3-dimethylaminopropyl)-

carbodiimide (EDC, 100 mM). The reaction time was 1h. The samples were then rinsed 

successively (10 min, 40°C, pH = 5) in 0.1M NaH2PO4, 0.01M NaH2PO4, in ultra-pure water 

and blown dry using an Ar stream. The coupling of the fulgimide (step 3) was conducted in an 

acetonitrile solution containing 5 mM of fulgimide (2h at room temperature, in the dark). 

More details are given in Ref. [22]. To vary the photochromic molecule density, step 3 
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(scheme 2) was also conducted in an acetonitrile solution containing amino-fulgimide and 

ethylamine. An excess of fulgimide was used to account for the slower coupling rate of 

fulgimides (4000 s
-1

) with respect to that of ethylamine (200 s
-1

) (measured from 

complementary in situ FTIR measurements, data not shown). Ethylamine /fulgimide ratios of 

0.17, 0.26, 0.33 and 0.66 were used.   

Full range FTIR spectra recorded at the different steps of the preparation of the 

fulgimide MLs are given in supplementary information (section S2). They are perfectly 

consistent with previous results [22]. Also explained in supplementary information (section 

S2) all samples studied in this work present a contamination level that is below 0.1 equivalent 

monolayer. The chemical composition of all surfaces was quantitatively determined from 

careful calibration of the C=O band at 1715 cm
-1

 related to COOH groups [65] [66]. More 

details are given in supplementary information, section S2. e   

 

Computational methods:  

The geometries of the fulgimide compound in the C, E and Z forms were fully optimized 

using the Becke-3-Lee–Yang–Parr (B3LYP) exchange functional [67] with the 6-311+G(d,p) 

basis set, in vacuum, as implemented in the Gaussian 09 software package [68]. The absence 

of negative frequencies was checked to ensure true minima for all geometries. Frank-Condon 

energy transitions and corresponding transition dipole moments were calculated using the 

time-dependent DFT formalism (TD-DFT) with the same functional and basis set. As 

explained in the text, the functionalized monolayer on Si(111) surface was sketched without 

minimization. The DFT cell consists of alkylamide molecules as spacer chains (optimized 

separately) along a 3.84  6.65 Å rectangular 2D-assembly and one fulgimide-terminated 

chain. 
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3. Results: 

3.1 Photoswitching in solution vs. at surfaces: 

Figure 1a shows series of UV-Vis spectra of a 20µM C-solution (in acetonitrile) irradiated 

with 525 nm light at nominal photon flux. The red line is the initial spectrum (C-form) and the 

blue line is the last spectrum of the experiment. The main absorption band around 530 nm 

(red line), and that around 350 nm (blue line) are in perfect agreement with those reported in 

the literature for the C- and E-isomers, respectively [47]. All intermediate spectra (grey lines) 

can be accounted for by a linear combination of the spectrum of the initial pure C-solution 

and that of the final solution. The relative weight of the coefficients in this combination 

provides the relative advancement 0 <  < 1 of the photo isomerization reaction, as plotted in 

panel (b), (black squares, left y-scale), for the first Vis illumination. Keeping the pure C-

solution as the reference state, the advancement of the backward photoisomerization under 

UV is also plotted in panel (b) (open squares). The composition along the photoconversion 

was simply determined by fitting each intermediate spectrum with a linear combination of the 

spectra of solutions composed of pure E- and C-isomers of known concentrations (full line, 

right scale in panel b).  

Figure 1c displays narrow range FTIR spectra recorded during the photo switching of 

an initially pure and dense C-monolayer. The surface density of immobilized fulgimide was 

determined as explained in section S2 of the supplementary information. It is 1.6 C-

isomers/nm
2
 for this sample. The initial spectrum (red line) presents two main IR bands at 

