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Introduction

It is a classical result that on compact surfaces with constant negative curvature, Selberg's trace formula allows to identify the eigenvalues of the Laplace operator ∆ and certain zeros of the Selberg zeta function [Se], which can be entirely expressed in terms of closed geodesics. Later the same result has been established for convexco-compact hyperbolic surfaces by Patterson-Perry [PaPe] (see also [START_REF] Borthwick | Selberg's zeta function and the spectral geometry of geometrically finite hyperbolic surfaces[END_REF][START_REF] Guillopé | The wave trace for Riemann surfaces[END_REF]), where the correspondence is between certain zeros of the Selberg zeta function and the resonances of the Laplacian (recall that convex co-compact hyperbolic surfaces are complete non-compact smooth Riemannian surfaces of constant negative curvature with infinite volume). Both results show that on hyperbolic surfaces there is a deep connection between the spectral properties of the Laplacian (quantum mechanics) and the properties of the geodesic flow (classical mechanics). However, the above results do not establish a link between the spectra of the Laplacian and a transfer operator associated to the geodesic flow, nor do they establish a relation between the associated resonant states. The aim of this article is to prove such an explicit correspondence. The previously known relation to the zeta zeros is a direct consequence of this correspondence.

Let us now introduce the concept of Ruelle resonances for the transfer operator associated to the geodesic flow on M . Let M be a compact or convex co-compact hyperbolic surface and let X be the vector field generating the geodesic flow ϕ t on the unit tangent bundle SM of M . The linear operator

L t : C ∞ c (SM ) → C ∞ c (SM ) f → f • ϕ -t
is called the transfer operator of the geodesic flow and the vector field -X is its generator. The geodesic flow has the Anosov property, i.e. the tangent bundle of SM 1 splits into a direct sum

T (SM ) = RX ⊕ E s ⊕ E u
where dϕ t is exponentially contracting in forward time (resp. backward time) on E s (resp. on E u ), and this decomposition is ϕ t -invariant. The bundles E u and E s are smooth and there are two smooth non-vanishing vector fields U ± on SM so that E s = RU + , E u = RU -, and [X, U ± ] = ±U ± . The fields U ± generate the horocyclic flows.

For f 1 , f 2 ∈ C ∞ c (SM ) we can define the correlation functions

C X (t; f 1 , f 2 ) := SM L t f 1 .f 2 dµ L
where µ L is the Liouville measure (invariant by ϕ t ). By [BuLi, FaSj, DyZw] in the compact case and [DyGu] in the convex co-compact case, the Laplace transform

R X (λ; f 1 , f 2 ) := - ∞ 0 e -λt C X (t; f 1 , f 2 )dt
extends meromorphically from Re(λ) > 0 to C 1 . Notice that for Re(λ) > 0 we have R X (λ; f 1 , f 2 ) = (-X -λ) -1 f 1 , f 2 and R X (λ) gives a meromorphic extension of the Schwartz kernel of the resolvent of -X. The poles are called Ruelle resonances and the residue operator Π X λ 0 : C ∞ c (SM ) → D (SM ) defined by Π X λ 0 f 1 , f 2 := Res λ 0 R X (λ; f 1 , f 2 ), ∀f 1 , f 2 ∈ C ∞ c (SM ) has finite rank, commutes with X, and (-X -λ 0 ) is nilpotent on its range. The elements in the range of Π X λ 0 are called generalized Ruelle resonant states. Note that by the results in [BuLi, FaSj, DyZw, DyGu] the poles can be identified with the discrete spectrum of X in certain Hilbert spaces and the generalized resonant states with generalized eigenfunctions.

The quantum resonances on M can be introduced in a quite similar fashion, except that we have to work with the wave flow. Let ∆ M be the non-negative Laplacian and U (t) := cos(t ∆ M -1/4) the wave operator on M . For f 1 , f 2 ∈ C ∞ c (M ), we define the correlation function resolvent of ∆ M . The poles are called quantum resonances and the residue operator

Π ∆ λ 0 : C ∞ c (M ) → C ∞ (M ) defined by Π ∆ λ 0 f 1 , f 2 := Res λ 0 R ∆ (λ; f 1 , f 2 ), ∀f 1 , f 2 ∈ C ∞ c ( 
M ) has finite rank, commutes with ∆ M , and (∆ M -λ 0 (1 -λ 0 )) is nilpotent on its range. The elements in the range of Π ∆ λ 0 are called generalized quantum resonant states. Note that the Ruelle generalized resonant states are distributions on SM while the quantum resonant states are functions on M . In order to formulate the explicit correspondence between them, we consider the projection π 0 : SM → M on the base and π 0 * : D (SM ) → D (M ) the operator dual to the pull-back π * 0 : C ∞ c (M ) → C ∞ c (SM ) (note that π 0 * corresponds to integration in the fibers of SM ). In order to state the theorems, we also need to introduce the canonical line bundle K := (T * M ) 1,0 and its dual K -1 := (T * M ) 0,1 , and we denote their tensor powers by K n := K ⊗n and K -n := (K -1 ) ⊗n . Here the Riemann surface is oriented and thus inherits a complex structure. Then there is a natural map

π * n : C ∞ c (M ; K n ) → C ∞ c (SM ), π * n f (x, v) := f (x)(⊗ n v
) and we consider its dual operator π n * : D (SM ) → D (M ; K n ) which can be viewed as the n-th Fourier component in the fibers of SM (SM is equipped with the Liouville measure and M with the Riemannian volume form to define the pairings).

Let us formulate the first main result: Theorem 1.1. Let M = Γ\H 2 be a smooth oriented compact hyperbolic surface and let SM be its unit tangent bundle. Then 1) for each λ 0 ∈ C \ (-1 2 ∪ -N) the pushforward map π 0 * restricts to a linear isomorphism of complex vector spaces π 0 * : Ran(Π X λ 0 ) ∩ ker U -→ Ran Π ∆ λ 0 +1 = ker(∆ M + λ 0 (1 + λ 0 )) 2) for λ 0 = -1 2 , the map π 0 * : Ran(Π X λ 0 ) ∩ ker U -→ ker(∆ M -1 4 ) is surjective and has a kernel of complex dimension dim ker(∆ M -1 4 ). In other words, the multiplicity of -1/2 as a Ruelle resonances is equal to twice the multiplicity of 1/4 as eigenvalue of ∆ M . 3) For λ 0 = -n ∈ -N, the following map is an isomorphism of complex vector spaces

π n * ⊕ π -n * : Ran(Π X -n ) ∩ ker U -→ H n (M ) ⊕ H -n (M ) with H n (M ) := {u ∈ C ∞ (M ; K n ); ∂u = 0}, H -n (M ) := {u ∈ C ∞ (M ; K -n ); ∂u = 0}.
Consequently, the complex dimension of Ran(Π X -n ) ∩ ker U -is (2n -1)|χ(M )| if n > 1 and |χ(M )| + 2 if n = 1, where χ(M ) is the Euler characteristic.

Theorem 1.1 gives a full characterization of the Ruelle resonant states, that are invariant under the horocyclic flow. We call these resonances the first band of Ruelle resonances. Part 1) of Theorem 1.1 has been proved in [DFG] in any dimension. We slightly simplify the argument and characterize all first band resonant states including the particular points λ 0 ∈ -1/2 -N 0 /2 which were left out in [DFG]. Theorem 1.1 is also related to the classification of horocyclic invariant distributions by [FlFo] but we use a different approach avoiding the Plancherel decomposition into unitary irreducible representations. This has the advantage that our approach gives a more geometric description of the resonant states and that it extends to the convex co-compact setting. In Theorem 3.3 we give slightly more precise statements including the description of possible Jordan blocks in the Ruelle spectrum.

To state our result in the convex co-compact setting, let us first recall some geometric definitions. A convex co-compact hyperbolic surface M can be realized as a quotient M = Γ\H 2 of the hyperbolic plane where Γ ⊂ PSL 2 (R) a discrete subgroup whose nontrivial elements are hyperbolic transformations. Viewing Γ as a subgroup of PSL 2 (C), it also acts by conformal transformations on the Riemann sphere C S 2 , and the action is free and properly discontinuous on the complement of the limit set Λ Γ ⊂ R, which can be defined as the closure of the set of fixed points of non-trivial elements γ ∈ Γ. The quotient M 2 := Γ\(C \ Λ Γ ) is a compact Riemann surface containing two copies M ± of M corresponding to M ± := Γ\{±Im(z) > 0}, and M := Γ\({Im(z) ≥ 0}\Λ Γ ) provides a smooth conformal compactification to M in which ∂M represents the geometric infinity of M . The surface M 2 has an involution I induced by z → z and fixing ∂M .

Theorem 1.2. Let M = Γ\H 2 be a smooth oriented convex co-compact hyperbolic surface and let SM be its unit tangent bundle. Then 1) for each λ 0 ∈ C \ -N the pushforward map π 0 * restricts to a linear isomorphism of complex vector spaces

π 0 * : Ran(Π X λ 0 ) ∩ ker U -→ Ran(Π ∆ λ 0 +1 ). If λ 0 ∈ -1/2 -N, Ran(Π X λ 0 ) ∩ ker U -= 0 and Ran(Π ∆ λ 0 +1 ) = 0. 2) For λ 0 = -n ∈ -N, the following map is an isomorphism of real vector spaces if Γ is not cyclic: π n * : Ran(Π X -n ) ∩ ker U -→ H n (M ). Here H n (M ) := {f | M ; f ∈ C ∞ (M 2 ; K n ), ∂f = 0, I * f = f } and I : M 2 → M 2 is the natural involution fixing ∂M in M 2 . Consequently the real dimension of Ran(Π X -n ) ∩ ker U -is (2n -1)|χ(M )| if n > 1 and |χ(M )| + 1 if n = 1.
As in the compact case we provide more precise information on the correspondence between Jordan blocks, see Theorem 4.5. In 2), we note that π 0 * (Ran(Π X -n )) = 0 for non-cyclic groups, Ran(Π ∆ -n+1 ) = 0 for n > 1 and Ran(Π ∆ 0 ) is the space of constant functions (see the comments after Corollary 5.2). In the case of a cyclic group, the classical resonances at -n have dimension 2 and no Jordan blocks, and we get that

π 0 * : Ran(Π X -n ) → Ran(Π ∆ -n+1
) has a kernel of dimension 1 and image of dimension 1, while Ran(Π ∆ -n+1 ) has dimension 2 and there is a Jordan block for the quantum resonance. The map

π n * : Ran(Π X -n ) ∩ ker U -∩ ker π 0 * → H n (M ) is one-to-one in that case.
Beyond the description of the first band of Ruelle resonances we obtain a description of the full spectrum of Ruelle resonances by applying the vector fields U + iteratively.

Proposition 1.3. Let M be a compact or convex co-compact hyperbolic surface, then

Ran(Π X λ 0 ) = 0≤ ≤|Re(λ 0 )| U + Ran(Π X λ 0 + ) ∩ ker U - and the map U + : Ran(Π X λ 0 + ) ∩ ker U -→ Ran(Π X λ 0 ) is injective unless λ 0 + = 0.
The case λ 0 + = 0 can only occur if M is compact, in which case Ran(Π X 0 ) is the space of constant functions, killed by the differential operator U + .

As a consequence, in Section 5, we obtain an alternative proof of the results [PaPe, BJP] on the zeros of the Selberg zeta function in our situation.

We end the introduction by a rough outline of the proofs of Theorem 1.1 and 1.2: a central ingredient is the microlocal characterization of Ruelle resonant states in [FaSj, DyGu]. In these references it has been shown that a distribution u ∈ D (SM ) is a generalized Ruelle resonant state for a Ruelle resonance λ 0 ∈ C (i.e. u ∈ Ran Π X λ 0 ) if and only if there exists j ≥ 1 such that (-X -λ 0 ) j u = 0 and

WF(u) ⊂ E * u if M is compact WF(u) ⊂ E * u , supp(u) ⊂ Λ + if M is convex co-compact,
Here WF(u) ⊂ T * (SM ) denotes the wave-front set of u and E * u ⊂ T * (SM ) is the subbundle defined by E * u (RX ⊕ E u ) = 0. Furthermore, on convex co-compact surfaces we use the notation

Λ ± := {y ∈ SM ; d(π 0 (ϕ t (y)), x 0 ) → ∞ as t → ∓∞}
where d denotes the Riemannian distance and x 0 ∈ M is any fixed point. Note that the set Λ + (resp. Λ -) has a clear dynamical interpretation as it corresponds to trajectories that do not escape to infinity in the past (resp. in the future).

Using this characterization we follow the general strategy of [DFG]. We consider the hyperbolic surface as a quotient M = Γ\H 2 of its universal cover H 2 by a co-compact, respectively convex co-compact, discrete subgroup Γ ⊂ PSL 2 (R). If we lift the horocyclic invariant Ruelle resonant states to H 2 , we can relate them to distributions on S 1 = ∂H 2 , conformally covariant by the group Γ and supported in Λ Γ . We then show that such distributions are in correspondence with quantum resonant states using the bijectivity of the Poisson-Helgason transform at the noninteger points. While this step is straightforward for compact surfaces, the convex co-compact setting is more complicated. A central ingredient is a characterization of generalized quantum resonant states using their asymptotic behavior towards the boundary. One can show (see Proposition 4.3) that u ∈ Ran Π ∆ λ 0 if and only if there exists j ≥ 1 such that (∆ -λ 0 (1 -λ 0 )) j u = 0 and

u ∈ C ∞ (M ) if M is compact, u ∈ j-1 k=0 ρ λ 0 log(ρ) k C ∞ ev (M ) if M is convex co-compact, (1.1)
where C ∞ ev (M ) denotes the space of smooth functions on M which extend smoothly to M 2 as even functions with respect to the involution I, and ρ ∈ C ∞ ev (M ) is a boundary defining function of ∂M in M . We prove that the asymptotic condition (1.1) corresponds to the fact that the associated distribution ω ∈ D (S 1 ) via the Poisson-Helgason transform is supported in the limit set Λ Γ ⊂ S 1 . Analogously, the condition that a horocyclic invariant Ruelle resonant state is supported in Λ + is equivalent to the fact that its associated distribution ω ∈ D (S 1 ) is again supported on the limit set.

For the negative integer points, the Poisson-Helgason transform fails to be bijective, thus there are possibly equivariant boundary distributions ω ∈ D (S 1 ) and consequently Ruelle resonances that are not related to Laplace eigenfunctions, but that lie in the kernel of the Poisson-Helgason transform. In order to characterize these distributions we consider a vector valued Poisson-Helgason transformation, mapping to sections in the complex line bundles K n . Roughly speaking we prove, that a combination of these vector valued Poisson transformation yields an equivariant bijection between the kernel of the Poisson-Helgason transform at the negative integer points and the holomorphic respectively antiholomorphic sections in K n and K -n . Again the convex co-compact part is more complicated, as we also have to take care about the asymptotics towards, the boundary. Note that the invariant distributions supported on the limit set which appear as an intermediate step in our proof were also studied in [START_REF] Bunke | Fuchsian groups of the second kind and representations carried by the limit set[END_REF][START_REF] Bunke | Group cohomology and the singularities of the Selberg zeta function associated to a Kleinian group[END_REF], and our result somehow completes the picture.
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Geodesic flow on hyperbolic manifolds

In this Section, we recall a few facts about the geodesic flow, horocyclic derivatives and the Poisson operator on the real hyperbolic plane that are needed for the next sections. We refer to the paper [DFG] where all the material is described in full detail.

2.1. Hyperbolic space. Let H 2 be the real hyperbolic space of dimension 2, which we view as the open unit ball in R 2 equipped with the metric g H 2 := 4|dx| 2

(1-|x| 2 ) 2 . The unit tangent bundle is denoted by SH 2 and the projection is denoted by π 0 : SH 2 → H 2 on the base. The hyperbolic space H 2 is compactified smoothly into the closed unit ball of R 2 , denoted by H 2 and its boundary is the unit sphere S 1 .