1698 cm
-1 

 and 1758 cm
-1

 assigned to asymmetric and symmetric C=O stretching modes of 

maleimide groups. Upon visible illumination (525 nm) these two bands progressively shift 

towards high frequency and their intensity varies. At the end of the experiment (blue line), the 

positions of the two bands are 1689 cm
-1 

and
 
1738 cm

-1
, which is very close to the positions 

measured for a pure E-surface (1690 cm
-1 

and
 
1739 cm

-1
). All the above observations are in 
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perfect accordance with previous work [21] [22]. The advancement  of the 

photoisomerization reaction was determined from differential spectra (see inset of panel c), 

taking as the reference spectrum that of the initial C-terminated surface: the blue solid line in 

the inset represents the difference between the blue and red lines shown in the main frame of 

panel (c). Within this representation, all the intermediate spectra (grey lines) are precisely 

proportional to the final difference, which straightforwardly provides  for the first Vis 

irradiation (black squares in panels (d)). Open squares correspond to  during the subsequent 

UV irradiation period, keeping the initial C-surface as the reference surface. To be 

quantitative,  was transformed into a number of switched isomers, which is given by the 

right y-scale in panels (b) and (d). It was done using a specific calibration of the CO bands 

of the C and E isomers.  

Comparison of panels (b) and (d) in Fig. 1 immediately points out that in both cases a 

large amount C-isomers have switched under visible irradiation but that the subsequent UV 

illumination does not fully restores all the initial C-forms (Fig. 1b, symbols). In solution, the 

first isomerization under Vis is completed within ca 10s with 100% of the C isomers 

transformed into E forms. The subsequent UV illumination restores 77% of the initial C 

isomers. At the surface, using a similar photon flux, it takes 100 s under Vis illumination to 

reach a quasi-steady-state corresponding to the switching of only 87% of the initial C-

isomers. The back isomerization under UV light is also slower and less efficient –in terms of 

back conversion yield– since it restores only 61% of the switched C-isomers. Reaching PSS 

under UV is possible but requires longer exposure times [22]. This also leads to some photo-

degradation of the monolayer. In the following we only present experiments corresponding to 

short illumination times, leading to incomplete photoconversion. 

The data in Fig. 1 may be replotted as a function of the photon dose p, as justified in 

supplementary information (Fig. S5) to determine the photo isomerization cross section () 
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and the isomeric compositions at the photo-stationary state (PSS) as it is explained in the 

Appendix. It is found that  is approximately constant in the initial stages of the 

photochromic reaction but then decays above a critical photon dose p* (see Fig. A1). In other 

words only a fraction of the monolayer reacts upon illumination according to a single 

exponential law with a well-defined value of the cross section . In the following we only 

discuss this value of . The decay of  above p* will be the subject of a separate article. 

Notice that the same analysis gives a single exponential law for the complete photo-

isomerization of C-isomers dissolved in acetonitrile (under Vis light). Under UV,  decays 

(by 20%) for high-enough photon doses. 

 

3.2 Isomeric composition at PSS 

Panel (a) of figure 2 presents the evolution of the isomeric composition upon consecutive 

UV/Vis illumination cycles, starting from a dense E-surface (1.8 E-isomers/nm
2
). About 50% 

of the monolayer is switched under each light exposure. Panel (b) of Fig. 2 gives the surface 

composition at PSSUV (left bar) and PSSVis (right bar) for each cycle, determined as explained 

in the Appendix. The composition is given as (C) and (E/Z) surface densities because E- and 

Z-forms cannot be discriminated by FTIR. The data analysis according to the procedure in the 

Appendix also yields the cross-section values (UV and Vis). Fig. S6 supports this analysis 

since the resulting UV and Vis keep the same values over the successive illumination cycles.  

Overall the isomeric compositions at PSS appear rather stable upon successive UV/Vis 

irradiation cycles. A slight enrichment of the surface in C-isomers is noticeable at PSSUV after 

6 irradiation cycles. The same trend is observed for PSSVis. The isomeric compositions at 

PSSVis and PSSUV in solution and at surfaces with various densities of immobilized fulgimides 

are compared in Figure 3. In each case the left bar provides PSSVis and the right one PSSUV 

after the first visible and the subsequent UV irradiation, starting from a pure C-solution or a 
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pure C-monolayer. The isomeric compositions at PSSs are also summarized in Table 1. One 

may notice that the PSSUV composition in solution departs from 100% C. Indeed, the presence 

of a significant proportion of open forms at PSSUV confirms that an additional reaction C  E 

must be taken into account under UV in Scheme 1 since the C-isomer presents an absorption 

band around 350 nm in Fig. 1a. For a relevant comparison of the PSSs in solution and at 

surfaces we consider monolayers with less than D* ~ 0.9 isomers/nm
2 

because steric 

hindrance may be neglected. Steric hindrance is expected for denser monolayers [22]. With 

this precaution, Table 1 shows that the PSSVis is equal in solution and at the surface and that 

the PSSUV is somewhat richer in E/Z isomers at the surface than in the solution.  