Let X be the geodesic vector field on SH 2 and ϕ t : SH 2 → SH 2 be the geodesic flow at time t ∈ R. We denote by B ± : SH 2 → S 1 the endpoint maps assigning to a vector (x, v) ∈ SH 2 the endpoint on S 1 of the geodesic passing through (x, v) in positive time (+) and negative time (-). These maps are submersions and allow to identify SH 2 with

H 2 × S 1 by the map (x, v) → (x, B ± (x, v)). It is easy to compute B ± explicitly: using the complex coordinate z = x 1 + ix 2 ∈ C for the point x = (x 1 , x 2 ) (with |x| < 1) and identifying v ∈ S z H 2 with e iθ through 2v/(1 -|z| 2 ) = cos(θ)∂ x 1 + sin(θ)∂ x 2 , we get B -(z, e iθ ) = -e iθ + z -e iθ z + 1 , B + (z, e iθ ) = e iθ + z e iθ z + 1 . (2.1)
For each z, the map B z : e iθ → B -(z, e iθ ) is a diffeomorphism of S 1 and its inverse is given by

B -1 z (e iα ) = -e iα ze -iα -1 ze iα -1 . (2.2)
There exists two positive functions Φ ± ∈ C ∞ (SH 2 ) satisfying XΦ ± = ±Φ ± , given by

Φ ± (x, v) := P (x, B ± (x, v)) (2.3)
where P (x, ν) is the Poisson kernel given by

P (x, ν) := 1 -|x| 2 |x -ν| 2 , x ∈ H 2 , ν ∈ S 1 . (2.4)
The group of orientation preserving isometries of H 2 is the group

G := PSU(1, 1) PSL 2 (R)
An element γ ∈ G ⊂ PSL 2 (C) acts on C by Möbius transformations and preserves the unit ball H 2 , and this action preserves also the closure H 2 . Furthermore the G action on H 2 lifts linearly to an action on T H 2 and as the action on the base space H 2 is isometric it can be restricted to SH 2 . By abuse of notation, for γ ∈ G, we also denote the action of γ on SH 2 or S 1 by the same letter γ. By |dγ| : S 1 → R we denote the norm of the differential dγ on the boundary S 1 = ∂H 2 of the unit ball with respect to the Euclidean norm. Note that the above defined functions Φ ± and maps B ± are compatible with respect to these G actions in the sense that one has the relations

γ * Φ ± (x, v) = Φ ± (x, v)N γ (B ± (x, v)), B ± (γ(x, v)) = γ(B ± (x, v)) (2.5)
where

N γ (ν) := |dγ(ν)| -1 .
As the G action on SH 2 is free and transitive, we can identify G SH 2 via the natural isomorphism

G → SH 2 , γ → (γ(0), 1 2 dγ(0).∂ x ).
(2.6)

The Lie algebra g = sl 2 (R) of G is spanned by

U + := 0 1 0 0 , U -:= 0 0 1 0 , X := 1 2 0 0 -1 2 .
(2.7)

These elements can also be viewed as left invariant smooth vector fields on G SH 2 , which form at any point (x, v) ∈ SH 2 a basis of T (SH 2 ), and the following commutation relations hold [X,

U ± ] = ±U ± , [U + , U -] = 2X.
(2.8)

The geodesic vector field is represented by X and we call U + the stable derivative and U -the unstable derivative. The vector fields X, U ± can be viewed as first order linear differential operators on SH 2 , thus acting on distributions, and by (2.8), X preserves ker U ± . Another decomposition that is quite natural for T (SH 2 ) is

X := 1 2 0 0 -1 2 , X ⊥ := 0 1 2 1 2 0 , V := 0 1 2 -1 2 0 . which satisfy U ± = X ± X ⊥ and [X, V ] = X ⊥ , [X, X ⊥ ] = V, [V, X ⊥ ] = X.
(2.9)

The vector field V generates the SO(2) action on G and geometrically, it generates the rotation in the fibers of SH 2 (that are circles); it is called the vertical vector field since dπ 0 (V ) = 0. For what follows, we will always view X, V, X ⊥ , U + , U -as vector fields on SH 2 .

There is a smooth splitting of T (SH 2 ) into flow, stable and unstable bundles,

T (SH 2 ) = RX ⊕ E s ⊕ E u
with the property that there is C > 0 uniform such that ||dϕ t (y).w|| ≤ Ce -|t| ||w||, ∀t ≥ 0, ∀w ∈ E s (y) or ∀t ≤ 0, ∀w ∈ E u (y).

(2.10)

Here the norm on SH 2 is with respect to the Sasaki metric. The space E s is generated by the vector field U + and E u by the vector field U -where U ± are the images by the map (2.6) of the left invariant vector fields in (2.7).

There are two important properties of Φ ± with respect to stable/unstable derivatives:

U ± Φ ± = 0, and dB ± .U ± = 0.

(2.11)

Let Q ± : D (S 1 ) → D (SH2 ) be the pull-back by B ± acting on distributions which is well defined since B ± are submersions. It is a linear isomorphism between the following spaces (see [START_REF] Dyatlov | Power spectrum of the geodesic flow on hyperbolic manifolds[END_REF]Lemma 4.7])

Q ± : D (S 1 ) → D (SH 2 ) ∩ ker U ± ∩ ker X.
(2.12) 2.2. Poisson-Helgason transform. We say that a smooth function f on H 2 is tempered if there exists C > 0 such that |f (x)| ≤ Ce Cd H 2 (x,0) if 0 is the center of H 2 (viewed as the unit disk) and d H 2 (•, •) denotes the hyperbolic distance. Below, we view the space of distributions D (S 1 ) on S 1 as the topological dual of C ∞ (S 1 ) and we embed C ∞ (S 1 ) ⊂ D (S 1 ) by the pairing

ω, χ S 1 := S 1 ω(ν)χ(ν)dS(ν)
where the measure dS is the standard measure on S 1 (viewed as a the unit circle in R 2 ). Then the following result was proved 2 in [START_REF] Van Den Ban | Asymptotic expansions and boundary values of eigenfunctions on Riemannian symmetric spaces[END_REF]Corollary 11.3 and Theorem 12.2] and [START_REF] Oshima | Eigenspaces of invariant differential operators on an affine symmetric space[END_REF]Theorem 3.15] but we follow the presentation given in [START_REF] Dyatlov | Power spectrum of the geodesic flow on hyperbolic manifolds[END_REF]Section 6.3]:

Lemma 2.1. For λ ∈ C, let P λ : D (S 1 ) → C ∞ (H 2 ) be the Poisson-Helgason transform

P λ (ω)(x) := π 0 * (Φ λ -Q -(ω))(x)
= ω, P 1+λ (x, •) S 1 where P (x, ν) is the Poisson kernel of (2.4) and π 0 * is the adjoint of the pull-back

π * 0 : C ∞ c (H 2 ) → C ∞ c (SH 2
). Then P λ maps D (S 1 ) onto the space of tempered functions in the kernel of (∆ H 2 + λ(1 + λ)), where ∆ H 2 = d * d is the positive Laplacian acting on functions on H 2 and if λ / ∈ -N, P λ is an isomorphism. Finally, if γ ∈ G is an isometry of H 2 , we have the relation γ * P λ (ω) = P λ (|dγ| -λ γ * ω) for each ω ∈ D (S 1 ).

It is useful to describe the inverse of P λ when λ / ∈ -N. For this purpose we can use for instance [START_REF] Dyatlov | Power spectrum of the geodesic flow on hyperbolic manifolds[END_REF]Lemma 6.8]. First, if λ / ∈ -N and ω ∈ D (S 1 ), for each χ ∈ C ∞ (S 1 ) and t ∈ (0, 1) one has3 

S 1 P λ (ω)( 2-t 2+t ν)χ(ν)dS(ν) =    t -λ F - λ (t) + t λ+1 F + λ (t) if λ / ∈ -1/2 + Z t -λ F - λ (t) + t λ+1 log(t)F + λ (t) if λ ∈ -1/2 + N 0 t -λ log(t)F - λ (t) + t λ+1 F + λ (t) if λ ∈ -1/2 -N (2.13)
where F ± λ ∈ C ∞ ev ([0, 1)), and C ∞ ev ([0, 1)) is the subset of C ∞ ([0, 1)) consisting of functions with an even Taylor expansion at 04 . The exact expressions of F ± λ (0) can be obtained directly from the study of the Poisson operator in [GrZw] and the computation of the scattering operator S(s) of H 2 in [START_REF] Guillopé | Upper bounds on the number of resonances for non-compact Riemann surfaces[END_REF]Appendix]. The scattering operator is defined as the operator acting on C ∞ (S 1 ) given by the explicit function of the Laplacian on S 1

S(s) := Γ √ ∆ S 1 + s Γ √ ∆ S 1 + 1 -s , (2.14)
with Schwartz kernel on S 1 given for Re(s) < 1/2 by

S(s; ν, ν ) = π -1 2 2 s Γ(s) Γ(-s + 1 2 ) |ν -ν | -2s .
It is a holomorphic family of operators in s / ∈ -N 0 with poles of order 1 at -N 0 , which is an isomorphism on D (S 1 ) outside the poles and satisfies the following functional equations

S(s) -1 = S(1 -s), P λ = Γ(-λ) Γ(λ + 1) P -λ-1 S(λ + 1).
(2.15)

The operator S(s) is an elliptic pseudo-differential operator of (complex) order 2s -1 on S 1 , with principal symbol that of ∆ 2s-1 S 1 . This follows from the formula above but also in a more general setting by the works [JoSa, GrZw]. We remark that for k ∈ N, the operator S(1/2+k) is a differential operator of order 2k (matching with the analysis of [GrZw]), and it is invertible from the expression (2.14).

We get for λ / ∈ (-

1 2 -Z) ∪ -N F - λ (0) = π 1/2 2 λ Γ(λ + 1 2 ) Γ(λ + 1) ω, χ S 1 , F + λ (0) = π 1/2 2 -λ-1 Γ(-λ -1 2 ) Γ(λ + 1) S(λ + 1)ω, χ S 1 .
(2.16)

At λ = -1/2 + k with k ∈ N there is a pole of order 1 in the expression of F + λ (0) and it follows from [GrZw] that, with the notation of (2.13),

F - -1/2+k (0) = π 1/2 2 -1/2+k Γ(k) Γ(k + 1/2) ω, χ S 1 , F + -1/2+k (0) = c k S(1/2 + k)ω, χ
for some c k = 0. For λ = -1/2, F + λ (0), there is a constant c 0 ∈ R so that

F + -1/2 (0) = - √ 2 ω, χ , F - -1/2 (0) = √ 2 ∂ λ S(1/2)ω, χ + c 0 ω, χ (2.17)
and ∂ λ S(1/2) = log(∆ S 1 ) + A for some pseudo-differential operator A of order 0 on S 1 . To deal with the case λ ∈ -1 2 -N, we use the functional equation (2.15) of the scattering operator of H 2 : we deduce that for λ = -1/2 -k with k ∈ N,

F - -1/2-k (0) = c k ω, χ S 1 , F + -1/2-k (0) = c k S(1/2 -k)ω, χ (2.18)
for some c k = 0 and c k = 0. This gives the expression for the inverse of P λ at those points.

To conclude, we discuss the range and kernel of P -n if n ∈ N. Using the complex coordinate z ∈ C for the ball model of H 2 , this operator is

P -n (ω)(z) =(1 -|z| 2 ) 1-n S 1 ω(ν)|z ν -1| 2(n-1) dν =(1 -|z| 2 ) 1-n 2π 0 ω(e iα )(|z| 2 + 1 -ze iα -ze -iα ) (n-1) dα.
From this we deduce that the range of P -n is finite and its kernel contains the space

W n := {ω ∈ D (S 1 ); ω, e ikα = 0, ∀k ∈ Z ∩ [-n + 1, n -1]}.
In fact, from the second functional equation (2.15) and the formula (2.14), we see that

ker P -n = ker(Res 1-n S(λ)) = W n (2.19)
2.3. Co-compact and convex co-compact quotients. Below, we will consider two types of hyperbolic surfaces, the compact and the convex co-compact ones. Consider a discrete subgroup Γ ⊂ G containing only hyperbolic transformations, i.e. transformations fixing two points in H 2 . The group Γ acts properly discontinuously on H 2 and the quotient M = Γ\H 2 is a smooth oriented hyperbolic surface. We say that Γ is co-compact if M is compact.

Denote by Λ Γ ⊂ S 1 the limit set of the group Γ, i.e. the set of accumulation points of the orbit Γ.0 ∈ H 2 of 0 ∈ H 2 on S 1 = ∂H 2 . We will call Ω Γ = S 1 \ Λ Γ the set of discontinuity of Γ, on which Γ acts properly discontinuously. [START_REF] Borthwick | Spectral theory of infinite-area hyperbolic surfaces[END_REF]Section 2.4]). In this case the group Γ acts totally discontinuously, freely, on H 2 and more generally on

If Γ is co-compact, then Λ Γ = S 1 . The subgroup Γ is called convex co-compact, if it is not co-compact and it the action of Γ on the convex hull CH(Λ Γ ) ⊂ H 2 of the limit set Λ Γ in H 2 is co-compact, that is Γ\CH(Λ Γ ) is compact (see e.g.
H 2 ∪ Ω Γ = H 2 \ Λ Γ .
The manifold M = Γ\H 2 is complete with infinite volume, and it is the interior of a smooth compact manifold with boundary M := Γ\(H 2 ∪ Ω Γ ). Here we notice that H 2 ∪ Ω Γ is also a smooth manifold with boundary but it is non-compact.

The boundary ∂M := Γ\Ω Γ of M is compact.

We now consider M = Γ\H 2 which is either compact or convex co-compact (here M could be as well the whole H 2 ). The unit tangent bundle bundle of M is SM = Γ\SH 2 Γ\G, and we let π Γ : SH 2 → SM be the induced covering map. The geodesic flow ϕ t : SM → SM on SM lifts to the geodesic flow on SH 2 , the left invariant vector fields X, U ± , X ⊥ , V on T (SH 2 ) T G descend to SM via dπ Γ ; we will keep the notation X instead of dπ Γ .X, and similarly for the vector fields U ± , X ⊥ , V . The flow ϕ t is generated by the vector field X and there is an Anosov flow-invariant smooth splitting

T (SM ) = RX ⊕ E s ⊕ E u (2.20)
where E u = RU -, E s = RU + are the stable and unstable bundles satisfying the condition (2.10). Using the Anosov splitting (2.20), we define the subbundles

E * 0 , E * s and E * u of T * (SM ) by E * u (E u ⊕ RX) = 0, E * s (E s ⊕ RX) = 0, E * 0 (E u ⊕ E s ) = 0.
(2.21) 2.4. Complex line bundles. Note that M = Γ\H 2 carries a complex structure so that π Γ : H 2 → M is holomorphic and that we can thus consider the complex line bundles K := (T * M ) 1,0 and K -1 := (T * M ) 0,1 . Let us consider their tensor powers: for k) . The bundles K k are holomorphic line bundles over M , which in addition are trivial when M is convex co-compact (see [START_REF] Forster | Lectures on Riemann surfaces[END_REF]Theorems 30.1 and Th 30.4

each k ∈ Z, set K k := ⊗ |k| K sign(
]). A section C ∞ c (M ; K k ) can be viewed as a function in C ∞ c (SM ) by the map π * k : C ∞ c (M ; K k ) → C ∞ c (SM ), π * k u(x, v) := u(x)(⊗ k v).
We denote by π k * : D (SM ) → D (M ; K k ) its transpose defined by duality. Note that the operator π * k extends to D (M ; K k ) and ( 2π)

-1 π k * π * k is the identity map on D (M ; K k ). Each smooth function f ∈ C ∞ c ( 
SM ) can be decomposed into Fourier modes in the fibers of SM by using the eigenvectors of the vector field V :

f = k∈Z f k with V f k = ikf k and f k = 1 2π π * k π k * f. It is easy to see that for each f ∈ C ∞ c (SM ), s ≥ 0, and N > 0 ||f k || H s (SM ) ≤ C f,N,s k -N (2.22) for some constant C f,N,s independent of k. A distribution u ∈ D (SM ) can also be decomposed as a sum u = k∈Z u k with V u k = iku k , u k = 1 2π π * k π k * u
which converges in the distribution sense. In order to see this recall that any distribution u ∈ D (SM ) restricted to a precompact open set A ⊂ SM is of finite order, i.e. there is s > 0, C > 0 with

| u, ϕ | ≤ C ϕ H s (A) , ∀ ϕ ∈ C ∞ c (A). (2.23) Now for f ∈ C ∞ c (SM ), we can write f = k∈Z f k . Then (2.22) and (2.23) imply that u, f = k∈Z u, f k = 1 2π k∈Z π * k π k * u, f
is absolutely convergent. For convenience of notations, we avoid the π * k , π k * operators and we will view u k as an element in D (M ; K k ) or as an element in {w ∈ D (SM ) with V w = ikw} depending on which point of view is more appropriate in a given situation. First of all V acts on D (M, K k ) by

V : D (M, K k ) → D (M, K k ), u k → V u k = iku k .
Furthermore, if we define the complex valued vector fields

η ± := 1 2 (X ± iX ⊥ ), (2.24) they fulfill the commutation relations [V, η ± ] = ±η ± .
They are called the raising/lowering operators as they shift the vertical Fourier components by ±1 and when restricted to sections of K k through π * k , they define operators

η ± : D (M ; K k ) → D (M ; K k±1 ).
(2.25)

If z = x + iy are local isothermal coordinates, the hyperbolic metric can be written as g = e 2α(z) |dz| 2 and for k ≥ 0 the operators η ± acting on a section u

∈ C ∞ c (M ; K k ) of the form u = f (z)dz k is given by η -u = e -2α (∂ z f )dz k-1 , η + u = (e 2kα ∂ z (e -2kα f ))dz k+1 .
(2.26)

A similar expression holds for k ≤ 0 and we directly deduce

∀k ≥ 0, η -u k = 0 ⇐⇒ ∂u k = 0, ∀k < 0, η + u k = 0 ⇐⇒ ∂u k = 0. (2.27)
We notice that these operators η ± , as well as the operators V, X and X ⊥ = [X, V ], have nothing to do with constant curvature and Lie groups, they are well defined for any oriented compact Riemannnian surface, see Guillemin-Kazhdan [GuKa]. The Casimir operator is defined as the second order operator on SM by

Ω =X 2 + X 2 ⊥ -V 2 = X 2 -V 2 + (2U -+ V ) 2 = X 2 + 4U 2 -+ 2U -V + 2V U - =X 2 -X + 4U -+ 4V U -.
(2.28)

It satisfies (Ωu) k = Ωu k since Ω commutes with V .
For later purpose, we will need a few lemmas which follow for algebraic reasons and Fourier decomposition in the fibers.

Lemma 2.2. Let λ ∈ C and u, v ∈ D (SM ) be two distributions, then they fulfill the set of differential equations

(X + λ)u = v and U -u = 0
if and only if their Fourier modes fulfill the recursion relations

2η ± u k∓1 = (-λ ∓ k)u k + v k .
(2.29)

Proof. Recall that X = η + + η -and and assume (X + λ)u = v then, taking the Fourier components of this equation and using (2.25) we get for any k ∈ Z

η + u k-1 + η -u k+1 + λu k = v k .
(2.30)

Similarly we can express

U -= -i(η + -η -) -V and the condition U -u = 0 becomes -i(η + u k-1 -η -u k+1 ) -iku k = 0 ∀k ∈ Z.
(2.31)

Now inserting one equation into the other, one deduces that (2.30) and (2.31) are equivalent to (2.29) and this completes the proof.

Lemma 2.3. Let λ ∈ C and u ∈ D (SM ) satisfies U -u = 0, (X + λ) j u = 0 for some j ≥ 1. Set u ( ) := (X + λ) u for each ≤ j and assume that u (j-1) = 0. Then for each ≤ j -2 (∆ M + λ(λ + 1))u (j-1) 0 = 0, (∆ M + λ(λ + 1)) j-1-u ( ) 0 = (2λ + 1) j-1-u (j-1) 0 .
Proof. Denote by u ( ) := (X + λ) u, then U -u ( ) = 0 for all by the fact that X preserves ker U -. Using (2.28) we get for each ≤ j

∆ M u ( ) 0 = -Ωu ( ) 0 = ((X -X 2 )u ( ) ) 0 = ((X -1)(λu ( ) -u ( +1) )) 0 = -λ(λ + 1)u ( ) 0 + (2λ + 1)u ( +1) 0 -u ( +2) 0
The result then follows from an easy induction.

Proposition 2.4. Let n ∈ N, assume that u ∈ D (SM ) satisfies U -u = 0, u 0 = 0 and (X -n) j u = 0 for some j ∈ N, then (X -n)u = 0.
Proof. Let u ( ) := (X -n) u. By Lemma 2.3, we have u 0 = 0 for all = 0, . . . , j -1. Assume that (X -n)u = 0, then without loss of generality we can assume that u (j-1) = 0. Then using that (X -n) preserves ker U -, we get that w := u (j-2) and v := u (j-1) are non-zero distributions such that

U -w = U -v = 0, (X -n)w = v, (X -n)v = 0 as well as w 0 = v 0 . Let us next use the knowledge that w 0 = v 0 = 0 in order to obtain a contradiction. Lemma 2.2 applied to (X -n)w = v and (X -n)v = 0 implies, that 2η ± w k∓1 = (n ∓ k)w k + v k , 2η ± v k∓1 = (n ∓ k)v k (2.32)
From v 0 = 0 and the second equation of (2.32) we obtain that v k = 0 for all |k| < n. Now this knowledge together with w 0 = 0 and the first recursion relation in (2.32) leads to w k = 0 for all |k| < n. Now let us consider the first equation of (2.32) with

k = n 0 = 2η + w n-1 = v n .
Using once more the second recursion relations (2.32) this implies v k = 0 for all k ≥ n.

Analogously we obtain v -n = 0 and using the recursion we see that v k = 0 for all k = 0. Thus v = 0 which is the desired contradiction.

Ruelle resonances for co-compact quotients

In this section, we consider a co-compact discrete subgroup Γ ⊂ G acting freely on H 2 , so that M := Γ\H 2 is a smooth oriented compact hyperbolic surface, and we describe the Ruelle resonance spectrum and eigenfunctions. The characterization of the spectrum and eigenfunctions was done in [DFG] except for some special points localized at negative half-integers. Here we analyze those points as well, and we simplify the proof of the fact that the algebraic multiplicities and geometric multiplicities agree.

First we recall the result [START_REF] Faure | Upper bound on the density of Ruelle resonances for Anosov flows[END_REF]Theorems 1.4 and 1.7] in the case of geodesic flows(see also [START_REF] Butterley | Smooth Anosov flows: correlation spectra and stability[END_REF]Theorem 1] or [START_REF] Dyatlov | Dynamical zeta functions for Anosov flows via microlocal analysis[END_REF]Propositions 3.1 and 3.3]): Proposition 3.1. Let (M, g) be a Riemannian manifold with Anosov geodesic flow. For each N > 0, the vector field X generating the flow is such that λ → -X -λ is a holomorphic family of Fredholm operators of index 0

-X -λ : Dom(X) ∩ H N → H N for {Re(λ) > -N }, where H N is a Hilbert space such that C ∞ (SM ) ⊂ H N ⊂ D (SM ). The spectrum of -X on H N in {Re(λ) > -N } is discrete, contained in {Re(λ) ≤ 0},
and minus the residue

Π X λ 0 := -Res λ 0 (-X -λ) -1 , Re(λ 0 ) > -N is a projector onto the finite dimensional space Res X (λ 0 ) := {u ∈ H N ; ∃j ∈ N, (-X -λ 0 ) j u = 0} of generalized eigenstates, satisfying XΠ X λ 0 = Π X λ 0 X.
The eigenvalues, generalized eigenstates and the Schwartz kernel of Π X λ 0 are independent of N and one has

Res X (λ 0 ) = {u ∈ D (SM ); WF(u) ⊂ E * u , ∃j ∈ N, (-X -λ 0 ) j u = 0}. (3.1)
Notice that the description (3.1) of resonant states is not explicit in [FaSj] but if follows easily from that paper [FaSj] -a proof is given in Lemma 5.1 of [DFG]. The eigenvalues, eigenstates and generalized eigenstates are respectively called Ruelle resonances, Ruelle resonant states and Ruelle generalized resonant states. The existence of generalized resonant states which are not resonant states means that the algebraic multiplicity of the eigenvalue is larger than the geometric multiplicity, in which case there are Jordan blocks in the matrix representing (-X -λ 0 ) on Im(Π X λ 0 ). A direct corollary of Proposition 3.1 is that the

L 2 -resolvent λ → R X (λ) := (-X -λ) -1
of X extends from Re(λ) > 0 to C as a meromorphic family of bounded operators C ∞ (SM ) → D (SM ), with poles the Ruelle resonances of -X. Indeed, Proposition 3.2 in [DyZw] shows that in the region Re(λ) > C for some

C > 0, the L 2 -resolvent R X (λ) is also bounded as a map H N → H N , thus R X (λ) is the inverse of -X -λ on H N in that half-space. By Proposition 3.1, R X (λ) : H N → H N extends as a meromorphic family of bounded operators in Re(λ) > -N and thus is meromorphic as a bounded map C ∞ (SM ) → D (SM ). Density of C ∞ (SM ) in H N and unique continuation in λ shows that R X (λ) is actually independent of N as a map C ∞ (SM ) → D (SM ).
We define the following spaces for j ≥ 1

Res j X (λ 0 ) = {u ∈ D (SM ); WF(u) ⊂ E * u , (-X -λ 0 ) j u = 0}, (3.2) 
The operator (-X -λ 0 ) is nilpotent on the finite dimensional space Res X (λ 0 ) and λ 0 is a Ruelle resonance if and only if Res 1 X (λ 0 ) = 0. The presence of Jordan blocks for λ 0 is equivalent to having Res j X (λ 0 ) = Res 1 X (λ 0 ) for some j > 1. Let us define for j ≥ 1, m ≥ 0 the subspace

V j m (λ 0 ) := {u ∈ Res j X (λ 0 ); U m+1 - u = 0}. (3.3) Obviously V j m (λ 0 ) ⊂ V j m+1 (λ 0 ) for each m ≥ 0, j ≥ 1.
The spaces V j 0 (λ 0 ) are spanned by the generalized resonant states which are invariant under the unstable horocycle flow. First, following [DFG], we have the Lemma 3.2. For each λ 0 ∈ C, there exists m ≥ 0 such that Res 1

X (λ 0 ) = V 1 m (λ 0 ). Proof. By the commutation relation (2.8), for u ∈ Res 1 X (λ 0 ) we have for each m ≥ 0 (-X -λ 0 -m)U m -u = 0
thus for m > -Re(λ 0 ), we get U m -u = 0 since we know there is no Ruelle resonance in Re(λ) > 0 by Proposition 3.1 and WF

(U m -u) ⊂ WF(u) ⊂ E * u .
Next we analyze the generalized resonant states that are in ker U -, i.e. the spaces V j 0 (λ 0 ) for j ≥ 1. This part is essentially contained in [FlFo] (even though they do not consider the problem from the point of view of Ruelle resonances) but we provide a more geometric method by using the Poisson operator, with the advantage that this approach extends to the convex co-compact setting. Our proof does not use the representation theory of SL 2 (R) at all. Theorem 3.3. Let M = Γ\H 2 be a smooth oriented compact hyperbolic surface and let SM be its unit tangent bundle. 1) For each λ 0 ∈ C \ (-1 2 ∪ -N) the pushforward map π 0 * : D (SM ) → D (M ) restricts to a linear isomorphism of complex vector spaces

π 0 * : V 1 0 (λ 0 ) → ker(∆ M + λ 0 (1 + λ 0 )) (3.4)
where ∆ M is the Laplacian on M acting on functions, and there are no Jordan blocks, i.e.

V j 0 (λ 0 ) = V 1 0 (λ 0 ) for j > 1. 2) For λ 0 = -1 2 , the Jordan blocks are of order 1, i.e. V j 0 (-1 2 ) = V 1 0 (-1 2 ) for j > 2, the map π 0 * : V 1 0 (-1 2 ) → ker(∆ M -1 4 ) (3.5)
is a linear isomorphism of complex vector spaces and

π 0 * : V 2 0 (-1 2 ) → ker(∆ M -1 4 ) (3.6) has a kernel of dimension dim ker(∆ M -1 4 ). 3) For λ 0 = -n ∈ -N, there are no Jordan blocks, i.e. V j 0 (-n) = V 1 0 (-n) if j > 1.
The following map is an isomorphism of complex vector spaces

π n * ⊕ π -n * : V 1 0 (-n) → H n (M ) ⊕ H -n (M ) (3.7) with H n (M ) := {u ∈ C ∞ (M ; K n ); ∂u = 0}, H -n (M ) := {u ∈ C ∞ (M ; K -n ); ∂u = 0}.
Proof. Case λ 0 ∈ -1/2 ∪ -N, injectivity. Since X + λ 0 is nilpotent on V 2 0 (λ 0 ), we can decompose this space into Jordan blocks and there is a non-trivial Jordan block if and only if X + λ 0 is not identically 0 on V 2 0 (λ 0 ). Assume λ 0 is a Ruelle resonance and let u (0) ∈ V 1 0 (λ 0 ) \ {0} be a resonant state. If there is a Jordan block associated to u (0) , there is u (1) ∈ V 2 0 (λ 0 ) so that (X + λ 0 )u (0) = 0, (X + λ 0 )u (1) = u (0) .

We will show that in fact this is not possible. The wave front set of u (j) is contained in E * u . We lift u (0) and u (1) on SH 2 by π Γ : SH 2 → SM to u (0) , u (1) so that γ * u (j) = u (j) for all γ ∈ Γ, j = 0, 1. Take the distribution v (0) := Φ -λ 0 -u (0) on SH 2 where Φ -is defined by (2.3). It satisfies Xv (0) = 0 as XΦ -= -Φ -. Then by (2.12) there exists

ω (0) ∈ D (S 1 ) so that Q -ω (0) = v (0) . Using γ * ũ(0) = ũ(0) together with (2.5), we have that for any γ ∈ Γ γ * ω (0) = N -λ 0 γ ω (0) with N γ := |dγ| -1 .
Next we compute, using (2.11), that for v

(1) := Φ -λ 0 -( u (1) + log(Φ -) u (0) ), Xv (1) = 0, U -v (1) = 0
and thus by (2.12) there is ω (1) ∈ D (S 1 ) such that Q -ω (1) = v (1) . Since γ * u (1) = u (1) for all γ ∈ Γ, we get

γ * v (1) -N -λ 0 γ v (1) = N -λ 0 γ log(N γ )v (0) , γ * ω (1) -N -λ 0 γ ω (1) = N -λ 0 γ log(N γ )ω (0) . (3.8)
We apply the Poisson operator P λ 0 to ω (0) and ω (1) , where P λ is defined in Lemma 2.1. Using the same lemma, we get that ϕ 0 := P λ 0 (ω (0) ) = π 0 * u (0) = 0 is Γ-invariant and satisfies (∆ H 2 + λ 0 (1 + λ 0 )) ϕ 0 = 0 on H 2 , and thus descend to ϕ 0 := π 0 * u (0) on M as a non-zero eigenfunction of ∆ M with eigenvalue λ 0 (1 + λ 0 ) and this has to be a smooth function by ellipticity. Since ∆ M is self-adjoint on L 2 (M ) this implies λ 0 (1 + λ 0 ) ∈ R.