 

3.3 Photokinetics at surfaces 

The results of Figure 4 have been obtained on a sample with an initial isomer density of 1.6 

E-isomers/nm
2
. After a few incomplete photoswitching cycles like in Fig. 2, the starting 

surface consists of C and (E+Z) isomers. Therefore,    
          

               
  and    

          

               
  

have been plotted as a function of the photon dose p. Here [C] and [E] designate the surface 

concentration of closed C and open (E+Z) isomers and the suffix refers to the starting surface 

and surface at PSS. Data analysis indicates that the total number of isomers is constant over 

successive illumination cycles. As justified in the Appendix, data (symbols in Fig. 4) may be 

fitted to a single exponential kinetics (straight dashed lines) up to a critical photon dose p* 

(indicated by the vertical bars in the figures). The photo isomerization cross section  is the 

inverse value of the straight-line slope. Above p*, whose value depends on photon energy and 

light polarization, the process no longer follows a simple exponential law (slow decay of  as 

in Fig. A1b,d).  

For a given monolayer, the cross section  was measured for s- and p-polarization of 

the excitation light (red and blue open squares respectively) and compared to that obtained 
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with non-polarized light (black open squares). The different  values are reported in the left 

three blocks of Table 2. The right block of Table 2 gives also the -values measured for 

isomers dispersed in acetonitrile. In solution, the absorption cross section can conveniently be 

measured and the isomerization quantum yield  is simply determined as the ratio of  to abs. 

According to Table 2 the magnitude of  follows the trend s-pol (surface) < p-pol (surface) < 

solution for a given wavelength and UV > Vis in all conditions. Complementary experiments 

(see Table S1) indicate that is quasi-independent of the isomer surface density, suggesting 

that this parameter is well representative of the photo isomerization of the fraction of 

photochromic molecules that switch from one configuration to the other one without any 

specific (e.g., steric) limitation. The -values measured in solution are close to those reported 

previously (UV = 5 10
-18

 cm
2
 and Vis = 2 10

-18
 cm

2
 [70]). The differences may come from 

the substituent and/or the solvent which are different in our work. Concerning the cross 

sections measured at the surface, our values with non-polarized light are also in fair 

agreement, within a factor 2-4, with recently published data (UV = 2.3 10
-18

 /cm
2 

and Vis 1.2 

10
-18

 /cm
2
) for fulgimides immobilized on a silicon surface [71]. 

 

4. Discussion 

All in all, the data in Table 2 are consistent with past literature and confirm that the 

experimental values of UV or Vis are smaller at the surface than in solution. To the best of 

our knowledge, the light polarization dependence of the photoswitching efficiency is 

quantitatively investigated for the first time. The main purpose of this section is therefore to 

discuss the photo isomerization cross section  and particularly its dependence on light 

polarization at surfaces. The quantum yield is also discussed. 

As recalled in the introduction, photo isomerization implies that absorption of a 

photon by the molecule brings it into an excited transition state before it relaxes either in its 
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initial state or into another isomeric state with a probability   (quantum yield). Therefore, the 

photo isomerization cross section of a molecule may be written: 

                                                                            

The absorbance cross section abs is proportional to: 

   
 

 
               
    

    

                                           

This integral outlines that the absorption of a photon by a photochromic molecule does 

depend on the alignment between the local electric field         and the transition dipole     of 

the molecule.  

 

In solution     is randomly oriented, min = 0, max = 4 and N = 4 and 

         
 

 
 
    

 
        

2
 [72], with       the electric field in vacuum and n the refractive 

index of the solvent (n = 1.34 for acetonitrile). Therefore               
2 

=              
2
. 