Now set ψ := P λ 0 (ω (1) ) ∈ C ∞ (H 2 )
, we also get from (2.5), (3.8)

γ * ψ -ψ = P λ 0 (log(N γ )ω (0) ), (∆ + λ 0 (1 + λ 0 ))ψ = 0.
Now, for arbitrary ω ∈ D (S 1 ), we make the observation, by Taylor expanding the equation (∆

H 2 + λ(1 + λ))P λ (ω) = 0 with respect to λ at λ 0 that for k ≥ 1 (∆ H 2 + λ 0 (1 + λ 0 )) ∂ k λ P λ 0 (ω) k! + (2λ 0 + 1) ∂ k-1 λ P λ 0 (ω) (k -1)! + ∂ k-2 λ P λ 0 (ω) (k -2)! = 0, ∂ k λ P λ (ω)(x) = π 0 * Φ λ -(log Φ -) k Q -(ω) , (3.9) and for each γ ∈ Γ, γ * (∂ λ P λ 0 (ω (0) )) = ∂ λ P λ 0 (ω (0) ) + P λ 0 (log(N γ )ω (0) ). Thus, since λ 0 = -1 2 , we can set ϕ 1 := -(1 + 2λ 0 ) -1 (∂ λ P λ 0 (ω (0) ) -ψ)
and we get on H 2

(∆ H 2 + λ 0 (1 + λ 0 )) ϕ 1 = ϕ 0 , and ∀γ ∈ Γ, γ * ϕ 1 = ϕ 1 .
This means that ϕ 1 descends to a smooth function ϕ 1 on M , which satisfies the equation

(∆ M + λ 0 (1 + λ 0 ))ϕ 1 = ϕ 0 . (3.10)
In fact, since

ψ = π 0 * (Φ λ 0 -Q -(ω (1) )) = π 0 * ( u (1) + log(Φ -) u (0) ) = π 0 * ( u (1) ) + ∂ λ P λ 0 (ω (0) ), we notice that ϕ 1 = (1 + 2λ 0 ) -1 π 0 * u (1) . If M is compact (3.10) can only hold if ϕ 0 = 0, since λ 0 (1 -λ 0 ) ∈ R and thus ||ϕ 0 || 2 L 2 (M ) = (∆ M + λ 0 (1 + λ 0 ))ϕ 1 , ϕ 0 = 0. But ϕ 0 = 0 implies ω (0)
= 0 by injectivity of P λ 0 , and thus u (0) = 0, which leads to a contradiction and thus u (1) does not exist. We have thus proved the non-existence of Jordan blocks if λ 0 = -1 2 . It is also clear that, assuming now that there is no Jordan block, we can take the argument above and ignore the u (1) , v (1) , ω (1) , ϕ 1 terms, it shows that ϕ 0 = π 0 * u (0) is in ker(∆ M + λ 0 (1 + λ 0 )) and is nonzero if u (0) = 0, and the map (3.4) is then injective.

Case λ 0 ∈ -1/2 ∪ -N, surjectivity. To construct the reciprocal map, we proceed as follows: if (∆ M + λ 0 (1 + λ 0 ))ϕ 0 = 0 with ϕ 0 = 0, then by the surjectivity of P λ 0 in Lemma 2.1, there is ω (0) ∈ D (S 1 ) such that P λ 0 (ω (0) ) = ϕ 0 where ϕ 0 is the lift of ϕ 0 to H 2 . Using injectivity of P λ 0 and γ * ϕ 0 = ϕ 0 for all γ ∈ Γ, we get γ * ω (0) = N -λ 0 γ ω (0) . This implies that u (0

) := Φ λ 0 -Q -(ω (0)
) is Γ invariant by (2.5) and that (X + λ 0 ) u (0) = 0 and U -u 0 = 0 by (2.12). Then u 0 descends to and element u 0 ∈ D (SM ) satisfying (X + λ 0 )u (0) = 0 and U -u (0) = 0. Now the differential operator U -is elliptic outside

E * u ⊕ E * 0 and (X + λ 0 ) is elliptic outside E * u ⊕ E * s , thus WF(u (0) ) ⊂ E * u .
Using the characterizaion (3.1) this implies that u (0) is a Ruelle resonant state.

Case λ 0 = -1 2 , Jordan block and kernel. We will show that there can be a Jordan block of order 1 but no Jordan blocks of order 2. Assume there is a Jordan block of order 2, i.e.

(X + λ 0 )u (0) = 0, (X + λ 0 )u (1) = u (0) , (X + λ 0 )u (2) = u (1) , for some u (j) ∈ V j+1 0 (λ 0 ). Define u (j) = π * Γ u (j) their lifts to SH 2 , let v (0) := Φ -λ 0 -u (0) and v (1) := Φ -λ 0 -( u (1) + log(Φ -) u (0)
) as before, and

v (2) := Φ -λ 0 -( u (2) + log(Φ -) u (1) + 1 2 (log Φ -) 2 u (0) ).
Then Xv (j) = 0, U -v (j) = 0, and

γ * v (j) = N -λ 0 γ j =0 (log Nγ ) ! v (j-) thus v (j) = Q -(ω (j) )
for some ω -) . Set

(j) ∈ D (S 1 ) satisfying γ * ω (j) = N -λ 0 γ j =0 (log Nγ ) ! ω (j
ϕ 0 = P λ 0 (ω (0) ) = π 0 * u (0) , ϕ 1 := P λ 0 (ω (1) ) -∂ λ P λ 0 (ω (0) ) = π 0 * u (1) , ϕ 2 := P λ 0 (ω (2) ) -∂ λ P λ 0 (ω (1) ) + 1 2 ∂ 2 λ P λ 0 (ω (0) ) = π 0 * u (2) ,
then using (3.9) we get (∆ H 2 -1 4 ) ϕ j = 0 for j = 0, 1 and γ * ϕ j = ϕ j for all γ ∈ Γ. As for the case λ 0 = -1 2 , ϕ j descend to smooth functions ϕ j on M and, since (∆ M -1 4 )ϕ 2 = ϕ 0 , we see that ||ϕ 0 || L 2 (M ) = 0 if ϕ 2 is non-zero, leading to a contradiction. This shows that the Jordan block for X at λ 0 = -1 2 can be only of order 1, and from the injectivity of the Poisson-Helgason transformation we know that ϕ 0 = 0 is a non-zero element of ker(∆ M -1 4 ). Thus the map (3.5) is injective and the map (3.6) has a kernel of dimension less or equal to dim(ker

(∆ M -1 4 )). Case λ 0 = -1 2 , surjectivity. Assume ϕ (0) ∈ ker(∆ M -1 4
) is non zero, then by Lemma 2.1 there is ω (0) ∈ D (SM ) such that P -1/2 (ω (0) ) = ϕ 0 where ϕ 0 is the lift of ϕ 0 on H 2 . We use (2.17) and have the expansion as t → 0 for each χ ∈ C ∞ (S 1 )

S 1 P -1/2 (ω (0) )( 2-t 2+t ν)χ(ν)dS(ν) = √ t(- √ 2 log(t) ω (0) , χ S 1 + ω (1) , χ S 1 + O(t log t))
for some non-zero ω (1) ∈ D (S 1 ). Notice that if t(x) := 2 1-|x| 1+|x| on H 2 , we have γ * t(|x|ν) = |dγ(ν)|t(x) + O(t(x) 2 ) as |x| → 1 for each isometry γ ∈ G and ν ∈ S 1 . Then, since γ * ϕ 0 = ϕ 0 for each γ ∈ Γ, we get 0) , which are Γ-invariant and satisfy (X -1 2 ) u (0) = 0, (X -1 2 ) u (1) = u (0) , U -u (0) = U -u (1) = 0. These distributions thus descend to SM and are non-zero resonant and generalized resonant states since they also have wave-front sets in E * u by the same argument as for λ = -1/2. In particular any element in ker(∆ M -1 4 ) this produces a Jordan block of order 1 and consequently the map (3.6) has a kernal of dimension dim ker(∆ M -1 4 ).

γ * ω (0) = N 1/2 γ ω (0) , γ * ω (1) = N 1/2 γ ω (1) - √ 2N 1/2 γ (log N γ )ω (0) for each γ ∈ Γ. Define u (0) := Φ -1/2 - Q -(ω (0) ) and u (1) := Φ -1/2 - Q -(ω (1) )+ √ 2(log Φ -) u (
Case λ 0 ∈ -N, injectivity. Let λ 0 = -n with n ∈ N. First, if u ∈ V k 0 (-n), we have u 0 ∈ ker(∆ M + n(n -1)).
From the positivity of the Laplacian we get u 0 = 0 except possibly if n = -1 where u 0 must be constant. Let us show that in fact

u 0 = 0 if n = -1: if u ∈ V 1 0 (-1) satisfies u 0 = 1, we have 2η -u 1 = 1 by (2.29), but then 0 < ||u 0 || 2 L 2 = 2 η -u 1 , u 0 L 2 = -2 u 1 , η + u 0 L 2 = 0 leading to a contradiction. Thus u 0 = 0 for all n if u ∈ V 1 0 (-n).
Thus Proposition 2.4 implies that there are no Jordan Blocks for the Ruelle resonances. By the proof of Proposition 2.4, the Fourier components u k of u in the fibers satisfy u k = 0 for |k| < n. By (2.29) we have η -u n = 0 and η + u -n = 0, and thus by (2.27) we get u n ∈ H n (M ) and u -n ∈ H -n (M ). Furthermore note that u n = 0 implies after iteratively applying (2.29), that u k = 0 for all k > n, and similarly if u -n = 0. The map (3.7) is thus injective.

Case λ 0 ∈ -N, surjecivity. Conversely, we want to prove that for each u n ∈ H n (M ), there is a u ∈ D (SM ) so that (X -n)u = 0 and U -u = 0. We construct u as a formal sum u = k≥n u k where u k are in π * k (C ∞ (M ; K k )), that we will thus freely identify with sections of K k . We set u k = 0 for all k < n and we define recursively for k > n

u k := 2 n -k η + u k-1 (3.11)
and set u -k = u k . Clearly u k are smooth and in fact analytic since u n is. First let us show that the formal series u = k∈Z u k fulfills (X -n)u = 0 and U -u = 0. According to Lemma 2.2 these conditions are equivalent to the fact that

2η + u k-1 = (n -k)u k (3.12) 2η -u k+1 = (n + k)u k (3.13)
holds for all k ∈ Z. We see, that (3.12) is already fulfilled for all k ∈ Z by our recursive definition of the Fourier modes via (3.11). For k < n -1 also the condition (3.13) is fulfilled, as we have set all Fourier modes to be identically zero. For k = n -1 (3.13) is true because we identified u n with a holomorphic section in K n and the case k ≥ n follows by induction from the following fact: for each ∈ N 0 , if 2η -u n+ = (2n + -1)u n+ -1 holds, then 2η -u n+ +1 = (2n + )u n+ . This fact is a direct consequence of the commutation relation

[η + , η -] = - i 2 V (3.14) since 2η -u n+ +1 = (3.11) - 4 + 1 η -η + u n+ = (3.14) - 4 + 1 (η + η -+ i 2 V )u n+ = - 4 + 1 -(2n + -1) 4 - (n + ) 2 u n+ = (2n + )u n+ .
Next we need to show that the formal sum u = k u k defines a distribution, and it suffices to check that ||u k || L 2 = O(|k| N ) for some N as |k| → ∞. Let us give an argument which is close to the approach of Flaminio-Forni [FlFo]: let k > n and consider

u k 2 L 2 (SM ) = u k , u k L 2 = 2 n -k u k , η + u k-1 L 2 = - 2 n -k η -u k , u k-1 L 2 = - k + n -1 n -k u k-1 , u k-1 L 2 = k + n -1 k -n u k-1 2 L 2 .
Thus recursively we obtain for > 0 (here Γ is the Euler function)

u n+ 2 L 2 (SM ) = Π ,n u n 2 L 2 (SM ) where Π ,n = Γ(2n + ) Γ( + 1)Γ(2n) = r=1 2n -1 + r r .
Now it is direct to check that Π ,n = O( N ) for some N . The same argument works with u -n .

Here notice that by Riemann-Roch theorem, the spaces

H n (M ) have complex di- mension dim H n = 1 2 (2n -1)|χ(M )| if n > 1 1 2 |χ(M )| + 1 if n = 1 (3.15)
where χ(M ) is the Euler characteristic of M .

To conclude this section, we describe the full Ruelle resonance spectrum of X by using Theorem 3.3.

Corollary 3.4. Let M = Γ\H 2 be a smooth oriented compact hyperbolic surface and let SM be its unit tangent bundle. Then for each λ 0 with Re(λ 0 ) ≤ 0, k ∈ N, and j ∈ N, the operator

U k + is injective on V j 0 (λ 0 + k) if λ 0 + k = 0 and V j k (λ 0 ) = U k + (V j 0 (λ 0 + k)) ⊕ V j k-1 (λ 0 ).
In other words, we get

V j k (λ 0 ) = k =0 U + (V j 0 (λ 0 + )).
Proof. First, we have

U k + (V j 0 (λ 0 + k)) ⊂ V j k (λ 0 ) since (X + λ 0 ) j U k + = U + (X + λ 0 + 1) j U k-1 + = • • • = U k + (X + λ 0 + k) j (3.16)
and similarly U k -maps V j k (λ 0 ) to V j 0 (λ 0 + k) with kernel V j k-1 (λ 0 ), so that it remains to show that the map

U k -U k + : V j 0 (λ 0 + k) → V j 0 (λ 0 + k) is one-to-one. Of course, since V j 0 (λ 0 + k) = 0 if Re(λ 0 ) + k > 0, it suffices to assume that Re(λ 0 ) ≤ -k. But a direct computation using [U + , U -] = 2X gives U k -U k + = k! k =1 (-2X -k + ) on V j 0 (λ 0 + k). When j = 1, X -(λ 0 + k)Id on V 1 0 (λ 0 + k), thus k =1 (-2X -k + ) = k =1 (2λ 0 + k + )Id on V 1 0 (λ 0 + k).
This is invertible if λ 0 = -k since we know that Re(λ 0 ) + k ≤ 0. Now we can do an induction for j > 1: assume that ker This Theorem describes the full Ruelle resonance spectrum in terms of the resonances associated to resonant states in ker U -. Indeed the only case which is not obvious is when λ 0 = -n ∈ -N, and when we want to compute

U k -U k + ∩ V j-1 0 (λ 0 + k) = 0, then using (X + λ 0 )U k -U k + = U k -U k + (X + λ 0 ), we see that if u ∈ V j 0 (λ 0 + k) ∩ ker U k -U k + , (X + λ 0 )u ∈ V j-1 0 (λ 0 + k) ∩ ker U k -U k + =
V j n+k (-n) for k ≥ 0. If u ∈ V j n (-n), then w := U n -u is in V j 0 (0) which is non trivial only if j = 1, in which case w = constant. But then ||w|| 2 L 2 = (-1) n U 2n
-w, u = 0 and we deduce that

V j n (-n) = V j n-1 (-n) and V j n+k (-n) = V j n-1 (-n) for all k ≥ 0.

Ruelle resonances for convex co-compact quotients

In this section, we consider the case of a convex co-compact subgroup Γ ⊂ G of isometries of H 2 . 4.1. Geometry and dynamics of convex co-compact surfaces. The manifold M = Γ\H 2 is a non-compact complete smooth hyperbolic manifold with infinite volume but finitely many topological ends. Moreover, M can be compactified to the smooth manifold M = Γ\(H 2 ∪ Ω Γ ), if Ω Γ ⊂ S 1 is the set of discontinuity of Γ. As in Section 2.3, we will denote by Λ Γ ⊂ S 1 the limit set of Γ. In fact, M is conformally compact in the sense of Mazzeo-Melrose [MaMe]: there is a smooth boundary defining function ρ such that ḡ := ρ 2 g extends as a smooth metric on M .