In the case of a monolayer of photochromic molecules immobilized on a substrate, one must 

take into account two points: (i)         is affected by the close proximity of the substrate and 

(ii)     may be constrained in certain directions of space. To the best of our knowledge, these 

considerations were not discussed at surfaces in literature although light polarization is known 

to induce reorientation of azobenzene in a polymer matrix [28,73].  

 

4.1 Photo isomerization cross section at surfaces: 

Figure 5 defines the relative orientation of         and     .         is set within the (y,z) plane at an 

angle  with respect to the surface normal (direction z) and the orientation of     is given by its 

angle  with respect to surface normal and the azimuth angle  of its projection on (x,y) plane. 

Two extreme hypotheses are considered.  
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Within the first one, the immobilized fulgimides adopt a random orientation with 

respect to surface normal. In this case, 0 ≤  ≤ /2, 0 ≤  ≤ 2, min = 0, max = 2 and N = 2 

in Eq. (2). The integral J therefore reduces to                 
 , independently of , i.e., the 

polarization of the illumination. In that case the ratio 
  

  
 

    
 

   
  
 
    

  
  and it depends only on 

the illumination energy. Under UV light, 
  

  
 would be ~0.12 and under Vis light 

  

  
 would be 

~0.04. These values are sufficiently different from the experimental ones (~ 0.23 ± 0.05 for 

either UV or Vis illumination, see Table 2) to rule out this hypothesis. 

Within the second hypothesis, the fulgimide are constrained by their environment and 

adopt a specific orientation. In this second case an angle  in Fig. 5 may probably be defined 

but the angle  is likely to be random between 0 and 2. Therefore, J reduces to 

  
 

 
                                     

2
, where  depends on light polarization and 

        is given by Eqs. (S1-S2) in the supplementary information [74]. In s-pol conditions, = 

/2 and   
 

 
           

  with    given by (Eq. S1). At the incidence  = 45° and with p-

pol light,       
 

 
          

  
 
            

     , with    p


 and    p

 the components of 

       parallel and perpendicular to the surface, which expressions are given in section S5 in 

the supplementary information. For the numerical evaluation, the dielectric constant of silicon 

was taken from Ref. [75] at the relevant wavelength. At the silicon/air interface these 

equations yield    
  2 <<    

  2. Assuming that the isomerization quantum yield   is 

independent on light polarization, the ratio 
  

  
 can be computed as a function of  either to UV 

or Vis illumination By comparing to the experimental ratio, one obtains the value of   

corresponding to the UV and Vis transition dipoles. For the UV excitation,  is found to be 

~74° and for the Vis excitation,   ~64°. In either case,     appears close to the surface plane.  
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DFT and TD-DFT calculations were performed with the Gaussian 09 package with the 

B3LYP functional and the 6-311+G(d,p) basis set in vacuum, and provided the minimized 

geometries, relative energies and Franck-Condon electronic transition energies for the three 

isomers C, E and Z (Fig. 6a). Given the orientation of     of the two relevant isomeric forms C 

and E as derived from TD-DFT computations, the experimental values of  mean that the C- 

and E-forms are similarly oriented and are almost lying parallel to the surface plane. This 

large tilt angle between the direction of the transition moment of the molecules and the 

surface normal may be accounted for by a rotation around the C-C and C-N bonds of the 

amide linkage to the monolayer. The configuration of the fulgimide is therefore different from 

that assumed in Ref. [22] where a nearly upright orientation was postulated because this 

corresponds to the equilibrium configuration of the isolated molecule (the fulgimide molecule 

coupled to the carboxylic acid).  

According to Fig. 6, the experimental angle implies that the fulgimide groups 

must be almost parallel to the surface plane. To check the feasibility of this configuration, the 

grafted monolayer was modelled with alkylamide molecules (optimized separately) assembled 

along a 3.84  6.65 Å rectangular mesh (see atomic model in Fig. 7a). This corresponds to a 

density of 3.9 chains grafted per nm
2
 which is the maximum packing density on a Si(111) 

surface [69]. The DFT cell is limited to 3 x 3 chains and a photochromic molecule in its C-

form is attached on one site located at the perimeter of the rectangular cell. It is tilted such as 

to bring its transition dipole moment at an angle  = 74° with respect to the surface normal. 

The model shown in Figs. 7b-c corresponds to a situation where a vacancy is assumed to be 

present in the center of the DFT cell. In the side view (Fig. 7c), one clearly sees that the 

photochromic molecule is partially embedded inside the molecular carpet. Though these 

structures are not an optimized configuration of the supramolecular assembly, which is 

beyond the DFT computations performed here, such a tilted configuration is energetically 
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affordable and a similar energy is found if the C-fulgimide is anchored on any other sites at 

the perimeter of the DFT cell. Similar energies are also found with a tilted E-fulgimide 

instead of a C-fulgimide. As to be expected, however, the energy barrier becomes too large 

for either a C- or a E-fulgimide without the vacancy at the center of the 3 x 3 cell. This shows 

that the vacancies in the grafted monolayer play a crucial role. 

The model presented in Fig. 7 closely corresponds to real molecular surface 

concentration since the DFT cell is equivalent to ~3 chains / nm
2
 and ~1 fulgimide / nm

2
 

whereas a dilute fulgimide monolayer is composed of 2.8 chains grafted per nm
2
 and 0.9 C-

fulgimide / nm
2
. Experimentally, there are enough vacancies (1.1 / nm

2
) to accommodate all 

the immobilized photochromic molecules with a tilt compatible with experimental results. 

Given the influence of the light polarization on the cross section, we therefore postulate that 

the majority of immobilized fulgimides must adopt such a tilted configuration, without 

excluding that a small fraction of the photochromic molecules may adopt a non-tilted 

configuration.  

A tilted molecular configuration was not to be expected and appears counter intuitive. 

Explain its origin would require dedicated supramolecular calculation. Nevertheless, based on 

above observations, one may suspect that this configuration comes from strong interactions 

between the fulgimide and the acid-terminated monolayer prior to the formation of the amide 

bond. In fact a large angle  is already measured after immobilization since the cross sections 

     are constant from the very first photoswitching cycle for either pure C- or E-fulgimide 

monolayers. This tilted configuration may be maintained upon successive photoswitching 

because there is a small difference between the  values for the UV and Vis transition. This 

strongly suggests that the photochromic reaction mainly involves the CE and EC 

photoisomerization, with a negligible contribution of the Z form because the direction of     for 
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the Z form is significantly rotated, with regard to the N-C bond of the alkylamide chain, see 

Fig. 6c).  

 

4.2 Isomerization quantum yield at surfaces: 

The quantitative determination of the optical absorption of a monolayer on an absorbing 

substrate like silicon is difficult and an absolute value of the isomerization quantum yield  

(Eq. 1) appears out of reach here. However, the determination of J in different environments 

and that of the angle  allows for estimating the ratio of the isomerization quantum yield in 

solution with that at the surface.  

On the basis of Eq. (1) and the above expressions of  , it comes (for experiments at 

45° incidence angle in p polarization and normal incidence in s polarization): 
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Numerical evaluation of these expressions using the above  values allows a 

comparison with the experimental values given in Table 2. For the UV transition, the 

computed values are 
  

    
     

     

    
 and 

  

    
     

     

    
, to be compared with the 

experimental values 
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     . In either case, one finds 
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Similarly, for the Vis transition, the computed values are 
  

    
     

     

    
 and 

  

    
 

    
     

    
, to be compared with the experimental values 

  

    
      and 

  

    
     . Once 

again, in either case, one finds 
     

    
     . Therefore, within the framework of this 

quantitative analysis, the isomerization quantum yield is found to be independent on light 
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polarization, which appears reasonable since  is expected to depend mostly on the properties 

of the transition state and the coupling of the molecule to its environment, both independent 

on the photon field. For both the UV and Vis transitions, the 
     

    
 ratio is found to exhibit 

nearly the same value of 0.55, which can be paralleled to the closely similar configuration of 

C and E isomers at the surface. It corresponds to an isomerization quantum yield about twice 

less efficient at the surface than in solution.  

The origin of this difference cannot be sought for in terms of local electric field 

(already taken into account in the above analysis), steric effect between neighbour molecules 

(since the experimental cross sections do not significantly depend on the surface molecule 

concentration), or electronic interaction with the substrate (shielded by the molecular layer 

grafted at the surface). Therefore, we tentatively assign the loss of efficiency of the 

isomerization at surfaces to the interaction of fulgimide molecules with the surface molecular 

layer grafted on silicon, which makes them adopt the tilted configuration determined in 

Section 4.1. 