The group Γ is a subgroup of PSL 2 (C) and acts on the Riemann sphere C := C∪{∞} as conformal transformations, it preserves the unit disk H 2 and its complement C \ H 2 . Equivalently, by conjugating by (z -i)/(z + i), Γ acts by conformal transformations on C as a subgroup of PSL 2 (R) ⊂ PSL 2 (C) and it preserves the half-planes H 2 ± := {z ∈ C; ±Im(z) > 0}. The half-planes are conformally equivalent through z → z if we put the opposite orientation on H 2 + and H 2 -. In this model the boundary is the compactified real line ∂H ± = R := R ∪ {∞} and the limit set is a closed subset Λ Γ of R, and its complement in R is still denoted by Ω Γ . Since γ(z) = γ(z) for each γ ∈ Γ, the quotients M + := Γ\(H 2 + ∪ Ω Γ ) and M -:= Γ\(H 2 -∪ Ω Γ ) are smooth surface with boundaries, equipped with a natural conformal structure and M + is conformally equivalent to M -. The surface Γ\(C \ Λ Γ ) is a compact surface diffeomorphic to the gluing M 2 := M + ∪ M -of M + and M -along their boundaries, moreover it is equipped with a smooth conformal structure which restricts to that of M ± .

We denote by I : M 2 → M 2 the involution fixing ∂M and derived from z → z when viewing Γ as acting in C \ Λ Γ . The interior of M + and M -are isometric if we put the hyperbolic metric |dz| 2 /(Im(z)) 2 on H 2 ± , and they are isometric to the hyperbolic surface we called M above. The conformal class of M ± corresponds to the conformal class of ḡ on M as defined above. We identify M + with M and define H ±n (M ) as the finite dimensional real vector spaces

H n (M ) := {f | M + ; f ∈ C ∞ (M 2 ; K n ), ∂f = 0, I * f = f }, H -n (M ) := {f | M + ; f ∈ C ∞ (M 2 ; K -n ), ∂f = 0, I * f = f }. (4.1)
Note that f ∈ H n (M ) is equivalent to say that ∂f = 0 with ι * ∂M f real-valued, if ι ∂M : ∂M → M is the inclusion map and ι * ∂M f is the symmetric tensor on ∂M defined by

∀(x, v) ∈ T ∂M , ι * ∂M f (x)(⊗ m v) = f (ι ∂M (x))(⊗ m dι ∂M .v)
where T ∂M is the real tangent space of ∂M .

The dimension of H ±n can be computed as follows: let

H n (M 2 ) := {f ∈ C ∞ (M 2 ; K n ), ∂f = 0}
which can be viewed as complex and real vector space, with complex dimension that can be calculated by the Riemann-Roch theorem (3.15) and the fact that χ(M 2 ) = 2χ(M ). Now let A : H n (M 2 ) → H n (M 2 ) be the map Af = I * f satisfying A 2 = Id. We have H n (M ) = ker(A -Id) as real vector spaces. The map f → if is an isomorphism of real vector spaces from H n (M ) to ker(A + Id) ⊂ H n (M 2 ) and thus we deduce that the real dimension of H n (M ) equals the complex dimension of H n (M 2 ) and we get

dim R H n (M ) = (2n -1)|χ(M )| if n > 1, |χ(M )| + 1 if n = 1. (4.2)
for a non-elementary group. For an elementary group, χ(M ) = 0 and H n (M ) has real dimension equal to 1 (M 2 is a flat torus).

By [Gr], there exists a collar near ∂M and a diffeomorphism ψ

: [0, ) r × ∂M → ψ([0, ) × ∂M ) ⊂ M such that ψ * g = dr 2 +h(r) r 2
where r → h(r) is a smooth family of metrics on ∂M . We can choose ρ = r • ψ -1 as boundary defining function. It is then clear that the hypersurfaces ρ = ρ 0 are strictly convex if 0 < ρ 0 < is small enough, and therefore there exists a geodesically convex compact domain Q ⊂ M with smooth boundary ∂Q = ψ({ρ 0 }×∂M ). Each geodesic (x(t)) t∈[0,t 0 ] in Q with x(t 0 ) ∈ ∂Q can be extended to a geodesic (x(t)) t∈[0,∞) so that x(t) ∈ M \ Q for all t > t 0 and x(t) → ∂M as t → +∞. The surface M is of the form M = N ∪ (∪

n f i=1 F i )
where N is a compact hyperbolic surface with geodesic boundary, called the convex core, and F 1 , . . . , F n f are n f ends isometric to funnels (se e.g. [START_REF] Borthwick | Spectral theory of infinite-area hyperbolic surfaces[END_REF]Section 2.4])

(F i , g) [0, ∞) t × (R/ i Z) θ with metric dt 2 + cosh(t) 2 dθ 2 (4.3)
for some i > 0 corresponding to the length of the geodesic of N where F i is attached. The boundary of the compactification is ∂M = ∪ ne i=1 S i where S i := R/ i Z. We will now choose the function ρ to be equal to ρ = 2e -t in F i so that g| S i = dθ 2 . In the (ρ, θ) coordinates, the metric in F i is given by g = ρ -2 (dρ 2 + (1 + ρ 2 /4) 2 dθ 2 ). Using the (ρ, θ) coordinates, we say that a function

f ∈ C ∞ (M ) is even if in each F i , ∀k ∈ N 0 , ∂ 2k+1 ρ f | ρ=0 = 0
and we denote by C ∞ ev (M ) the space of even functions. Note that

C ∞ ev (M ) = {f | M + ; f ∈ C ∞ (M 2 ), I * f = f } (4.4)
after identifying M and M + , and if I is the involution on M 2 defined above. We refer to [START_REF] Guillarmou | Meromorphic properties of the resolvent on asymptotically hyperbolic manifolds[END_REF] for detailed discussions about even metrics and functions on asymptotically hyperbolic manifolds.

The incoming (-) and outgoing (+) tails Λ ± ⊂ SM of the flow are the sets

Λ ± := {(x, v) ∈ SM ; ∃t 0 ≥ 0, ϕ ∓t (x, v) ∈ Q, ∀t ∈ [t 0 , ∞)}.
In view of the property of Q, the set Λ ± is also the set of points (x, v) such that

π 0 (ϕ ∓t (x, v)) does not tend to ∂M in M as t → +∞. The trapped set K ⊂ Q is the closed flow-invariant set K := Λ + ∩ Λ -.
It is a direct observation that, if B ± : SH 2 → S 1 are the endpoint maps defined in Section 2.1 and π Γ : SH 2 → SM the covering map defined in Section 2.3, then

Λ ± = π Γ ( Λ ± ), where Λ ± := B -1 ∓ (Λ Γ ). (4.5)
Indeed, a point (x, v) ∈ SM is in Γ -if and ony if it is trapped in the future, meaning that ϕ t (x, v) → ∂M as t → +∞. By lifting to the covering SH 2 and taking (x, ṽ) ∈ SH 2 so that π Γ (x, ṽ) = (x, v), this means that the semi-geodesic starting at x tangent to ṽ does not have endpoint in Ω Γ , i.e, B + (x, ṽ) ∈ Λ Γ . The bundle T (SM ) has a continuous (in fact smooth in our case) flow-invariant splitting (2.20) and we set E * 0 , E * u , E * s the dual splitting defined by (2.21). We define their restriction to the incoming/outgoing tails by

E * + := E * u | Λ + , E * -:= E * s | Λ -. (4.6) 4.2.
Ruelle resonances and generalized resonant states. To define Ruelle resonances and resonant states, we first need to recall the following result from [DyGu].

Theorem 4.1. If M = Γ\H 2 is a convex co-compact hyperbolic surface, then the generator X of the geodesic flow on SM has a resolvent R X (λ) := (-X -λ) -1 that admits a meromorphic extension from {λ ∈ C; Re(λ) > 0} to C as a family of bounded operators C ∞ c (SM ) → D (SM ). The resolvent R X (λ) has finite rank polar part at each pole λ 0 and the polar part is of the form

- J(λ 0 ) j=1 (-X -λ 0 ) j-1 Π X λ 0 (λ -λ 0 ) j , J(λ 0 ) ∈ N
for some finite rank projector Π X λ 0 commuting with X. Moreover u ∈ D (SM ) is in the range of Π X λ 0 if and only if (X +λ 0 ) J(λ 0 ) u = 0 with u supported in Λ + and WF(u) ⊂ E * + .

We define Ruelle resonance, generalized Ruelle resonant state and Ruelle resonant state as respectively a pole λ 0 of R X (λ), an element in Im(Π X λ 0 ) and an element in Im(Π X λ 0 ) ∩ ker(-X -λ 0 ). Define like in (3.2) and (3.3) the spaces Res j X (λ

0 ) := {u ∈ D (SM ); supp(u) ⊂ Λ + , WF(u) ⊂ E * u , (-X -λ 0 ) j u = 0}, (4.7) V j m (λ 0 ) := {u ∈ Res j X (λ 0 ); U m+1 - u = 0}. (4.8)
As in the compact case, the operator (-X -λ 0 ) is nilpotent on the finite dimensional space Res X (λ 0 ) := ∪ j≥1 Res j X (λ 0 ) and λ 0 is a Ruelle resonance if and only if Res 1 X (λ 0 ) = 0. The presence of Jordan blocks for λ 0 is equivalent to having Res k X (λ 0 ) = Res 1 X (λ 0 ) for some k > 1.

We make the important remark for what follows that when λ 0 ∈ R, V j m (λ 0 ) can be considered both as a real and as a complex vector space which admits a basis of real-valued distributions, and its dimension is the number of elements of the basis.

4.3.

Quantum resonances and scattering operator. Scattering theory on these surfaces has been largely developped by [START_REF] Guillopé | Scattering asymptotics for Riemann surfaces[END_REF] and a comprehensive description is given in the book of Borthwick [Bo]. Quantum resonances are resonances of the Laplacian ∆ M = d * d on M = Γ\H 2 , and these are defined as poles of the meromorphic extension of the resolvent of ∆ M . The essential spectrum for ∆ M is [1/4, ∞) and the natural resolvent to consider is R ∆ (s) := (∆ M -s(1 -s)) -1 which is meromorphic in Re(s) > 1/2 as a family of bounded operators on L 2 (M ), with finitely many poles at σ(∆ M ) := {s ∈ ( 1 2 , 1); ker L 2 (∆ M -s(1 -s)) = 0} corresponding to the L 2 -eigenvalues in (0, 1/4). By usual spectral theory, each pole at such s 0 is simple and the residue is

Res s=s 0 (R ∆ (s)) = Π ∆ s 0 (2s 0 -1)
where Π ∆ s 0 the orthogonal projector on ker L 2 (∆ M -s 0 (1-s 0 )); see [START_REF] Patterson | The divisor of Selberg's zeta function for Kleinian groups[END_REF]Lemma 4.8] for example. The meromorphic extension of the resolvent was proved in [START_REF] Mazzeo | Meromorphic extension of the resolvent on complete spaces with asymptotically constant negative curvature[END_REF][START_REF] Guillopé | Upper bounds on the number of resonances for non-compact Riemann surfaces[END_REF], we now recall this result:

Theorem 4.2. If M = Γ\H 2 is a convex co-compact hyperbolic surface, then the non- negative Laplacian ∆ M on M has a resolvent R ∆ (s) := (∆ M -s(1 -s)) -1 that admits a meromorphic extension from {s ∈ C; Re(s) > 1/2} to C as a family of bounded operators C ∞ c (M ) → C ∞ (M ).
The resolvent R ∆ (s) has finite rank polar part at the poles and the polar part at s 0 = 1/2 is of the form

J(s 0 ) j=1 (∆ M -s 0 (1 -s 0 )) j-1 Π ∆ s 0 (s(1 -s) -s 0 (1 -s 0 )) j , J(s 0 ) ∈ N,
for some finite rank operator Π ∆ s 0 := (1 -2s 0 )Res s 0 (R ∆ (s)) commuting with ∆ M . For s 0 = 1/2, R ∆ (s) has a pole of order at most 1 at s 0 , Π ∆ s 0 := Res s 0 (R ∆ (s)) has finite rank and

(∆ M -1/4)Π ∆ s 0 = 0. The operator R ∆ (s) is bounded as a map ρ N L 2 (M ) → ρ -N L 2 (M ) if N > |Re(s) -1/2|.
The main theorem of [MaMe] shows in addition that the Schwartz kernel R

∆ (s; x, x ) of R ∆ (s) is of the form (ρ(x)ρ(x )) -s R ∆ (s; x, x ) ∈ C ∞ (M × M \ diag), (4.9)
where diag denotes the diagonal of

M . Moreover, if f ∈ C ∞ c (M ), u s := ρ -s R ∆ (s)f ∈ C ∞ (M )
is a meromorphic family in s ∈ C, and since the Laplacian ∆ M in each funnel is given by

∆ M = -(ρ∂ ρ ) 2 + 1 -ρ 2 /4 1 + ρ 2 /4 ρ∂ ρ - ρ 2 (1 + ρ 2 /4) 2 ∂ 2 θ , (4.10)
a series expansion of u s in powers of ρ near ∂M directly shows that u s ∈ C ∞ ev (M ). Therefore, for each pole s 0 of order j ≥ 1, we get

ϕ ∈ Ran(Π ∆ s 0 ) ⇒ ϕ ∈ j-1 k=0 ρ s 0 log(ρ) k C ∞ ev (M ). (4.11)
Indeed, it suffices to consider the residue of ρ s u s = R ∆ (s)f at s = s 0 using Taylor expansion of ρ s as s = s 0 , when f ∈ C ∞ c (M ) is arbitrary, and to use that u s is even in ρ, and one gets (4.11).

We say that ϕ is a generalized resonant state for s 0 if ϕ ∈ Ran(Π ∆ s 0 ), and that it is a resonant state if in addition (∆ M -s 0 (1 -s 0 ))ϕ = 0. The multiplicity of a quantum resonance s 0 is defined to be the rank of Π ∆ s 0 . We will define the generalized resonant states of order j ≥ 1 at s 0 by

Res j ∆ (s 0 ) := {ϕ ∈ Ran(Π ∆ s 0 ); (∆ M -s 0 (1 -s 0 )) j ϕ = 0} (4.12)
with Π ∆ s 0 := Res s=s 0 (R ∆ (s)). We need a characterization of generalized resonant states of order j as solutions of (∆ M -s 0 (1 -s 0 )) j u = 0 with very particular asymptotics for u at the boundary ∂M of the conformal compactification M . For this purpose, we define the Poisson operator E M (s) on M and the scattering operator S M (s) by following the approach of Graham-Zworski [GrZw]; we shall refer to that paper for details. By [START_REF] Graham | Scattering matrix in conformal geometry[END_REF]Proposition 3.5], there is a meromorphic family of operators

E M (s) : C ∞ (∂M ) → C ∞ (M )
in Re(s) ≥ 1/2, with only simple poles at s ∈ σ(∆ M ) and satisfying outside the poles

(∆ M -s(1 -s))E M (s)f = 0
for each f ∈ C ∞ (∂M ) and with the property that this is the only solution such that there is

F s , G s ∈ C ∞ ev (M ) such that F s | ∂M = f and E M (s)f = ρ 1-s F s + ρ s G s if s / ∈ 1 2 + N, E M (s)f = ρ 1/2-k F 1/2+k + ρ 1/2+k log(ρ)G 1/2+k if s = 1/2 + k, k ∈ N.
(4.13)

Here F s , G s are meromorphic with simple poles at s ∈ σ(∆ M ) and 1 2 +N. The functions

F 1/2+k , G 1/2+k can be expressed in terms of residues of F s , G s at 1/2 + k. Notice that in the case M = H 2 , E H 2 (s) = π -1 2 2 1-s Γ(s) Γ(s-1/2) P s-1
, where P s is the Poisson-Helgason transform of Lemma 2.1. By [START_REF] Graham | Scattering matrix in conformal geometry[END_REF]Proposition 3.9] the Schwartz kernel of E M (s) is related to the Schwartz kernel of R ∆ (s) by

E M (s; x, θ) = (2s -1)[R ∆ (s; x, x )ρ(x ) -s ]| x =θ∈∂M . (4.14)
This operator thus admits a meromorphic continuation to s ∈ C, as R ∆ (s) does. The scattering operator S M (s) is a meromorphic family of operators acting on C ∞ (∂M ) for Re(s) ≥ 1/2, unitary on Re(s) = 1 2 , and defined by

S M (s)f := 2 2s-1 Γ(s -1 2 ) Γ( 1 2 -s) G s | ∂M . (4.15)
This operator is holomorphic outside σ(∆ M ) and is a family of elliptic pseudo-differential operators of order 2s-1, which is Fredholm of index 0 as a map H 2s-1 (∂M ) → L 2 (∂M ), it extends meromorphically to C and satisfies the functional equation

S M (s) -1 = S M (1 -s). (4.16)
By [GrZw], there are special points, namely s = 1 2 + k with k ∈ N, where S M (s) is a differential operator on ∂M = ∪ n f i=1 S i which depends only on the metric ḡ| ∂M . Moreover we have

G 1/2+k | ∂M = c k S M (1/2 + k)f, c k = 0. (4.17)
The computation of the scattering operator is done by Appendix] for the hyperbolic cylinder C( i ) := R t ×(R/ i Z) θ with metric dt 2 +cosh(t) 2 dθ 2 , and their computation shows that ker

S C( i ) ( 1 2 + k) = 0 for all k ∈ N, which implies S M ( 1 2 + k) : C ∞ (∂M ) → C ∞ (∂M ) is an isomorphism; (4.18)
note that this fact is also proved in [START_REF] Borthwick | Spectral theory of infinite-area hyperbolic surfaces[END_REF]Lemma 8.6]. Finally, one has a functional equation similar to (2.15), which follows from the definition of E M (s) and S M (s)

E M (s) = 2 1-2s Γ( 1 2 -s) Γ(s -1 2 ) E M (1 -s)S M (s) (4.19)
We have the following result on quantum resonant states.

Proposition 4.3. Let M = Γ\H 2 be a convex co-compact surface. Then the following properties hold: 1) There is no quantum resonance at 1 2 -N. 2) If Re(s 0 ) ≥ 1/2, the poles of R ∆ (s) at s 0 are simple and ϕ is a resonant state for s 0 if and only if

(∆ M -s 0 (1 -s 0 ))ϕ = 0 with ϕ ∈ ρ s 0 C ∞ (M ). 3) If Re(s 0 ) < 1/2 with s 0 / ∈ 1/2 -N, a solution ϕ to (∆ M -s 0 (1 -s 0 ))ϕ = 0 is a resonant state for s 0 if and only if ϕ ∈ ρ s 0 C ∞ ev (M )
, and a function ϕ is a generalized resonant state if and only if it is a resonant state or there is a resonant state ϕ so that

(∆ M -s 0 (1 -s 0 )) j ϕ = ϕ for some j ≥ 1, and ϕ ∈ j k=0 ρ s 0 log(ρ) k C ∞ ev (M ).
Proof. To prove 1), we use [START_REF] Guillarmou | Resonances and scattering poles on asymptotically hyperbolic manifolds[END_REF]Lemma 3.4] 

which says that if s 0 is a pole of R ∆ (s) then it is a pole of S M (s) := 2 1-2s Γ(1/2-s) Γ(s-1/2) S M (s)
. But S M (s) has a pole of order 1 at s 0 = 1/2 + k with residue c k S M (1/2 + k) for some c k = 0, and this operator has no kernel. Therefore, by expanding in Laurent series the functional equation S M (1 -s)S M (s) = Id at s 0 = 1/2 -k, we directly see that S M (s) must be of the form S M (s) = (s -s 0 )L(s) for some holomorphic family of operator L(s) near s = s 0 , with L(s 0 ) invertible on C ∞ (∂M ). This shows 1).

Statement 2) is direct to see for Re(s 0 ) > 1/2: the resonant states are of the desired form by [START_REF] Patterson | The divisor of Selberg's zeta function for Kleinian groups[END_REF]Lemma 4.8] 

and conversely if ϕ ∈ ρ s 0 C ∞ (M ) ∩ ker(∆ M -s 0 (1 -s 0 )), then ϕ ∈ ker L 2 (∆ M -s 0 (1 -s 0 )) = Ran(Π ∆ s 0 )
. For s 0 = 1/2, the pole of the resolvent is simple and the resonant states are in ρ 1/2 C ∞ (M ) by [START_REF] Patterson | The divisor of Selberg's zeta function for Kleinian groups[END_REF]Lemma 4.9]. The converse part will follow from the proof of 3). Now we prove 3). By (4.11), if ϕ is a generalized resonant state satisfying the equation (∆ M -s 0 (1 -s 0 )) j+1 ϕ = 0, then ϕ ∈ J k=0 ρ s 0 log(ρ) k C ∞ ev (M ) for some J. Using the form of ∆ M in (4.10) and writing the formal expansions at ρ = 0 of that equation, it is direct to see that J ≤ j.

We next prove the converse. Let A s 0 := (∆ M -s 0 (1 -s 0 )) and let ϕ be a solution of

A j+1 s 0 ϕ = 0 with ϕ ∈ j =0 ρ s 0 log(ρ) C ∞ ev (M ) with j ≥ 0. Define ϕ := A j- s 0 ϕ for all ∈ 0, . . . , j. It is easy to check that ϕ ∈ k=0 ρ s 0 log(ρ) k C ∞ ev (M ). We first construct a holomorphic family φ(s) = ρ s F (s) with F (s) ∈ C ∞ ev (M ) such that q(s) := (∆ M -s(1 -s))φ(s) ∈ ρ s+2 C ∞ ev (M ), |q(s)| ≤ C|s -s 0 | j+1 ρ Re(s)+2 . (4.20)
To construct F (s), we will set F (s) :

= j k=0 F k (s -s 0 ) k for some F k ∈ C ∞ ev (M ) well chosen. Taylor expanding at s = s 0 φ(s) = ρ s F (s) = j k=0 (s -s 0 ) k φ k + O((s -s 0 ) j+1 ) (4.21) with φ k := ρ s 0 k =0 1 ! log(ρ) F k-, the equation (∆ M -s(1 -s))φ(s) = O((s -s 0 ) j+1 ) reduces to A s 0 φ k + (2s 0 -1)φ k-1 + φ k-2 = 0 (4.22)
for all k ≤ j, with the convention φ -1 = φ -2 = 0. The equation (4.22) can be solved by choosing φ k to be a linear combination of the form φ 0 = ϕ 0 , and

φ k = (1 -2s 0 ) k ϕ k + k-1 =0 c (s 0 )ϕ for k ∈ [1, j]
for some polynomials c (s 0 ) in s 0 , and we also note that

φ k ∈ k =0 ρ s 0 log(ρ) C ∞ ev (M ). We can then define for k ≤ j F k := ρ -s 0 k =0 1 ! (-log ρ) φ k-.
We need to check that F k ∈ C ∞ ev (M ). To do this, we will show that

ρ -s 0 A s 0 (ρ s 0 F k ) ∈ ρ 2 C ∞ ev (M ). (4.23)
Indeed, since we know that

F k ∈ 2k =0 log(ρ) C ∞ ev (M )
, it is an easy exercise to check that (4.23) implies that F k ∈ C ∞ ev (M ) by using the expression (4.10) of ∆ M near ∂M .

We already know that F 0 ∈ C ∞ ev (M ) and that (4.10) is true for k = 0. Now to prove (4.23), we write

A s 0 (ρ s 0 F k ) = k =0 (-1) ! A s 0 (φ k-)(log ρ) + ∆ M ((log ρ) )φ k--2 (log ρ) -1 N φ k-
where N := ∇(log ρ) denotes the gradient of log ρ with respect to g. By (4.22), we get

k =0 (-1) ! A s 0 (φ k-)(log ρ) = ρ s 0 (-F k-2 + (1 -2s 0 )F k-1 ). Next we have k =1 (-1) ! (log ρ) -1 N φ k-= k =1 (-1) ( -1)! N ((log ρ) -1 φ k-) -|N | 2 g k =2 (-1) ( -2)! (log ρ) -2 φ k-= -ρ s 0 ((N + s 0 |N | 2 g )F k-1 + |N | 2 g F k-2 ). and k =0 (-1) ! ∆ M ((log ρ) )φ k-= -|N | 2 g k =2 (-1) ( -2)! (log ρ) -2 φ k-+ k =1 (-1) ( -1)! (log ρ) -1 φ k-∆ M (log ρ) = -|N | 2 g ρ s 0 F k-2 -∆ M (log ρ)ρ s 0 F k-1 .
Consequently we get

ρ -s 0 A s 0 (ρ s 0 F k ) = (|N | 2 g -1)F k-2 + (2N + 1 -∆ M (log ρ) + 2s 0 (|N | 2 g -1))F k-1 . (4.24)
By using (4.10), a direct computation gives that ∆ M (log ρ)-1 ∈ ρ 2 C ∞ ev (M ) and we also have

|N | 2 g = 1 near ∂M , so |N | 2 g ∈ C ∞ ev (M ). Moreover N maps C ∞ ev (M ) to ρ 2 C ∞ ev (M
). An induction in k with (4.24) then shows (4.23). We directly get that the function q(s) defined by (4.20) is a holomorphic family in ρ s+2 C ∞ ev (M ), and by Taylor expanding the term (∆ M -s(1 -s))φ(s) at s = s 0 , we also have (by construction)

|ρ -s q(s)| = O(|s -s 0 | j+1 ρ 2 ).
(4.25) Using Green's formula in the region ρ ≥ for some small > 0, we see that for z ∈ M fixed and s near s 0

(R ∆ (1 -s)q(s))(z) =φ(s; z) - ρ= ρ∂ ρ R ∆ (1 -s; z, ρ, θ)φ(s; ρ, θ) dθ ρ + ρ= R ∆ (1 -s; z, ρ, θ)ρ∂ ρ φ(s; ρ, θ) dθ ρ . Now ρ∂ ρ φ(s; ρ, θ) = sρ s F (s; 0, θ) + O(ρ Re(s)+1
) and, using (4.14),

ρ∂ ρ R ∆ (1 -s; z, ρ, θ) = 1 -s 1 -2s E M (1 -s; z, θ) + O(ρ 2-Re(s) ).
Thus we obtain

R ∆ (1 -s)q(s) = φ(s) -E M (1 -s)F (s)| ∂M .
By (4.25), we also have

|R ∆ (1 -s)q(s)| = O(|s -s 0 | j+1
) uniformly on compact sets of M , and therefore

φ(s) = E M (1 -s)F (s)| ∂M + O(|s -s 0 | j+1 ) uniformly on compact sets. We define f (s) := F (s)| ∂M and differentiate for ≤ j ∂ s (φ(s))| s=s 0 = ∂ s (E M (1 -s)f (s))| s=s 0 = ρ s 0 i=0 log(ρ) i H i + ρ 1-s 0 i=0 log(ρ) i G i where H i , G i ∈ C ∞ ev (M ) and G 0 | ∂M = ∂ s (S M (1 -s)f (s))| s=s 0 . But from (4.21) and the fact that φ k ∈ k =0 ρ s 0 log(ρ) C ∞ ev (M ), we see that ∂ s (S M (1 -s)f (s))| s=s 0 = 0 for all ≤ j and thus S M (1 -s)f (s) = O(|s -s 0 | j+1 ). Therefore S M (1 -s)f (s) = (s -s 0 ) j+1 r(s) for some holomorphic family r(s) ∈ C ∞ (∂M ). We write E M (s) = N =1 (s -s 0 ) -Q + H(s)
for some holomorphic operator family H(s) near s 0 and some operators Q : C ∞ (∂M ) → C ∞ (M ). By using (4.19), we get

E M (1 -s)f (s) = (s -s 0 ) j+1 E M (s)r(s) = N =1 (s -s 0 ) -+j+1 Q r(s) + (s -s 0 ) j+1 H(s)r(s) which implies that j + 1 ≤ N and ∂ k s (φ(s))| s=s 0 ∈ N =1 Ran(Q ) for each k ≤ j. By (4.14), we have N =1 Ran(Q ) ⊂ Ran(Π ∆ s 0 )
since the singular part of the Laurent expansion of R ∆ (s) is a finite rank operator with range Ran(Π ∆ s 0 ). Using again (4.21), this shows that φ k , and therefore ϕ k , are generalized resonant states for k ≤ j. This completes the proof.

Remark 1. The proof of 2) and 3) in Proposition 4.3 also applies in the more general setting of even asymptotically hyperbolic manifolds in the sense of [START_REF] Guillarmou | Meromorphic properties of the resolvent on asymptotically hyperbolic manifolds[END_REF], in any dimension n + 1, by replacing (∆ M -s 0 (1 -s 0 )) by (∆ M -s 0 (n -s 0 )) and s 0 / ∈ 1/2 -N by s 0 / ∈ n/2 -N.

Lemma 4.4. For any ϕ ∈ ρ s 0 C ∞ (M ) satisfying (∆ M -s 0 (1-s 0 ))ϕ = 0 with s 0 / ∈ -N 0 , there exists a distribution ω ∈ D (S 1 ) supported in Λ Γ such that π * Γ ϕ = P s 0 -1 (ω) and for each γ ∈ Γ, γ * ω = N -s 0 +1 γ ω.

Proof. Let ϕ = π * Γ ϕ be the lift of ϕ to H 2 . Then we have (∆ H 2 -s 0 (1 -s 0 )) ϕ = 0 on H 2 and we claim that ϕ is tempered on H 2 . Indeed, if T > 0 and 0 denotes the center the unit ball in R 2 (representing H 2 ), consider m(T ) := sup d H 2 (x,0)≤T | ϕ(x)| where d H 2 (•, •) denotes the hyperbolic distance. For > 0 small enough M := {x ∈ M ; ρ(x) ≥ } is a geodesically convex set and it is easy to see that there exists C > 0 so that for all T > 0 each point x ∈ H 2 with d H 2 (x, 0) ≤ T projects by the covering map π Γ to the region M for = Ce -T . Then m(T ) ≤ sup x∈M (|ϕ(x)|) ≤ C s 0 e max(-Re(s 0 ),0)T for some constant C s 0 depending on Re(s 0 ). Here the last inequality follows from ϕ ∈ ρ s 0 C ∞ (M ) and this estimate shows that ϕ is tempered on H 2 . By the surjectivity of the Poisson-Helgason transform, there exists a distribution ω ∈ D (S 1 ) so that ϕ = P s 0 -1 (ω). By Lemma 2.1 and the discussion that follows, for any χ ∈ C ∞ (S 1 ) one has for t ∈ (0, ) with > 0 small

S 1 P s 0 -1 (ω)( 2-t 2+t ν)χ(ν)dν =    t 1-s 0 F -(t) + t s 0 F + (t) if s 0 / ∈ 1/2 + Z t 1-s 0 F -(t) + t s 0 log(t)F + (t) if s 0 ∈ 1/2 + N t 1-s 0 log(t)F -(t) + t s 0 F + (t) if s 0 ∈ 1/2 -N 0
(4.26) for some F ± ∈ C ∞ ([0, )) and F -(0) = C(s 0 ) ω, χ where C(s 0 ) = 0 because s 0 / ∈ -N 0 . On the other hand, since π * Γ ρ is a boundary defining function of Ω Γ in H 2 ∪ Ω Γ , in a small neighborhood V p of any point p ∈ Ω Γ in H 2 ∪ Ω Γ , the function ϕ has an asymptotic expansion as t → 0

ϕ( 2-t 2+t ν) ∼ ∞ k=0 t s 0 +k α k (ν) for some α k ∈ C ∞ (V p ), therefore if χ ∈ C ∞ c (Ω Γ ) is supported in V p , we have S 1 ϕ( 2-t 2+t ν)χ(ν)dν ∼ ∞ k=0 t s 0 +k α k , χ
and thus from (4.26) we deduce that ω, χ = 0. This shows that ω is supported in Λ Γ . Let γ ∈ Γ, we have

P s 0 -1 (N s 0 -1 γ γ * ω) = γ * P s 0 -1 (ω)
which is also equal to P s 0 -1 (ω) since ϕ is Γ-automorphic. By the injectivity of the Poisson-Helgason transform [START_REF] Dyatlov | Power spectrum of the geodesic flow on hyperbolic manifolds[END_REF]Corollary 6.9], we thus deduce that γ * ω = N -s 0 +1 γ ω.