 

5. Conclusion 

In conclusion, the present results demonstrate that when photochromic molecules are 

immobilized at a surface in a well-controlled configuration, a quantitative analysis of the 

photoswitching kinetics allows for obtaining a detailed picture of the system at the molecular 

level. In the particular case of indolyl fulgimide compounds covalently anchored on 

functionalized Si(111) surfaces the data above show that the photoisomerization remains 

efficient and reversible and that the photo stationary compositions are close to those found in 

solution provided steric hindrance is avoided by limiting the surface density of immobilized 

photochromic molecules, here below 0.9 isomers / nm
2
.  
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However, from a dynamic view point, surface photokinetics strongly depart from that 

in solution. The photoisomerization cross sections measured at the surface are much smaller 

than in solution. In addition, the photokinetics is no longer following a pure first order law. 

Only a fraction of the photochromic molecules switches with a constant photoisomerization 

cross section . Above a critical threshold,  continuously decreases with increasing photon 

dose. The initial  is representative of the isomers which can freely react upon light 

absorption and measurements under s- and p-polarized light indicate that the transition dipole 

of the switching isomers is almost lying in the surface plane, a configuration which 

corresponds to fulgimides partially embedded in the underlying monolayer. Noteworthy, the 

open (E) and closed (C) forms exhibit similar configuration. This configuration is likely at the 

origin of the reduced value of the isomerization quantum yield which can be derived when 

comparing experimental photo-isomerization cross sections recorded for “freely” switchable 

molecules at the surface with those measured in solution. 

 

Appendix 

It is worth recalling that typical photochromic reactions AB follow the general photokinetic 

differential equations [76] involving concentrations of all isomers, their related absorption 

coefficients, thermal reaction rates and photochromic quantum yields corresponding to AB 

and BA reactions. In the general case and in absence of any approximation, these 

differential equations show nonlinear terms (known as photokinetic factors) preventing any 

analytical solution. Nevertheless, in the case of the present fulgimide molecule, thermal 

reaction rates can be neglected and concentrations are extremely low: absorbance values of 

our samples at the irradiation wavelengths are smaller than 0.1 in solution and 0.001 at the 

surface, especially for surfaces functionalized with a (diluted) monolayer of photo-active 



     

 20 

molecules. Consequently, photochromic differential equations linearization gives simple first 

order photokinetics. 

However, when photoswitching strongly deviates from a pure exponential law, it 

appears difficult to make a quantitative comparison between different configurations. To this 

end, a procedure described below was used to determine the isomeric composition at PSS and 

the isomerization cross section  from partial photoconversion experiments. 

Figure A1 is an example of such a full data analysis. In top panels the solid black lines 

are plots of the advancement of the Vis and then UV isomerization processes of an initially 

pure C monolayer after calibration of the y-scale. Data are plotted as function of the logarithm 

of the photon dose p. The relevance of this plot is justified by Fig. S5. The calibration of the 

y-scale was explained for Fig. 1. The derivative of the plots (blue crosses) is empirically fitted 

to a Voigt function (red line); integration of the Voigt function gives the expected 

advancement of the photo isomerization, which obviously superimposes the solid black line 

but also extends it at photon doses for which photochromism was not measured (black dashed 

line). Such an extrapolation yields the isomeric composition at PSS. This analysis 

immediately captures that photoconversion was (voluntary made) incomplete, because p was 

too small to reach the PSSs. This also evidences that a fraction of the C-isomers remains 

blocked (the monolayer density is 1.6 /nm
2
 which is above the maximum packing density of 

isomers in 2D). Panel (b) of Fig. A1, is a plot of the cross section which is obtained as 

   
 

      

       

  
, with        the surface density of switched isomers after illumination with 

a photon dose p. This plot outlines that   is constant up to a critical photon dose p* (regime 

featured by grey shaded regions) above which a progressive decrease of   is observed. The 

initial   (i.e., for p < p*) is accurately obtained by replotting the data as in Fig. 4 where ln(1 –

E/EPSS) is plotted against p (PSS is the above determined value). Linear regression restricted 

to p < p* yields   with no ambiguity. 
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The back photo isomerization (panels c and d) was analysed by the same method. 

However, it is important to note that the situation under UV irradiation is intrinsically more 

complicated because several photoreactions are expected to occur: EC, but also CE, 

EZ and ZE. As a consequence, the UV values do not correspond strictly to the single 

EC isomerization. In initial stages of UV irradiation, starting from a E-terminated 

monolayer, and the EC and EZ reactions represent the major pathways. Under prolonged 

irradiation, the CE and ZE may play an important role in the system evolution. This 

time-dependent behaviour may be partly responsible for the decrease of   as a function of UV 

photon dose, and the lower value of p* compared to the one determined under visible 

illumination. However, at low photon doses, the UV value can be approximated to be mostly 

representative of the EC reaction because (i) the EZ photoisomerizations play a 

negligible role (there are only few percent of Z forms in the PSS composition) and (ii) the C 

form concentration is very low at initial stage. 

It should be noted that the procedure above was tested over a large number of 

experiments and appears robust. The very same behaviour was indeed observed for all 

photoconversion experiments for all samples, regardless the surface density of the monolayer. 

In particular, we emphasize that for the stabilization of the fitting procedure, the fitting with 

the pseudo Voigt function was performed keeping fixed the Lorentzian and Gaussian width 

and a fixed Gaussian/Lorentzian ratio for all experiments.  
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Fig. A1: Example of data analysis starting for a pure C-monolayer with 1.6 isomers/nm
2
 

exposed to visible illumination (left column) and then to UV illumination (right column). This 

analysis corresponds to the data presented in Fig. 1: (a) and (c) the black solid and dashed 

lines correspond to experimental and calculated variations of the number of switched isomers, 

respectively, as a function of log(p), with p the photon dose. Blue symbols are the derivative 

of the black line and the red line is the best fit using a Voigt function; (b) and (d) variations of 

the numerical cross section as a function of log(p). Notice the plateau below a critical value 

p* (grey shaded regions).  
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Tables: 

 

Table 1:  

PSS composition given as C / E+Z relative proportions, in solution (acetonitrile) and at 

surfaces. D is the initial fulgimide concentration at the surface and D* ~ 0.9 isomers/nm
2
 is 

the density below which no steric hindrance occurs (see text). 

 

 Solution Surface  

(D ≤ D*) 

Surface  

(D > D*) 

Visible (525 nm) 0 / 100 0 / 100 8 / 92 

UV (365 nm) 77 / 23
a)

 66 / 34 63/37 

a) This composition is in agreement with literature (C/E/Z) = (77/21/2) [22] [48] 

 

Table 2:  

Comparison of isomerization cross sections measured at surfaces (left block) and in solution 

(right block). For the surface light is either non-polarized, p-pol. and s-pol. light and in 

solution (right block). All cross sections are given in units of 10
-18

 cm
2
. UV and Vis 

wavelengths are 365 nm and 525 nm respectively. Note that -values at surfaces are quasi-

independent of the fulgimide density. 

 

 surface solution 

Polarization non-pol. p-pol. s-pol. na 

 UV Vis UV Vis UV Vis UV Vis 

Vis   0.33 ± 

0.01 

- 0.40 ± 0.06 - 0.09 ± 0.03 - 1.08 ± 0.04 

UV 1.30 ± 

0.05 

 1.51± 

0.11 

- 0.35± 

0.04 

- 8.31 ± 

0.29 

- 

Abs.       30.3 16.4 

       0.27 0.066 
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Schemes: 

 

Scheme 1:  

Molecular structure of indolyl fulgimide isomers. Solid arrows represent the photochromic 

reactions occuring under visible ( = 525 nm) and UV light ( = 365 nm). The dashed arrow 

is accounting for the PSS composition under UV (see text). 

 

 

Scheme 2:  

Schematic description of the multistep protocol used to immobilize fulgimide compounds on 

Si(111). (a) Alkyl monolayer terminated by carboxylic acid groups prepared according to Ref. 