We show the following Theorem 4.5. Let M = Γ\H 2 be a smooth oriented convex co-compact hyperbolic surface and let SM be its unit tangent bundle. 1) For each λ 0 ∈ C\(-1 2 -1 2 N 0 ) the pushforward map π 0 * : D (SM ) → D (M ) restricts to a linear isomorphism of complex vector spaces for each j ≥ 1

π 0 * : V j 0 (λ 0 ) → Res j ∆ (λ 0 + 1) (4.27)
where ∆ M is the Laplacian on M acting on functions.

2) For each λ 0 = -1 2 -k with k ∈ N, V j 0 (λ 0 ) = 0 and Res j ∆ M (λ 0 + 1) = 0 for all j ∈ N. 3) For λ 0 = -1 2 , there are no Jordan blocks, i.e. V j 0 (-1 2 ) = 0 for j > 1, and the map

π 0 * : V 1 0 (-1 2 ) → Res 1 ∆ (1/2) (4.28)
is a linear isomorphism of complex vector spaces. 4) For λ 0 = -n ∈ -N, if Γ is non-elementary, there are no Jordan blocks, i.e.

V j 0 (-n) = 0 if j > 1, and the following map is an isomorphism of real vector spaces

i n+1 π n * : V 1 0 (-n) → H n (M ) (4.29)
where H n (M ) is defined by (4.1).

Proof. Case λ 0 ∈ C\(-1 2 -1 2 N 0 ), injectivity. The map X+λ 0 is a linear nilpotent map preserving the finite dimensional vector space V 0 (λ 0 ) := j≥1 V j 0 (λ 0 ) of generalized Ruelle resonant states in ker U -. Thus there is a decomposition into Jordan blocks for X on V 0 (λ 0 ): for each Jordan block of size j, one has a u (0) ∈ V 1 0 (λ 0 ) and some u (k) ∈ V k+1 0 (λ 0 ) for k ∈ [1, j] satisfying (X + λ 0 )u (k) = u (k-1) . We lift each u (k) ∈ D (SM ) to SH 2 and get u (k) ∈ D (SH 2 ) so that γ * u (k) = u (k) for all γ ∈ Γ, and u (k) is supported in Λ + , where Λ + is defined by (4.5). Define for k ≥ 0

ϕ k := π 0 * u (k) , ϕ k := π 0 * u (k) .
(4.30)

From u (0) ∈ V 1 0 (λ 0 ) we have that (X + λ 0 )u (0) = 0, U -u (0) = 0, and u (0) is supported in Λ + . The same equations hold for u (0) on H 2 . Take the distribution v (0) := Φ -λ 0 -u (0) satisfying Xv (0) = 0. Then there exists ω (0) ∈ D (S 1 ) so that Q -ω (0) = v (0) by (2.12). Since supp( u (0) ) ⊂ Λ + and Q -ω (0) = B * -ω (0) , using (4.5) we directly get that supp(ω (0) ) ⊂ Λ Γ . Using γ * ũ(0) = ũ(0) together with (2.5), we have that for any γ ∈ Γ

γ * ω (0) = N -λ 0 γ ω (0) with N γ (ν) = |dγ(ν)| -1 .
We get that ϕ 0 = P λ 0 (ω (0) ) = π 0 * u (0) satisfies (∆ H 2 + λ 0 (1 + λ 0 )) ϕ 0 = 0 on H 2 . Now by Lemma 2.1, ϕ 0 = 0 if λ 0 / ∈ -N 0 and u (0) = 0, thus ϕ 0 is a non-zero solution on M of (∆ M + λ 0 (1 + λ 0 ))ϕ 0 = 0.

To prove that s 0 = λ 0 + 1 is a quantum resonance, we will use Proposition 4.3, and for that it is sufficient to prove that ϕ 0 ∈ ρ s 0 C ∞ ev (M ), and in fact ϕ 0 ∈ ρ s 0 C ∞ (M ) is sufficient since we assumed λ 0 / ∈ -N. Take a point p ∈ ∂M , and consider p ∈ Ω Γ a lift of p to H 2 ∪ Ω Γ . To prove the desired statement, we take the boundary defining function ρ 0 (x) := 2(1 -|x|)/(1 + |x|) in the closed ball H 2 and we will show that ρ -s 0 0 ϕ 0 is a smooth function near the boundary of H 2 ∪ Ω Γ . Note that ρ 0 (x) -1 P (x, ν) is smooth outside the subset {(x, ν) ∈ H 2 × S 1 ; x = ν} and since ω (0) is supported in Λ Γ , we deduce directly that ρ -s 0 0 P λ 0 (ω (0) ) is smooth in a neighbourhood of p in H 2 ∪ Ω Γ . We have proved that ϕ 0 is a quantum resonant state which in addition has asymptotic behaviour given in terms of the distribution ω (0) : there is an explicit constant C(s 0 ) = 0 so that

π * Γ ([ρ -s 0 ϕ 0 ]| ∂M ) = C(s 0 )η s 0 S(s 0 )(ω (0) ) (4.31) where η ∈ C ∞ (Ω Γ ) is defined by π * Γ (ρ)η = ρ 0 + O(ρ 2 0 ) near Ω Γ .
For the generalized resonant states, we proceed like in the compact case: define for k ≤ j k) , and using that γ * u (k) = u (k) for all γ ∈ Γ, we get

v (k) := Φ -λ 0 - k =0 (log Φ -) k- (k -)! u ( ) which satisfies Xv (k) = 0 and U -v (k) = 0. Thus there is a distribution ω (k) supported in Λ Γ such that Q -ω (k) = v (
γ * v (k) = N -λ 0 γ k =0 (log N γ ) ! v (k-) , γ * ω (k) = N -λ 0 γ k =0 (log N γ ) ! ω (k-) . (4.32)
Writing u (k) in terms of the v ( ) and using (3.9), we have

u (k) = Φ λ 0 - k =0 (-log Φ -) v (k-) ! , ϕ k = k =0 (-1) ∂ λ P λ 0 (ω (k-) ) ! .
By (3.9) or the proof of Lemma 2.3 we deduce that

(∆ H 2 + λ 0 (1 + λ 0 )) ϕ k = (1 + 2λ 0 ) ϕ k-1 -ϕ k-2 .
(4.33) (with the convention ϕ i = 0 for i < 0). This implies the following identities on M

(∆ H 2 + λ 0 (1 + λ 0 )) k =1 ϕ (1 + 2λ 0 ) k+1-= ϕ k-1 . Using that ∂ k λ ((P (x, ν)) λ+1 )| λ 0 is of the form ρ λ 0 +1 0 k =0 (log(ρ 0 (x))) k H k (x, ν) for some functions H k smooth in {(x, ν) ∈ H 2 × S 1 ;
x = ν}, we deduce like we did for ϕ 0 that ) with s 0 = λ 0 + 1. Then, by Proposition 4.3, the function ϕ k is a quantum generalized resonant state in Res k+1 ∆ (s 0 ) for each k = 0, . . . , j, and

ϕ k ∈ k =0 ρ s 0 log(ρ) C ∞ (M
π 0 * : V k 0 (λ 0 ) → Res k ∆ (λ 0 + 1) is injective. Case λ 0 ∈ C \ (-1 2 -1 2 N 0 )
, surjectivity. Next we will show that this map is also surjective: let s 0 / ∈ 1 2 -1 2 N 0 be a pole of R ∆ (s) and denote by Π ∆ s 0 its residue. Recall that F s 0 := Ran(Π ∆ s 0 ) is finite dimensional and that A s 0 := (∆ M -s 0 (1 -s 0 ))| Fs 0 is a linear nilpotent operator preserving this finite dimensional space. Thus there is a decomposition into Jordan blocks for A s 0 on F s 0 : for each Jordan block, there is a φ 0 ∈ F s 0 so that A s 0 φ 0 = 0 and some φ k ∈ F λ 0 for k ≤ j so that A s 0 φ k = φ k-1 . Note that by definition (4.12) we have φ k ∈ Res k+1 ∆ M (s 0 ). We lift φ k to H 2 , we get

φ k := π * Γ φ k ∈ C ∞ (H 2 ). Using A s 0 φ k = φ k-1
for each k ≥ 1, we see that there exist ϕ k ∈ C ∞ (H 2 ) so that ϕ 0 = φ 0 and satisfying (4.33): ϕ k are linear combinations of ( φ ) =0,...,k and are thus Γ-invariant and descend to some function ϕ k . We will then show that there exist ω (k) ∈ D (S 1 ) supported in Λ Γ so that for all γ ∈ Γ and k ≤ j

ϕ k = k =0 (-1) ∂ λ P λ 0 (ω (k-) ) ! , γ * ω (k) = N -λ 0 γ k =0 (log N γ ) ! ω (k-) (4.34)
where λ 0 = s 0 -1. We prove this by induction on k. For k = 0, this is a consequence of Lemma 4.4. Suppose that (4.34) is satisfied with k replaced by m for all m ≤ k, and we will show that the same hold at order k + 1. We set

ψ k+1 := ϕ k+1 + k =0 (-1) ∂ +1 λ P λ 0 (ω (k-) ) ( + 1)!
and using (4.33) and (3.9)

A s 0 ψ k+1 = -(1 + 2λ 0 ) k =0 (-1) ∂ λ P λ 0 (ω (k-) ) ! - k =1 (-1) ∂ -1 λ P λ 0 (ω (k-) ) ( -1)! + (1 + 2λ 0 ) ϕ k -ϕ k-1 = 0
where the last equality follows by using the first equation of (4.34) at order k -1 and k. The surjectivity of the Poisson-Helgason transform in Lemma 2.1 implies that there exists ω (k+1) ∈ D (S 1 ) such that ψ k+1 = P λ 0 (ω (k+1) ). Now by definition of ψ k+1 , we have near each point p

∈ Ω Γ that ψ k+1 ∈ k+1 =0 (log ρ 0 ) ρ s 0 C ∞ (H 2 ∪ Ω Γ ). Since (∆ H 2 -s 0 (1 -s 0 ))ψ k+1 = 0, in fact one has ψ k+1 ∈ ρ s 0 C ∞ (H 2 ∪ Ω Γ ).
Then the same arguments as in the proof of Lemma 4.4 imply that ω (k+1) is supported in Λ Γ . This shows the first equation of (4.34) at order k + 1. Using that γ * ϕ k+1 = ϕ k+1 for all γ ∈ Γ, the induction assumption (4.34) implies that

γ * ψ k+1 -ψ k+1 =P λ 0 k+1 =1 (log N γ ) ω (k+1-) !
but this is also equal to P λ 0 (N λ 0 γ γ * ω (k+1) -ω (k+1) ), which by injectivity of the Poisson-Helgason transform implies

N λ 0 γ γ * ω (k+1) -ω (k+1) = k+1 =1 (log N γ ) ω (k+1-) !
which is exactly (4.34) for ω (k+1) . Now we define the distributions on SH

2 v (k) := Q -ω (k) , u (k) := Φ λ 0 - k =0 (-log Φ -) v (k-) ! .
By construction we have, for each k ≥ 0, (X + λ 0 ) u (k) = u (k-1) and U -u (k) = 0 (with the convention that u (-1) = 0) and u (k) is supported in Λ + . By a direct application of (4.34) and (2.5), we have γ * u (k) = u (k) for all k and γ ∈ Γ, which implies that the distributions u (k) descend to distributions u (k) on SM supported in Λ + and satisfying (X + λ 0 )u (k) = u (k-1) and U -u (k) = 0. Finally, from the equation (X + λ 0 )u (k) = u (k-1) the wave-front set of u (k) is contained in the annulator of E 0 = RX by elliptic regularity, and similarly from U -u (k) = 0 it is also contained in the annulator of U -, thus it has to be contained in E * u (which is E * + over Λ + ). Notice also that π 0 * u (k) = ϕ k for each k. This implies that u (k) ∈ V k 0 (λ 0 ) and the map π 0 * :

V k 0 (λ 0 ) → Res k ∆ (λ 0 + 1) is surjective. Case λ 0 ∈ -1 2 -N.
Note that Res j ∆ (1/2 -k) = 0 has been already shown in Proposition 4.4. In order to see V j 0 (-1/2 -k) = 0, we use a similar argument as above:

If u ∈ V 1 0 (λ 0 ) with λ 0 = -1/2-k for k ∈ N, then ϕ := π 0 * u solves (∆ M -s 0 (1-s 0 ))ϕ = 0 with s 0 = λ 0 + 1. Furthermore, by Lemma 2.1, there is ω ∈ D(S 1 ) supported in Λ Γ so that γ * ω = N λ 0
γ ω for all γ ∈ Γ and ϕ := π * Γ ϕ = P λ 0 (ω). Using (2.13) and (2.18), we see that ϕ = ρ 1/2-k 0

F 1 + ρ 1/2+k 0 log(ρ 0 )F 2 near each point p ∈ Ω Γ , where F j are smooth functions on H 2 ∪Ω Γ near p. This implies that ϕ ∈ ρ 1/2-k C ∞ (M )⊕ρ 1/2+k log(ρ)C ∞ (M ). But we also have ϕ = E M (1/2 + k)f if f := [ρ -1/2+k ϕ]| ∂M
by the properties of E M (s) (see (4.13)). As in the proof of claim 1), the fact that supp ω ⊂ Λ Γ implies the vanishing of the ρ -1/2+k log(ρ) terms in the asymptotic of ϕ. This implies by (4.17) that S M (1/2 + k)f = 0, which by (4.18) shows that f = 0, and thus ϕ = 0, proving the claim 2).

Case λ 0 = -1/2. The arguments above show that each Ruelle resonant state

u ∈ V 1 0 (-1/2) produces a quantum resonance ϕ = π 0 * u whose lift to H 2 is P λ 0 (ω) ∈ ρ 1/2 C ∞ (M ) at s 0 = 1/2 for some ω ∈ D (S 1 ) supported in Λ Γ and satisfying γ * ω = N 1/2
γ ω for all γ ∈ Γ. If there is an element u ∈ V 2 0 (λ 0 ), then like in Theorem 3.3 we have ϕ := π 0 * u satisfying (∆ M -1/4)ϕ = (2λ 0 +1)ϕ = 0, with π * Γ (ϕ ) =: P λ 0 (ω )-∂ λ P λ 0 (ω) for some ω ∈ D (S 1 ) supported in Λ Γ . We have

∂ λ P -1/2 (ω)(x) = log(1 -|x| 2 )P -1/2 (ω)(x) + S 1 P (x, ν) 1/2 log(|x -ν| 2 )ω(ν)dν
and, using that supp(ω) ∈ Λ Γ and (2.17), this implies directly that near a point p ∈ Ω Γ ,

∂ λ P -1/2 (ω)(x, ν) = √ 2 log ρ 0 (x)(∂ λ S(1/2)ω)(ν) + O(1) as |x| → 1. Since P λ 0 (ω ) ∈ ρ 1/2 0 C ∞ (H 2 ∪ Ω Γ )
, we get that ϕ = log(ρ)f + O(1) near ∂M , for some non-zero f ∈ C ∞ (∂M ). Therefore by 2) in Proposition 4.3 the function ϕ is not a generalized resonant state. This shows that -1/2 is a pole of order at most 1 for R X (λ), there is no Jordan blocks and π 0 * : V 1 0 (-1/2) → Res 1 ∆ (-1/2) is injective. The surjectivity works as for the cases above.

Case λ 0 ∈ -N 0 , injectivity. By Proposition 2.4, among generalized states at λ 0 = -n killed by U -and π 0 * , there can be only resonant states. Let u be a Ruelle resonant state satisfying (X -n)u = 0, U -u = 0 and supp(u) ⊂ Λ + . We can always assume that u is real valued: indeed, since the spectral parameter -n is real valued, there is a basis of real-valued resonant states. The space V 0 (-n) can then be considered as a real vector space.