[65]; (b) A succinimidyl-ester “activated” surface is obtained by exposure of (a) to a 

NHS/EDC aqueous solution; (c) Fulgimide monolayer: variable densities of photochromic 

molecules are obtained by exposing the “activated” surfaces to a mixture of amino-ethyl 

indolyl fulgimide and ethyl amine in acetonitrile (see experimental details). 
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Figures: 

 

 

 

Figure 1:  

Comparison of photochromism in solution (a-b) and at surface (c-d). Initial state is a pure C-

solution or a pure C-monolayer. (a) Series of UV-Vis spectra recorded during the Vis 

illumination of a 20 µM C-isomers solution in acetonitrile. The initial spectrum (red line) is 

that of the pure C isomers. The blue line is the last spectrum of the experiment and is very 

close to that of pure E-solution. (b) Time dependence of relative advancement yield  (left 

scale), along the first Vis and subsequent UV irradiation periods. (c) Series of narrow FTIR 

spectra recorded during the Vis illumination of a pure C monolayer, with 1.6 fulgimides/nm
2
. 

The initial spectrum (red line) is that of the pure C-terminated surface. Note that the blue line 

(last spectrum) is close to that of a pure E-terminated surface. (d) Same as (b). In panels (b) 

and (d), quantitative solution and surface compositions are given by the right y-scale (see text 

for more explanation). The concentration of isomers in solution and their density on the 

surface are highlighted with horizontal blue dashed lines in (b) and (d). The vertical dashed 

line marks the transition from Vis to UV illumination. 
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Figure 2:  

(a) Time dependence of  (left scale) and surface density of E/Z isomers (right scale) during 

successive UV and Vis partial photoconversion of a nominal pure E monolayer. The initial 

surface is an E-surface (1.8 E-isomers/nm
2
). (b) Isomeric composition of the ML at PSSs: for 

each UV/Vis illumination cycle a pair of bars gives the extrapolated isomeric composition at 

PSSUV (left bar) and PSSVis (right bar) of individual switching cycles. The single bar on the 

left corresponds to the as prepared E-terminated surface. 
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Figure 3:  

Isomeric composition at PSSVis and PSSUV in solution and at surfaces, starting with a pure C-

solution (20 µmol/L) or C-monolayer with various densities of photochromic molecules. In 

each case a pair of bars gives PSSVis (left bar) and PSSUV (right bar).  
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Figure 4:  

Influence of light polarization on the photoswitching. (a-b) Progression of the reaction during 

UV (left) and Vis (right) illumination. The surface density of fulgimides (C + E/Z) is 1.6 nm
2
. 

In (a) the starting surface is composed of 1.1 E-isomers/nm
2
 and 0.5 C-isomers/nm

2
.
 
In (b) the 

starting surface contains 0.6 E-isomers/nm
2
 and 1.0 C-isomers/nm

2 
for the UV (resp. visible) 

illumination. Symbols correspond to experimental data, and dashed lines to linear fits. 

Vertical bars mark for each plot the maximum photon dose p* up to which the cross section 

remains constant. 
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Figure 5:  

Definition of angles used to calculate   in case the photochromic molecules are constrained in 

a defined direction of space (see Eq. 2 and text). 
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Figure 6:  

Minimized geometries and relative energies of the isolated amino-fulgimide in its C (a), E (b) 

and Z (c) forms as calculated by DFT (B3LYP functional, 6-3111+G(d,p) basis set, in 

vacuum), with the indication of the direction of the electronic transition dipole moment for 

each isomer (black double arrows) computed by TD-DFT.  
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Figure 7:  

(a) Atomic model of a perfectly grafted Si(111) surface where grey circles are H bonds and 

black circles feature the anchoring sites of the alkyl monolayer according to a (3.84 Å x 6.65 

Å) unit cell (red rectangle). (b) and (c) top and side views of a 3 x 3 cell with a vacancy at the 

centre and a C-fulgimide immobilized with an orientation consistent with the experimental 

results ( = 74°); The top view is tilted with respect to the surface normal which explains that 

the red mesh is not rectangular. The side view shows that the fulgimide group is partly 

embedded in the molecular layer. This configuration is made possible by the presence of a 

vacancy in the centre of the red mesh. A similar configuration is found for the E form. See 

text for details. 