First, we assume that π 0 * u = 0. Consider the Fourier components u k in the fiber variables, then by the proof of Proposition 2.4, we have u k = 0 for all |k| < n, and by (2.29) we also get η -u n = 0 and η + u -n = 0. In particular ∂u n = 0 and ∂u -n = 0 when we view u ±n as (distributional) sections of K ±n . Notice by ellipticity that u ±n are smooth and actually analytic. We will denote by u ±n = π * Γ u ±n their lift to H 2 , and in the ball model we can write u n = f n dz n and u -n = f -n dz n for some holomorphic (resp. antiholomorphic) functions f n (resp. f

-n ) on H 2 satisfying ∀γ ∈ Γ, γ * f n = (∂ z γ) -n f n and γ * f -n = (∂ z γ) -n f -n .
Take the distribution v := Φ n -u where u := π * Γ u: we get Xv = 0 and U -v = 0 thus there exists ω ∈ D (S 1 ) so that Q -ω = v by (2.12). Since supp( u) ⊂ B -1 -(Λ Γ ), we get directly that supp(ω) ⊂ Λ Γ and by (2.5), for any γ ∈ Γ, γ * ω = N n γ ω. We want to write the Fourier mode u k (in the fiber variable) in terms of ω: Therefore we write z = x 1 +ix 2 ∈ H 2 and identify the unit tangent vector 1 2 (1 -|z| 2 )(cos(θ)∂ x 1 + sin(θ)∂ x 2 ) ∈ S z H 2 with e iθ . We get

u k (z) =(2π) -1 SzH 2 u(z, e iθ )e -ikθ dθ 2 1 -|z| 2 k dz k =2 k (2π) -1 2π 0 ω(e iα )e -ikα |1 -ze -iα | 2(n-1) (ze iα -1) k (1 -ze -iα ) k dα dz k (1 -|z| 2 ) k+n-1
where we used the change of variable e iθ = B -1 z (e iα ) defined by (2.2). For |k| < n we have u k = 0, thus by evaluating at z = 0 we get ∀k ∈ (-n, n), 0 = 2π 0 ω(e iα )e -ikα dα.

(4.35)

For k = n, we know that u n = f n dz n with f n holomorphic on H 2 , thus we deduce that

f n (z) = (-2) n 2π 2π 0
ω(e iα ) e -inα 1 -ze -iα dα.

(4.36)

We deduce from this that f n (z) has a series expansion converging in |z| < 1 given by

f n (z) = (-2) n 2π ∞ k=0 ω k z k , ω k := ω, e -i(n+k)α ,
where here we notice that |ω k | = O((1 + |k|) N ) for some N , since ω is in some Sobolev space on S 1 (here and below, •, • denotes the bilinear distributional pairing on S 1 with respect to the natural measure dα of mass 2π). From (4.36) and since supp(ω) ⊂ Λ Γ , we see that f n (z) extend holomorphically to C \ Λ Γ . The section f n (z)dz n is holomorphic on C \ Λ Γ and Γ equivariant, thus descend to a holomorphic section of K n on M 2 with the notation of Section 4.1. Similarly, we get (using that ω is real-valued) But since ω| Ω Γ = 0 the harmonic function z n f n + z n f n vanishes on Ω Γ thus e inθ f n | Ω Γ ∈ iR, which means that i n+1 ι * ∂M u n is a real-valued symmetric tensor on ∂M . This is equivalent to say that i n+1 u n ∈ H n (M ). Moreover, the map u → i n+1 u n ∈ H n (M ) is injective since u n = 0 implies ω = 0 and thus u = 0.

f -n (z) = ( - 
Case λ 0 ∈ -N, surjectivity. Conversely, let u n ∈ i -n-1 H n (M ) and consider its lift u n = f n dz n to H 2 . The holomorphic function f n satisfies f n (γ(z)) = (∂ z γ(z)) -n f n (z) for all γ ∈ Γ, or equivalently γ * u n = u n , and we can assume that e inθ f n | Ω Γ ∈ iR. The tensor u n is bounded on M with respect to the hyperbolic metric thus |f n (z)dz n | g H 2 ∈ L ∞ (H 2 ), and since |2dz n /(1 -|z| 2 ) n | g H 2 = 1, we deduce that z → f n (z)(1 -|z| 2 ) n is bounded in the unit disk and therefore f n is tempered. In particular there exists ω ± ∈ D (S 1 ) so that P 0 (ω + ) = z n f n and P 0 (ω -) = z n f n , and in fact ω -= ω + . We have ω := ω + + ω -which is supported on Λ Γ since ω is the boundary value of Re(z n f n ) to S 1 in the weak sense. Next we want to describe the covariance of ω with respect to each γ ∈ Γ: write γ(e iα ) = e iµ(α) for the action on S 1 , then |dγ(e iα )| = µ (α) we have γ * (z n f n (z)) = (z ∂zγ (z) γ(z) ) -n f n (z), which when restricted on S 1 gives γ * ω = -i∂ α (γ(e iα ) γ(e iα )

-n ω = |dγ| -n ω.

(4.37) kernel in the half space model is P (x, y, x ) = y y 2 +|x-x | 2 where z = x + iy ∈ H 2 and x ∈ R is the point at infinity. We can just compute that in the upper half-space model where the repulsive fixed point -1 ∈ S 1 is mapped to 0 and the repulsive +1 ∈ S 1 to ∞, we have

P -n (ω -) = c -δ (n-1)
x =0 , (y 2 +|x-x | 2 ) n-1

y n-1 = c -Q(x, y)/y n-1
where Q is a homogeneous polynomial of degree n -1 in C, satisfying Q(-x, y) = (-1) n-1 Q(x, y). The same argument shows that in the half-plane model where -1 ∈ S 1 is mapped to ∞ and +1 ∈ S 1 to 0 shows that P -n (ω + ) = c + Q(x, y)/y n-1 . On the other hand, the mapping from one half-plane model to the other can be chosen to be A : z → -1/z and, due to the parity property of Q(x, y) in x, we easily see that Q(A(z))/(Im(Az)) n-1 = (-1) n-1 Q(z)/(Im(z)) n-1 . This shows that π 0 * maps V 1 0 (-n) to a 1-dimensional space Res 1 ∆ (-n + 1) of quantum resonant states. The elements in ker π 0 * ∩ V 1 0 (-n) are in correspondence with H n (M ), as we discussed in the proof of Theorem 4.5, and this space has real dimension equal to 1. The quantum resonances at s = -n + 1 are computed in [START_REF] Borthwick | Spectral theory of infinite-area hyperbolic surfaces[END_REF]Chapters 5.1 and 8.2]: there are poles of order 2, there is a 1-dimensional space of quantum resonant states and the multiplicity is equal to 2 due to the Jordan block. The correspondence between classical and quantum resonant states is thus different from the non-elementary group case for these particular points.

Finally exactly the same proof as Corollary 3.4 gives the full Ruelle resonance spectrum.

Corollary 4.6. Let M = Γ\H 2 be a smooth oriented convex co-compact hyperbolic surface and let SM be its unit tangent bundle. Then for each λ 0 ∈ C with Re(λ 0 ) ≤ 0, k ∈ N 0 , and j ∈ N, the operator U k + is injective on V j 0 (λ 0 + k) and we get

V j k (λ 0 ) = k =0
U + (V j 0 (λ 0 + )).

Zeta functions

The zeta function of the flow is defined by

Z X (λ) = exp - γ 0 ∞ k=1 1 k e -λk (γ 0 ) | det(1 -P (γ 0 ) k )| (5.1)
where γ 0 are primitive closed geodesics and P (γ 0 ) is the linearized Poincaré map of the geodesic flow on this geodesic. The function converges for Re(λ) > δ Γ where δ Γ < 1 is the Hausdorff dimension of the limit set Λ Γ (see [Pa]). By [START_REF] Dyatlov | Pollicott-Ruelle resonances for open systems[END_REF]Theorem 4],

the function Z X (λ) admits a holomorphic extension to λ ∈ C with zeros at Ruelle resonances and the order of a Ruelle resonance λ 0 as a zero of Z X (λ) is given by ord λ 0 (Z X (λ)) = Rank(Π X λ 0 ) (5.2)

where Π X λ 0 = -Res λ 0 R X (λ) is the projector on generalized Ruelle resonant states. In particular we deduce from (5.2) and Theorem 4.6 the Proposition 5.1. The order of λ 0 as a zero of Z X (λ) is given by ord λ 0 (Z X (λ)) = dim Res X (λ 0 ) = p∈N 0 dim(Res X (λ 0 + p) ∩ ker U -).

where Res X (λ 0 ) = ∪ j≥1 Res j X (λ 0 ) is the space of generalized resonant states at λ 0 , with Res j X (λ 0 ) defined in (4.7).

The Selberg zeta function Z S (λ) is defined by

Z S (λ) := exp - γ 0 ∞ k=1 1 k e -λk (γ 0 ) det(1 -P s (γ 0 ) k ) (5.3)
where the sum is over all primitive closed geodesics and P s (γ 0 ) = P (γ 0 )| Es is the contracting part of P (γ 0 ). For each closed geodesic γ on M = Γ\H 2 , there is an associated conjugacy class in Γ, with a representative that we still denote by γ ∈ Γ and whose axis in H 2 descends to the geodesic γ; the linear Poincaré map along this closed geodesic is easy to compute since γ is conjugated to z → e (γ) z in the upper half-space model of H 2 . Using this expression we get P (γ 0 )| Es = e -(γ 0 ) Id and P (γ 0 )| Eu = e (γ 0 ) Id thus e -1 2 k (γ 0 ) det(1 -P s (γ 0 ) k ) -1 = e -1 2 k (γ 0 ) (1 -e -k (γ 0 ) ) -1 = ∞ p=0 e -k (γ 0 )(1/2+p) (5.4) and | det(1 -P (γ 0 ) k )| = e k (γ 0 ) det(1 -P s (γ 0 ) k ) 2 . This implies the formula

Z X (λ) = ∞ p=1
Z S (λ + p), Z S (λ) = Z X (λ -1) Z X (λ) .

(5.5) By combining (5.5) with Proposition 5.1 and Theorem 4.5, we obtain Corollary 5.2. Let M = Γ\H 2 be a convex co-compact oriented hyperbolic smooth surface and assume Γ is non-elementary. Then its Selberg zeta function Z S (s) is holomorphic with zeros given by: 1) quantum resonances s 0 / ∈ -N 0 with order ord s 0 (Z S (s)) = Rank(Res s 0 R ∆ (s))

2) negative integers -n ∈ -N 0 with order

ord -n (Z S (s)) = dim R H n+1 (M ) = (2n + 1)|χ(M )| if n > 0, |χ(M )| + 1 if n = 0
where H n+1 (M ) are defined by (4.1).

The description of the zeros of Z Γ (s) in this setting was also done by Borthwick-Judge-Perry [BJP] (inccuding the case with cusps). We remark that in [BJP] the topological contribution in the order of Z S (s) at s = 0 is |χ(M )|. Furthermore there is a spectral contribution coming from the multiplicity of 0 as a quantum resonance. This multiplicity is exactly 1 by the proof of Theorem 1.2 in [GuGu], the resonant states being the constants (see the discussion after the proof of [START_REF] Guillarmou | The determinant of the Dirichlet-to-Neumann map for surfaces with boundary[END_REF]Theorem 1.2]), which matches with part 2) in Corollary 5.2. For the points s = -n with n ∈ N, [BJP] obtain a zero of order (2n + 1)|χ(M )| + ν(-n) where ν(-n) = Rank(Res -n R ∆ (s)) is the order of -n as a resonance, and thus 2) of Corollary 5.2 implies that ν(-n) = 0 for non-elementary groups Γ.

  0 and this completes the argument when λ 0 + k = 0.

  ψ ∈ C ∞ (S 1 ), write ψ = k∈Z ψ k e ikθ , then for r < 1 we get2π 0 f n (re iθ )ψ(θ)dθ = (-2) n k≥0 ω k r k ψ -kand this converges to (-2) n Π + (ωe -inθ ), ψ as r → 1 where Π + is the Szegö projector, i.e. the projector 1l [0,∞) (-i∂ θ ) on the non-negative Fourier modes on S 1 . By using (4.35), this means that f n has a weak limit on S 1 and f n | S 1 = (-2) n e -inθ Π + (ω) in the weak sense. Similarly, we havef -n | S 1 = (-2) n e inθ Π -(ω) if Π -:= 1l (-∞,0] (-i∂ θ ).Now by injectivity of the Poisson-Helgason transform at the spectral parameter 0 we obtain C n ∈ R * such that P 0 (ω) = P 0 (Π + (ω)) + P 0 (Π -(ω)) = C n (z n f n + z n f n )

Note that this was proved in the setting of hyperfunctions by Helgason[He] 

The case λ = -1/2 is not really studied in[START_REF] Dyatlov | Power spectrum of the geodesic flow on hyperbolic manifolds[END_REF] Lemma 6.8] but the analysis done there for λ ∈ -1/2 + N applies as well for λ = -1/2 by using the explicit expression of the modified Bessel function K 0 (z) as a converging series.

The evenness of the expansion at t = 0 comes directly from the proof in[START_REF] Dyatlov | Power spectrum of the geodesic flow on hyperbolic manifolds[END_REF] Lemma 6.8] when acting on functions, since the special functions appearing in the argument are Bessel functions that have even expansions.

Thus u = Φ -n -Q -(ω) ∈ D (H 2 ) solves (X + n) u = 0 and U -u = 0, it is Γ-invariant by using (4.37) and has support in Λ + = B -1 -(Λ Γ ). This implies that u descends to a Ruelle resonance u, with support in Λ -and with WF(u) ⊂ E * + by ellipticity arguments as before. The map u n → u is injective since u n → ω is injective. Moreover by construction ω has vanishing k-Fourier components for all |k| < n on S 1 , thus it is in the kernel of P -n , which means that π 0 * u = 0, and thus π k * u = 0 for all |k| < n by Lemma 2.2 (just like in the proof of Proposition 2.4).

To conclude the proof we have to prove that a Ruelle resonant state u ∈

for some polynomial L n of degree 2n -2. Since for each γ ∈ Γ we have (1

Taking z = z ± to be the two fixed points of γ, we deduce that L n (z ± , z ± ) = 0 since |γ (z ± )| = 1. Therefore L n is a polynomial in (z, z) vanishing on the limit set Λ Γ , and thus it vanishes on the whole S 1 by analyticity, if Γ is non-elementary. We deduce that u 0 = O(ρ 2-n 0

) at S = ∂H 2 , and thus u ∈ ρ 2-n C ∞ (M ). From the form of ∆ M near ρ = 0 given by (4.10), a Taylor expansion in ρ = 0 of the equation (∆ M -n(1 -n))u 0 = 0 implies that actually u 0 ∈ ρ n C ∞ (M ) ⊂ L 2 (M ), and therefore u 0 = 0 since n(1-n) ≤ 0, leading to a contradiction.

The case of an elementary group. Let us briefly discuss the case of an elementary group generated by one transformation γ ∈ PSL 2 (R), and we only need to focus on the spectral points -n ∈ -N. We can assume that the two fixed points of γ in the disk model are ±1 (with -1 being the repulsive one), and mapping the disk to the upper half-plane so that ∓1 is mapped to 0 and ±1 to ∞, the transformation γ is conjugated to γ ∓ : z → e ± z for some > 0. By the discussion in the proof of Theorem 4.5, the Ruelle resonant states at -n ∈ -N are in correspondence with the ω ∈ D (S 1 ) supported in {-1, 1} and satisfying γ * ω = |N γ | n ω. There can only be Dirac masses and its derivatives at ±1. To analyse the restriction of ω on a small neighborhood O ∓ ⊂ S 1 of ∓1, we use the upper half-plane model, ω| O ∓ becomes (after conjugation) a distribution ω ∓ ∈ D (R) supported in {0} and satisfying γ * ∓ ω ∓ = e ∓n ω ∓ . The only solutions are of the form c ∓ δ

denotes the j-th derivative of the Dirac mass δ 0 at 0 in R. The same argument shows that there is no generalised resonant state (no Jordan blocks) for the operator X, i.e. V j 0 (-n) = V 1 0 (-n) for j > 1, and the space of Ruelle resonant states at -n is exactly of dimension 2. The Poisson Universität Paderborn, Warburgerstr. 100, 33098 Paderborn, Germany E-mail address: weich@math.upb.de Universität Paderborn, Warburgerstr. 100, 33098 Paderborn, Germany